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Buoy Light Pattern Classification for Autonomous
Ship Navigation using Recurrent Neural Networks

Frederik E. T. Schöller and Lazaros Nalpantidis, Senior Member, IEEE and Mogens Blanke Senior Member, IEEE

Abstract—In near coast navigation, buoys and beacons convey
essential information about dangers. At night-time, selected buoys
send out individual blink-sequences that are marked in sea
charts. International regulations require that navigation officer
on watch makes visual confirmation of objects and their type
in order to navigate safely. With rapid developments of highly
automated vessels, this duty needs be carried out by algorithms
that detect and locate objects without human intervention. At
night-time, this requires algorithms that decode blink sequences
and are able to classify from this information. The paper
investigates this problem and suggests an algorithm that solves
the problem.
Convolutional Neural Networks (CNN) with Gated Recurrent
Units (GRU) are developed for classification. A dedicated archi-
tecture is suggested that includes both temporal and color decod-
ing to obtain unique precision. We demonstrate how networks
are trained on synthetically generated data, and the paper shows,
on real-world data, how the suggested approach yields 100.0%
accurate results on 44 real-world recordings while being robust
to inaccuracy in actual blink sequences.
Comparison with baseline signal processing and with a recent
state-of-the-art 3D CNN model shows that the new blink-sequence
classifier outperforms alternative algorithms.

A showcase of the results of this work is available in this video:
https://youtu.be/KEi8qNnKV2w.

Index Terms—Autonomous navigation, Autonomous marine
vessels, computer vision, deep learning, sequence classification

I. INTRODUCTION

Marine autonomous surface ship technologies are gaining
significant momentum. These technologies promise to pro-
vide services that include decision support for the manned
vessel, making periodically unattended navigation possible,
while smaller vessels could navigate completely unmanned.
Proficient situational awareness is required day and night to
provide such functionalities, and any mistake could cause a
safety hazard.

Gaining situational awareness includes three main elements:
perception, understanding of the environment, and anticipation
of the development [1]. Whether a vessel is manned or un-
manned, situational awareness is crucial for safe navigation
[2], [3], and significant efforts have been reported on daytime
awareness. Perception and understanding at daytime have
included classification and tracking of objects, such as ships
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and buoys, are active topics of research [4], [5], [6], and
robust classification from weather-degraded [7] or generally
poorly annotated image data [8] is a challenge. At night-time,
the same task becomes different and more demanding. Safe
navigation in coastal waters requires that a ship avoids the
areas of shallow water or other danger that are shown by
buoys in the water and are marked in sea charts. Observing
the bearing to light-buoys and beacons with flash sequences is
the reliable and simple way to confirm own ship’s position
relative to areas of danger. Electronic means are efficient
when they are operational, but defects, whether of physical
or malicious nature, can easily mislead a ship into unsafe
navigation [9]. Safe aids to navigation must therefore rely
on buoys and beacons. At nighttime, these are recognized
by signaling a flash sequence that indicates their type. The
overall light pattern signals the type, but patterns are also
coded to distinguish the same type at different locations along
a route. A particular buoy or beacon hence emits a pre-selected
pattern of light, which is part of the information found in
navigational charts. Some buoys provide radio transmission
of their position by AIS, while others respond to vessels’
radar signals. These are, however, very few, and vision-based,
automated classification of buoys at nighttime is of paramount
importance for safe navigation.

Fig. 1: Image taken along the Øresund strait that includes
some of the blinking buoy patterns used for testing.

Marine vessels rely to a large extent on global navigation
satellite systems (GNSS) for navigation, but spoofing and
jamming attempts have become increasingly frequent [10].
Automatic buoy classification can help combat spoofing if
supplemented by a comparison between environment and
sea charts, similar to landmark recognition [11], [12]. The
mapping from international regulations to required features
of autonomous navigation architecture and algorithms are
discussed in [13].

In this work, we investigate a camera-based approach for

https://youtu.be/KEi8qNnKV2w
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classifying buoy light patterns from image sequences. Figure
1 shows an overlook of a scene that contains a harbor line of
lights plus a few blinking buoys along the coastline. The light
buoys are essential for safe navigation. We are harnessing the
strengths of deep learning and specifically of Convolutional
Neural Networks (CNN) with Gated Recurrent Units (GRU).
Furthermore, we choose to generate synthetic data for training,
thus alleviating the laborious task of obtaining enough real-
world data for training deep neural networks. Our method
is meant to be deployed on a moving vessel in real-time
applications. The vessel will be equipped with cameras that
can provide a video stream of the buoy image sequences to
be classified. The contributions of this paper are:
• A novel Recurrent Neural Network configuration with

simultaneous color and pattern recognition coupled with
a novel decision algorithm for deciding when a prediction
is finalized and video acquisition can stop. The approach
of having a decision algorithm between the network
and the output has, to the authors’ knowledge, not been
published earlier.

• A method to simultaneously capture video and analyze
its contents until a confident decision on the pattern is
made.

• A simpler light pattern recognition method based on
classical computer vision to be used as a reference in
this work.

• A novel method for generating synthetic buoy light
pattern videos.

The contents of the paper are as follows. Having introduced
the problem and its context, we present related work in Section
II and list the internationally standardized blink sequences that
buoys and beacons emit in Section III, which also explains
our approach to generate synthetic data for neural network
training. Section IV introduces a standard solution for time-
sequence identification from detection theory, which we use as
a baseline. A novel method is suggested in Section V, describ-
ing a gated recurrent unit, attention method, architecture, and
decision algorithm. Section VI presents results from testing on
recorded videos from the sea and demonstrates the efficacy of
the approach. Section VII concludes this work.

II. RELATED WORK

The computer vision community has been interested in
detecting and decoding signals transmitted by means of light
pulses sequences. Such decoding systems have found applica-
tion in a variety of scenarios. The use of optical recognition
of Morse code signals was investigated within an Internet
of Things (IoT) smart home security system [14]. Closer to
this work is sequence analysis in the domain of video. A
classical approach to video analysis can consist of detecting
objects of interest using foreground segmentation and conclude
based on the movement of the objects. [15] used this approach
to analyze surveillance video data in order to detect vehicle
collisions. Similarly, [16] used a Bayesian network to interpret
the behavior of vehicles in traffic videos.

The extraction of patterns from video inputs is the focus
of video content classification. A common approach to extract

spatio-temporal features from videos for action recognition is
by using 2D convolutional kernels within two-stream neural
networks, i.e. networks that process RGB and optical flow in-
formation in parallel [17]. An extension of this work considers
residual networks within the two-stream architecture [18] for
training.

Another way of extracting spatio-temporal features is by
using 3D convolutional kernels to process video input. Hara
et. al [19] proposed a 3D CNN architecture inspired by the
ResNet type networks [20]. The use of residual connections in
a CNN with 3D convolutions showed to reduce overfitting and
enabled the use of deeper networks for action recognition. Tran
et. al [21] extended on this by factorizing the 3D convolutional
filters into separate spatial and temporal components, which
showed to significantly improve performance.

The work of [22] also used the 3D convolutional approach
for video analysis but combined this with a CNN-RNN net-
work for emotion recognition. Here, a combination of 3D
CNNs and CNN-RNNs was used as it was argued that each
method brought something different to the table which could
be used for the recognition. While effective, 3D convolutions
tend to be slow to compute making them suboptimal for online
inference. Tran et. al [23] assessed this using 3D channel-
separated convolutions instead of conventional convolutional
layers. This approach showed to yield a network with per-
formance comparable to state-of-the-art methods while being
2-3 times more efficient. Kondratyuk et. al [24] also sought
to reduce inference time by using a combination of Neural
Architecture Search (NAS), stream buffers, and temporal en-
sembles providing an 80% reduction in computational needs
compared to other state-of-the-art methods.

Ullah et. al [25] utilized a CNN-RNN structure, a bidirec-
tional CNN-LSTM, for video analysis. Frame skipping was
used to decrease processing time while keeping high accuracy.
A bidirectional architecture requires a complete video being
available during prediction. In contrast, our use-case calls for
prediction during image acquisition. Furthermore, the required
video length that contains all needed information is, in our
case, not known a priori.

Recently, transformer models have shown to perform very
well on sequential data [26]. Transformer models have also
shown encouraging results in image classification tasks. An
example of this is the Vision Transformer (ViT), in which an
image was treated as a sequence of 16x16 patches. Arnab et.
al extended on this idea to be able to process video data [27].
The Video Vision Transformer showed to surpass the previous
CNN based state of the art.

Common to all the mentioned methods is that a whole video
is needed as the input for prediction. The method proposed in
this work differs by utilizing a decision algorithm enabling
online inference during image acquisition. A predetermined
frame count is therefore not needed, as the method can decide
by itself whether or not enough frames have been processed.

While, research on sequence decoding for action recognition
and video classification is highly relevant for this application,
to the best of the authors’ knowledge, little to no research has
been done in the area of visual classification of buoy light
patterns.
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III. BUOY LIGHT PATTERNS

Deep learning methods constitute powerful tools for solving
tasks such as the one considered in this work, but their
performance relies on the availability of large amounts of
accurately annotated training data. While testing of the trained
models was performed on real-life videos, training data was
chosen to be generated synthetically. Thus, the amount of data
needed for training deep learning models could be obtained in
an efficient manner. This decision was motivated by previously
reported successes of using synthetically generated data for
training deep neural networks, e.g. in [28].

The flash pattern of a buoy is determined by a sequence
code. Examples of sequences are illustrated in Figure 2. The
code consists of three parts: pattern, color, and period, as
described in [29]. The following characteristics are used to
describe unique blink sequences:
F (Fixed), Fl (Flash light), L (Long), Q (Quick) one blink per
second, V Q (Very Quick) two blinks per second, Oc Occulting
(darkness interrupted by periods of light), Iso same period
for light and dark. These can be combined, such that FFl(3)
indicates a buoy with fixed light followed by 3 flashes.

TABLE I: Nomenclature for buoy light patterns

type T { Fl, LFl, Iso . . . }
colour C { white ( ), red (R), green (G) }
period p xx [sec]
light(1) l1 x.x [sec]
dark(1) d1 x.x [sec]
light(2) l1 x.x [sec]
dark(2) d2 x.x [sec]

flashes(1) n1 cardinality
flashes(2) n2 cardinality

morse M morse letter

As an example the buoy Fl(3)G.15s (1.5 + 1.5 + 1.5 +
1.5 + 1.5 + 7.5) has a period of 15s. It sends one green
flash of duration 1.5s, followed by darkness during 1.5s. This
is repeated three times. After the third green flash follows
darkness for the remaining 7.5s signal. Hereafter the sequence
is repeated. A light duration of 10% of the period is usually
the case for light buoys. Using the abbreviations presented
in Table I, a sequence with n flashes has the generic form
Fl(n).C.p = (l1, d1, ...ln, d2).

For this paper, the 10 most common red and green se-
quences were chosen for classification. Additional sequences
could easily be incorporated.

For reasons of brevity, the methods presented in this paper,
assume that a buoy is pre-detected by a detection algorithm,
and a cropped video sample of the specific buoy is provided
to the classification algorithm.

A. Synthetic Data Generation

In order to generate synthetic training data sequences, two
images are needed: a background image and an image with
a flashing light source. These images are then arranged in
the specific order that makes the sequence. For a 25 fps
video, the Fl.G.10s sequence would consist of 25 flash images
followed by 225 background images. The sequence is looped
in order to obtain a certain length, and a random segment of a

chosen length is selected for the final sequence video. In this
research, the generated videos have a length of 30 seconds
to ensure we can accommodate the longer blink sequences.
The background image is generated by randomly selecting a
32×32 pixel patch from a selection of background images.
The background images were night-time cityscapes seen from
a ship to include relevant noise and visual clutter.

The flash image is obtained by a blurred circle of random
size is drawn on top of the background image at a random
location. The color of the circle is chosen to appropriately
match that of a buoy light.

Initial analysis of buoy pattern videos showed that the
timing of the buoy patterns varies quite a lot from what is
stated in the nominal requirement for the hardware, especially
for the Fl.3s pattern, where some light flashes lasted up to
160% longer than what they were supposed to. While this
does not affect human classification of the signals, it has a huge
impact on how a computer sees the sequence. To accommodate
for this and for timing variations imposed by camera frame
rate, randomness is included in the timing of the generated
sequences, uniformly varying the period with up to ±10%
and the light duration with up to ±20%. Specifically for Fl.3s
patterns, the base light duration is chosen randomly to either
0.3, 0.5 or 0.7 seconds as these were observed in the gathered
videos. Furthermore, Gaussian image noise with mean µ = 0
and variance σ2 = R, where R is a sequence-specific random
variable following the uniform distribution between 1 and 12,
is added to the generated sequence in order to emulate image
noise. The temporal noise and image noise are superimposed
separately. Two generated data examples can be seen in Figure
3.

To evaluate the method, testing was performed on real-
life videos of buoy light patterns. The videos are captured
both from the sea and from land overlooking the open sea.
Test data includes examples both with and without city lights
in the background. The test set has the following patterns:
Fl.3s, Fl.5s, Fl(2).5s, Fl(3).10s, Q, Iso.3s as these were the
patterns present during our data collection. The collection is

Fig. 2: Examples of common flash sequences for red lights.
The same patterns exist for buoys with green flash lights.
These are general illustrations of buoy light patterns as

presented for navigators, where the period is omitted [30].
The exact definition of generic sequences is presented in

Table I.
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(a) Background images (b) Flash images

Fig. 3: Examples of generated training images

(a) Background images (b) Flash images

Fig. 4: Examples of real-world test data, taken from the port
of Elsinore looking towards Sweden.

done by first recording a video and then manually cropping
out the area in which the buoy light is contained. The crop
is done with a large margin around the blink to accommodate
vibrations and ship movement. While the blink videos were
prepared manually, this could be done automatically for real-
world implementation.

Fig. 5: Occurrences of the different buoys in the real-world
videos, recorded at Oresund and the South Funen

archipelago.

Such an approach could be based on a combination of
detection and tracking of the subject. Subject detection could
be based on deep learning methods such as object detection,
which is a widely researched subject for marine environments,
[31], [32], [33]. Detection could also be based on obstacle
segmentation methods such as investigated by [34]. Tracking
of the subject could be based on subsequent detection [35] or
by using optical flow [36]. While recording the buoy lights,
the camera was often set out of focus on purpose, as it was
found to give better color reproduction. In total, 44 different
buoy videos were collected for testing, an example of which
can be seen on Figure 4. The occurrence of the different labels
in the test set is illustrated in Figure 5.

IV. BASELINE METHOD

In this section, a baseline method based on classical image
analysis and detection theory is presented.

A. Detection Theory Based Method
Given the set of all possible blink sequences S =
{s1, s2 . . . sN}, and an observed sequence z.

A hypothesis is Hi if the observed sequence z comprises
the sequence si , i.e.

Hi :z(k) = si(k − k0i) + w(k), k = 0, 1, . . . ,K − 1 (1)

where k0i is the unknown delay of si and w(k) is white Gaus-
sian noise. The unknown delay k0i of sequence si is estimated
by the maximum likelihood estimate over all possible values
of k0,

k̂0i = max
k0

k0+K−1∑
k=k0

z(k)si(k − k0). (2)

With an observed sequence z, we should choose Hi for
which p(z|Hi) is maximum. This is equivalent to choosing the
si that gives minimum relative distance Di between z(k−k̂0i)
and si:

D2
i =

∑K−1
k=0 (z(k + k̂0i)− si(k))2∑K−1

k=0 (si(k))2
(3)
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Fig. 6: Block diagram illustrating the detection theory-based baseline method. A light pattern is extracted from the image
sequence by generating a green and red color mask using color thresholding. The color masks are binarized using Otsu’s
method. A hypothesis is then made based on the correlation between the binarized patterns and a bank of possible buoy

patterns.

When choosing among N blink sequences, N can be
reduced by involving a prior probability that a sequence exists
in the area A of interest, P (si|ENC(A)), where ENC(A) is
sea chart information about buoys for a specified area, usually
the visible range given the altitude of the observer.

Hence, Hi is chosen as follows,

Hi = argmax
i

((1−Di)P (si|ENC(lat, lon))) (4)

B. Signal Conditioning

The detection theory based method is used together with
classical image analysis as a baseline detector. A block di-
agram illustrating the data flow of the baseline algorithm is
shown in Figure 6. First, a template bank is made, consisting
of the N target sequences S = {s1, s2 . . . sN} to populate
the vocabulary of sequences. To detect blink sequences from
a video stream, the video is first converted to the HSV
color space. The Hue (color) channel of each frame is then
thresholded to exclusively include the color range matching
that of a buoy light, with options C = {green, red}. The
thresholded image is now a mask indicating whether or not a
pixel is in the given color range. The mask processing for red
and green are illustrated in Figure 7.

(a) Original image (b) Green mask (c) Red mask

Fig. 7: Example of the color separation for the baseline
detection model showing no red light in the original image

and some green light

For each frame in the video, the mean intensity of the
thresholded image is added to the respective sequence. The
result is, for each image, a sample zc(k) for each channel in
C. The values of the proposal sequences are then thresholded
to obtain a binary sequence of whether or not a blink is
active in a given frame. The threshold level is based on first
and second-order statistics using Otsu’s method [37]. A step-
by-step example of the extraction of a binary sequence is
illustrated in Figure 10.

The proposed sequences zc are then compared to each
sequence si in the template bank S, using Equations 2 to
4 for detection. This results in finding the template sequence
si that has the closest correlation with the observed pattern,
given the geographic area of interest. This includes the color
of the sequence. For testing purposes, P (si|ENC(lat, lon))
is set uniformly for each sequence type.

In real life, blink sequences have uncertainty, in particular in
the duration of the short flashes in a sequence. The detection
theory method achieved an accuracy of 64.0% on syntheti-
cally generated data where uncertainty in flash duration was
modeled and 70.5% on the real videos available from Danish
waters.

Fig. 8: Histogram showing the number of real-world videos
correctly classified by the baseline method. The light blue
bars are the number of correct classifications of a given

sequence whereas the dark blue bars are the total number of
the given label in the test set.
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Fig. 9: Histogram showing the number of generated videos
correctly classified by the baseline method. The light blue
bars are the number of correct classifications of a given

sequence whereas the dark blue bars are the total number of
the given label generated.

Fig. 10: Raw color channel (top), Color thresholded signal
(second), Otsu thresholded signal (third), template sequence

with the highest correlation (bottom).

V. PROPOSED METHOD

This section describes the components of the proposed
method, as well as the structure of the model architecture.

A. Gated Recurrent Unit

The Gated Recurrent Unit (GRU) [38] is a type of RNN. The
GRU was motivated by the Long short-term memory (LSTM)
[39], which addresses the vanishing gradients problem of
the classical RNN’s by using gates to control the flow of
information. Unlike a classical feed-forward neural network,
a GRU is able to learn temporal information by keeping the
current network state throughout a sequence. The GRU has
two gates: The reset gate rt, which determines what part of
the previous information should be dropped before the update,
and the update gate zt, which controls how much information
from the previous hidden state will carry over to the current
hidden state. The update of the GRU can be described as:

zt = σg (Wzxt + Uzht−1 + bz) (5)
rt = σg (Wrxt + Urht−1 + br) (6)

ĥt = φh (Whxt + Uh (rt � ht−1) + bh) (7)

ht = (1− zt)� ht−1 + zt � ĥt, (8)

Where xt is the input vector, ht is the output hidden state,
W and U are weight matrices, bz , br and bh denote bias
components, σg is the sigmoid activation function and φh is
the hyperbolic tangent activation function. For each frame in
the input video, the GRU is updated using the CNN features of
the current frame, after which the hidden state ht will contain
the encoded information about the video so far. When a new
video is to be classified, the GRU has to be reset by setting
ht = 0.

B. Attention

After the GRU has encoded the temporal information in
the video features, we are left with a final hidden state. This
final hidden state carries the burden of encoding the entire
meaning of the video into a single vector of limited size.
Attention mechanisms try to accommodate this by making the
classifier focus on the important parts of the input through the
hidden state of each time step instead of relying on a single
vector. For our method, the global attention method proposed
by Luong et al. [40] has been implemented. given a context
vector, ct consisting of the hidden states from each time step
and the encoder hidden state, ht, the attentional hidden state
is computed as

h̃t = φh (Wc [ct;ht]) (9)

the final attention vector will then be

att = softmax
(
Wsh̃t

)
(10)

For global Luong attention [40], ct is computed as a
weighted average of the input encoder hidden state vector.
The weighting, at is found by comparing the score of the
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Fig. 11: Block diagram showing the data flow of the proposed method. The image features of a live video are sent to two
different subnets in order to determine buoy sequence and color separately. The confidence in each buoy type is analyzed

using a novel decision algorithm to determine when a prediction is final and the image acquisition can stop.

final hidden state with the score of the hidden state hs from
each step using softmax:

at(s) =
exp

(
score

(
ht, hs

))∑
s′ exp

(
score

(
ht, hs′

)) (11)

, where the score function can be defined using the following
three methods:

score
(
ht, hs

)
=


h>t hs dot
h>t Wahs general
v>a tanh

(
Wa

[
ht;hs

])
concat

(12)
For this paper, the general attention method is used as is

proved to generalize better during testing compared to the dot
method.

C. Architecture

In order to classify the generated videos, a CNN-RNN
network is used, specifically a CNN-GRU configuration. The
network consists of three parts: first a feature extractor, then
a feature encoder, and lastly a classifier. The overall structure
of the proposed CNN-GRU network is shown in Fig. 11.

The feature extractor consists of a residual CNN. The
residual CNN is composed of residual blocks [20], described
in Table II. Here, each convolutional layer is followed by
batch normalization and leaky ReLU activation. The Residual
layer in Table II performs the downsizing of the input to
the proper size using a conv2d layer with a stride of 2 and
adding the result to the output of the previous layer. The
parameter values for the CNN feature extractor were chosen
following the recommendations presented in [20] with a focus
on creating a small network to accommodate the 32×32 pixel
size of the video frames.

TABLE II:
Structure of residual block used in CNN feature extractor

Layer Kernel size stride

conv2d 3 1
conv2d 3 1

Residual 3 2

The CNN feature extractor is built using multiple such
residual blocks, as seen in Table III. The pooling layer used
at the output of the CNN is an Adaptive average pooling
layer. This type of pooling returns the average response of

each channel in the input and thereby returns a vector. This
is done in order to remove all spatial information from the
image, as the position of the buoy within the image should
not affect the network predictions.

TABLE III: Structure of CNN feature extractor

Layer output size

Input (3,32,32)
conv2d (8,32,32)
Residual block (8,16,16)
Residual block (16,8,8)
Residual block (32,4,4)
Residual block (64,2,2)
pool (64,1,1)

After the CNN has extracted relevant features from the
video, the temporal features are encoded into a vector rep-
resentation. As the buoy light patterns are consisting of a
sequence definition and a color definition, the proposed model
is likewise split into two subnets: one for sequence encodement
and one for color encodement. This is done as sequence and
color are strictly decoupled. Both subnets consist of a GRU
and a feedforward neural network (FFNN) classifier. Self-
attention is added to the sequence encoding subnet as it has
been found to improve performance on longer sequences [26].
The final GRU hidden state, ht is sent to the self-attention
together with a concatenation of all previous hidden states ho.
The self-attention output is then fed to the FFNN classifier for
sequence estimation. The color subnet does not utilize self-
attention as the GRU only has to remember the color of the
latest blink. The GRUs are single-layer and uni-directional.

TABLE IV: Structure of the classification network

Layer hidden size

Input hs

Linear 256
BN 256
Dropout 256
ReLU 256
Linear N

Table IV shows the structure of the classification subnet-
works used for classifying the encoded sequences. Here, hs
is the number of hidden units in the GRU and N is the
output size. The GRU in the sequence subnet has a hidden
size of hs = 128 while the GRU in the color subnet has
hs = 8. Furthermore N = 10 for the sequence classification
subnetwork as 10 different patterns are considered. The FFNN
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classifier of the color subnet has N = 2 as two colors are
considered. The hidden size of 256 neurons was manually
chosen during initial testing as it showed to yield good results.
The two outputs from each network strand, i.e. predicted
sequence and color, are optimized using cross-entropy loss
with equal weighting.

D. Decision Algorithm

During run time, the network analyzes a single image at a
time, as a video of a buoy pattern is collected sequentially.
The GRU will therefore be set in a state-full configuration,
meaning that the hidden state obtained from analyzing the
previous image is kept and used when analyzing the current
image.

With images collected sequentially, it is desired to know
whether the current video has been adequately processed
or if image acquisition should continue. A novel algorithm
for determining this has been implemented. We call this the
Decision Algorithm. The hybrid approach of having an RNN
model output predictions and a deterministic algorithm decide
on the appropriate prediction has, to our knowledge, not
been explored before. The decision is made based on the
model confidence as a function of time. Simply deciding on
a prediction when model confidence alone is above a given
threshold is not enough, as it might take some time before the
model settles on a prediction, before which, large fluctuations
in confidence can occur. The decision algorithm, therefore,
includes multiple measures:

• Running average of model confidence.
• Running standard deviation of model confidence.
• Running average slope of model confidence.
• Time threshold.

A running average of the confidences is used to choose
the prediction with adequate confidence. The running standard
deviation of the model confidences is used to estimate whether
the model has converged to a prediction. Time thresholding is
used such that the model can not make a prediction before
having seen enough footage of a specific pattern. The time
threshold is a factor of the period of the current prediction.
This means that, if the time threshold is e.g. 2, the model
will only be able to decide upon a pattern with a 5s period
after having seen 10s of footage. Running average slope
of model confidence is used such that a prediction is not
chosen if the confidence is currently decreasing too much. The
hyperparameter values for the decision algorithm were found
with the TPE algorithm for hyperparameter optimization [41].
Using generated data, the parameters were optimized for both
accuracy and average decision time. Optimization yielded the
values provided in Table V.

TABLE V: Decision Algorithm’s hyperparameter values

Parameter Value

Confidence, pattern 0.66
Confidence, color 0.79
Slope, pattern -0.13
Slope, color -0.08
Mean std 0.017
Time threshold 1.9
Roll 68

This configuration yielded a mean time to decide of 2.31
periods during optimization.

VI. RESULTS

This section presents the results found when testing the
proposed method. The method is primarily tested on real buoy
videos obtained in a marine environment, both on-board a
moving vessel and from land overlooking the coast. The pro-
posed method is provided with a single image frame at a time,
to emulate video acquisition in a real-time scenario. Prediction
confidence is obtained by calculating the softmax of the net-
work output activation. A prediction is deemed final when the
decision algorithm is triggered. The performance metric used
to evaluate the method is accuracy, i.e. the amount of correctly
classified videos divided by the total number of videos. The
decision algorithm is configured with the hyper-parameters
shown in Table V, and model dimensions are as described
in Section V-C. A video showcasing the performance on real
buoy patterns can be found at https://youtu.be/KEi8qNnKV2w.

Evaluating the proposed method on the 44 buoy videos
yielded a test accuracy of 100.0% as the model was able to
correctly classify all the videos. As the videos were collected
in marine environments both during sea tests and in harbor,
this shows that the method has good potential for eventual
deployment. While a statistically significant assessment of
accuracy requires a higher number of videos from sea tests
at night, the results show that the method is able to classify
real-world buoy light patterns, even though it was trained using
purely generated data.

A. Comparision with a R3D-18 3D CNN architecture

As a comparison with other deep learning methods, the
R3D-18 3D CNN architecture proposed in [21] was trained
and evaluated. This specific architecture was chosen for com-
parison as it obtained close to state-of-the-art results while
having a reasonable parameter count. The R3D-18 model
showed to have an accuracy of 95.45% when tested on
real-world buoy videos. The videos that were not classified
correctly were predicted as being of a different buoy pattern.
In a real-world scenario, a misclassification could lead to an
autonomous vessel miscalculating its position and in the worst
case cause a grounding. However, it should be noted that the
3D CNN is designed to examine complete video clips and
not one frame at a time. This means that in order to classify
a buoy pattern in a deployed situation, it would take the 3D
CNN 30 seconds to do a single classification, as it is desired
to have footage of at least two periods of the pattern. As
the longest period in the patterns investigated is 15 seconds,

https://youtu.be/KEi8qNnKV2w
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this corresponds to a 30 second detection time. The method
proposed in this work can classify a signal in as low as six
seconds for a FL3s buoy. A summary of the performance of
the different methods is presented in Table VI.

TABLE VI: Performance of different methods

Method Test Accuracy Approximate Detection Time

Baseline 70.5% 30s
R3D-18 [21] 95.45% 30s
Proposed 100% 6s to 30s, depending on pattern

Some of the more interesting testing videos are shown in
Figure 12. Here, frames with and without the blink are shown
together with a graph presenting the blink pattern. The blink
pattern graph is derived using the method described in Section
IV.

Figure 12 shows example frames for four different videos
from the test set along with the evolution over time of the
model confidence for the various hypotheses for the pattern
and color. The confidence plot ends where the decision al-
gorithm is triggered, with the final prediction stated on top
of the plot. Looking at the confidence plot of Figure 12b,
the importance of the decision algorithm can be seen. Here,
the confidence in the wrong label Iso3s.R started out being
above the decision threshold, though the algorithm did not
trigger due to high standard deviation. Later, the right label
Fl3s.R gained confidence, and the decision algorithm triggered
a correct prediction. Similarly, for Figure 12d, it can be seen
that the model settles on the hypothesis FL(3)10s after ∼ 200
frames of video. Here, the decision algorithm does not trigger
due to the time threshold which dictates that 1.9 periods of
video have to be processed before a decision can be made.
In this example, 1.9 periods correspond to 475 frames for
a FL(3)10s pattern. Later in the example, the model gains
confidence in the FL(2)5s hypothesis, which triggers once the
confidence is high enough as this specific pattern needs 238
processed frames to trigger. Similar behavior can be seen in
Figure 12c.

To test the performance on all of the implemented patterns,
the method is evaluated on 2000 sequences of new generated
data. While this is not directly comparable to real data, it
can address whether the network has difficulties with certain
patterns. The new sequences are generated in the manner de-
scribed in Section III and are not included in the training data.
This test yielded an accuracy of 98%, classifying correctly
1960 sequences. The labels of the remaining 40 misclassified
sequences can be seen in the histogram of Figure 13. There
does not seem to be a significant correlation between the
complexity of the patterns and misclassification. A relatively
complex pattern such as Fl(2)10s has roughly the probability
for misclassification as a simple pattern such as Fl5s.

Fig. 13: Histogram showing the probability of
misclassification for a given class during a test on

synthetically generated data.

B. Robustness test

To test the robustness of the two methods, the test data
is augmented using various methods as seen in Table VII.
Using the same seed for both methods, the test set is aug-
mented 5 times using the augmentations listed. It is clearly
seen that the CNN-GRU approach results in a more robust
method with a maximum accuracy degradation of 4.1% points
when augmenting with motion blur, while the baseline has
a maximum degradation of 10.5 % points for both white
balance shifts and frame drops. Especially frame dropping is
interesting as it was found that the blink timing of buoys varied
quite a lot from the specified timing, making frame dropping
representative augmentation. Augmentations were performed
using the imgaug python library [42].

We could have included the augmentations listed in Table
VII during training and we considered the possibility that the
model might have been even more robust to these individual
augmentations. Initial testing showed, however, that training
with heavy augmentations, like motion blur, made the gener-
ated data less representative, which resulted in degraded gen-
eralization. Thus, it was decided not to consider augmentation
during training.

TABLE VII: Result of robustness test on buoy videos

Augmentation Baseline Accuracy Network Accuracy

No Augmentation 70.5% 100%
Motion blur 61.4% 95.9%
Gaussian blur 65.5% 99.5%
White balance shift 60.0% 98.2%
Mean shift 65.9% 100.0%
Frame drop 60.0% 99.1%

Mean Accuracy 63.9% 98.8%
Mean Acc. Reduction 7.9% 1.5%

VII. CONCLUSIONS

This paper proposed a novel method for classifying buoy
light patterns. The method consisted of a convolutional neural
network with gated recurrent units (CNN-GRU). A novel
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(a)

(b)

(c)

(d)

Fig. 12: Example frames from test videos (left) along with the derived blinking pattern (center) and the model response (right)
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architecture was suggested consisting of parallel paths dealing
with temporal and color information, respectively. The net-
work was trained on synthetic data and validated on video
streams from the sea. Training on synthetic data provided a
network that was able to generalize and correctly classify the
light patterns from 100,0% of buoys present in the 44 real-
world videos we had available. This was achieved with the
algorithm running in real-time. It was observed that timing in
light sequences from buoys often deviates significantly from
specifications. The algorithm was robust to these real-world
deviations in flash duration. The performance of the proposed
CNN-GRU network clearly surpasses that of the classical
minimum distance detector that is based on correlation and
multiple-models hypothesis tests. The paper demonstrated that
the deep neural network approach provides a robust night-time
classification of flash sequences from buoys at sea.
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“Vivit: A video vision transformer,” 2021.

[28] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil,
T. To, E. Cameracci, S. Boochoon, and S. Birchfield, “Training deep
networks with synthetic data: Bridging the reality gap by domain
randomization,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, June 2018, pp. 969–
977.

[29] U. S. N. G.-I. Agency, List of Lights, publication 116, 2020. [Online].
Available: https://msi.nga.mil/Publications/NGALOL

[30] IALA, “R0110 rhythmic characters of lights on marine aids to navigation
edition 5.0,” International Association of Marine Aids to Navigation and
Lighthouse Authorities, urn:mrn:iala:pub:r0110, 2021.
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