
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. XX, OCTOBER 2021 1

A Novel Prediction-Based Temporal Graph Routing
Algorithm for Software-Defined Vehicular Networks

Liang Zhao, Member, IEEE, Zhuhui Li, Ahmed Al-Dubai, Senior Member, IEEE, Geyong Min, Jiajia
Li, Member, IEEE, Ammar Hawbani and Albert Y. Zomaya, Fellow, IEEE

Abstract—Temporal information is critical for routing com-
putation in the vehicular network. It plays a vital role in the
vehicular network. Till now, most existing routing schemes in
vehicular networks consider the networks as a sequence of static
graphs. We need to find an appropriate method to process
temporal information into routing computation. Thus, in this
paper, we propose a routing algorithm based on the Hidden
Markov Model (HMM) and temporal graph, namely, Prediction-
Based Temporal Graph Routing Algorithm (PT-GROUT). This
new algorithm considers the vehicular network as a temporal
graph, in which each data transmission as an edge has its specific
temporal information. To better capture the temporal informa-
tion, we select Software-Defined Vehicular Network (SDVN) as
our network architecture, which is a preferred architecture for
processing the temporal graph regarding the vehicular network
since all vehicle statuses can be easily managed. To compute the
future routing path accurately and efficiently, the future temporal
graph is predicted by applying HMM, in which we model
the current vehicular network with dynamic programming and
greedy strategies. With the temporal information and reasonable
setting of HMM, PT-GROUT can better evaluate the vehicular
network and discover the evolution of the internal structure of
the network. The optimal routing path can be achieved more
efficiently. The simulation results demonstrate that PT-GROUT
can substantially improve the computation efficiency and reduce
packet loss and delivery delay compared with its counterparts.

Index Terms—vehicular ad hoc networks, routing, software-
defined vehicular networks, hidden markov model, temporal
graph.

I. INTRODUCTION

Vehicular ad-hoc network (VANET) has been instrumental
in the Intelligent Transportation System (ITS) [1]. A great
deal of studies has been conducted on VANET technologies
in recent years, whereas traditional distributed-fashion ad-
hoc protocols have no longer satisfied the boosting demand
nowadays. Repeated and redundant computation in a dis-
tributed manner dragged down the evolution of VANET. This
redundancy mainly occurs on two reasons. First, due to the
limited vision brought by the distributed fashion of VANET,
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each vehicle can sense the status of its neighbor easily,
whereas collecting extra information beyond one hop will
create a huge overhead. The computed routing path based
on the limited information could not be optimal globally.
Second, the computational ability of a vehicle is very limited,
which constrains the feasibility of analyzing and learning
the routing patterns from the big vehicular data. Therefore,
as a novel networking paradigm, Software-Defined Vehicular
Network (SDVN) makes up for the shortcomings caused by the
current architecture of vehicular communication [2]. SDVN
is an emerging architecture combining the Software-Defined
Network (SDN) and VANET that allows for centralized man-
agement and distributed policy control [3]. The separation
of the data plane and the control plane is the core idea
of SDVNs. The data plane refers to vehicles and roadside
units equipped with sensors and transmitters. The logically
centralized controller sits at the control plane to programmable
functions. There could be multiple controllers cooperating to
realize all functions to support the data plane in real-life. The
whole control plane coordinates the computing tasks among
multiple controllers through reasonable architecture settings
and edge computing technologies [4], [5]. With reducing the
computational burden greatly, it ensures efficient and accurate
support for the data plane. Since the vehicle’s status data is
collected from the data plane periodically by the controller,
the controller can sense the vehicular network globally [6],
[7]. And, based on this collected knowledge, the controller can
efficiently compute the globally optimal solution for the entire
network. Moreover, the nodes on the data plane are required
to focus on forwarding packets and updating vehicle status
information only, instead of spending time and resources on
routing computation. The separation of data plane and control
plane will bind network elements on the data plane closer,
allowing for more flexibility and scalability of the vehicular
network itself.

Similar to other networking, routing is also the basis for
vehicular data transmission by finding a vehicle sequence (i.e.,
routing path) from the requester vehicle to the destination vehi-
cle, while later packets (i.e., data messages) will be transmitted
along this sequence. The quality of routing affects the QoS of
data transmission directly. In VANETs, every vehicle takes
responsibility for routing computation and maintenance tasks.
In such a scheme, each vehicle selects the next-hop vehicle
based on the surrounding environment consisting of a limited
number of neighboring vehicles. However, the statuses of these
vehicles are not enough to reflect the characteristics of the
entire vehicular network for the optimal routing computation.
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SDVN could be the right candidate for solving these issues.
The controller can always get the global view of the entire
vehicular network (i.e., the topological information of the
network) based on the information it collected from the data
plane. This global view of the controller can guarantee the
quality and successful delivery ratio of routing for each vehicle
in the vehicular network.

In fact, the quality of vehicular networking depends on
the routing algorithm. Once the routing algorithm is able to
capture the properties of the vehicular network better, data
transmission can achieve higher QoS provisioning. On the
other hand, as the controller needs to cope with the routing
request for the entire vehicular network, the computation
efficiency could be a potential challenge. If some emergency
incidents (e.g., car crash) happen, the controller needs to
process a large amount of routing requests in a concise period
to ensure the fast spreading of safety-related information.
If the controller cannot handle these complex computation
tasks efficiently, the increased delay of data packets can cause
serious consequences [8]. These are several challenges that the
routing algorithm must face in SDVNs. Among them, there are
two vital factors, routing performance and routing computation
efficiency, that will directly affect the performance of data
transmission. Thus, in this work, we would like to design a
routing algorithm to guarantee the quality and efficiency of
routing computation simultaneously.

The temporal graph can simultaneously meet both demands
mentioned above [9], [10]. First, existing SDVN routing
schemes consider the vehicular network as a sequence of
static graphs at different timestamps [11], [12]. Each routing
request is processed on an independent static graph in the
controller. With the time evolution, the correlation between
static graphs at different timestamps contains a large amount of
temporal-related network information. We call them temporal
information. Specific to routing, the temporal information
contains the starting time and duration of data transmission.
This is critical for capturing the temporal-related properties
of the vehicular network, as routing is time-dependent [13].
Adopting the temporal graph instead of the static graph to rep-
resent the entire VANET can be positive to capturing network
characteristics and attributes. On the other hand, routing in the
SDVN is basically an optimal path problem. The efficiency of
optimal path computation is even better than the most efficient
optimal path algorithm of the static graph [9], [14]. Overall, the
introduction of temporal graph can solve the quality and the
efficiency of routing computation at the same time. However,
involving temporal graph poses a new challenge. The temporal
graph is commonly used to record network information, which
has happened in the past. For example, the determined network
information, like flight information, can be recorded in the
form of the temporal graph. Conversely, the goal of routing is
to plan the uncertain routing transmission path in the future.
Hence, we need to utilize prediction to apply an efficient
temporal graph method for the computation of routing (flow-
tables). Meanwhile, it is difficult for routing algorithms to
pursue the tradeoff between the quality of the routing path
and computation efficiency [12]. The consideration of one
single optimization method mentioned above is not adequate.

We have to find an appropriate method to smoothly integrate
temporal graph into routing computation in the vehicular
network. First, we design a prediction algorithm to capture
future network status and temporal information as much as
possible to form the temporal graph representing the future
vehicular network. Then, we employ the efficient optimal path
algorithm of temporal graph to process the graph to obtain
the optimal routing path. We have to make sure every step
extremely efficient to avoid additional computation waste and
network overhead for the entire network architecture.

Thus, in this paper, we propose a novel routing algorithm,
namely, Prediction-Based Temporal Graph Routing Algorithm
(PT-GROUT), for SDVNs. At first, we utilize the Hidden
Markov Model (HMM) to predict future routing information,
as the input of the optimal routing algorithm [15]. Besides
the traditional properties (e.g., source and destination), the
temporal properties are also involved. In HMM, the state is
the intersection, and the observation is the vehicles around the
corresponding intersection. Historical routing information and
position information are utilized to predict the future temporal
graph. There are two requirements for this temporal graph, (1)
this graph should include all routing possibilities, and (2) the
size of this graph should be limited to guarantee the prediction
and computation efficiency. Finally, an efficient optimal rout-
ing algorithm is proposed to handle the predicted temporal
graph for the optimal routing path. This can improve the
efficiency performance of the routing algorithm significantly
at a high level. The major contributions of this paper can be
summarized as follows.

• Under a novel model combined with greedy and dynamic
programming strategies, an HMM is constructed based on
the current vehicular network efficiently. All parameters
of this model are adaptively adjusted according to the
source vehicle, destination vehicle, and the current status
of the vehicular network.

• A novel prediction strategy is proposed to predict a tem-
poral graph representing the possible future routing based
on the constructed HMM. All possibilities of routing can
be included in this graph, and the size of this temporal
graph is limited by our algorithm to improve the routing
path computation efficiency. At this point, we involve
the concept of temporal graph for routing. Due to the
temporal information the graph brings with, the routing
path computed based on this temporal information will
be efficient and realistic.

• An efficient optimal routing algorithm for the temporal
graph is utilized by applying the properties of temporal
graphs. Within linear time complexity, the single-source
shortest path can be achieved.

The rest of the paper is organized as follows. Section II
introduces the related work about VANET and SDVN. Section
III presents the network model of our algorithm and problem
formulation in detail. Our proposed algorithm is described
in detail in Section IV. In Section V, simulation results are
presented and analyzed from different aspects. Finally, we
conclude this paper in Section VI. The comparison with our
previous work and the time complexity analysis is presented
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in the supplementary material.

II. RELATED WORK

Many routing algorithms have been proposed for VANETs.
From architecture to method, routing algorithms in VANETs
are gradually evolving to adapt to the increasingly complex
topology of the vehicle network. In this section, we briefly
review related work on routing algorithms in the follow-
ing four aspects, traditional routing algorithms, predicted-
based routing algorithms, routing algorithms of SDVNs, and
temporal-related routing applications in VANET.

In terms of the information the algorithm demands, tradi-
tional routing algorithms proposed for ad-hoc network can
be classified into four different categories, topology-based
routing, position-based routing, map-based routing, path-based
routing [16]. In the distributed routing methods such as GPSR
[17] and AODV [18], all vehicles collect the status information
about surrounding vehicles by sending beacons. Each related
vehicle calculates the next-hop vehicle or flow table in this
context, then forwards the data message. This may simplify the
algorithm. However, the limited resource and vision of vehicle
nodes could lead to the deterioration of routing quality.

Many researchers integrate the prediction algorithms into
their routing schemes to pursue a better quality of routing
path. Namboodiri et al. propose a prediction-based routing
(PBR) algorithm in [19]. This algorithm applies the predicted
route lifetime to create new routes before existing ones fail
preemptively. In [20], Yao et al. propose a V2X routing scheme
PRHMM by adopting HMM in the prediction task. They apply
HMM to predict the future position and the future relationship
with the destination. Then, they build two metrics calculated
based on the predicted data, delivery probability, and end-to-
end delay. Each vehicle uses these two metrics to select the
next-hop vehicle or RSUs.

Even with the predictive mechanisms, the finiteness vision
of individual vehicles still limits the quality and computational
efficiency of routing. Since the architecture of SDVN was
proposed, many routing-related studies have been conducted
in order to implement efficient routing computation in such
architecture. Rayeni et al. [11] propose an optimal resource
utilization routing scheme (ORUR), which involves existing
routing paths to relay data. Load balancing has also been con-
sidered in their proposed scheme to minimize the congestion.
However, the routing process combines Dijkstra and parallel
computing with a high computational complexity which im-
poses a heavy burden on the controller. Gao et al. [12] propose
a hierarchical routing scheme considering load balancing in
SDVNs. They divide the routing processing into three parts,
grid selection, segment selection, and vehicle selection. Each
part takes several related properties into consideration. After
all, a series of relay nodes can be achieved as a routing path
for the requester vehicle efficiently. However, at each part,
this scheme fails to avoid local optimum, which results in
degradation of the quality of computation routing. Yan et al.
[21] propose a link available time prediction-based backup
caching and routing (LBR) scheme, which is suitable for high-
Speed Vehicular Networks, especially the high-speed railway

scenario. In such a scenario, the computation efficiency and the
prediction accuracy become more important. In [22], Zhao et.
al propose a hierarchical greedy routing scheme considering
link stability. The fuzzy logic trained by reinforcement learn-
ing is utilized to assist the routing decision. Even it achieved
a significant improvement in performance, the complexity of
this algorithm will rise exponentially with the increase of the
network size. More detailed comparisons of SDVN routing
algorithms are presented in Table I.

On the other hand, temporal information has not been
considered in all these SDVN routing algorithms. They all
treat the network as a static graph and apply the traditional
static graph algorithm to the vehicular network. However, the
network is always dynamic evolving, modeling the network at
a certain future timestamp and computing on it are unable to
evaluate the network. Observed from the following temporal
information related work, temporal information is very helpful
for analyzing network conditions. At the same time, in the
above work, the static graph-based traditional algorithm cannot
always find the tradeoff between computation quality and effi-
ciency. Some of them cannot achieve the optimal result stably,
while others improve the computation efficiency sacrificing
additional computation resource. It is difficult for existing
routing algorithms to pursue the tradeoff between the quality
of routing path and computation efficiency [12]. The optimal
routing algorithm considering the temporal graph could be the
answer since it can compute the optimal routing under the
linear time and space complexity. The excellent performance
of temporal graph in the computation efficiency and analyzing
network drives us to introduce it into the vehicle network
routing calculation.

Meanwhile, the importance of temporal information has not
been considered seriously. As for the temporal information in
VANETs, researchers rarely use it for routing computation.
In [23], Scellato et al. evaluate the temporal robustness of
mobile networks. Their work is the first attempt to define the
concept of temporal network robustness, where they describe
a measure of network robustness for time varying networks.
Qiao et al. add the characteristics of temporal structural to
VANETs, including temporal network efficiency and temporal
closeness centrality [24]. At last, they measure several metrics
based on a Taxi GPS dataset. Based on the above work, we
can see that temporal information can help us better analyze
and predict the possible future conditions and trends. However,
there are no existing studies introducing temporal information
into the routing computation. To the best of our knowledge,
this work is the first to integrate temporal information into
routing computation.

Thus, we decide to adopt the network architecture of SD-
VNs. Based on the advantage of the global view, we construct
the HMM to integrate the prediction into our algorithm.
The temporal graph representing the future vehicular network
based on HMM is constructed. At last, we utilize an optimal
routing algorithm under the temporal graph. The efficient
temporal-graph-based optimal routing algorithm can improve
the performance significantly at a high level.
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TABLE I
CHARACTERISTICS OF ROUTING SCHEMES IN SDVN (NOTES: N/A-NOT AVAILABLE IN THE RELATED ARTICLE)

Focus Fundamental Algorithm Complexity Scalability Advantage Application Scenario

PT-GROUT Temporal information,
Computation efficiency

Temporal optimal
path algorithm Low Medium

Efficient algorithm,
Stable QoS Urban

ORUR [11] Load balance Dijkstra High High
QoS improvement

in terms of channel busy ratio Dense urban

LBR [21] Link available
time prediction N/A Low Medium High and reliable delivery ratio High-speed railway

GLS [22] Predictive delivery rate
Link stability Greedy, Fuzzy logic Medium Low

High delivery ratio and
forwarding efficiency. Dense urban

HRLB [12] Load balance Greedy Low Low
High delivery ratio,

throughput, average delay Urban

TABLE II
NOTATIONS

Notation Description

REI(u, v, t, d) The Routing Edge Information

disij The distance between intersection i and
intersection j

sij The segment originated from intersection
i to intersection j

den(sij) The vehicle density of the segment sij
V (sij) The number of vehicles on the segment

sij

l(sij) The length of the segment sij
rdexij The historical intersection routing index

from intersection i to intersection j

tdexij The transition index from intersection i to
intersection j

th The time value at time h

rthij Routing valid value from intersection i to
intersection j at time h

α The weight coefficient of the dynamic
programming part

k The weight coefficient of vehicle density

disvx,ij The distance before vehicle x reaches the
boundary between intersection i and inter-
section j

qx The qualification index of the vehicle x

III. NETWORK MODEL AND PROBLEM FORMULATION

In this section, we describe the network model to present
our proposed algorithm better. The problem formulation of this
work will be presented in Section II(B). The notations of this
work are listed in Table II.

A. Network Model

Fig. 1 shows the two bottom-layer components of SDVN,
control plane and data plane. Here, the data plane includes

base stations (BSs) and vehicles. Since SDVN needs stable
communication between the data plane and the control plane,
we adopt BSs as relay nodes to guarantee reliable and stable
data transmission towards the control plane. There are two
types of communications, vehicle to vehicle (V2V) communi-
cation, and vehicle to BS (V2B) communication. In this work,
we use LTE-V (Device-to-Device) for V2V, and 5G or LTE
for V2B [25].

All vehicles are required to send beacon messages to the
control plane via BSs at a certain time interval. In this way,
the control plane can get the latest global view of the entire
vehicular network immediately. Each beacon message contains
the vehicle’s position, velocity, and acceleration. Hence, the
beacon message can present the specific status of the vehicle
in vehicular networks. With beacon messages collected from
the data plane, the control plane can construct a global view
of this vehicular network. To handle the highly mobile nature
of the vehicles, we have to ensure that the control plane
always has a global view of this network, even the beacon
messages are lost during the transmission. Thus, the controller
can predict and construct the status of the corresponding
vehicle according to the latest received messages stored in
the controller. Once we need to transmit data, the source
vehicle sends a routing request to the control plane through
V2B communication. Several centralized controllers of SDVN
will cooperate and serve as the primary computing device
of the control plane. When the routing request is received,
the control plane computes the optimal routing path with its
efficient algorithm and sends it back to the vehicles on the
computed routing path through V2B communication. The flow
tables of these corresponding vehicles will be updated. At last,
the vehicles on the optimal routing path forward the packet
according to their flow tables. When vehicles condition is
too parse, part of BSs will be considered as nodes to assist
vehicles in transmitting packets as relay nodes. Meanwhile, as
the vehicle density increases, the number of BSs which play
the roles of relay nodes will drop, and more BSs will only be
responsible for routing request transmission. In this method,
the tradeoff between data transmission success ratio and the
transmission load of BSs can be achieved.

During data forwarding, if one vehicle cannot receive the
ACK (ACKnowledgement) message from the corresponding
next-hop vehicle after a certain time interval. This part of data
transmission will be considered as a failed data forwarding.
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Fig. 1. A typical urban scenario of SDVNs (one vehicle requesting for transmitting traffic information to another vehicle).

In case of failed data forwarding, the failure vehicle will send
the error report message to the controller for re-calculating the
routing path. According to the re-calculated routing path, the
relevant vehicles which failed in the data transmission will
forward the data messages along the new path. If the data
message is received by the destination node successfully this
time, the repair process is then accomplished. If the same
routing errors occur three times consecutively, this routing
discovery will be regarded as a failure. At the same time,
all related routing information of this failed routing will be
deleted in both control plane and data plane to ensure the
reliability and real-time of the routing information. If the
source vehicle cannot reach the controller, it will use the
traditional GPSR to forward the packets until the packets are
received by the vehicle that can sense the control plane. Then,
this vehicle will employ the PT-GROUT algorithm to continue
data transmission [17].

The channel model employed in this paper is shown as
follows, First, when vehicle s sends data packets to vehicle
d, the interference of vehicle d at t will be calculated based
on the path loss model in [26], [27],

is−d,t = N +

nnei−d,t∑
i=1,i6=s

ξ (di−d,t) = N +

nnei−d,t∑
i=1,i6=s

GiGdλ
2Pi

(4π)
2
dai−d,t

(1)
where nnei−d,t is all neighbor vehicles of d at t; N is the
additive white Gaussian noise (AWGN); Pi is the transmission
power; Gi and Gd are the antenna gains of sender and receiver;
λ is the wavelength; di−d,t denotes the Euclidean distance
between the receiver vehicle d and its interference vehicle i at
t. α is the path loss exponent and 2 ≤ α ≤ 5 depends on
the geometry of propagation environment [28], We set α = 4
since it represents the urban area cellular radio. For simplicity,

let G = GiGdλ
2

(4π)2
, then (1) can be rewritten as:

is−d,t = N +G

nnei−d,t∑
i=1,i6=s

Pi
dai−d,t

(2)

Based on the interference calculated by (2), the received signal
to interference and noise ratio (SINR) between vehicle s and
vehicle d at time t is denoted by SINRts,d (3),

SINRs−d,t =

GPi
da
s−d,t

N +G
∑nnei−d,t

i=1,i 6=s
Pi

da
i−d,t

=
d−a
s−d,t

N
GPi

+
∑nnei−d,t

i=1,i 6=s d−a
i−d,t

(3)
If the vehicle d can receive the data packet that transmitted

from vehicle s successfully, SINRs−d,t should satisfy the
constraint as follows:

SINRs−d,t =
d−as−d,t

N
GPi

+
∑nnei−d,t

i=1,i6=s d
−a
i−d,t

≥ β (4)

β is the receiving threshold which can guarantee successful
data packet decoding at the receiver. And we set β as 0 dB.

B. Problem Formulation

Our goal is to transmit a given number of packets from the
source vehicle src to the destination node des successfully.
Besides, the time cost of computation to obtain a routing path
C(Si) should be minimized. Meanwhile, the quality of routing
path needs to be guaranteed to make sure the successful
delivery of data packets. In terms of the quality of routing, we
aim to improve the delivery ratio and minimize the average
end-to-end delay and the delivery delay jitter. To find the
optimal solution for our routing problem, the efficiency and
quality of routing computation are combined to evaluate the
performance of the routing algorithms. First, we will give
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specific notations of the relevant metrics and concepts as
follows.

1) Notation: First, our optimized variable is the routing
path Si(v0, v1, . . . , vn) for each packet pkti. It is combined
with n vehicles. Here, v0 and vn represent the source vehicle
src and destination vehicle des, respectively. After obtaining
results (i.e., routing path), the vehicles of this path will forward
the packet i by order.

Here, we use C(Si) to represent the time cost for computing
the routing path Si for the packet pkti in the control plane.
This metric depends on the time complexity of the routing
algorithm. It is worth stating that the repeated computation
time for fixing the failed routing is also included. Thus, this
is partly related to the quality of the routing path. If the
forwarding process fails, the control plane needs to spend
redundant time to compute for the same routing request again.

The other metric is the quality of the routing path. Three
sub-metrics are utilized to evaluate this metric comprehen-
sively: the delivery ratio r, the average delivery delay T , and
the delivery delay jitter j. We consider there are packet set
pkt setm that successfully arrived at their specific destination
nodes in the entire packet set pkt setn. Then, the delivery
ratio is defined as:

r =
sizeof(pkt setm)

sizeof(pkt setn)
(5)

The delivery delay T is the average value of the delivery
delay of successful packet transmissions in pkt setm. Only
the delivery delay of the successful packet transmission can
be taken into consideration, which can be formulated as:

T =
∑
T (Si)

sizeof(pkt setm) , forallSi, i ∈ pkt setm (6)

The delivery delay of the packet i: T (Si) is more complicated.
It is combined with four parts:

T (Si) = tveh con + C(Si) + tpacket(Si) + tef (7)

where the vehicle-controller communication time tveh con is
the time cost of the source vehicle spending on communicating
with the control plane. It includes the routing request sending
time and the routing path receiving time:

tveh con = tvb + tbc (8)

where tvb is the time cost of the transmission from the vehicle
to its nearest BS. Here, the source vehicle needs to find a
suitable BS to assist it in communicating with the control
plane. tbc denotes the time cost of the transmission from the
BS to the control plane. If the placement of BSs and controllers
is reasonable, the difference of tveh con is small under the
different centralized routing algorithms. When comparing the
delivery delay, there will not be a measurable difference in
terms of this part of the time cost. In contrast, this part of
the time cost does not exist in the distributed algorithm as
there is no centralized control plane to request the routing
path. Hence, our proposed algorithm needs to perform better in
other parts of delay, such as computation time and the packet
delivery delay, to hold or even exceed the delay performance of
the distributed routing algorithm. Moreover, the computation
time in the control plane C(Si) is the time cost of computing

the routing path in the controller, which is also known as
processing delay in the control plane. C(Si) can also affect the
quality of the routing at the same time. The time cost spending
on the routing computation is also included in the delivery
delay too. Hence, low routing computation efficiency will also
increase the delay. As stated above, this metric is involved in
both major evaluation metrics, efficiency, and routing quality.
Thus, it is vital for the performance evaluation of routing
algorithms.

The packet delivery delay tpacket(Si) is the main component
of T (Si). It is also an important metric to evaluate the quality
of the routing path. It is formulated as follows.

tpacket(Si) =
∑n−1

k=0 (t
vk,vk+1

trans|pkti
+ t

vk,vk+1
prop + t

vk,vk+1
proc + t

vk,vk+1
q )

∀vk ∈ Si,∀Si, i ∈ pkt setm
(9)

where tvk,vk+1

trans|pkti represents the transmission delay in send-
ing a packet pkti within a single wireless hop from the vehicle
vk to the vk+1. And t

vk,vk+1
prop is the propagation delay. It

depends mainly on the distance between two vehicles. We have
used the standard equations to model these two metrics [29].
In addition, tvk,vk+1

proc and t
vk,vk+1
q are processing delay and

queuing delay, respectively. Both of them are highly dependent
on the vehicle’s current state , where the excessive load may
even cause serious problems such as packet loss. These two
metrics have all been formulated by the standard equations in
[30].

From this point of view, three metrics, including the vehicle
load, the number of hops, and the distance, have become
the key metrics for evaluating the statuses of the vehicle and
affecting the time cost of data transmission. If the statuses of
vehicles on Si can be well modeled and evaluated, tpacket(Si)
will be significantly reduced. Even the packet loss will happen
if the load, channel condition can be well evaluated. Con-
versely, if the statuses of vehicles cannot be objectively evalu-
ated, tpacket(Si) will be greatly extended, seriously affecting
the performance of the delivery delay T (Si), and increasing
the possibility of packet forwarding failure. Thus, T (Si) can
directly reflect the quality of the computed routing path. In
PT-GROUT, we aim at minimizing the total distance of the
routing path and stabilize the number of hops.

The error fixing time tef is also the component of the
delivery delay. Sometimes, it will play a vital role. If the
packet forwarding process fails according to the computed
routing path Si, the failed vehicle needs to restart a whole
set of routing procedures, including routing request, compu-
tation, and the reply distribution. Once the computed routing
path cannot guarantee successful delivery, the whole routing
process will be repeated multiple times. A large amount of
time cost and computation resources will be wasted due to
this redundant computation. Thus, it is necessary to optimize
the routing algorithm to ensure the delivery success ratio for
improving the routing quality to minimize the time cost of this
part. The combination of the time cost components will reflect
the structural features of the vehicular network.

The last metric is the delivery delay jitter j. It is the variance
of the delays of all successfully delivered packets in pkt setm.
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This metric can reflect the stability of the quality of computed
routing under different scenarios. It is formulated as:

j =
∑

(T (Si)−T )2

sizeof(pkt setm) , ∀Si, i ∈ pkt setm (10)

2) Objective Function: Our objective is to minimize the
time cost of the routing computation. Meanwhile, we also need
to guarantee the quality of the computed routing path. Under
the premise of ensuring the minimum computation time cost,
the networking performance in terms of delivery ratio, delay,
and jitter is supposed to be optimal to ensure high-quality data
packet transmission. The quality of the computed routing path
should be equal or close to the optimal one, which means
the feasible routing path with the minimum delay. Thus, the
objective function can be formulated as in the following (11)-
(19).

main objective

min
∑

C(Sl), l ∈ pkt setn (11)

sub objective

min T (12)
max r (13)
min j (14)

s.t.
n∑

j=1
((vi,vj)∈Sh)

link
Sh
vi,vj−

n∑
j=1

((vi,vj)∈Sh)

link
Sh
vj ,vi

=

 1 vi = src
−1 vi = des
0 vi 6= src, des

, ∀Sh, h ∈ pkt setm

(15)

link
Sh
vi,vj ≥ 0, (vi, vj) ∈ Sh, ∀Sh, h ∈ pkt setm

(16)

link
Sh
vi,vj + link

Sh
vj ,vi ≤ 1, (vi, vj) ∈ Sh, ∀Sh, h ∈ pkt setm

(17)
dvi,vi+1 ≤ dmax

trans, vi ∈ Sh, ∀Sh, h ∈ pkt setm (18)

size
vi,vj
h ≤ capvj , (vi, vj) ∈ V, ∀Sh, h ∈ pkt setm

(19)

First, the objective of our routing algorithm is divided into
two parts, the main objective, and the sub-objective. The main
objective, which is to minimize the computation time cost of
our routing algorithm, should be satisfied with the highest
priority. Then, under the premise that the main objective is
well satisfied, three sub-objectives related to the quality of
routing should be met too. It is worth to mention that the
implementation of main and sub-objective does not conflict. If
we can extract the characteristics of the network well through
a well-designed routing algorithm, reasonable pre-computation
and data processing, it is possible to pursue the high efficiency
and routing quality at the same time [31]. In the constraints,
linkSh

vj ,vi means the link state between vehicle vi and vehicle
vj during the routing computation (15). It is a boolean value.
Once vi needs to transmit packets to vj during the forwarding
process of Sh, the linkSh

vj ,vi will be true. Otherwise, it is false.
(16) and (17) are based on the flow conservation concept which
is responsible for routing computation for all packets. (17) is
utilized to avoid the loops in the routing computation. In the
next constraint (18), disvi,vi+1

means the distance between

vi and vi+1. dismaxtrans denotes the maximum transmission
distance between two communicating vehicles. We need to
ensure the distance of each adjacent vehicle pair in Sh within
this threshold. Otherwise, the data transmission based on this
routing Sh is bounded to fail. The last constraint (19) is related
to capacity. sizevi,vjh represents the size of packet h in which
this packet is transmitted from vi to vj . capvj means the
remaining capacity of vj . If the receive queue of the vehicle
is full, this vehicle will not be taken into consideration during
the routing computation until the receive queue of this vehicle
becomes spare.

IV. PREDICTION-BASED TEMPORAL GRAPH ROUTING

In this section, we first introduce the reason that we adopt
the HMM as our prediction model. Then, we present PT-
GROUT in detail. In PT-GROUT, we set the intersections
as the states and the vehicles around the intersections as the
observations. The HMM representing the current network is
constructed with dynamic programming and greedy strategies.
After that, the intersection sequence, which is most likely to
be the routing path generated base on this model. At last, we
can construct the temporal graph by linking the vehicles on the
intersection sequence. Since the edge in the temporal graph,
which represents the routing information between vehicles, is
different from the edge in the traditional concept. Therefore,
we give the definition of the routing edge information as
follows.

DEFINITION 1 (Routing Edge Information (REI)): we
consider the data transmission between two adjacent vehicles
as a routing edge. On each routing edge of the data transmis-
sion, each packet is sent from the starting vehicle of this edge
u, and arrives at the end vehicle of this edge v. These are just
two traditional properties. Once the consideration of temporal
information is included, two more temporal properties need to
be included in the discussion, starting time t and duration d.
These four properties of each routing edge are all routing edge
information.

At last, we introduce an efficient optimal routing algorithm
in the temporal graph, and utilize the predicted routing as an
input to achieve the optimal routing for each routing request.
To demonstrate the superiority of our algorithm in terms
of time cost, we also analyse the time complexity of each
procedure of our routing algorithm. After that, we compare
our proposed algorithm with other algorithms in terms of total
time complexity and state them in the supplementary material.

A. Reasons for applying HMM

There are two key advantages of utilizing HMM in pre-
dicting routing as follows. First, it can foresee the future data
transmission better. The reasonable HMM setting makes the
model suitable to present a particular pattern of the vehicular
network. The reason for this suitability is that all vehicles
always move on the segments, where the movements of vehi-
cles follow a certain pattern. Meanwhile, the intersections are
the connecting points and the backbones of all segments. All
segments are connected by intersections. Based on the statuses
of all intersections, the entire traffic network can be easily
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presented. This makes intersections particularly important in
routing decisions [32]. With intersections as states and vehicles
around the intersections as observations, the certain pattern
can be learned in HMM model through training. Second, the
prediction of HMM can improve the efficiency of our routing
algorithm significantly since the temporal graph optimal path
algorithm depends directly on the number of REIs. Here,
HMM only explores the REIs in a certain sequence consisting
of limited intersections instead of exploring them among all
vehicles in the entire vehicular network. This can reduce the
number of predicted REIs and guarantee the routing quality at
the same time.

Indeed, compared with other popular prediction methods
such as machine learning, HMM does not represent the state-
of-the-art. However, this model has a unique advantage in the
prediction of vehicular networks. Learning-based prediction
methods such as machine learning cannot fulfill the complex
demands of the vehicular network. We conclude the reasons as
follows. First, since the routing prediction is different from the
vehicle trajectory prediction, it highly depends on the current
highly dynamic topology state and specific request demands
[33]. Under this condition, there are quite a number of factors
in the vehicular network affecting the prediction of routing. It
is difficult to extract enough accurate features. For example,
even if two static vehicles forward packets to each other,
as time goes by, the statuses of all vehicles related to this
data transmission will become completely different. In this
case, the statuses of this starting node, the destination nodes,
and all related vehicles need to be input as features. These
large amount of features will inevitably cause overfitting.
Second, the topology of vehicles is continually evolving.
Offline learning is incapable of this task in this complex
scenario without reasonable feature extraction. Meanwhile, the
online learning-based prediction model cannot adjust itself
in time to adapt to different networks because of high time
cost and insufficient training data. In contrast, the prediction
in HMM can adapt to the highly dynamic topology of the
vehicular network efficiently. We only need to find the ap-
propriate state and observation setting. After the training, the
routing prediction pattern can be naturally presented in the
probability distribution. Then the simple linear computations
will be performed on the model with simple input. As a
result, an accurate HMM can be achieved, which reflects the
characteristics of the current vehicular network. Once the part
of the network features changes, this model can also quickly
adjust the relevant transition probabilities. We can conclude
that the HMM is best option to be utilized as our prediction
model.

B. Construction of HMM

In our HMM, we set intersections as hidden states and
vehicles around the intersection as observations. When the
controller receives a beacon message from a specific vehicle,
the controller then judges which intersection this vehicle
belongs to. Here, if one vehicle belongs to an intersection,
it means that this vehicle is within a specific range of the
intersection. We define the range of one intersection as follows.

DEFINITION 2 (Intersection Range): We divide each
segment originated from the intersection i into two parts
averagely. The vehicles on the half segment, which is closer to
the intersection i are defined as being within the intersection
range of i.

We consider all vehicles belong to an intersection as the
vehicle subordinates of this intersection. By counting the
statuses of vehicle subordinates at each intersection and the
distance between every two intersections, the state transition
probability distribution of the HMM can be achieved. There
are three properties of an intersection we need to construct the
state transition probability distribution.

(1) The position information of the intersection. This in-
formation can be easily fetched from the GPS of vehicles.
To reduce the computational complexity of the following
procedures, we can pre-process the position information of
all intersections, and compute the distance between each
intersection pair denoted as disij . We then store it with an
adjacency matrix.

(2) The subordinate vehicle-intersection information. This
refers to the number of vehicles within the intersection range.
In this context, each intersection range is divided into several
parts regarding the segments originated from this intersection,
where the number of parts is equal to the number of segments.
If we would like to compute the transition probability from
intersection i to intersection j, we should only consider the
segment sij rather than other segments from i. There is a small
probability that vehicles on other segments will be utilized to
communicate with j. Each intersection range part only needs
to take its responsibility to record the number and statuses
of vehicles. We mainly use the vehicle density of the road
segment to measure the stability of the link. Eq. (20) is utilized
to compute the vehicle density.

den(sij) =
V (sij)

l(sij)
(20)

where den(sij) denotes the vehicle density of the segment sij
originated from intersection i. V (sij) represents the number
of vehicles on the segment sij originated from the intersection
i. Here, we need to notice that V (sij) is different from V (sji).
More, each segment is divided into two parts averagely, where
each part and vehicles on it belong to the intersection closer
to them. Therefore, V (sij) + V (sji) is the real number of
vehicles on the segment from the intersection i to j. Further,
l(sij) means the length of the segment sij . All notations here
will be presented in Table II.

(3) The historical intersection routing information. This
means packet transmission between vehicles at two different
intersections. We use the historical intersection routing index
rdex to represent this information. This index of each inter-
section pair is computed to construct the state transition proba-
bility distribution matrix. The index is achieved as formulated
by Eq. (21).

rdexij =

p−1∑
h=0

rthij
(tp − th)

(21)

In Eq. (21), redxij denotes the historical intersection routing
index from intersection i to intersection j. th represents the
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time value at time h. h = 0 means the time that the first
historical REI happened. Here, tp is the present time value. rthij
is the valid routing value from intersection i to intersection j
at time h. If a vehicle at intersection i was transmitting packets
to the vehicle at intersection j at time h (i.e., the routing from
i to j was valid), the value of rthij is 1; otherwise, it is 0. redxij
will rise with the number of data transmission between them in
the past increasing. More, the farther a specific historic routing
occurs from now, the less important it is.

With these three fundamental properties of the intersec-
tion, the state transition probability distribution of the HMM
representing the current network can be constructed with
dynamic programming and greedy strategies. First, we define
the possibility of transiting from intersection i to j as a
transition index from i to j, denoted by tedxij . The transition
index is computed as Eq. (22).

tdexij =



α ∗ (k ∗ ( den(sij)
denmax(i)

)+

(1− k) ∗ ( rdexij

rdexmax(i)
)) + den(sij) > 0

(1− α) ∗ (disi,des−disj,des)
max(|disi,des−disj,des|)

0 den(sij) = 0
(22)

If the vehicle density is 0, it means there is no vehicle on the
segment sij . In this case, if we intend to transmit a packet
between these two intersections, this transmission has a high
probability of failure. Thus, the tdexij is set to be 0 to avoid
this link to transmit a packet.

Moreover, if the vehicle density is above 0, there are vehi-
cles available for packet transmission. Hence, we define the
transition probability in two parts, dynamic programming, and
greedy. For the dynamic programming part, we take vehicle
density den(sij) and the historical intersection routing index
rdexij as parameters. Higher vehicle density denotes more
vehicles available for relaying data messages. In this case, the
delivery ratio naturally rises. In another part, rdexij indicates
that there was a successful data transmission in the past. This
link has a more probability of being stable and reliable now.
denmax(i) and rdexmax(i) are the maximum vehicle density
and the maximum historical intersection routing index among
all segments starting from intersection i, respectively. k is the
weight coefficient of the vehicle density. The bigger the k
value is, the more critical the vehicle density information is.
On the contrary, the importance of the historical intersection
routing index grows with the decrease of the value of k. In
order to make the model better iteratively update itself over
time to adapt to the present vehicle network, we would like
to set k to be larger. Since the network is constantly evolving,
compared with the historical intersection routing information,
the vehicle density information could be more reliable.

The second part is greedy, where disj,des denotes the
distance between intersection j and intersection des. Inter-
section des is the intersection to which the destination vehicle
belongs. And disi,des can also be understood in the same way.
disi,des − disj,des represents the degree of optimization for

solving the routing computation problem after selecting this
link. In simplicity, this shows how much closer away from
the destination after taking j as the next-hop intersection.
By taking this parameter into account, the transition index
becomes more significant as the distance with the destination
intersection decreasing. And, max(|disi,des − disj,des|) is
the maximum absolute value of the distance that can be
approached to the destination from intersection i. Furthermore,
α is the weight coefficient of the dynamic programming part.
Here, we tend to set the value of α, which is the dynamic
programming part, slightly larger than 1 − α. There are two
reasons why we can adopt such a strategy. First is that we aim
to put a higher priority on successful transmission. In other
words, we intend to pursue the optimal routing path under the
premise of guaranteeing link connectivity. Second is that we
would like to avoid the local optimum by making the weight
of the greedy part smaller.

Here, we need to make some explanations on the pro-
cessing of prior knowledge. All the information we need
for constructing the HMM is the position information of all
vehicles ,intersections and the historical intersection routing
information. The position information of vehicles and the
historical intersection routing information is achieved from
periodic data upload from the data plane. This process is
independent of routing computation. Another part of the prior
information, the position information of intersections has been
stored in the control plane in advance before the routing
process begins. In summary, the acquisition and processing of
the prior information are simple in which it has little impact
on the time cost of the main body of the routing algorithm.

The time complexity of this part is O(N2), where N is the
number of intersections. Since the number of intersections in
a given area does not change, the time cost of this part is
constant in the routing computation. It does not change as the
size of the network increases.

C. Prediction in HMM
After the computation of the tedxij of each intersection

pair, the state transition probability distribution of the HMM
representing the current network has been constructed. With
this model, the REI in the future is available. However, we
need to predict the appropriate number of qualified REIs to
guarantee the quality of the routing path and the efficiency of
our algorithm at the same time. The number of predicted REIs
should be limited. Meanwhile, all possibilities need to be in-
cluded too. Thus, in this part, we will introduce the prediction
method of our algorithm. First, we consider the state transition
probability distribution as a graph where the vertex of this
graph is the intersection. Then, we predict two intersection
sequences, optimal path, and suboptimal path. The suboptimal
path links to the optimal one at the appropriate nodes. Finally,
we convert the states to the observations, i.e., intersection to
vehicles. By linking the related vehicles together, an adequate
number of qualified REIs can be achieved.

1) Hidden Sequence Generation: With the constructed state
transition probability distribution, the next procedure is to find
the intersection path with the biggest probability for transmit-
ting packets. The goal of this procedure is similar to finding
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the optimal path in graph theory. Thus, we utilize the classic
optimal path algorithm, Dijkstra’s algorithm, to accomplish
this procedure. Several modifications will be applied to the
model and the algorithm to adapt to this scenario.

The state transition probability distribution of the con-
structed HMM is a matrix, and can be considered as an
adjacency matrix. The transition index can be regarded as
the distance between two intersections. However, unlike the
distance in reality, the larger the transition index is, the easier
it is for this link to transmitting data. Thus, in order to better
utilize the relevant knowledge in graph theory, we make the
transition index as its reciprocal form. In this method, we
make the transition index closer to the distance in reality,
while the ratio remains the same. The corresponding adjacency
matrix is constructed as these procedures. We first take the
state transition probability distribution generated from the
last procedure as input. Then all transition indexes between
intersections will be traversed. If the index is above the
average value of all transition indexes sourcing from the same
intersection, we take it into account and consider it as an edge
in the graph. The weight of this edge is the reciprocal form of
this transition index. Otherwise, there is no edge corresponding
to this index in the graph.

After that, we achieve the corresponding graph. Further-
more, we can formally enter the prediction stage. The first step
is to generate the state sequence (i.e., intersection sequence).
In this context, we choose the Dijkstra’s algorithm to compute
the optimal path from the source intersection to the destination
intersection.

Because the size of the intersection matrix is much smaller
than the vehicular network, the time cost of computation is
small too. To explore all possibilities, we compute two paths,
the optimal path and the suboptimal one. Then we link two
paths together to achieve a mixed intersection path. In this way,
we almost take all the possibilities into account and guarantee
the appropriate number of qualified REIs at the same time.
The algorithm detail is presented in Alg.1.

At the beginning, we take the adjacency matrix from the
last step as the input. Then, we initialize three lists to store
the result, including optimal path, suboptimal path, and
subgraph (Line 1). The subgraph is applied to store the result
of this algorithm, which is a mixed path with two optimal
paths. Then we compute the optimal routing path on the graph
G representing the state transition probability distribution with
the Dijkstra’s algorithm and store it in the optimal path (Line
2). It is worth to mention that we use multiplication instead
of plus to compute the cumulative distance in Dijkstra to fit
the goal of the largest probability better. It is obvious that the
computation of the total probability is based on the cumulative
multiplication of various probabilities.

Since the number of intersections is limited, this procedure
is computationally efficient. After that, we delete all inter-
sections related to the optimal path on the G except the
source intersection and the destination intersection (Line 3 to
7). Then, we rerun the Dijkstra to get the suboptimal path and
store it in suboptimal path (Line 8). Now, two paths have
been achieved. Then, we traverse suboptimal path. For each
intersection, once an intersection in optimal path is found

Algorithm 1: Intersection sequence generation
(G, s, d)

Input: A graph G representing the HMM , the
intersection to which the source vehicle
belongs s, the destination intersection d;

Output: a subgraph that is mixed with optimal path,
suboptimal path, and their link;

1 Initialization: optimal path← [],
suboptimal path← [], subgraph← [];

2 optimal path← Dijkstra(G, s, d);
3 foreach node i in optimale path do
4 if i 6= s or i 6= d then
5 delete i in G;
6 end
7 end
8 suboptimal path← Dijkstra(G, s, d);
9 foreach node i in suboptimal path do

10 foreach node j in optimal path do
11 if djd < did then
12 insert edge eij into subgraph;
13 continue;
14 end
15 end
16 end
17 insert all edges in optimal path into subgraph;
18 insert all edges in suboptimal path into subgraph;
19 return subgraph;

as a closer node to the destination intersection, we link the
intersection in the suboptimal path to the closest one with it
in the optimal path. We then store this link in the subgraph
and process the next intersection in the suboptimal path
(Line 9 to 16). At last, we insert the optimal path and
suboptimal path into the subgraph. The mixed intersection
path can be achieved.

The time complexities of adjacency matrix construction and
Intersection sequence generation are O(N logN) and O(N2),
respectively. Both algorithms depend on constant N , which is
the number of intersections. Therefore, the enlargement of the
vehicular network status will not affect the time cost of the
routing computation.

2) Hidden States to Observation: In this part, we will
introduce the final part of the prediction, conversion from the
intersection to the vehicle. In this scenario, we need to predict
the appropriate number of qualified REIs with the mixed
intersection path we have achieved from the last procedure.
At first, we explore the subgraph with the DFS method. Since
some vehicles are not qualified enough to undertake the task
of forwarding packets, we rank all the subordinate vehicles of
it with Eq. (23) to quantify the vehicle qualification for each
intersection we explore

qx = ϕ

∑p−1
h=0

r
th
vx

(tp−th)

rdexmax
+(1−ϕ) 1√

2π
(exp−|

(disvx,ij −
l(sij)

2 )2

2
|)

(23)
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where qx is the qualification index of the vehicle vx. This
can be considered as the observation symbol probability dis-
tribution. We consider this equation in two parts, the historical
routing, and the distance. The historic routing part is almost
the same as the one in the construction of HMM. The only
difference is that we count the routing starting from the vehicle
vx. In the distance part, being too close or too far from
the center of the intersection is not what we expect. If the
vehicle gets too close, it is hard to transmit packets to the
next intersection. If it is too far, it can hardly receive packets
from the last intersection. Thus, vehicles in the middle part of
the segment should have a higher qualification index. With
the decrease of the distance between the vehicle and two
ends of the segment, the qualification index gets smaller.For
the same reasons as k in the construction of state transition
probability matrix. We take the successful transmission as
the highest priority, so we set 1 − ϕ to be slightly larger.
If the size of a segment is too large or the segment conditions
are too complex (such as loop street), we need to pre-
process this part of segments by dividing them into multiple
parts. These segments can be girded through setting virtual
intersections at the appropriate locations on the segments, such
as the center of a long segment or a large curve. Since such
complicated segment conditions only occasionally appear in
the city, this will not cause an increment in the magnitude of
the current number of intersections. If the size of segment
is too small (i.e., smaller than the half of communication
range), the connected intersection pair will be deleted, and
one virtual intersection will be set in the middle of the
segment. These virtual intersections play the same roles as the
actual intersections playing in the HMM model stored in the
controller. This method ensures that the actual road network
can be restored as much as possible by the virtual graph stored
in the control plane. Meanwhile, it is also ensured that vehicles
on complex segments can correctly choose the relay nodes at
the next intersection, regardless of whether the intersection is
real or virtual.

Once q of this vehicle is above the two-thirds of the average
value among all vehicles belong to this intersection, this
vehicle is qualified and selected as a candidate for routing.
Then, we make a full link between respective qualified vehicles
at the pair of linked intersections in the subgraph. While
forwarding REI prediction, we need to record the temporal
information of the REI, following the end time (i.e., starting
time + duration) of its predecessor. When the exploration
reaches the destination vehicle, the quality and quantity of
predicted REIs can be guaranteed in the end. Combined with
these predicted REIs, a temporal graph representing the future
routing of the current vehicular network can be achieved easily.
The entire HMM prediction process is as shown in Fig. 2.

The time complexity of this part changes proportional to
the increment in the size of the vehicular network. This makes
each intersection has 2n

3N qualified subordinate vehicles. Thus,
the time cost is O(( 2n

3N )2) in linking all vehicles between two
adjacent intersections and updating their temporal information.
The total time of the hidden states to observation stage is
O(( 2n

3N )2m). Here, m means the size of the predicted mixed
intersection path, and it entirely depends on the size of the

Hidden State 
Sequence 

Generation

Conversion from 
state to observation

Vehicle
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Sequence

Temporal Graph 
representing possible 

routing 
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Fig. 2. The prediction process in HMM

network and the distance between the source vehicle and the
destination. Since the Dijkstra algorithm is utilized in the
prediction part, m must be much smaller than N .

D. Temporal Graph Algorithm

After the prediction, REIs are stored in the list ordered
by their starting time. We take the optimal routing algorithm
based on temporal information to find the optimal routing
path we need. The predicted REIs are utilized as the input
of this the optimal routing algorithm. Wu et al. propose four
shortest path algorithms [9], including the earliest-arrival path,
the latest-departure path, the shortest path, and the fastest path
separately. Here, in this paper, we choose the first one, the
earliest-arrival path, as our fundamental algorithm. It has the
same goal with routing, which is transmitting the packet to
the destination as early as possible. The temporal graph-based
optimal path algorithm is an order-of-magnitude better than the
existing algorithms in terms of efficiency [9], [14]. However,
we need the information of each node on the optimal path as
well. Thus, we set a predecessor node list for each node to
record the optimal routing path.

The main idea of this algorithm is described as follows.
First, we initialize a list to record the earliest arrival time of
each vehicle. The earliest arrival time of the source vehicle
is set to be 0. Others are ∞. We traverse all predicted REIs
(u, v, t, d) with the sequence of starting time. If the starting
time of one REI is later than the present earliest arrival time
of u, that means this REI is qualified and reachable. Thus,
this REI can enter the following judgment. If the end time
(t + d) is earlier than the current earliest arrival time of v,
this means the REI is a better solution. All we need to do is
to record this solution and update the earliest arrival time and
the predecessor node list of v. After scanning all REIs in the
list, the earliest arrival time from source to any other node
can be easily achieved. Meanwhile, the node sequence of the
optimal routing path can be achieved easily through scanning
the predecessor node list recursively. The detailed pseudo code
can be found in supplementary material. The time cost of this
part is entirely dependent on the size of REIs as the input. It
is O(( 2n

3N )2m), which is equal to the time complexity of the
last procedure.
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V. SIMULATION

In this section, we present details of the simula-
tion, including parameters and evaluations. To evaluate
our routing algorithm, we develop an open-source simula-
tor in Python to meet the experimental demand of SD-
VNs (https://github.com/a824899245/SDVN-platform) [34].
Our simulation is based on a real map of Tiexi District,
Shenyang City, China. The sizes of the map are set to
be two levels, a small map 2686m × 1494m and a large
map 5193m × 5863m (Specific satellite map images can be
achieved in the Github project). Further, the covered loca-
tions of these two maps are the same. The map information
is achieved from the OpenStreetMap [35]. Then, we apply
SUMO [36] to generate the trajectory data of vehicle fitting
on these maps. At last, we use our simulator to perform
the data packet transmission in the vehicular networks. The
transmission range is set as 500m. Even if the distance between
the two vehicles is within range, high load and channel
interference will still cause delay increase and even packet
loss. These mechanisms have been integrated in the platform.
Twenty routing requests are generated from random vehicles
once per second. Also, the destination of the request is random.
And we set average distance between the random source and
the destination vehicle around half of the diagonal length of the
map. Table III shows the parameter settings of our vehicular
network and simulator. Each round of the simulation lasts for
300 seconds. Each round of simulation is repeated five times
with different random seeds, while four routing algorithms use
the same seeds.

We compare PT-GROUT to Dijkstra [37], HRLB [12], and
PRHMM [20]. The first simulation counterpart is based on
Dijkstra, which is the most popular algorithm of optimal
routing in SDVNs. Authors tend to apply Dijkstra as their
algorithms [11], [38], [39] directly or with modifications. Even
though it is an efficient and accurate shortest path algorithm,
it can miss essential temporal information of the vehicular
networks. Besides Dijkstra, we also choose an SDVN routing
scheme HRLB [12], as the other counterpart. HRLB is a hier-
archical routing scheme with consideration of load balancing,
which adopts a three-level architecture to compute the routing.
HRLB also adopts the SDVN architecture and proposes a
hierarchical routing scheme which is like the HMM in concept.
Hence, we select this as a part of our counterparts. The third
counterpart of PT-GROUT is PRHMM [20]. Similar to PT-
GROUT, PRHMM also integrates prediction into the routing
algorithm. In PRHMM, the vehicle predicts its position and the
relationship with the destination vehicle by the HMM. While
forwarding the data messages, each vehicle selects the next-
hop vehicle according to the predicted delivery probability and
delivery delay.

To compare the above routing schemes with considering
various requirements for QoS, we choose four evaluation
metrics, which are computation time cost, packet delivery
ratio, delivery delay, and delivery delay jitter.

Computation time cost: The average run time for each rout-
ing request, this metric depends mainly on the time complexity
of the routing algorithm.

TABLE III
SIMULATION PARAMETERS

Simulation Parameter Name Value

Size of the simulation area
2686m× 1494m

5193m× 5863m

Intersections 68/267

Road segments 116/457

Number of vehicles 100/200/300/400/500

Vehicle velocity 0− 60km/h

Vehicle transmission range 500m

Simulation duration 300s

Packet generation rate 20 packets per second

Data Packet Size 1024KB

Standards IEEE 802.11p

α in Construction of HMM 0.6

k in Construction of HMM 0.6

ϕ in Hidden States to Observation 0.4

Packet delivery ratio: The ratio of delivered packets to the
generated packets.

Delivery delay: The average end-to-end delay from the time
when a packet is generated to the time when it is successfully
delivered to its destination. This is the primary metric to show
the quality of the routing policy.

Delivery delay jitter: The variance of the delay of each
successful packet transmission. This presents the volatility of
the quality of the routing path. In some respects, it presents
the quality of the routing policy.

The average value of four metrics will be presented in
the simulation figures. According to the five-rounded different
simulations, the 90% confidence interval for each metrics will
also be presented in the figures around the average value.
The detailed mathematical definitions of these metrics are in
Section II(B).

A. Routing Performance

This part provides the evaluation of the performance of our
algorithm on the city map with a small geographical area
(2686m × 1494m) and a large area (5193m × 5863m). As
shown in Fig. 3(a) and Fig. 4(a), we compare the performance
of these four routing algorithms in terms of computation time
cost. It is worth noting that the computation time cost denotes
the time complexity of computing the routing strategy in the
controller. Hence, we do not consider the delivery delay. In
almost all cases, our algorithm outperforms others all the
time. PT-GROUT is efficient because of the limited number
of intersections, in which the information of intersections has
been pre-processed at the status updating stage. Also, the
temporal-graph optimal routing algorithm runs in a linear
time. The efficiency advantage of PT-GROUT grows with
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the increasing number of nodes. For the low-density scenario
(i.e., less than 200 nodes in the large map), the computation
efficiency of Dijkstra could be similar to that of PT-GROUT
since the number of intersections is close to the number of
vehicles. And we also need to utilize Dijkstra to achieve
the intersection sequence. Thus, in such scenario there are
no significant differences in efficiency between PT-GROUT
and Dijkstra. However, with the increment in the number of
vehicles, PT-GROUT can improve the computation efficiency
of the controller significantly. Since the time cost of this entire
HMM-related part of the routing algorithm mainly relies on
the number of intersections, it will remain stable with the
increment of the vehicle density. This is a remarkable im-
provement in terms of efficiency. All SDVN routing algorithms
remain stable in terms of the computation cost as shown
in the confidence intervals. Among all, PT-GROUT achieves
the most stable performance since the size of intersections
remains the same. The instability of PRHMM is attributed
to the distribution method. The lack of global vision and the
uneven distribution of computing resources among vehicles
could be the main reason.

Due to the restriction on the simulation, the maximum
number of vehicles is set as 500. In a real-life scenario, the
number of vehicles in peak hours will be much higher than this
number. The average length of the segment is 300m. Moreover,
the average vehicle density is 50 vehicles per km. We find
68 intersections on the small map, in which the number of
segments can reach 110. After the computation, the number
of vehicles can reach 1650. This will give substantial compu-
tation burdens to these routing algorithms whose computation
efficiency highly relies on the number of vehicles. However,
the larger number of vehicles will not have much impact on
the efficiency of our algorithm. The time cost of the HMM-
related part is only related to the number of intersections,
which is much smaller than the number of vehicles in real
life. Meanwhile, the Hidden states to Observation part and the
following Temporal Graph part is only partly related to vehicle
density and the time complexity of them will be satisfying.
Thus, PT-GROUT can reduce the computation burden of the
controller greatly. The corresponding time complexity analysis
of all routing algorithms is presented in the supplementary
material.

The reasons behind that the computation time cost on the
large map is higher than that on the small map can be
explained as follow. Even though the number of vehicles is the
same, the corresponding graph will become more sparse, as the
map area increases. Thus, since the communication distance
is fixed, the routing algorithm only needs to process a smaller
number of edges to complete the routing discovery.

In Fig. 3(b) and Fig. 4(b), we present a comparison of the
delivery ratio. Our algorithm demonstrates a high delivery ratio
at five levels of different numbers of vehicles. PT-GROUT
outperforms the other three algorithms in terms of the delivery
ratio. There are two main reasons for the better performance of
PT-GROUT, the adequate number of possible predicted REIs
and the consideration on the vehicle density. Through our
HMM construction and prediction methods, PT-GROUT has
an appropriate number of qualified predicted REIs for the final

discovered routing path. Among these REIs, all possibilities
of routing can be included, and the size is limited according to
the size of the map to improve the routing path computation
efficiency. Meanwhile, the consideration of vehicle density
ensures that these predicted REIs are available in the future
with great probability. These two measurements mostly ensure
the reachability of the routing process.

An unusual phenomenon is the low packet delivery ratios of
all four algorithms at the low-density scenario in the large area
scenario. The reason is that one hundred vehicles are too sparse
for the area of 5193m×5863m. In this case, it is hard to find
the next-hop vehicle to forward data messages in such a sparse
scenario, which leads to packet loss. Thus, in an overly sparse
network, all algorithms do not perform well. The low packet
delivery ratio increases gradually with the increment in the
number of vehicles, and achieve good and stable performance
in the small map. Meanwhile, the network also becomes more
complicated with the increase of vehicle density. Some routing
algorithms, such as HRLB and PRHMM, cannot analyze the
vehicular network thoroughly to find a reasonable routing path
stably, which ultimately leads to the failure of routing process
and the decreasing of delivery ratio. Under all these conditions,
the packet delivery ratio of PT-GROUT remains the highest
quality in any scenario.

Fig. 3(c), Fig. 3(d), Fig. 4(c) and Fig. 4(d) show delay,
and jitter, respectively. PT-GROUT demonstrates better per-
formance than the other three routing algorithms in terms
of delay. The average delivery delay becomes longer with
the increment of vehicles under other two SDVN routing
algorithms. The reason could be the increment of the relay
vehicles. Other SDVN routing algorithms tend to compute the
routing path with more vehicles when the vehicle topology
becomes dense. The total forwarding time climbs up with
the increment of relay vehicle. PT-GROUT will only select a
limited number of vehicles as relays under any circumstances,
because the number is determined by the length of the hidden
state sequence, and unrelated to the number of vehicles.
The HMM computation contributes to this improvement in
term of delay performance. Thus, the delay of routing path
computed by PT-GROUT remain small and stable. Meanwhile,
the increment of vehicles does not seem to have a significant
impact on the routing computation strategy of PRHMM. Thus,
PRHMM performs better than other two SDVN algorithms in
terms of delay in the dense network. However, due to the
lack of global view in the distributed routing algorithms, the
global optimal routing cannot be computed as sometimes the
local optimum will be triggered by PRHMM with the increase
of the number of vehicles. The above will inevitably lead to
the increment and fluctuation of routing delay.

Besides, for delay jitter, Dijkstra and PT-GROUT show
good performance compared with others since they always
compute the optimal routing path among all four algorithms.
For PT-GROUT, the stable number of relay vehicles restricted
by the intersection sequence contributes to this result. The
disadvantages of distributed nature of these routing algorithms
are obvious in terms of delay jitter. The limited vision of
the vehicles makes PRHMM unable to compute the qualified
routing stably from time to time.
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(a) (b) (c) (d)

Fig. 3. Four metrics versus the number of vehicles on the small small-area map. (a) Computation time cost with confidence intervals (ms), (b) Packet delivery
ratio with confidence intervals (%), (c) Packet delivery delay with confidence intervals (ms), (d) Delivery delay jitter with confidence intervals (ms2).

(a) (b) (c) (d)

Fig. 4. Four metrics versus the number of vehicles on the large-area map. (a) Computation time cost with confidence intervals (ms), (b) Packet delivery
ratio with confidence intervals (%), (c) Packet delivery delay with confidence intervals (ms), (d) Delivery delay jitter with confidence intervals (ms2).

By combining the analysis above, we can draw that our
proposed algorithm can compute the routing path of good
quality in the scenarios with a various number of nodes
efficiently. The most apparent reason for the better quality
of the routing path is the higher delivery ratio of PT-GROUT.
Moreover, through the HMM prediction, all the possible routes
have been taken into consideration. The quality and quantity of
them are guaranteed. In quality, all routing possibilities can be
found among predicted REIs. In quantity, the number of REIs
is limited by the intersection to ensure the high computation
efficiency of PT-GROUT. Since the number of intersections
is only related to the size of the map, the computation cost
and the delay of PT-GROUT are good and stable. At last, the
efficient temporal graph routing algorithm also contributes to
this result. This algorithm can compute the absolute optimal
routing path among these predicted routing efficiently. The
results prove the high quality and computation efficiency of
the computed routing.

At last, we would like to present the frequency of using
GPSR as an alternative algorithm in PT-GROUT. The unit
we use here is the GPSR occurrence, which is calculated as
the number of times that GPSR is utilized as an alternative
algorithm / the total number of routing computation processes.
As we can see in Fig.5, the GPSR occurrence also varies
with the vehicle density and decreases with the increase of
the vehicle density overall. It is getting harder to achieve
the feasible routing path as the vehicle density becomes
lower. Thus, our work intends to provide more ways to find
available routing paths, including using GPSR as an alternative
algorithm. Meanwhile, for the same reason, GPSR occurrences
on the large maps are generally greater than those on the small
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Fig. 5. GPSR occurrence versus the number of vehicles on the both small
and large-area map.

map. This is also because the vehicle density on the large maps
is much lower than that on the small maps.

B. Summary of Simulation

Referring to the two different sizes of real maps in
Shenyang, China, we design a series of simulations to evaluate
the performance of PT-GROUT on routing computation and
prediction. In terms of all four metrics for evaluating the
routing quality, PT-GROUT always remains at a high level
in different scenarios. Under four metrics, PT-GROUT shows
better and stabler performance than others in most cases.
Under other scenarios, at least it is similar to the algorithm
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with the best performance. The simulations show that PT-
GROUT can compute the routing path with high quality most
efficiently and stably. The routing quality can be guaranteed
while the time complexity can be significantly reduced. After
all the simulations, it can be proven that PT-GROUT is
qualified and efficient enough to handle redundant routing
requests in the increasingly complex vehicular network.

VI. CONCLUSION

In this paper, we propose a prediction-based vehicular rout-
ing algorithm in SDVNs to improve the routing performance
and the computation efficiency at the same time. We integrate
two essential and novel strategies into our algorithm, HMM
for prediction, and temporal graph for computation. In this
context, the hidden states of the HMM are intersections,
where the observations are the vehicles around the intersection.
Reasonable settings of HMM make the quality and quantity of
predicted future REIs trustable. All possible routing selections
are available, and the computation efficiency can be ensured
by the limitation on the number of predicted REIs. Also,
we construct the temporal graph with the predicted REIs,
making it more adaptive to the real-world scenarios. The
efficient temporal-graph optimal routing algorithm reduces the
computation burden in the control plane significantly. We
have performed extensive simulations to compare PT-GROUT
with several other state-of-the-art schemes in computation
efficiency, delivery ratio, delivery delay, and delay jitter. PT-
GROUT shows better performance than other algorithms in
most routing scenarios under different evaluation metrics.
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