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OpenPifPaf:
Composite Fields for Semantic Keypoint Detection
and Spatio-Temporal Association

Sven Kreiss, Lorenzo Bertoni, Alexandre Alahi

Abstract—Many image-based perception tasks can be formu-
lated as detecting, associating and tracking semantic keypoints,
e.g., human body pose estimation and tracking. In this work,
we present a general framework that jointly detects and forms
spatio-temporal keypoint associations in a single stage, making
this the first real-time pose detection and tracking algorithm.
We present a generic neural network architecture that uses
Composite Fields to detect and construct a spatio-temporal pose
which is a single, connected graph whose nodes are the semantic
keypoints (e.g., a person’s body joints) in multiple frames. For
the temporal associations, we introduce the Temporal Composite
Association Field (TCAF) which requires an extended network
architecture and training method beyond previous Composite
Fields. Our experiments show competitive accuracy while being
an order of magnitude faster on multiple publicly available
datasets such as COCO, CrowdPose and the PoseTrack 2017
and 2018 datasets. We also show that our method generalizes to
any class of semantic keypoints such as car and animal parts to
provide a holistic perception framework that is well suited for
urban mobility such as self-driving cars and delivery robots.

Index Terms—composite fields, pose estimation, pose tracking.

I. INTRODUCTION

The computer vision community has made tremendous
progress in solving fine-grained perception tasks such as
human body joints detection and tracking [I], [2]. We can
cast these tasks as detecting, associating and tracking semantic
keypoints. Examples of semantic keypoints are “left shoul-
ders”, “right knees” or the “left brake lights of vehicles”
as opposed to keypoints used in classical feature detectors
that focus on the local geometry of the pixel intensities,
like “corners” and “edges”. However, the performance of
semantic keypoint tracking in live video sequences has been
limited in accuracy and high in computational complexity and
prevented applications to the transportation domain with real-
time requirements like self-driving cars and last-mile delivery
robots. The majority of self-driving car accidents is caused
by “robotic” driving where the self-driving car conducts an
allowed but unexpected stop and a human driver crashes into
the self-driving car [3]. At their core, self-driving cars lack
social intelligence. They are blind to the body language of
surrounding pedestrians when every person is only perceived
as a bounding box. Current pose detection and tracking meth-
ods are neither fast enough nor robust enough to occlusions to
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Fig. 1.
Schematically, all moving actors are detected with their poses and tracked
so that they can be consistently quantified over time. We place particular
emphasis on understanding humans but also show generalizations to animals
and cars. Here, a car (tracked as 4) is running a red light while also swerving
to the right to avoid a woman (tracked as 2) who is walking her dog (tracked
as 3).

A real-world scene from the perspective of a self-driving car.

be viable for self-driving cars. Tracking human poses in real-
time will enable self-driving cars to develop a finer-grained
understanding of pedestrian behavior and with that a better
conditioned reasoning for more natural driving.

The problem is to estimate and track multiple human, car
and animal poses in image sequences, see Figure 1. The major
challenges for tracking poses from the car perspective are
(1) occlusions due to the viewing angle and (ii) prediction
speed to be able to react to real-time changes in the environ-
ment. Our method must be fast enough to be viable for self-
driving cars and robust to real-world variations like lighting,
weather and occlusions.

Although tracking has been studied extensively before hu-
man pose estimation [4], [5], [6], [7], a significant cornerstone
that leverages poses are the works of Insafutdinov et al. [8]
and Igbal et al. [9] who pioneered multi-person pose tracking
for an arbitrary number of people in the wild. Both methods
use graph matching to track independent, single-frame poses
over time. To improve the matching for tracking, Doering
et al. [10] introduced temporal flow fields that improve the
cost function for matching. However, these works treat pose
tracking as a multi-stage process: infer single-frame poses —
which is itself a multi-stage process for top-down methods —
and connect poses from frame to frame. This prohibits any
improvement to single-frame poses that could result from the
temporal information available in tracking. Here, we address
these challenges by introducing a new method that jointly



solves pose detection and tracking with Composite Fields.

First, we review Composite Fields for single-image multi-
person pose estimation [I1]. Second, we introduce a new
method for pose tracking. While single-frame pose estimation
can be viewed as a pose completion task starting at a seed
joint, we treat pose tracking as a pose completion task starting
with a pose from a previous frame and completing a spatio-
temporal pose, which is a single, connected graph that spans
space and time. The spatio-temporal pose consists of at least
two single-frame poses and additional connections across the
frames.

The contributions of this paper are (i) a Temporal Composite
Association Field (TCAF) which we use to form a spatio-
temporal pose and (ii) a greedy decoder to jointly detect and
track poses. To the best of our knowledge, this method is
the first single-stage, bottom-up pose detection and tracking
method. We outperform all previous methods in accuracy and
speed on the CrowdPose dataset [12] with its particularly
crowded images. We perform on par with the state-of-the-art
bottom-up method for single-image human pose estimation on
the COCO [2] keypoint task in precision and are an order
of magnitude faster in speed. Our model performs on par
with the state-of-the-art method for human pose tracking on
PoseTrack 2017 and 2018 [13] while simultaneously being
an order of magnitude faster during prediction. We also
show that our method generalizes to car and animal poses
which demonstrates its suitability for a holistic perception
framework. Our method is implemented as an open source
library, referred to as OpenPifPaf".

II. RELATED WORK
A. Pose Estimation

State-of-the-art methods for pose estimation are based on
Convolutional Neural Networks [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24]. All approaches for human
pose estimation can be grouped into bottom-up and top-down
methods. The former estimates each body joint first and then
groups them to form a unique pose. The latter runs a person
detector first and estimates body joints within the detected
bounding boxes. Bottom-up methods were pioneered, e.g., by
Pishchulin et al. with DeepCut [25]. In their work, the part
association is solved with an integer linear program leading
to processing times for one image of the order of hours.
Newer methods use greedy decoders in combination with
additional tools to reduce prediction time as in Part Affinity
Fields [16], Associative Embedding [17], PersonLab [1§]
and multi-resolution networks with associate embedding [24].
PifPaf [11] introduced composite fields for pose estimation
that produces a more precise association between joints than
OpenPose’s Part Affinity Fields [16] and PersonLab’s mid-
range fields [18]. In the next section, we will review composite
fields and show that they generalize to tracking tasks.

B. Pose Tracking

Tracking algorithms can be grouped into top-down versus
bottom-up approaches for the pose part and the tracking part.

Ihttps://github.com/vita-epfl/openpifpaf_posetrack

Doering et al. [10] were the first to introduce a method that
is bottom-up in both the spatial and the temporal part. They
employ Part Affinity Fields [16] for the single-frame poses in
a Siamese architecture. The temporal flow fields (TFF) feed
into an edge cost computation for bipartite graph matching
for tracking. The idea is extended in MIPAL [26] for tracking
limbs instead of joints and in STAF [27].

Early work on multi-person pose tracking started with [8],
[9]. Recent work has shown excellent performance on the
PoseTrack 2018 dataset including the top-down method
openSVAI [28] which decomposes the problem into three
independent stages of human candidate detection, single-
image human pose estimation and pose tracking. Similarly,
LightTrack [29] also builds a strong top-down pipeline with
interchangeable and independent modules. Miracle [30] uses
a strong single-image pose estimator with a cascaded pyramid
network together with an IOU tracker. HRNet for human
pose estimation [20] leverages a multi-resolution backbone to
produce high resolution feature maps that are context aware
via HRNet’s multi-scale fusion. In MSRA/FlowTrack [19],
optical flow is used to improve top-down tracking of bounding
boxes for tracking of human poses. Pose-Guided Grouping
(PGG) [31] proposes a part association method based on
separate spatial and temporal embeddings. KeyTrack [32]
uses pose tokenization and a transformer network to associate
poses.

C. Beyond Humans

While many state-of-the-art methods focused on human
body pose detection and tracking, the research community has
recently studied their performance on other classes such as
animals and cars. Pose estimation research for animals and
cars has to deal with additional challenges: limited labeled
data [33] and large number of self-occlusions [34].

For animals, datasets are usually small and include limited
animal species [35], [33], [36], [37], [38]. To overcome this
issue, DeepLabCut [39] and WS-CDA [33] have developed
transfer learning techniques from humans to animals. Mu et
al. [40] have generated a synthetic dataset from CAD animal
models and proposed a technique to bridge the real-synthetic
domain gap. Another line of work has extended the human
SMPL model [41] to animals to learn simultaneously pose
and shape of endangered animals [42], [43], [44].

For cars, self-occlusions between keypoints are inevitable.
A few methods improve performances by estimating 2D and
3D keypoints of vehicles together. Occlusion-net [34] uses a
3D graph network with self-supervision to predict 2D and
3D keypoints of vehicles using the CarFusion dataset [45],
while GSNet [46] predicts 6DoF car pose and reconstructs
dense 3D shape simultaneously. Without 3D information, the
popular OpenPose [47] shows qualitative results for vehicles
and Simple Baseline [48] extends a top-down pose estimator
for cars on a custom dataset based on Pascal3D+ [49].

III. COMPOSITE FIELDS

Our method relies on the Composite Fields formalism to
jointly detect and track semantic keypoints. Hereafter, we
briefly present them.
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Fig. 2. Visualizing the components of the CIF for the “left shoulder” keypoint on a small image crop. The confidence map is shown in (2a). The vector field
with joint-scale estimates is shown in (2b). Only locations with confidence > 0.5 are drawn. The fused confidence, vector and scale components according

to Equation | are shown in (2c¢).
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Fig. 3.

Visualizing the components of the CAF that associates left shoulder with left hip. This is one of the 18 CAF. Every location of the feature map is

the origin of two vectors which point to the shoulders and hips to associate. The confidence of associations a. is shown at their origin in (3a) and the vector

components for a. greater than 0.5 are shown in (3b).

() (b)

Fig. 4. Common association fields between two joints. Joints are visualized
as gray circles. Part Affinity Fields (a) as used in OpenPose [16] are unit
vectors indicating a direction towards the next joint. Mid-range fields (b) as
used in PersonLab [18] are vectors originating in the vicinity of a source joint
and point to the target joint. Our Composite Association Field (c) regresses
both source and target points and additionally predicts their joint size which
are visualized with blue squares.

a) Field Notation: Fields are functions over locations
(e.g., feature map cells) and their outputs are primitives like
scalars or composites. Composite Fields as introduced in [11]
jointly predict multiple variables of interest, for example, the
confidence, precise location and size of a semantic keypoint
(e.g., body joint).

We will enumerate the spatial output coordinates of the
neural network with ¢,7 and reserve x,y for real-valued
coordinates in the input image. A field over (i, j) is denoted
with f¥ and can have scalar, vector or composite values.
For example, the composite field of scalars s and 2D vector

components vy, vy is {8, v, vy }*. This is equivalent to “over-
laying” a confidence map with a vector field if the ground
truth is aligned. This equivalence is trivial in this example
but becomes more subtle when we discuss association fields
below.

b) Composite Intensity Fields (CIF): The Composite
Intensity Fields (CIF) characterize the intensity of semantic
keypoints. The composite structure is based on [53] with the
extension of a scale o to characterize the keypoint size. This is
identical to the part intensity field in [11]. We use the notation
p ={c,z,y,b,0}" where J is a particular body joint type,
c is the confidence, x and y are regressed coordinates, b is the
uncertainty in the location and o is the size of the joint.

Figure 2 shows the components of a CIF field and a
high resolution accumulation of the predicted intensity. The
field is coarse with a stride of 16 with respect to the input
image but the accumulated intensity is at high resolution. The
high resolution confidence map f(v,w) is a convolution of
an unnormalized Gaussian kernel A/ with width o over the
regressed targets from the Composite Intensity Field x and y
weighted by its confidence c:

fr(v,w) = ZCZJJ (U7w|x§j,y3j,a‘f]j
ij

) M

where v and w are real-valued coordinates in the image. This
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Fig. 5. Model architecture. The input is an image batch of size (H, W) with three color channels, indicated by “x3”. During joint training on multiple
datasets, the datasets produce image pairs (black arrows for current image at tg and red arrows for image at ¢_1) whereas during evaluation they produce
single images in a sequence. The neural network based encoder produces composite fields for M joints and /N connections. An operation with stride two is
indicated by “//2”. The shared backbone is a ResNet [50] or ShuffleNetV2 [51] without max-pooling. The Feature Cache is only used during evaluation and
injects for every image the previous feature map into the batch. We use a single 1 X 1 convolution in each head network. The TCAF head networks have a
shared pre-processing step consisting of a feature reduction to 512 with a 1 x 1 convolution followed by ReLU, a concatenation of the two feature maps and
another 1 X 1 convolution with ReL.U activation. For optional spatial upsampling, we append a sub-pixel convolution layer [52] to each head network. The
decoder converts a set of composite fields into pose estimates. Each semantic keypoint is represented by a confidence score, a real-valued (z, y) coordinate

pair and a size estimate.

accumulation incorporates information of the confidence c, the
precisely regressed spatial location (z,y) and the predicted
joint size o. This map f; is used to seed the pose decoder
and to rescore predicted CAF associations.

c¢) Composite Association Fields (CAF): Efficiently
forming associations is the core challenge for tracking multiple
poses in a video sequence. The most difficult cases are
crowded scenes and camera angles where people occlude other
people — as is the case in the self-driving car perspective where
pedestrians occlude other pedestrians. Top-down methods first
estimate bounding boxes and then do single-person pose
estimation per bounding box. This assumes non-overlapping
bounding boxes which is not given in our scenario. Therefore,
we focus on bottom-up methods.

In [11], we introduced Part Association Fields to connect
joint locations together into poses. Here, we extend this field
with joint-scale components and call it Composite Association
Field (CAF) to distinguish it better from Part Affinity Fields
introduced in [16]. A graphical review of association fields is
shown in Figure 4 and shows that our CAF expresses the most
detail about an association.

CAFs predict a confidence, two vectors to the two parts
this association is connecting, two spreads b for the spatial
precisions of the regressions (details in Section IV-A) and
two joint sizes o. CAFs are represented with af}l ST
{C, x1,Y1,T2,Y2, bl, b2, o1, 02}3]1<—>J2 where J; < Jy is the
association between body joints J; and J». Predicted asso-
ciations between left shoulders and left hips are shown for
an example image in Figure 3. In our representation of an
association, physically meaningful quantities are regressed to
continuous variables and do not suffer from the discreteness
of the feature map. In addition, it is important to represent
associations between two joints that are at the same pixel
location. Our representation is stable for these zero-distance

associations — something that Part Affinity Fields [16] cannot
do — which becomes particularly important when we introduce
our extension for tracking.

IV. METHOD

We aim to present a method that can detect, associate
and track semantic keypoints in videos efficiently. We place
particular emphasis on urban and crowded scenes that are
difficult for autonomous vehicles. Many previous methods
struggle when object bounding boxes overlap. In bird-eye
views from drones or security cameras, bounding boxes are
more separated than in a car driver’s perspective. Here, top-
down methods struggle. Previous bottom-up methods have
been trailing top down methods in accuracy without improving
on performance either. Our bottom-up method is efficient,
employs a stable field representation and has high accuracy
and performance that even surpasses top-down methods.

Figure 5 presents our model architecture. It is a shared
ResNet [50] or ShuffleNetV2 [51] base network without
max-pooling. The head networks are shallow and not shared
between datasets. In our examples, each dataset has a head
network for joint intensities (Composite Intensity Field — CIF)
and a head network for associations (Composite Association
Field — CAF). Beyond CIF and CAF, additional head networks
can be added. In Section IV-B, we introduce the new Temporal
Composite Association Field (TCAF) which is predicted by an
additional head network to facilitate pose tracking.

We will introduce a tracking method that is a direct ex-
tension of single-image pose estimation. Therefore, we first
introduce our method for single-image pose estimation with
particular emphasis on details that will be relevant for pose
tracking.



Fig. 6. Effect of self-hidden keypoint suppression during training. The left
image is without and the right image is with self-hidden keypoint suppression.
The left hips of both soccer players collide in pixel space.

A. Single-Image Pose Estimation

a) Loss Functions for Composite Fields: Human pose
estimation algorithms tend to struggle with the diversity of
scales that a human pose can have in an image. While a
localization error for the joint of a large person can be minor,
that same absolute error might be a major mistake for a small
person. Our loss is the logarithm of the probability that all
components are “well” predicted, i.e., it is the sum of the log-
probabilities for the individual components. Each component
follows standard loss prescriptions. We use binary cross en-
tropy (BCE) for classification with a Focal loss modification
w [54]. To regress locations in the image, we use the Laplace
loss [55] which is an Lj-type loss that is attenuated by a
predicted spread b in the location. To regress additional scale
components (keypoint sizes), we use a Laplace loss with a
fixed spread b, = 3. The CIF loss function is:

'CCIF = Z’LU(C, é)BCE(Q é) (2)
+ Z Lo(v, 0, bin) +logb 3)
+ 0y NI @)

~ b s

with its three parts for confidence (2), localization (3) and
scale (4) and where:

Lo (0,9, buia) = 1/ (01— 82)% + (v — 02)2 + 03, . (5)

The sums are over masked feature cells m., m, and m, with
i, 7, J implied. The mask for confidence m, is almost the entire
image apart from regions annotated as “crowd regions” [2].
The masks for localization m, and for scale m, are only
active in a 4 x 4 window around the ground truth keypoint.
Per feature map cell, there is a ground truth confidence ¢ and
its predicted counterpart ¢. The predicted location © = (01, 02)
is optimized with a Laplace loss with a predicted spread
b for heteroscedastic aleatoric uncertainty [55] with respect
to the ground truth location v. A by, = lpx is added to
prevent exploding losses when the spread becomes too small.
For stability, we clip the BCE loss when it becomes larger

than five. The CAF loss has the same structure but with two
localization components (3) and two scale components (4).

b) Self-Hidden Keypoint Suppression: The COCO eval-
uation metric treats visible and hidden keypoints in the same
manner. As in [l1], we include hidden keypoints in our
training. However, when a visible and a hidden keypoint
appear close together, we remove the hidden keypoint from the
ground truth annotation so that this keypoint is not included
in associations. In Figure 6, we show the effect of excluding
these self-hidden keypoints from training and observe better
pose reconstruction when a keypoint hides another keypoint
of the same type.

c) Greedy Decoder with Frontier: The composite fields
are converted into sets of pose estimates with the greedy
decoder introduced in [11] and reviewed here. The CIF field
and its high-resolution accumulation f(z,y) defined in equa-
tion 1 provide seed locations. Previously, new associations
were formed starting at the joint that has currently the highest
score without taking the CAF confidence of the association
into account. Here, we introduce a frontier which is a priority
queue of possible next associations. The frontier is ordered by
the possible future joint scores which are a function of the
previous joint score and the best CAF association:

|7 — (171’211)”2) £ (2 12)

meax s(aY ., %) = cexp (— p

(6)
where Z is the source joint location, a’ Fods
(¢,x1,y1,%2,Y2,01,02) is the CAF field with 1mp11ed
sub-/superscripts on the components and fj, is the high
resolution confidence map of the target joint Js. An
association is rejected when it fails reverse matching. To
reduce jitter, we not only use the best CAF association in
the above equation but a weighted mixture of the best two
associations; similar to blended connections in [56]. Only
when all possible associations are added to the frontier, the
connection is made to the highest priority in the frontier. This
algorithm is fast and greedy. Once a connection to a new
joint has been made, this decision is final.

d) Instance Score and Non-Maximum Suppression
(NMS): Once all poses are reconstructed, we apply NMS.
Poses are first sorted by their instance score which is the
weighted mean of the keypoint scores where the three highest
keypoint scores are weighted three times higher. We run NMS
at the keypoint level as in [1 1], [18]. The suppression radius
is dynamic and based on the predicted joint size. We do not
refine predictions.

e) Denser Pose Skeletons: Figure 7 gives an overview
of the pose skeletons that are used in this paper. In particular,
Figure 7b shows a modification of the standard COCO pose [?]
with additional associations. These denser associations are
redundancies in case of occlusions. The additional associations
are longer-range and therefore harder to predict. The frontier in
our greedy decoder takes this difficulty into account and auto-
matically prefers easier, confident associations when available.
Qualitatively, the advantage of dense associations is shown
in Figure 8. With the standard COCO skeleton, the single
person’s pose skeleton would be divided into two disconnected
parts (left image) as indicated by the two white bounding



Fig. 7. A COCO person pose [2] is shown in (a). Additional denser
connections are shown in lighter colors in (b). The additional connections
provide redundancies in case of occlusions. A pose skeleton as used in
Posetrack with temporal connections is shown in (c). An example of a tracked
pose is shown in (d). The first frame is captured with the right leg (blue)
in front and the second frame one step later. For clarity, only connections
that were used to decode the pose are shown and therefore only the temporal
connection that is connecting the right ankle from the past frame to the current
frame is visible.

boxes. With the additional denser associations, a single pose
is formed (right image).

B. Pose Tracking

In the previous section we introduced our method for
bottom-up pose estimation in single images. We now general-
ize that method to tracking poses in videos with associations
between images in the same bottom-up fashion. Our unified
approach forms both spatial and temporal associations simulta-
neously. This even leads to improved single-image poses from
the additional temporal information.

a) Temporal Composite Association Field (TCAF): Dur-
ing training, tracking data is fed into the base network as
image pairs that are concatenated in the batch dimension, i.e.,
a batched input tensor of eight image pairs has the same shape
as 16 individual images.

During prediction, the backbone processes one image at a
time and each image only once. The resulting feature map
is then concatenated with the previous feature map from the
“Feature Cache” (see Figure 5). While there is still duplicate
computation in the head networks, their computational com-
plexity is small.

To form associations in image sequences, we introduce the
Temporal Composite Association Field (TCAF). Its output
structure is identical to a CAF field, but its input is based
on pairs of feature maps that were created independently. To
jointly process information from both feature maps, the TCAF
head contains a preprocessing step of a 1 x 1 input convolution
to reduce the feature size to 512 with ReLU non-linearity,
a concatenation of these two feature maps to 1024 features,
a 1 x 1 convolution with ReLU to process the two images
jointly and a final 1 x 1 convolution to produce all components
necessary for a composite association field.

b) Spatio-Temporal Poses: Figure 7c shows a schematic
of a person pose (17 joints and 18 associations) with additional
temporal connections to all joints of the same kind in the
previous frame. In our method, this is treated as a single pose
with 2 x 17 joints (CIF) and 18 associations (CAF) within the
same frame and an additional 17 associations (TCAF) between
frames.

Fig. 8. Left: A sparse pose cannot connect the right arm to the facial keypoints
leading to the detection of two separate person instances highlighted by the
two white bounding boxes. Right: An additional dense connection between
the nose and right shoulder leads to a correctly identified single pose.

c) From Spatio-Temporal Poses to Tracks: Spatio-
temporal poses create temporal associations in pairs of images.
We now introduce our book-keeping method to go from pairs
of images to image sequences. During evaluation and for a
new frame ¢, the decoder creates new tracking poses from
existing tracks (poses in the previous frame t_;) or from
single-image seeds in the current frame ¢y. These partial poses
are then completed using the same greedy frontier decoder
described for single images. Once all spatio-temporal poses are
complete, the t( joints are extracted into single-frame poses.
Every single-frame pose is already tagged with an existing
track-id if the spatio-temporal pose was generated from an
existing track or a new track-id if the spatio-temporal pose
originated from a new seed in the current frame. The single-
frame poses are then filtered with soft NMS [18] and then
either added to existing tracks or they become the first poses
of new tracks.

Our method is bottom-up in both pose estimation and
tracking and estimates temporal and spatial connections within
a single stage. Most existing work — even other bottom-up
tracking methods [10], [26] — employ a two stage process
where, first, spatial connections are estimated and, second,
temporal connections are made.

V. EXPERIMENTS

Self-driving cars must perceive and predict pedestrians and
other traffic participants robustly. One of the most challenging
scenarios are crowded places. We will first show experiments
on single-image human pose estimation in CrowdPose [!2]
which contains particularly challenging scenarios and on the
standardized and competitive COCO [2] person keypoint
benchmark. Then we will show results for pose tracking in
videos on the PoseTrack 2017 [9] and 2018 [13] datasets. We
have conducted extensive experiments to show the benefit of
a unified bottom-up pose estimation and tracking method with
spatio-temporal poses. To demonstrate the universality of our
approach, we apply our method also to poses of cars and poses
of animals.

A. Datasets

a) CrowdPose: In [12], the CrowdPose dataset is pro-
posed. It is a selection of images from other datasets with
a particular emphasis on how crowded the images are. The
crowd-index of an image represents the amount of overlap
between person bounding boxes. The authors place particular



emphasis on a uniform distribution of the crowd-index in
all data partitions. Because this dataset is a composition of
other datasets and to avoid contamination, our CrowdPose
models are pretrained on ImageNet [57] and then trained on
CrowdPose only. The dataset comes with a split of 10,000
images for training, 2,000 for validation and 8,000 images for
the test set.

b) COCO: The de-facto standard for person keypoint
prediction is the competitive COCO keypoint task [2]. The test
set is private and powers an active leaderboard via a protected
challenge server. COCO contains 56,599 diverse training im-
ages with person keypoint annotations. The validation and test-
dev sets contain 5,000 and 20,288 images.

c) ApolloCar3D: We generalize our approach to vehicle
keypoints using the ApolloCar3D dataset [58], which contains
5,277 driving images at a resolution of 4K and over 60K car
instances. The authors defined 66 semantic keypoints in the
dataset and, for each car, they provided annotations for the
visible ones. For clarity, we choose a subset of 24 semantic
keypoints and show quantitative and qualitative results on this
dataset.

d) Animal Dataset: We evaluate the performances of our
algorithm on the Animal-Pose Dataset [33], which provides
annotations for five categories of animals: dog, cat, cow, horse,
sheep for a total of 20 keypoints. The dataset includes 5,517
instances in more than 3,000 images. The majority of these
images originally belong to the VOC dataset [59].

e) PoseTrack 2017 and 2018: We conduct quantitative
studies of our tracking performance on the PoseTrack 2017 [9]
and 2018 [13] datasets. The datasets contain short video
sequences of annotated and tracked human poses in diverse
situations. The PoseTrack 2018 dataset contains 593 training
scenes, 170 validation scenes and 375 test scenes. The test
labels are private. PoseTrack 2017 is a subset of the 2018
dataset with 292 train, 50 validation and 208 test scenes.
However, the 2018 leaderboard is frozen and new results are
only updated for the 2017 leaderboard. Therefore, many recent
methods present results on the older, smaller dataset. Here, we
will report numbers for both 2017 and 2018.

B. Evaluation

a) Single-Image Multi-Person Poses: Both CrowdPose
and COCO follow COCO’s keypoint evaluation method. The
object keypoint similarity (OKS) score [2] is used to assign
a bounding box to each keypoint as a function of the person
instance bounding box area. Similar to detection, the metric
computes overlaps between ground truth and predicted bound-
ing boxes to compute the standard detection metrics average
precision (AP) and average recall (AR).

CrowdPose breaks down the test set at the image level
into easy, medium and hard. The easy set contains images
with a crowd index in [0,0.1], the medium set in [0.1,0.8]
and the hard set in [0.8,1.0]. Given the uniform crowd-index
distribution, most images of the test set are in the medium
category.

COCO breaks down the precision scores at the instance level
for medium instances with a bounding box area of (32 px)?

to (96 px)? and for large instances with a bounding box area
larger than (96 px)2. For each image, pose estimators have to
provide the 17 keypoint locations per pose and a total score
for each pose. Only the top 20 scoring poses per image are
considered for evaluation.

b) Pose Tracks: A common metric to evaluate the track-
ing of human poses is the Multi Object Tracker Accuracy
(MOTA) [60], [4] which is also the main metric in PoseTrack
challenges and leaderboards. It combines false positives, false
negatives and ID switches into a single metric. We compare
against the best methods that submitted to the PoseTrack 2017
and 2018 evaluation server which computes all metrics on
private test sets. These methods include strong top-down
methods as well as bottom-up methods for pose estimation
and tracking.

C. Implementation Details

a) Neural Network Configuration: All our models are
based on ResNet [50] or ShuffleNetV2 [51] base networks
and multiple head networks. The base networks have their
input max-pooling operation removed as it destroys spatial
information. The stride from input image to output feature
map is 16 with 2048 features at each location. We apply
no additional modifications to the standard ResNet models.
We use the standard building blocks of ShuffleNetV2 back-
bones to construct our custom configurations which we denote
ShuffleNetV2K16/K30. A ShuffleNetV2K16 model has the
prediction accuracy of a ResNet50 with fewer parameters than
a ResNetl8. The configuration is specified by the number of
output features of the five stages and the number of repetitions
of the blocks in each stage. Our ShuffleNetV2K16 has output
features (block repeats) of 24 (1), 348 (4), 696 (8), 1392 (4),
1392 (1) and our ShuffleNetV2K30 has 32 (1), 512 (8), 1024
(16), 2048 (6), 2048 (1). Spatial 3 x 3 convolutions are replaced
with 5 x 5 convolutions which introduces only a small increase
in the number of parameters because all spatial convolutions
are depth-wise.

Each head network is a single 1 x 1 convolution followed by
a sub-pixel convolution [52] to double the spatial resolution
bringing the total stride down to eight. Therefore, the spatial
feature map size for an input image of 801px x 801px is 101 x
101. The confidence component of a field is normalized with a
sigmoid non-linearity and the scale components for joint-sizes
are enforced to be positive with a softplus [61].

b) Augmentations: We apply the standard augmentations
of random horizontal flipping, random rescaling with a rescal-
ing factor » € [0.5,2.0], random cropping and padding to
385 x 385 followed by color jittering with 40% variation in
brightness and saturation and 10% variation in hue. We also
convert a random 1% of the images to grayscale and generate
strong JPEG compression artifacts in 10% of the images.

The tracking task is similarly augmented. The random
rescaling is adapted to an image width in [0.5 x 801, 1.5 x 801]
and random cropping to a maximum image side of 385 px.
Half of the image pairs are randomly reoriented (rotations by
multiples of 90°). To increase the inter-frame variations, we
add a small synthetic camera shift of maximum 30 px between



Fig. 9.

image pairs. To further increase the variation, we form image
pairs with a random interval of 4, 8 and 12 frames. In 20%
of image pairs, we replace one of the images with a random
image to provide a higher number of negative samples for
tracking.

c) Single-Image Training: For ResNet [50] backbones,
we use ImageNet [57] pretrained models. ShuffleNetV2 [51]
models are trained from random initializations. We use the
SGD [62] optimizer with Nesterov momentum [63] of 0.95,
batch size of 32 and weight decay of 10~°. The learning rate
is exponentially warmed up for one epoch from 10~2 of its
target value. At certain epochs (specified below), the learning
rate is exponentially decayed over 10 epochs by a factor of
10. We employ model averaging [64], [65] to extract stable
models for validation. At each optimization step, we update
an exponentially weighted version of the model parameters
with a decay constant of 1072,

On CrowdPose, which is a smaller dataset than COCO, we
train for 300 epochs. We set the target learning rate to 10~°
and decay at epochs 250 and 280.

On COCO, we use a target learning rate of 10~* and decay
at epoch 130 and 140. The training time for 150 epochs of a
ShuffleNetV2K16 on two V100 is approximately 37 hours. We
do not use any additional datasets beyond the COCO keypoint
annotations.

d) Training for Tracking on PoseTrack: We use the
ShuffleNetV2k30 backbone for all our tracking experiments.
PoseTrack 2018 is a video dataset which means that despite
a large number of annotations, the variation is smaller than in
single-image pose datasets. Therefore, we keep single-image
pose estimation on the COCO dataset [2] as an auxiliary task
and train on PoseTrack and COCO simultaneously. The type
of poses that are annotated in the two datasets are similar
but not identical, e.g., one dataset annotates the eyes and the
other does not. During training, we alternate the two tasks
between batches. In one batch we feed pairs of images from
the PoseTrack dataset and apply losses to the corresponding
head networks and in the next batch we feed in single images
from COCO and apply losses to the other head networks (see
Figure 5). The COCO task is trained identical to the single-
image pose estimation discussed in the previous section, but
converted from single images to pairs of tracked images via

Tlustration of OpenPifPaf predictions from the CrowdPose [12] val set with crowd-index hard on a sports scene, a family photo and a street scene.

synthetic shifts of up to 30px. Starting from a trained single-
image pose backbone, we train on both datasets with SGD [62]
with the same configuration as for single images. We alternate
the dataset every batch and only do an SGD-step every two
batches. We train for 50 epochs where every epoch consists
of 4994 batches. The training time is 55 minutes per epoch
on two V100 GPUs.

D. Results

a) Crowded Single-Image Pose Estimation: In Figure 9,
we show example pose predictions from the CrowdPose [12]
validation set. We show results in a diverse selection of sports
disciplines and everyday settings. All shown images are from
the hard subset with a crowd-index larger than 0.8.

In Table I, we show a quantitative comparison of our
performance with other methods. We are not only more
precise across all precision metrics AP, AP0-50  APO.75 APesy,
APpedium and APp,q but also predict faster than all previous
top-performing methods at 13.7 FPS (frames-per-second) on
a single GTX1080Ti.

b) COCO: All state-of-the-art methods compare their
performance on the well-established COCO keypoint task [2].
Our quantitative results on the private 2017 test-dev set are
shown in Table II along with other bottom-up methods.
This comparison includes field-based methods [16], [18], [1 1]
and methods based on associative embedding [17], [24]. We
perform on par with the best existing bottom-up method. We
evaluate on rescaled images where the longer edge is 801 px
which is the same image size that will be used for tracking
below. We evaluate a single forward pass without horizontal
flipping and without multi-scale evaluation because we aim for
a fast method. The average time per image with a GTX1080Ti
is 152 ms (63 ms on a V100) of which 29 ms is used for
decoding.

c) Pose Tracking: We want to track multiple human
poses in videos. We train and validate on the PoseTrack 2018
dataset [13]. Table III shows our main results for pose tracking
on both of the private test sets of Posetrack 2017 and 2018.
We also show our single-image average precision (AP) which
highlights that our performant tracking method can compen-
sate for a lower AP, e.g., compared to MSRA/FlowTrack [19],
and still outperform in overall MOTA and FPS. All our results



TABLE I
EVALUATION ON THE CROWDPOSE TEST DATASET [|2]. OUR OPENPIFPAF RESULT IS BASED ON A RESNET50 BACKBONE WITH SINGLE-SCALE
EVALUATION AT 641PX. *VALUES EXTRACTED FROM CROWDPOSE PAPER [12]. TEMPLOYS MULTI-SCALE TESTING.

[ [ AP APOS0  APO-T5 " APeasy  APpcdium  APhua  FPS |
Mask R-CNN* [15] 572 835 603 69.4 579 458 29
AlphaPose* [66] 610 813 66.0 712 61.4 511 109
HigherHRNet-W48 [24] | 659  86.4 70.6 733 66.5 579 -
SPPE [12] 660 842 71.5 75.5 66.3 574 10.1
HigherHRNet-W48™T [24] | 67.6  87.4 72.6 75.8 68.1 58.9 -
OpenPifPaf (ours) 705 89.1 76.1 78.4 72.1 63.8 137

TABLE II

EVALUATION METRICS FOR THE COCO 2017 TEST-DEV DATASET FOR
BOTTOM-UP METHODS. NUMBERS ARE EXTRACTED FROM THE
RESPECTIVE PAPERS. OUR PREDICTION TIME IS DETERMINED ON A
SINGLE V100 GPU. *ONLY EVALUATING IMAGES WITH THREE PERSON

INSTANCES.

[ [ AP APM  APL ¢ [ms] |
OpenPose [16] 61.8 57.1 68.2 100
Assoc. Emb. [17] 65.5 60.6 72.6 166
PersonLab [18] 68.7 64.1 75.5 -
MultiPoseNet [23] 69.6 65.0 76.3 43*
HigherHRNet [24] | 70.5 66.6 75.8  >1000
OpenPifPaf (ours) | 71.9 68.5 77.4 69

TABLE III

EVALUATION METRICS ON THE TEST SETS OF (A) POSETRACK 2018 [13]
AND (B) POSETRACK 2017 [9]. NUMBERS ARE EXTRACTED FROM THE
RESPECTIVE PAPERS AND THE LEADERBOARD. ALL METHODS ARE
ONLINE METHODS APART FROM DETTRACK [67].

[ PoseTrack 2018 [ MOTA FPS | AP |
openSVAI [28] 54.5 - 63.1
MIPAL [26] 54.9 - 67.8
Miracle [30] 57.4 - 70.9
MSRA/FlowTrack [19] 61.4 0.7 74.0
OpenPifPaf (ours) 61.7 122 | 719

(@)

[ PoseTrack 2017 [ MOTA FPS | AP |
STAF [27] 53.8 3 70.3
MIPAL [26] 54.5 - 68.8
MSRA/FlowTrack [19] 57.8 0.7 74.6
HRNet [20] 57.9 - 74.9
LightTrack [29] 58.0 - 66.6
OpenPifPaf (ours) 60.6 12.2 | 71.5
KeyTrack [32] 61.2 1.0 74.0
DetTrack (offline) [67] 64.1 - 74.1

(b)

are produced in a single pass and online (without future
frames). The frames per second (FPS) stated in Table III refer
to the single process, sequential evaluation. In addition, we
provide extra metrics that are not published on the leader-
boards. For PoseTrack 2017, our MOTP is 84.5, precision is
84.1 and recall is 77.7. For PoseTrack 2018, our MOTP is
84.9, precision is 84.4 and recall is 78.3.

Spatio-temporal poses on real-world examples are shown in
Figure 10. They show challenging scenarios with occlusions.
Figure 11 highlights the ability of spatio-temporal poses to
complete poses through time, i.e., even when a pose is
partitioned because of occlusion in the current frame, multiple
temporal connections (TCAF) form a single tracked pose.

Fig. 10.  Qualitative results from the Posetrack 2018 [13] validation set.
Images show tracks of spatio-temporal poses including their frame-to-frame
associations where only connections that were used to construct the poses are
shown.

Fig. 11. Qualitative results from the Posetrack 2018 [13] validation
set. Left: Single-image detection. The person’s left shoulder is not visible
and therefore the left arm cannot be connected to the rest of the body.
Right: Spatio-temporal pose. Multiple temporal connections allow to safely
connect both left and right arm to the rest of the body.

Similarly, for the poses 3, 4, 5 and 7 in Figure 12, the asso-
ciations from shoulders to hips are often difficult because of
the lighting condition. Depending on the predicted association
confidences, the decoder determines automatically whether to
connect to a keypoint with a spatial or temporal connection. In
these difficult scenarios, the greedy decoder completed these
poses with multiple temporal connections (TCAF).

d) Pedestrian, Car and Animal Poses: A holistic per-
ception framework for autonomous vehicles also needs to be
able to generalize to other classes than humans. We show that
we can predict poses of cars and animals with high accuracy
in Figures 13 and 14 and provide a quantitative summary in
Table IV.

On car instances, our model achieves an average preci-
sion (AP) of 76.1%. The AP metric follows the same protocol
of human instances, but to the best of our knowledge no



Fig. 12.
(a) indicates a connection that has been made spatially in a previous frame
but for the last few frames the left leg of person 3 is connected to the rest
of the body only through temporal connections. (b) shows a connection that
is temporarily occluded by the arm of the person in front and also here our
algorithm decided to connect the left leg via temporal connections instead of
spatial ones.

Qualitative results from the Posetrack 2018 [13] validation set.

TABLE IV
QUANTIFYING DETECTION PERFORMANCE FOR PEDESTRIANS, CARS AND
ANIMALS. IN THE “PEDESTRIANS” COLUMN, WE SHOW THE DETECTION
RATE ON KITTI [68] WITH [oU=0.3 AND INSTANCE THRESHOLD OF 0.2
FOR ALL METHODS. FOR “VEHICLES”, WE SHOW THE KEYPOINT
DETECTION RATE ON APOLLOCAR3D [58] WHICH WAS PUBLISHED IN
PREVIOUS METHODS AND WE ALSO PROVIDE AP IN THE TEXT. IN THE
“ANIMALS” COLUMN, WE PROVIDE KEYPOINT AP AS DEFINED IN THE
ANIMAL-POSE DATASET [33].

Method Pedestrians ~ Vehicles ~ Animals
Mono3D [69] 73.2 - -
3DOP (stereo) [70] 73.1 - -
MonoDIS [71] 60.5 - -
SMOKE [72] 39.1 - -
MonoPSR [73] 82.8 - -
CPM [21] - 75.4 -
WS-CDA [33] - - 44.3
OpenPifPaf (ours) 84.6 86.1 47.8
Human labelers [58] - 92.4 -

previous method has evaluated AP on ApolloCar3D [58]
without leveraging 3D information. Hence, we include a study
on the keypoint detection rate, which has been defined in
the ApolloCar3D dataset [58] and considers a keypoint to be
correctly estimated if the error is less than 10 pixels. Our
method achieves a detection rate of 86.1% compared to 75.4%
of CPM [21]. Notably, the authors of ApolloCar3D [58] also
report the detection rate of the human labelers to be 92.4%.
On animal instances, our model achieves an AP of 47.8%,
compared to 44.3% of WS-CDA, the baseline developed by the
authors of the Animal-Pose dataset [33]. Lower performances
on animals are due to the smaller dataset size with just
4K training instances. Simultaneous training for humans and
animals to achieve better generalization is left for future work.

E. Ablation Studies

We study the impact of the backbone, the precise criteria for
a keypoint, our proposed Frontier decoder, a memory efficient
decoder, alternatives to TCAF and the impact of input image
size. We start with studies for single images on the COCO val
set (Table V) before moving to tracking studies for PoseTrack
(Table VI).

Our single-image studies are run with an option to force
complete poses. This is the common practice as the COCO
metric does not penalize false positive keypoints within poses.

This option would not be used in most real-world settings.
Without forcing complete poses, the decoding time and the
total prediction time is reduced by about 10ms.

a) Backbone: The reference backbone is a small Shuf-
fleNetV2K16. We show comparisons to the larger ResNet50
and ShuffleNetV2K30 backbones and show how they improve
precision (AP) and at what cost in timing.

b) Keypoint Criterium: We try to illuminate why our
precision and speed is significantly better than OpenPose [16].
OpenPose first detects keypoints and then associates them.
Therefore, every keypoint has to be detectable individually.
In OpenPifPaf, new keypoint associations are generated from
a source keypoint. These new keypoints are not previously
known. They are discovered in the association. That allows
OpenPifPaf to generate poses from a strong seed keypoint and
connect to less confident keypoints. In “independent-only”, we
restrict the keypoints of OpenPifPaf to be all of the quality of
an independent seed keypoint and observe a dramatic drop of
8.1% in AP.

c) Frontier Decoder: Next, we study the impact of the
Frontier decoder with respect to a simpler decoder without
frontier. The standard pose is sparsely connected and, there-
fore, the frontier only has few alternatives to prioritize. For
a denser pose (“dense”), the impact of the frontier (compare
with “no-frontier and dense”) is more pronounced (+0.3 AP).

d) Memory Efficient Decoding: In the bottom part of
Table V, we study the effect of removing the high-resolution
accumulation map (HR) to reduce the memory footprint. This
high resolution map is used in two places. First, to rescore
the seeds and, second, to rescore the CAF. The impact of the
seed rescoring is only 0.1 in AP but comes at a large cost
in decoding time. As an alternative, we investigate a local
non-maximum suppression (NMS) that selects a seed only if
it is the highest confidence in a 3 x 3 window (introduced
in CenterNet [74]). This NMS reduces the decoding time
but not back to the original speed. Independently, we study
the impact of rescoring the CAF field which is about +1.0%
in AP. Only when both the seed rescoring and the CAF
rescoring are removed, the creation of the HR maps can
be omitted. In that memory efficient configuration (bottom
line in Table V), the AP dropped by 1.4% with respect to
“original”. This demonstrates the importance of the high-
resolution accumulation for speed and accuracy and which
should only be removed when absolutely necessary.

e) Tracking Baselines: We conducted detailed studies of
our method on the Posetrack 2018 validation set that are shown
in Table VI. First, we created two baselines ourselves. Both
baselines first do single-image pose estimation and then use the
Hungarian algorithm [75] to track poses from frame to frame.
Our first algorithm uses a simple Euclidean distance between
joints to construct a pose similarity score. Our second method
replaces the Euclidean distance with an OKS-based distance
that is used in the COCO metric to compare predictions to
ground truth. Both methods show a drop in MOTA of 1.5 and
2.0 while operating at about the same speed as our “original”
model. This demonstrates that the overhead of our tracking
network is comparable to the small overhead of the Hungarian
algorithm with respect to the single-image model.



Fig. 13. Qualitative results from the KITTI [68] and ApolloCar3D [58] datasets. We resolve distant pedestrians, cyclists and cars and handle changing

lighting conditions well.

TABLE V

ABLATION STUDIES OF SKELETON CHOICE AND DECODER CONFIGURATIONS FOR SINGLE-IMAGE POSE ESTIMATION. ALL RESULTS (EXCEPT WHERE
EXPLICITLY STATED OTHERWISE) ARE PRODUCED WITH THE SAME SHUFFLENETV2K16 MODEL ON THE COCO VAL SET [2] ON A SINGLE GTX1080T1.
FIRST, WE REVIEW DIFFERENT BACKBONE ARCHITECTURES (A RESNETS50 [50] AND A LARGER SHUFFLENETV?2 [51]). SECOND, WE SHOW THAT ONLY
USING CONFIDENT KEYPOINTS LEADS TO A LARGE DROP IN PRECISION. THIRD, WE OBSERVE THAT THE FRONTIER DECODER IS MORE IMPORTANT FOR

DENSER SKELETONS WHILE INCURRING ALMOST NO OVERHEAD ON SPARSE SKELETONS. FOURTH, WE CAN PRODUCE A MEMORY-EFFICIENT VERSION

OF OUR DECODER AT A COST OF 1.4% IN AP. THE BIGGEST DROP IN ACCURACY COMES FROM NOT RESCORING THE CAF FIELD AND THE LARGEST

CONTRIBUTOR TO INCREASING THE INFERENCE TIME IS NOT RESCORING THE SEEDS.

[ [ AP APOSO  APU  APMAPL ¢ [ms]  tge [ms] |
original (ShuffleNetV2K16) 66.8 86.5 73.2 62.1 74.6 50 19
Backbone ResNet50 68.2 87.9 74.6 65.8 72.7 64 22
ShuffleNetV2K30 71.0 88.8 71.7 66.6 78.5 92 16
Keypoints independent-only -8.1 -6.3 -9.5 -8.7 -1.3 +0 +0
Frontier decoder  no-frontier +0.0 -0.1 +0.1 +0.0 -0.1 -1 -1
dense +0.1 +0.2 +0.2 -0.3 +0.5 +15 +15
no-frontier and dense -0.3 +0.1 -0.1 -0.5 +0.0 +14 +14
memory efficient no seed rescoring -0.1 -0.4 -0.1 +0.2 +0.1 +71 +54
no seed rescoring (with NMS) +0.1 +0.1 +0.0 +0.2 +0.0 +19 +15
no CAF rescoring -1.0 -0.3 -1.0 -1.0 -1.7 -1 -1
no rescoring (with NMS), without HR -1.4 -0.4 -1.4 -1.0 2.3 +9 +7




Fig. 14.  Qualitative results from the Animal-Pose dataset [33]. The left
image was processed by a person model and an animal model.

TABLE VI
BASELINES AND ABLATION STUDIES ON THE POSETRACK 2018
VALIDATION SET [13] ON A SINGLE V100 GPU. WE OUTPERFORM
HUNGARIAN TRACKERS WITH EUCLIDEAN AND OKS DISTANCE
FUNCTIONS IN ACCURACY FOR A SMALL OVERHEAD IN FPS. WE ALSO
STUDY OUR SENSITIVITY TO THE INPUT IMAGE SIZE. FOR IMAGE SIZES OF
513PX, WE OBSERVE A DROP OF 2.9 IN MOTA BUT RUN 82% FASTER AT

22.2 FPS.
[ [ MOTA FPS ]
original (801px) 66.4 12.2
Hungarian  euclidean -1.5 +4%
OKS -2.0 +1%
Image size  513px -2.9 +82%
641px -0.9 +37%
1201px -1.7 -49%

f) Tracking Ablation: We studied the effect of input
image size at the bottom of Table VI. Our “original” model
rescales the image width to 801px. Larger images do not
show an improvement in accuracy (MOTA) while becoming
significantly slower. Smaller input images decrease MOTA
but at the same time can drastically increase speed. Most
applications can probably tolerate an accuracy reduction by
0.9 in MOTA to improve speed by +37%. When the input
image size is reduced to 513px, MOTA drops by 2.9 (still a
great result) which comes with a speed improvement of +82%
to a fast 22.2 FPS.

VI. CONCLUSIONS

We have demonstrated a new method for bottom-up pose
tracking for 2D human poses and shown its strength in
crowded and occluded scenes that are relevant for perception
in self-driving cars and social robots. We outperform previous
state-of-the-art methods on CrowdPose and on PoseTrack2018.
On PoseTrack2017 we are on par with the state-of-the-art but
run an order of magnitude faster. We have also shown that our
method generalizes to pose estimation of cars and animals.
We can run all versions simultaneously on an image sequence
and form the union of the predictions. In the future, we can
investigate shared backbone architectures to create a holistic
perception framework for autonomous vehicles.
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