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Abstract— The population of electric vehicles (EVs) has grown
rapidly over the past decade due to the development of EV
technologies, battery materials, charger facilities, and public
charging services. Many governments have implemented plans
to ban fossil fuel vehicles considering the significance of EVs
in reducing greenhouse gas emissions. However, due to the
battery material characteristics and charger power limitations,
the EV charging process requires more time than is needed to
fill a non-EV with fuel at a gasoline station, causing drivers
to experience range anxiety and impeding the promotion of
EVs. Hence, the battery swapping station (BSS) model has been
proposed as an alternative method. Recently, researchers have
studied the BSS approach by proposing various operation systems
and optimization methods, and BSS service operators have
successfully implemented swapping at commercial and private
stations. This paper reviews the state-of-the-art BSS literature
and business models, where the BSS offers a recharged battery to
an incoming EV with a low state-of-charge. First, four operation
modes are presented: a single BSS, multiple BSSs, an integrated
BSS and battery charging station (BCS), and multiple BSSs and
BCSs. Then, the BSS decision scenarios are surveyed in relation
to five operational areas, i.e., charging schedule, service policy,
construction and planning, dispatching and routing, and power
management, where the scenarios are compared in terms of
the BSS mode, decision maker, EV category, number of battery
types, vehicle to grid, and focus and objective. Finally, the survey
concludes with a discussion of several future research directions
for EV BSSs.

Index Terms— Battery swapping stations, electric vehicles,
operation modes, decision scenarios, transportation.

I. INTRODUCTION

ELECTRIC vehicles (EVs) have developed rapidly over
the past decade, and by the end of 2019, the EV popu-

lation had grown to 7.2 million globally, compared with only
17,000 in 2010 [1]. It is widely recognized that the planet is
facing increasing risks from carbon emissions and oil supply
shortages. Substituting EVs for internal combustion engine
vehicles can enhance energy diversification, reduce greenhouse
gas emissions, and significantly improve air quality.

From 2016 to 2018, the yearly growth in EVs was above
30%, but the growth rate in 2019 was only 6% given
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a contracted car market, a reduction in purchase subsi-
dies, and consumer expectations regarding further technology
improvements and new models. The promotion of EVs is
restricted owing to the high purchase fees [2]–[4], battery
degradation [5], long charging time [6], [7], inconvenient
charging facilities [8], and limited traveling distance per
charge [9], [10]. Hence, researchers have proposed battery
charging station (BCS) models to optimize the charging
process [11]–[13], improve operation services [14], and max-
imize business profits [15]. The material characteristics of
batteries and the charging technologies mean that the above
optimized BCS models cannot reduce the charging time, which
also results in queuing for charging and range anxiety among
EV drivers. Hence, the battery swapping station (BSS) model
was proposed as an alternative method for providing energy to
EVs. Using the BSS model, an EV owner can drive to a nearby
BSS and swap out his/her battery with a low state-of-charge
(SOC) for a fully recharged battery in a few minutes, which is
comparable to filling a vehicle with fuel at a gasoline station.

Considering the benefits of the BSS model, many business
providers worldwide are offering swapping services. In March
2011, the Better Place network deployed the first modern
commercial BSS in Israel and Denmark, although the operator
filed for bankruptcy in May 2013 due to business failure. Tesla
is another provider that has offered battery swapping services
since June 2013; Tesla deployed its first BSS along Interstate
5 in California between San Francisco and Los Angeles, which
is the most common route taken by Model S sedan drivers.
However, in June 2015, Elon Musk indicated that Tesla would
abandon its BSS plan because only a few people were willing
to use swapping services. The failures of Better Place and
Tesla occurred for the following reasons.

• The number of battery-powered EVs in 2013 was
0.22 million, which is only 4.59% of the EV population in
2019 [1]. BSS services were not sustainable considering
the low swapping demand and expensive construction
costs.

• Most EV drivers in the USA install private charging piles
at home, and they prefer to charge overnight at a lower
electricity price [15]. Hence, the demand for BSSs is
limited.

• Drivers’ demand patterns in the USA and Israel show
that they usually use EVs for traveling short distances
and drive fossil fuel vehicles for long trips [16].

• From 2011 to 2015, the battery swapping services offered
by Tesla and Better Place were immature, and the battery
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properties, swapping fees, charging schedules, and battery
maintenance were not fully investigated [17].

Due to the development of EV technology over the past five
years, two BSS service providers in China have successfully
implemented swapping stations. NIO, a Chinese automobile
manufacturer, opened its first BSS in May 2018, with the
number of NIO BSSs in China reaching 190 by March
2021. In addition, NIO announced its second-generation BSS
equipped with 13 battery packs, which can serve 312 battery
swaps per day. Aulton, a Chinese BSS service provider,
provides swapping services for typical automakers and com-
mercial EV operators and has opened more than 300 BSSs in
China. Collaborating with automakers, Aulton builds BSSs for
specific types of EVs and batteries and performs the swapping
service considering the construction cost, battery purchase fee,
and operating profit. The major service target of Aulton is
electric taxis, which are sensitive to the charging time and
prefer the BSS model. Compared with Better Place and Tesla,
the NIO and Aulton offer BSS models with the following
features.

• The EV population in China increased to 4.92 mil-
lion at the end of 2020, and most of the EVs are
registered in core cities. Hence, the target groups are
considerably larger than those in the USA and Israel
from 2011 to 2015 [1].

• In China’s core cities, most residents live in apartments
without private parking lots. Hence, drivers must rely
on public charging and swapping services for power
supply [18].

• With the promotion of BSS modes, the BSS service
network is maturing in the transportation system, and
EV drivers can reach nearby BSSs within an acceptable
traveling distance (e.g., 5-10 km) [19].

• Advanced battery swapping services, such as battery rent-
ing, discount swapping fees and battery upgrade policies,
were introduced by NIO to entice drivers to use BSS
services [20].

With continuing EV trends, the BSS model is becoming an
important method for providing EV energy and is an essential
substitution for the BCS model. First, the rapid growth in the
EV population affects the quality of service (QoS) of BCSs,
while the BSS model can help to reduce service pressure and
provide an alternative method for supplying energy. Second,
in some specific operating scenarios, such as electric taxis,
buses, and trucks, BSSs can reduce the charging time and
improve the operating revenue. Third, the battery packs are
charged and managed in a centralized BSS, which can help
to improve battery health and reduce the charging cost by
allowing an optimal schedule. Last, with the help of diverse
service policies, the BSS model can help drivers reduce
acquisition costs by allowing them to rent a battery pack from
a service operator.

However, many challenges have been emerged as a result of
the growing EV population, expensive initial BSS construction
cost, long charging time for swapped batteries, and unwise
operation and service models.

• Compared with the EV charging model, the BSS model
has several drawbacks that impede its promotion. First,

the battery pack should be designed for swapping pur-
poses, which increases manufacturing costs and common-
ality. Second, battery heterogeneity should be considered
in both the planning and operation stages to satisfy the
diverse demands of EV drivers. Third, battery ownership
is an important issue, as drivers want to know the state
of health and capacity of different swapped batteries.
Fourth, the construction cost of a BSS is much higher
than that of a charging station, which affects large-scale
BSS promotion. Last, there are no international standards
on swapping stations and battery packs, which means that
the current BSSs cannot be regularly used by EVs with
different battery brands/types.

• From the perspective of the EV industry and transporta-
tion, the proportion of electric vehicles was only 1% of
the global vehicle stock in 2019, and the EV population
is still unquestionably increasing due to maturing tech-
nologies and governmental promotion policies [1], [21].
Hence, the number of swapping and charging sta-
tions will increase concurrently with the EV population,
and optimal operation and service models are urgently
needed.

• From the perspective of EV drivers, how to reach a
nearby BSS to swap for a fully recharged battery is
an important matter. In this case, the density of BSSs
should be comparable to that of gasoline stations assum-
ing that vehicles continue to transition from fuel oil to
electric [22]. Additionally, the number of batteries at a
BSS should be sufficient for swapping [23] to avoid driver
queuing and limit the waiting time considering the long
charging time required for swapped batteries.

• From the perspective of BSS operators, three optimiza-
tion directions are considered: initial construction plan-
ning, charging process management, and EV swapping
service response. First, the optimal location should be
determined after considering the traffic flow, swapping
demand, power load, etc. [24]. Due to the expensive
purchase price of EV battery packages, the number of
initial batteries for a new BSS is another important
decision in construction planning [25]. Second, optimized
charging process management models should be studied
to adjust the amount of charging power used, which can
balance the demand for recharged batteries and charging
damages [23]. Third, considering the limited number
of batteries at BSSs and the long charging time, some
operators should use optimal service response systems to
handle driver swapping requests [26].

• From the perspective of the power grid, the BSS is
a crucial part of balancing the power load and opti-
mizing the power sale profit. Considering the vehicle-
to-grid (V2G) model, swapped batteries are owned by
the BSS, and the grid can buy energy from the fully
recharged batteries if the grid power load is low [27].
In the BSS operation model, each BSS must buy a large
amount of energy from the power grid. The grid can
also formulate corresponding policies for BSSs, including
the varied/time-of-use electricity price [28], instant power
limit [29], and accumulated electricity quantity [30], [31].
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Therefore, optimization models for the power grid should
be studied to support the BSS model.

Faced with these challenges, researchers have conducted
several studies to address the research issue in BSS opti-
mization models. However, to the best of our knowledge, few
papers have reviewed research in the field of BSSs [32], [33].
Reference [32] presents an overview of the BSS system in
terms of battery swapping techniques, followed by the benefits
and challenges of BSS models. Compared with [32], this paper
further systematically reviews the state-of-the-art BSS studies
and classifies them based on the operation modes and decision
scenarios. The detailed comparisons between [32] and this
paper are illustrated as follows. First, reference [32] reviews
the functioning of BSSs and their role in public transportation,
but this paper focuses on how to define and build operation
models. Second, reference [32] discusses how BSSs benefit
public transportation, customers and power systems, which is
discussed in Section I as the background in this paper. Third,
this paper reviews recent works and classifies them into four
operation modes and five decision scenarios, and it is the first
paper in this area. Finally, reference [32] proposes a smart
swapping station for xEV architecture as a cloud-integrated
big-data-driven model, which includes the hybrid cloud, smart
BSS and xEVs. In this paper, some new decision architectures
are also discussed in Section IV, where a collaborative deci-
sion and flexible decision structure are suggested for future
studies. In another BSS survey [33], the authors conducted an
online survey to investigate the preferences and expectations of
EV owners regarding BSS models. In contrast, this study first
proposes a comprehensive survey of BSS models by studying
the business mode and operation models of BSSs and BCSs.

Because of the limited BSS model surveys, the swapping
models are analogized by reviewing the EV charging models
in [27], [34]–[41]. Reference [27] proposed a survey of EV
network deployment and management considering the energy
flow, data communication, and computational aspects, with EV
aggregators, charging scheduling, and V2G being deployed
in the framework. In [34]–[36], the EV charging operation
and schedule models are reviewed. Reference [34] reviews the
scheduling algorithms for charging EVs in a smart grid, which
are divided into unidirectional and bidirectional charging. The
review also considers centralized and distributed charging,
as well as mobility aspects. In [35], EV control charging
strategies are reviewed using real-world data by classifying
them into scheduling, clustering, and forecasting strategies.
The mathematical modeling-based literature on EV operation
is reviewed in [36], which classifies EV operation by recurring
themes such as infrastructure planning, charging operations,
and public policy and business models. Two surveys study
the EV charging problem in terms of the algorithms for dis-
tributed charging control [37] and smart charging control [38].
In [39], a survey of economy-driven approaches for EV charg-
ing is proposed to consider unidirectional energy flows and
bidirectional energy flows. Last, considering the innovative
developments of the EV industry, a technological review of
the EV standards, charging infrastructure, and grid impacts is
presented in [40]. A comprehensive review of V2G technology
is introduced in [41], which discusses the actors, business

models, and innovation activity systems. Thus, compared with
the plentiful EV charging model surveys, a thorough review
of BSS models is urgently needed.

The contributions of this survey paper are summarized as
follows.

• First, to the best of our knowledge, the number of survey
papers on BSS systems is limited compared with those
on the BCS system. Regarded as an important alternative
method for providing energy to EVs, the BSS model has
attracted the attention of scholars who propose various
operation systems and optimization methods. Hence, this
paper is the first to review the state-of-the-art EV BSS in
terms of the mode definition and model formulation.

• Second, in BSS mode definition, most of the papers
optimize the operation of a single BSS by maximizing
the operation profit and minimizing the energy cost.
However, with the development of BSS systems and EV
technology, more complicated modes have been proposed
by integrating multiple BSSs and BCSs. Hence, this paper
first categorizes four modes of BSS operation systems in
terms of different combinations of BSSs and BCSs, which
cover most of the operation modes in the BSS literature.

• Third, some key characteristics of BSS and BCS opera-
tion models are summarized and compared in this paper.
After that, this paper summarizes the BSS literature as
encapsulated in five decision scenarios, and some of the
specific focuses and objectives are discussed. By classi-
fying the BSS scenarios, this survey helps readers and
researchers understand the underlying decision scenarios,
and the comparisons of model characteristics are illus-
trated in tables.

• Finally, based on a comprehensive survey of the BSS
operation models and decision scenarios, four research
directions are given considering the research gaps in this
area. Specifically, twelve detailed directions are illustrated
in terms of the extended BSS models, multiple scenarios,
collaborative decisions, and flexible decision structure.
Hence, the research directions could inspire researchers
to further develop BSS operations.

This paper is organized as follows. Section II presents four
BSS operation modes, and Section III describes five deci-
sion scenarios. Section IV summarizes several future research
directions, and it is followed by the conclusions in Section V.

II. BSS MODES

In state-of-the-art EV charging studies, battery charging
station and battery swapping station models are included to
supplement energy for EVs. In BCS mode, EV drivers plug
into the charging pile and recharge their battery for several
hours. In BSS mode, EV drivers unload the used battery and
replace it with a fully charged battery, which takes a shorter
time (a few minutes). To understand the BSS operation models,
the present investigation first focuses on the two types of
stations (BSS/BCS) and the number of BSSs and BCSs in
the business models; these can be classified into four modes
considering different BSS and BCS combinations, i.e., a single
BSS, multiple BSSs, an integrated BSS and BCS, and multiple
BSSs and BCSs.
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In this section, the procedure for each mode is introduced by
explaining the EV flow, battery flow, and charging status with
four flowcharts. Then, the operational challenges are discussed
considering the mode characteristics. Finally, the modes are
further investigated and compared in terms of the operation
models in the next section.

A. Single BSS

Fig. 1 illustrates the basic operation mode of a single
BSS, which is the most common business mode of existing
commercial BSSs. The workflow is described as follows. First,
when the state-of-charge (SOC) of a battery decreases, the EV
driver sends a request to the BSS; if the request is accepted, the
driver proceeds to the BSS. Second, the battery is swapped at
the BSS and aggregated to the swapped battery batch. Third,
if charging piles are available in the recharging center, the
swapped battery is assigned to a charger for charging. Fourth,
when the battery is fully charged or the termination criterion
is satisfied, the battery is moved to the fully recharged battery
batch to await future swapping. Last, the fully recharged
battery is swapped for the battery of an incoming EV and
leaves the BSS.

EV drivers can send a swapping request or walk into
a nearby BSS, unload their used battery, receive a fully
recharged battery, and leave the BSS. The whole swapping
process takes only a few minutes, which is comparable to
filling a vehicle up with fuel at a gasoline station. From
the BSS perspective, there are two operating tasks involved:
handling swapping requests from EV drivers and managing
the charging process of the swapped batteries. Here, the BSS
operation procedure requires the following problems to be
solved:

1) Swapping Requests: In realistic BSS operations, there are
two types of swapping requests based on whether the driver
arrives with an appointment set in advance:

• Walk-in request: If an EV driver arrives at a BSS
for swapping, the information (the actual arrival time,
remaining SOC and battery type) is obtained by the BSS
operator.

• Advance request: To optimize the swapping process and
improve the quality of service (QoS), the BSS often asks
EVs to send appointment requests prior to arrival. The
request information often includes the expected arrival
time, current SOC, distance to the BSS, and battery type.

Advanced requests can help a BSS optimize charging and
swapping scheduling. Thus, incentive mechanisms are usually
applied to the BSS service model, and BSS operators should
be able to handle stochastic swapping requests.

2) Request Response: Given the swapping request infor-
mation, the BSS operator can make an optimal decision
regarding whether to accept or reject a request considering
the subsequent swapping demands and the numbers of fully
recharged batteries, queuing batteries, and recharging batteries.

3) Dynamic Decision: Even when advanced swapping
requests are sent by EV drivers, their actual arrival times
cannot be guaranteed. Therefore, a dynamic decision strategy
is proposed to update the actual demand features and to
determine the dynamic optimal decisions. In addition, some

advanced technologies can help to increase demand accuracy,
including global positioning systems and real-time communi-
cation in intelligent vehicles.

4) Charging Management: Compared with the BCS model,
the battery charging time is transferred only from the EV
side to the BSS side. In other words, the swapped batteries
still need to be recharged for hours at the BSS. Charging
management is crucial to the BSS mode for the following
reasons.

• The batch of fully recharged batteries shown in Fig. 1
indicates the service availability of the BSS, which can be
managed by adjusting the charging rate at the recharging
center if an optimal charging schedule is obtained.

• The BSS operator has to manage the charging process
considering the swapping demands from EV drivers,
power constraints from the grid, operating costs, includ-
ing the purchase of batteries and electricity from the grid,
and battery degradation.

• Because the charging power of a lithium-ion battery
follows nonlinear characteristics, it is difficult to estimate
the exact final charging time. Some researchers have built
nonlinear mathematical models to simulate the constant-
current constant-voltage characteristics [42], and these
can estimate the electricity quantity for each time slot
and the time required to complete charging for different
chargers.

5) Flexible SOC: In realistic BSS operation, a flexible SOC
in battery swapping is viable under optimal charging manage-
ment. First, the battery’s target SOC can be specified by the
driver in their personal request. Second, during busy service
times, the BSS can serve batteries that are not fully recharged
to minimize the waiting time, and drivers can obtain a discount
as compensation [43]. Third, battery charging characteristics
allow a constant current to be used to quickly recharge the
battery from 0% to approximately 80%, and the charging
power in the remaining stage is significantly lower [42]. Thus,
a flexible SOC can help the BSS maximize its quality of
service under optimal charging management.

6) Stock Battery Number: The most significant difference
between the EV BCS and BSS models is the number of
batteries. In the BCS model, the number of batteries is
equivalent to the number of EVs, and the batteries themselves
belong to the EV drivers. In the BSS model, the BSS needs to
purchase initial batteries (stock batteries) for managing daily
operation (15 batteries in Fig. 1), which is a high investment
cost in the BSS construction and planning stage [23], [25].

7) Battery Heterogeneity: Another difference between the
BCS and BSS models is the charging standard (charger
facility and battery type). In the BCS model, there are mature
international standards for charging ports and chargers, and all
of the EVs can use the same chargers regardless of the vehicle
brand and type. Thus, in most BCS models, the heterogeneity
of EV/battery types is not considered. However, in the BSS
model, there is no battery standard for different brands or
even different types of EVs within the same brand. If a BSS
aims to serve more than one type of EV, battery heterogeneity
must be considered in the construction stage and scheduled
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Fig. 1. Mode of Single BSS.

in the operating stage. Considering the high purchase cost
and limited charging facilities, battery heterogeneity is another
crucial factor to be investigated.

8) Dynamic Balance: As shown in Fig. 1, the BSS oper-
ation model aims to obtain a balanced decision regarding
the batteries in the swapped batch, recharging center and
fully recharged batch. The ideal scenario for a balanced BSS
model is recharge-and-swap: when an EV arrives at the BSS,
a battery is fully recharged concurrently and swapped for
the battery in the EV directly without waiting for the fully
recharged batch to have adequate resources, and then the
swapped battery is assigned directly to an available charger.
In this case, the swapped batch and fully recharged batches
are always null. However, in real-world operation, achieving
this balance is impractical considering the variation in EV
swapping demands, which are subject to hours, traffic flow,
and grid power constraints. Therefore, the majority of studies
on single BSS optimization achieve a dynamic balance by
suggesting reservations, forecasting uncertain demand, and
optimizing the charging schedule at recharging centers.

The challenges of the BSS model are discussed and com-
pared with those of the BCS model. The BSS model is not only
a new operational problem but also a novel scheduling and
optimization research topic considering uncertain swapping
requests, optimal charging management, diverse battery types,
and dynamic operational balance. Therefore, the single BSS
mode is the basic module in the BSS operation system, and the
subsequent modes in this section are integrations of multiple
BSSs and BCSs.

B. Multiple BSSs

Fig. 2 shows the multiple BSS operation mode, which
involves a control center, 11 swapping demands from EV
drivers, and N candidate BSSs to be assigned. The multiple
BSS mode workflow is described as follows. First, the drivers
have three methods for starting a swapping order: request
before arrival (one hour in advance), reserve (daily schedule),
and walk in without an appointment. Second, after receiving
the swapping orders from the EV driver and monitoring the
battery condition at each BSS in real time, the control center

determines a candidate BSS for the EV under predefined
objective values and constraints. Then, the EV driver accepts
the assignment and proceeds to the BSS for swapping or
rejects the suggested BSS. Last, the BSSs and control center
should communicate in real time to update the dynamic
availability and battery queuing in each BSS. Some crucial
problems should be emphasized in this multiple BSS mode.

1) Battery Availability: Fig. 2 illustrates an example of
N swapping stations with different battery availability states.
In BSS-1, the swapped batch and the fully charged batch are
both full, and two chargers are available for the incoming
swapped batteries. Therefore, BSS-1 has the highest availabil-
ity for the next swapping order. In contrast, BSS-2 has no fully
charged batteries for swapping, and there are many swapped
batteries waiting to be recharged. Therefore, BSS-2 has the
lowest availability compared with the other BSSs. In BSS-3,
the swapped batch and fully charged batch are both empty,
and 7 of 9 chargers are in use. In this case, the incoming EV
needs to wait at the BSS until a battery is fully recharged.
Last, the swapped batch and fully charged batch are both full
in BSS-N, which means that the incoming EV can load a
battery immediately, but the swapped battery needs to queue
for recharging. Hence, the swapping orders in BSS-N can be
satisfied, but the battery utilization is lower than that at the
other stations.

2) Localization of BSSs: In the real-world multiple BSS
mode, the BSSs are placed at different locations within a
service region. Hence, determining the locations of the BSSs
should be defined as an optimization problem, and some
considerations should be investigated.

• First, in the construction and planning stage, the locations
of multiple BSSs should be optimized based on the
swapping demand, population density, and power system
limits.

• Second, to support long-distance traveling, some BSSs
can be located along the highway network, and the
distance between two stations should be subject to the
traveling distance per charge.

• Third, to establish a new BSS in a region, the swapping
loads of the existing BSSs should be considered, with



10168 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 8, AUGUST 2022

Fig. 2. Mode of Multiple BSSs.

the aim being to satisfy drivers’ swapping demands and
reduce the queuing problems in nearby BSSs.

3) Routes for the EV to the BSS: When EV drivers send
swapping requests to the control center, the distances and
travel times between the driver’s current location and the
BSS should be obtained. Due to traffic flow and traveling
patterns, the uncertainty of appointment information should
also be investigated as input to the decision model. In addition,
the remaining SOC of an EV and the distance to the target
BSSs are correlated because the EVs must reach the target
BSS without exhausting their remaining energy. Hence, the
remaining EV SOC and the distance to each BSS should be
considered to be important constraints in the dispatching and
routing problem.

4) Coordinated Decision: Different from the single BSS
mode, the control center in the multiple BSS mode should
optimize the decision by coordinating the demands from EV
drivers and the battery statuses of the distributed BSSs. On the
EV driver side, the control center can make a decision based
on the current information and reply to the drivers for confir-
mation. If the assignment is not accepted, some coordination
procedures should be negotiated by revising the expected
arrival time or changing to another BSS. On the BSS side,
the control center should monitor the battery status of each
BSS and dynamically adjust the charging processes. Hence,
in an intelligent BSS system, coordinated decisions are crucial
to obtaining the optimal decision. In conclusion, the multiple
BSS mode can be defined as a series of optimization problems,
including a localization problem for planning multiple BSSs,
a placement problem for new BSSs in a service region, a rout-
ing problem from the EV to the target BSS, and a scheduling

problem for operating the charging process. To establish a
novel multiple BSS mode, the previous problems can be
considered and combined by building integrated multiobjective
optimization models.

C. Integrated BSS and BCS

Fig. 3 presents the integrated mode with a BSS and a BCS
operated by a control center. Different from the previous two
BSS modes, a charging section is included, with 10 parking
ports, 8 EVs in recharging mode, and 9 EVs in queuing
mode. In this example, two types of chargers are presented:
6 fast chargers with a maximum power of 50 kW and 4 slow
chargers with a maximum power of 25 kW. The BSS operation
model is described in Section II-A with a fully recharged
batch, a swapped batch, and a recharging batch. The control
center is responsible for receiving demands from EV drivers,
monitoring the BSS and BCS statuses in real time, determining
a proper method (swap/charge) for EVs, and determining an
optimal charging schedule for both BSSs and BCSs. In this
section, the decision strategy of an integrated BSS and BCS
station is defined as the combination of decentralized and
centralized models: the decentralized models address swapping
or charging requests separately; the centralized models obtain
the decision (to swap or to charge) for an incoming EV based
on the drivers’ preferences and lower load in the integrated
station. Some detailed features of the integrated BSS and BCS
modes are presented in the following.

1) Decentralized Decision Models: The integrated BSS and
BCS modes can be defined as two decentralized decision
models that serve both swapping and charging orders, respec-
tively. When an EV driver sends a request, they can specify
whether they want to swap or recharge the battery. From the
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Fig. 3. Mode of Integrated BSS and BCS.

control center’s perspective, two isolated decision models are
defined to handle the swapping and charging requests, and
they determine whether to accept or reject each request based
on the dynamic loads at the BSS and BCS.

2) Centralized Decision Models: In contrast to the decen-
tralized model, the integrated BSS and BCS station can also
be defined as a centralized decision model, where the BSS
and BCS are complementary, considering the order demands
from EV drivers and the status of each station. There are two
operating strategies in this centralized model.

• If an EV driver does not indicate the charging or swap-
ping intent, the assignment is determined by the control
center. Then, the dynamic number of batteries at the BSS
and BCS are monitored by the control center, and the
decision can be optimized based on the global condition.

• If the BSS is under a high load (the number of
fully recharged batteries is low), some batteries can be
recharged in EVs at the BCS and sent to the BSS
after being fully recharged. Then, the interaction can be
optimized based on the EVs’ parking time at the BCS
and the swapping load at the BSS.

The advantages of the integrated BSS and BCS models
are discussed as follows. First, the control center handles the
swapping and charging demands concurrently, which improves
the quality of service for EV drivers. Second, the decision is
optimized by assigning the swapping and charging processes,
and then the global optimization objective can be obtained.
Third, the control schedule for the recharging process in the
BSS and BCS is optimized based on the demand and station
status. Fourth, the control center is assumed to follow a
decentralized decision model for handling incoming orders
and can ask EV drivers to specify the preferred process,
i.e., swap or charge. Last, with the use of the centralized

strategies proposed in Section II-C2, the service capacity can
be improved by coordinating the EVs in the BCS and the
batteries in the BSS, which will improve the global QoS in
the BSS and BCS modes.

D. Multiple BSSs and BCSs

Fig. 4 shows a comprehensive BSS operation mode with
N BSSs and M BCSs with different swapping and charging
loads. The control center acts as an aggregator, receiving
demands from EV drivers and, knowing the status of each
station, assigning drivers to the optimal BSS or BCS. In this
mode, the BSSs and BCSs are distributed within a geograph-
ical region, such as downtown in a city or at a rest area on
a freeway. Thus, the operation and localization models are
comparable with the multiple BSS mode in Section II-B and
the integrated BSS and BCS mode in Section II-C. Additional
specific features of multiple BSSs and BCSs are discussed in
the following.

1) Charging Availability: Fig. 4 illustrates an example with
three BSSs with different charging loads. In BCS-1, the
queuing lane is empty, and two charging piles are available for
assignment. In BCS-2, all of the charging piles are occupied,
and three EVs are in the waiting lanes. However, four EVs
are charged beyond 90% SOC and will finish charging upon
reaching their target SOCs. In contrast, in BCS-M, all piles
are occupied, and the queuing lane has 8 EVs waiting to be
recharged. When inquiring about the chargers’ statuses, only
2 of the 10 EVs are almost recharged, and thus, the incoming
EVs must wait for a longer time until the recharging processes
are finished. Hence, BCS-1 has the highest availability for
charging, while BCS-M has the lowest availability. Then, the
control center assigns EVs to BCS-1 and BCS-2, and BCS-M
is assigned when the queuing condition no longer exists.



10170 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 8, AUGUST 2022

Fig. 4. Mode of Multiple BSSs and BCSs.

2) BSS and BCS Planning: Faced with the explosive growth
in the EV population, BSS and BCS planning now draw
more attention to urban planning, power grids, and business
operators.

• From the perspective of urban planning, the demand
for charging/swapping utility should be investigated by
considering the EV distribution, road transportation, traf-
fic conditions, and commercial/residential zones. Then,
a new charging station can be constructed or upgraded
from a traditional parking lot by installing charging
facilities. New BSSs can also be planned in a region
for serving commercial EVs, e.g., electric taxis, buses,
and trucks, which have high-energy demand and rapid
charging requirements.

• From the perspective of the power grid, the charging and
swapping stations act as high-energy consumption units

affecting voltage stability. Hence, when planning BSS
or BCS locations, the power grid constraints should be
considered. In addition, in terms of electricity trading,
the BSS/BCS purchases electricity from the grid, charges
batteries and EVs, and sells electricity to the drivers
for profit. Therefore, electricity policy can be negotiated
between the power grid and the station operator. Last,
owing to V2G and battery-to-grid (B2G) technology, the
BCS/BSS can sell electricity back to the grid, which
results in earned profits for the BCS/BSS resulting from
price variance and helps the grid maintain voltage stabil-
ity.

• From the perspective of BSS/BCS operators, the aim is
to make a profit by providing swapping/charging services
to EV drivers. In the planning stage, the operators aim to
find a place with high swapping/charging demand so that
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they can maximize their operating profit. In contrast, their
operating cost includes the station construction/building,
charging facilities, and initial stock of batteries at the
BSS, which can be minimized with intelligent optimiza-
tion decision models. The station’s operating profit can
be maximized by increasing the charging demand and
reducing planning costs.

3) Optimization Problems: Once the locations and facilities
are determined (Section II-D2), the multiple BSS and BCS
operation model can be defined as three types of optimiza-
tion problems: a charge/swap assignment problem, a routing
problem and a charging schedule problem.

• The first type of optimization problem assigns either
the charge or swap service to the incoming EV based
on its demand and station conditions. In Fig. 4, the
availability of BSSs follows the order BSS-1, BSS-N,
BSS-3, and BSS-2, considering the fully recharged and
swapped battery batches. In the BCSs, the availability
follows the order BCS-1, BCS-2, and BCS-M, knowing
the EVs’ SOCs at the charging center and the queuing
lanes at the station. Hence, a metric can be defined by
evaluating the availability of each BSS and BCS and then
the incoming EVs can be assigned to the appropriate
station for charging or swapping.

• The second optimization problem determines the route
from the EV’s current position to the target BCS/BSS.
The arrival SOC of the EV can be estimated by the current
SOC of the EV, the traveling distance from the EV to
the station, and the power consumption rate (in Wh/km),
which is a crucial factor for determining the charging
schedule in both BSSs and BCSs. Hence, both geographic
information and electric conditions are considered when
formulating routing problem models.

• The most complex problem is dynamically determining a
charging schedule for each BSS and BCS. Two schedule
targets are mentioned for this mode: scheduling and
assigning the EVs and batteries to specific chargers and
scheduling the process throughout the whole charging
period. In BSSs, considering the different remaining
SOCs of swapped batteries and the incoming swapping
orders from EVs, the first target is to select a battery from
the swapped batch and assign it to an optimized charger.
In BCSs, the first target is to assign the arriving EV
to the optimal charger, where two types of chargers are
used with different maximum charging rates. Hence, the
optimal schedule can be determined by considering the
EV parking time and remaining SOC. The second target
is to determine an optimal schedule for changing the
charging rate in BCSs and BSSs. The dynamic charging
schedule can help adjust the total charging time, which
will change the statuses of BCS queuing lanes and BSS
swapped battery batches. Combining the first and second
schedule targets, a series of optimization objectives can
be obtained, such as maximizing profit, minimizing elec-
tricity cost, reducing voltage stability, and improving the
quality of service.

Above all, the multiple BSS and BCS mode is the most
complicated case in the BSS operation system, as it incor-
porates the challenges discussed in the single BSS, multiple
BSS, and integrated BSS and BCS modes. As discussed
in Section II-D3, the problems are usually defined as three
subproblems, which are solved by separate optimal models.
However, the decisions among the three subproblems are
correlated; thus, a global decision is formulated as a multi-
objective optimization problem by combining the charge/swap
assignment, the routes from the current location to the target
BSS/BCS, and the dynamic charging schedules in the BSSs
and BCSs. Hence, the mentioned multiobjective problem is an
NP-hard problem for determining an optimal solution, which
can be solved by defining it as a complex operation system
and proposing intelligent models. The BSS decision scenarios
are reviewed in Section III.

III. BSS DECISION SCENARIOS

In terms of the decision variables and objective values of
the BSS, the existing literature can be broadly summarized
into five scenarios: charging schedule, service policy, con-
struction and planning, dispatching and routing, and power
management. Among the different decision scenarios, seven
key features for BSS model formulation are clarified.

• BSS Mode: Four BSS modes are introduced in Section II,
including a single BSS, multiple BSSs, an integrated
BSS and BCS, and multiple BSSs and BCSs. Here, the
literature’s operation mode is presented for comparison
in the decision scenarios.

• Decision Maker: The literature on BSS optimization
usually defines the decision makers as the BSS operator,
EV driver, and power grid, where the model definitions
and object formulations are discrepancies. For example,
the objectives of the BSS operator are to maximize the
profit or minimize the construction investment, while the
objectives of the EV drivers are to minimize the queuing
time or reduce the swapping cost.

• EV Category: There are two categories of EVs: pri-
vate EVs and commercial EVs, where commercial EVs
include electric buses, taxis and trucks. When investigat-
ing BSS decision scenarios, different categories of EVs
indicate different types of traveling features, demand pat-
terns, charging/swapping preferences, and optimization
directions. Hence, the EV category is an important aspect
of EV and BSS/BCS research.

• Number of Battery Types: As discussed in
Section II-A7, battery heterogeneity is a crucial
factor in the BSS decision scenarios considering the
nonuniform battery types of swapped batteries. Hence,
BSSs need to purchase more types of batteries for
swapping and manage the service and charging schedule
for each type. In recent literature, only a few papers
consider the diverse types of batteries in BSS and BCS
systems.

• Vehicle-to-Grid: Considering the rapid growth of the EV
population and large capacity of lithium-ion batteries,
feedback of the electrical energy in EV batteries to the
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power grid is considered to play an important role, as it
can improve the stability and reliability of the grid [27].
Thus, V2G and B2G are widely adopted in BSS decision
models from the perspective of the operator and power
grid.

• Focus & Objective: Based on the above aspects, different
aspects of the BSS decision scenarios have been studied
in recent literature, e.g., microgrid, photovoltaic BSS, bat-
tery degradation, demand uncertainty, pricing policy, and
number of initial batteries. The corresponding objectives
are defined in the optimization models, e.g., maximize the
operating profit, service capacity, and quality of service
and minimize the electricity cost, charging damage to
batteries, construction costs, and average waiting time.

In this section, the existing works on BSS operation systems
are reviewed in terms of five decision scenarios. As such,
the above seven features are analyzed and compared in the
literature. It is worth noting that some papers involve multiple
scenarios in their decision models, as noted by the superscripts
used in Table I to Table IV.

A. Charging Schedule

In this section, the charging schedule approaches are
reviewed in terms of the four focuses, i.e., BSS operation [23],
[25], [44]–[46], photovoltaic (PV) BSS [47]–[50], micro-
grid [51], [52], and power system [53]–[56], as shown in
Table I.

1) BSS Operation Schedule: Considering the battery con-
dition and swapping/charging demand, the BSS operator can
determine an optimal charging schedule for the batteries
and EVs, which helps the station maximize the operating
profit [25] and minimize the electricity costs [23], [44], [45].
Additionally, an optimal schedule for the charging process
can help the BSS to satisfy more EV swapping and charging
requests such that its QoS [44] and service capacity [46] are
maximized.

The first charging process approach is to assign a type of
charger to the batteries in a BSS, knowing that different types
of chargers have different charging rates and impose different
charging damage on batteries. Then, the BSS can determine
an optimal schedule for chargers and batteries based on the
operation conditions, e.g., swapping demand, electricity prices,
and battery purchase costs. Reference [23] defined a charging
scheme model to determine an optimal charging schedule for
batteries in BSSs, which aims to minimize the initial number
of batteries and charging damage to batteries. In their model,
four types of candidate chargers are used, and an estimation
model is defined to quantify the charging damage of different
chargers. A similar charger decision model is also used in [25]
with the aim of maximizing the overall operating profit,
including three components with monetary value: normalized
battery purchase cost per charge, charging damage related to
the charging rate, and electricity cost. This model considers the
charging process (constant-current/constant-voltage, CC/CV)
for lithium-ion batteries, which is comparable to the actual
charging process but is nonlinear. Finally, the proposed models
in [23], [25] are evaluated by hundreds of swapping requests
over a time duration of one day.

The second charging process approach is to determine the
specific charging schedule for the batteries at the BSS, which
indicates the charging quantity/energy assigned to each battery
at each time slot. Given the battery charging demand (start
time, deadline, maximum charging rate, target SOC, current
SOC, etc.), a battery charging scheduler is proposed to find
the optimal charging rate for all batteries at all time slots [44].
In this model, an online BSS control problem is defined
to minimize the energy cost with a QoS guarantee, and an
offline BSS design problem is proposed to determine the
optimal number of stored batteries. Faced with the random cus-
tomer request problem, reference [45] develops a mathematical
model for an uncertainty-constrained BSS optimal operation
system that can forecast the electricity price and demand based
on historical data. Different from [44], this charging schedule
includes the charging and discharging power of each battery at
each time slot, which can result in profit from selling power to
the grid with the V2G strategy. Therefore, the objective is to
minimize the operating costs, including the purchasing power
and battery degradation costs.

The third approach to the charging process is to determine
whether to accept or reject the swapping/charging demand
from EV drivers based on the current workload in the
BSS/BCS. An integrated battery charging and swapping sta-
tion model (introduced in Section II-D) is proposed in [46] to
evaluate the stations’ service capacity. The model is evaluated
by considering electric taxi fleets and electric bus fleets
with various swap lanes and charging stations. The schedule
is developed to determine the acceptance of swapping and
charging requests based on the service policy. Some impacts
of service capacity are investigated based on the size of the
battery, vehicle moving speed, BCS power, and swapping
price. Thus, the charging process schedule of this approach is
described in a table with binary decisions (1/0 values), where
1 denotes acceptance of the request and 0 denotes rejection of
the request.

This section gives three approaches to setting the charging
schedule in BSS operation systems; these can be applied to
integrated models such as PV-based BSSs, microgrids with
BSSs, and power system operations.

2) PV-BSS Schedule: Considering the massive electricity
consumption of BSSs for recharging batteries, renewable
energy sources (RESs) are widely adopted for constructing
BSSs, including solar PVs and wind energy. Because the
photoperiod of solar energy fits the need for recharging energy,
the PV-BSS is considered to be an efficient and less expensive
approach for combining swapping and power-generation func-
tions. However, due to the uncertainty of solar energy under
different weather conditions and the uncertainty of driver
swapping demand, forecasting PV energy and the demand
from EVs is a major challenge in renewable energy operation
systems. Here, some typical works on PV-BSSs are reviewed.

Owing to the uncertainties in PV-BSSs (e.g., swapping
demand, PV generation, weather conditions, and traffic load),
some forecasting models that use statistics and machine
learning techniques have been proposed [47], [48]. A day-
ahead scheduling model is proposed in [47] to use the
chance-constrained programming method, which describes the
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TABLE I

CHARACTERISTICS OF OPERATION MODELS (SCENARIO 1): CHARGING SCHEDULE

uncertainty of stochastic variables and then applies them to
the optimization model by minimizing the cost of electricity
purchased from the power grid. In this model, the swap and
solar uncertainties are formulated with probabilistic sequences
of stochastic variables. In [48], the authors forecast solar
power with the use of real data (e.g., irradiation, tempera-
ture, humidity, wind direction, air density, and pressure) and
machine learning models (e.g., neural network, XG-Boost,
random forecast, and decision tree). After combining the BSS
dataflow and the weather forecast, the traffic flow to the BSS

and the generation of PV power can be predicted. Then, the
objective is to maximize the economic and environmental
impacts considering the weather and road traffic conditions
and the battery degradation models.

Another challenge of PV-BSSs is how to quantify the
self-consumption of PV energy. A system structure and the
functions of a PV-based BSS, composed of a PV system,
an EV battery system, a grid-connected system, and an energy
management system, are proposed in [49]. In this paper,
an evaluation index for the self-consumption of PV energy
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is proposed to evaluate the self-utilization of PV energy rep-
resenting the percentage of self-consumed PV energy. Then,
a charging strategy with a swapping service model and power
distribution model is proposed. In a case study with EV taxis,
the self-consumption of PV energy is effectively improved
with the premise of service availability.

An integrated model with wind and solar power generation
was proposed in [50]. The operation mode is an integrated BSS
and BCS station with a fast charging and battery swapping
facility for EV buses. The demand response, renewable energy,
and transformer feeder load are incorporated to minimize the
total single-day cost by optimizing the battery charging and
discharging capacity. An example of a power supply system
(in the Penghu Area) is given with a power grid, a one-wire
diagram, and the user end on three main feeders, which is
combined with the energy from renewable resources, including
four wind turbines (rated power of 2.4 MW) and solar cells
(rated power of 1.5). In the case study, the results are adopted
as a reference for evaluating the establishment and operating
cost of an e-bus system.

In conclusion, a PV-based BSS is a typical operation system
that incorporates renewable energy to reduce the cost of
electricity purchased from the power grid. If solar and wind
energy can be accurately forecast and the construction cost of
PV material decreases, the application of renewable energy to
BSSs and BCSs can be regarded as a significant approach to
reducing station operating costs.

3) Microgrid BSS Schedule: A microgrid is a locally con-
trolled power system with interconnected loads and distributed
generation (DG) units that can connect and disconnect from
a traditional power grid. Microgrids are flexible and efficient
in terms of power generation and renewable energy utilization
with the use of grid-connected and island modes [51]. In the
BSS and BCS models, stations have a very high demand
for electricity and may cause voltage instability in power
systems. Thus, many researchers have studied the application
of microgrids to BSSs in recent years.

A microgrid day-ahead scheduling problem is proposed as
a bilevel optimal scheduling model to coordinate between the
microgrid and the BSS [51], where the upper level minimizes
the microgrid’s net costs and the lower level maximizes
the BSS’s profit under real-time pricing environments. The
proposed microgrid system contains three probabilistic mod-
els, the wind turbine, PV, load injection, and an equivalent
load model, which are coordinated with the BSS operation
schedule.

Another microgrid schedule model is formulated as a bilevel
scheduling framework for microgrids and multiple BSS deci-
sions [52]. The upper-level model minimizes the microgrid’s
total cost, and the lower level minimizes the cost of each
BSS. A hybrid probabilistic-possibilistic approach is proposed
to address the uncertain features, including the load demand
of the microgrid, PV generation, market price, and swapping
requests. The effectiveness of the proposed model is evaluated
with real microgrid system data and in different scenarios.

4) Power System Schedule: Considering the BSSs’ high
power demand from the grid and potential influence on voltage
stability, the last charging schedule is proposed from the

perspective of the power grid. BSSs and BCSs can be regarded
as battery aggregators that can transmit power back to the grid
to smooth the voltage curve and provide ancillary services,
e.g., frequent regulation, load following, and voluntary reserve
provisions.

In [53], the objective function is designed to minimize the
total charging cost and to reduce the power loss and voltage
deviation of the power network, where the charging location is
considered with station or bus nodes in a power system. The
charging schedule problem is defined as a novel centralized
charging strategy considering the optimal charging priority and
charging location. The effectiveness of the proposed model is
evaluated with an IEEE 30-bus test system, and the results
show that the model is viable and that the proposed algorithm
outperforms the baseline methods.

To address the uncertainty of power generation, swapping
demand, and electricity price, a day-ahead scheduling method
is proposed in [54], [55]. In [54], the day-ahead model
determines the amount of electricity to buy and sell knowing
the battery swapping demand and aims at maximizing the
BSS profits, including the revenue obtained from customers,
energy purchased from and sold to the grid, cost of the
inability to supply demand, and discount to customers. Here,
the K-means clustering algorithm is used to fit the load
curve to the historical data. In [55], uncertain features, e.g.,
customer arrivals, electricity price, grid connection limitation,
and self-degradation of batteries, are formulated as a day-
ahead scheme. The day-ahead plan determines the charging,
discharging, and swapping of batteries in stock. The objective
is to satisfy customer demand and maximize the BSS’s rev-
enue. The key features in the BSS’s decision are compared
and investigated, including the grid power limitations, battery
degradation, and demand uncertainties.

A multiobjective model is proposed in [56] with two
cost-based objectives and two technical-based objectives. The
cost-based objectives are to minimize EV battery charging and
the power loss costs, and the technical-based objectives are to
flatten the voltage profile and release the network capacity.
The decision variables include the battery swapping locations
and the battery group charging priorities. A dynamic pricing
procedure is proposed to prevent interruptions in battery
charging. Finally, the proposed model is evaluated by an IEEE
33-bus test system, and the results show the proposed models’
novelty and functionality.

B. Service Policy

In the opinion of EV drivers, both BSSs and BCSs have a
service role, providing swapping and charging services. Here,
how long drivers need to wait for swapping/charging and how
much drivers need to pay are the two main concerns for
building the BSS service policy. Hence, many researchers have
proposed service policy BSS models in terms of queuing the-
ory [57]–[59], pricing policy [59]–[61] and service framework
establishment [26], [62], [63], as shown in Table II.

1) Queuing Theory: Considering the long charging time of
lithium-ion batteries, the limited number of initial batteries in
BSSs, and the limited number of parking piles/spaces in BCSs,
the increased EV population will cause a serious queuing
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TABLE II

CHARACTERISTICS OF OPERATION MODELS (SCENARIO 2): SERVICE POLICY

problem at both BSSs and BCSs. An example of charging
availability is given in Section II-D1. Hence, the most intuitive
approach is to define a service model based on queuing theory
that manages the players in terms of the defined objective
values, e.g., QoS, service capacity, waiting time, and operating
costs/profits.

In [58], an optimal charging operation policy is proposed
for an integrated BSS and BCS that aims to concurrently
minimize the charging cost and ensure QoS. In this work,
a mixed queuing network model is defined: the EVs form an
open queue, and the batteries circulate in a closed queue. Then,
a constrained Markov decision process is formulated, and an
optimal policy is derived by the standard Lagrangian method
and dynamic programming. The impacts of the numbers
of batteries and chargers on the average operating cost are
evaluated.

However, how to evaluate BSS and BCS performance is a
crucial problem considering the many participants and multi-
ple objectives in the operation system. The authors in [58] also
propose an asymptotic performance evaluation model [57],
which is based on a novel mixed queuing network model for
an integrated BSS and BCS. The key parameters include the
number of parking spaces, swapping islands, chargers, and
batteries, and the parameters are defined as QoS measures
with consideration of the blocking probability. Two types
of asymptotic behaviors are evaluated, and the asymptotic
lower bound of the blocking probability is derived based on
analytical studies.

A BSS queuing model with three queues (EVs, well-charged
batteries, and depleted batteries) is proposed in [59], formu-
lated as different curves using network calculus theory. Then,

a closed-loop supply chain scheme is proposed to depict the
battery-swapping-charging process between BCSs and BSSs.
Furthermore, game theory is used to manage depleted batteries
and well-charged batteries, where BCSs act as leaders and
BSSs act as followers. A case study is illustrated to evaluate
the effectiveness of the proposed model with one BSS and
three BSSs, where two of the BSSs serve 1,000 electric taxis
and one BSS serves 200 electric buses.

2) Pricing Policy: In the BSS operation system, the item
with the most significant impact is the service pricing policy.
EV drivers prefer to pay less money for swapping/charging
if the same service is provided, while a lower service price
causes a longer waiting time. Station operators prefer to
charge drivers high prices and reduce the payment cost to
buy electricity from the power grid. Hence, a proper pricing
policy can be used to leverage the queuing load and service
profit by balancing the swapping/charging demand and selling
electricity back to the grid.

In [59], the proposed game theory for BSS and BCS man-
agement schemes determines the optimal prices of depleted
batteries and well-charged batteries, as well as the price for
supplying depleted batteries. In the defined game, the objective
of the leader (BCS) is to maximize its utility, and the objective
of the followers (BSSs) is to maximize their utility while
guaranteeing the QoS for battery swapping.

Because the peak demand for charging causes an increased
cost for deploying a more extensive charging infrastructure,
a price-based demand response program is proposed to reduce
costs and decrease the peak demand for charging [60]. A mul-
tiobjective optimization model is developed that includes a
battery demand model, a demand-response-based subsidy cost
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model, and a charging cost model. Here, the total cost of
the battery swapping service includes the charging cost, rental
cost, and subsidy cost. The decision variables include the unit
price of the charging cost, the unit battery rental price, and
the subsidy price based on governmental policies in China.

A battery swap pricing and charging strategy is proposed
in [61], addressed to electric taxis in China. Five modules
are investigated: power grid load monitoring, generator set
dispatch, BSS operation, electric taxi driver response, and eval-
uation of all stakeholder benefits. To reduce carbon emissions
and maximize the global benefit, four real-time battery swap
pricing scenarios and two charging strategies for BSSs are
developed.

3) Service Framework: In a realistic BSS operation system,
the service policy should consider not only online strategies
(e.g., pricing policies, queuing) but also the service framework
for dealing with BSS planning problems and battery hetero-
geneity problems.

To address the stochastic visits of EV drivers (demand
uncertainty), reference [62] proposes a two-stage optimiza-
tion model: investment for battery purchases in the planning
stage and battery allocation decisions in the operating stage.
A modified K-means clustering method is developed to predict
the visit distribution. A sensitivity analysis examines the price
points, region-specific electricity prices, charging intervals,
and EV uptakes.

As discussed in Section II-A7, a practical BSS service
framework consists of multiple types of batteries, which
results in highly complex scheduling and optimization. A bat-
tery heterogeneity-based BSS service framework is proposed
in [26], in which EV batteries are divided into subgroups
with various associated types of EVs. The proposed battery
heterogeneity framework maintains battery heterogeneity and
balances the swapping demand with regard to different types of
batteries. Furthermore, an EV reservation model is introduced
for the BSS service considering the battery type, expected
arrival time, and charging duration, which enables anticipation
of the demand load and avoidance of potential hotspots for
swapping.

C. Construction and Planning

In the BSS construction and planning stage, the localization
and placement [24], [64]–[67], station network [68], and BSS
configuration [22], [69] are crucial concerns of BSS operators.
For this section, the related works can be viewed in Table III.

1) Localization and Placement: Considering the construc-
tion investment of BSSs, location has a significant influence on
business profits throughout the life cycle. Hence, BSS place-
ment should be fully investigated based on the EV population,
land cost, transportation, drivers’ traveling patterns, and power
grid.

Reference [24] proposes a site selection framework con-
sidering three criteria: land occupation cost, driver comfort,
and impact on power grid load levels. A fuzzy decision-
making trial and evaluation laboratory method is designed to
determine the weights of the three criteria. Then, a fuzzy-based
method is adopted to rank the candidate locations. A case
in Beijing, China, illustrates the effectiveness and robustness

of the proposed BSS location decision framework. Another
crucial factor for BSS construction is the routing from EVs
to stations. Reference [64] introduces a BSS location-routing
problem for selecting a BSS location from candidate sites and
minimizing the sum of construction and routing costs.

Due to the development of intelligent EVs and data science,
a data-driven location selection model for BSSs is proposed
in [65]. In this paper, GPS location data and electricity requests
are collected for a metropolitan area. Then, a location selection
model is proposed with the following three steps: a hidden
Markov model for map matching and trajectory extraction,
an electricity consumption rate model for demand estimation,
and a clustering strategy for location determination. A realistic
case study involving 13,700 taxis in the area of Shanghai,
China, is presented, and the results outperform those of the
state-of-the-art baseline models.

Owing to the high consumption of energy, the limitations
of power systems and collaboration among them should also
be considered in the BSS construction stage. A framework
for the optimal design of an integrated BSS and BCS is
proposed in [66] considering the requirement that increased
power be provided during the charging period. An efficient
method is developed to determine the optimal planning of
BSSs and BCSs at the power system distribution level, which
includes the locations, sizes, and charging strategies of each
BSS. The objective is to optimize the economic profit during
each station’s life cycle, including the EV investment costs,
operational costs, maintenance costs, disposal costs, and ben-
efit of charging and swapping. Focusing on the energy loss
reduction and voltage stability factor, an optimal allocation
model of DG units and BSSs is proposed in [67]. A zone-
based strategy is designed to allocate the DG-BSS in each zone
of the distribution grid, and the distribution system is divided
into multiple zones to facilitate usage by motorist and increase
utility. The feasibility and effectiveness of the proposed model
are evaluated by validating the model on IEEE 33-bus and
69-bus networks.

2) Station Network: In the business of battery leasing and
EV sharing, an EV operation system can be defined as a
network model with multiple BSSs and BCSs. Reference [68]
proposes an EV battery service network considering customer
satisfaction, including range anxiety and loss anxiety. The
objective is defined as the profit from battery leasing and
EV sharing minus the construction cost and operating cost
of the BSS. A fuzzy system is proposed to model customer
demand patterns, the tabu search method is used to search
for the location, and the GRASP model is used to determine
the number of batteries to be swapped/charged knowing the
location strategy. A comprehensive case study is illustrated
involving the city cluster of the Yangtze River in China, which
consists of 35 cities and 189 million people. The results show
that the station network can find a tradeoff between investment
and satisfaction level.

3) Configuration: When the BSS locations are obtained,
the determination of the configuration is another decision
to be optimized; this includes the number of initial batter-
ies [22], [23], [69], number of chargers [22], [69], and charging
strategies [22], [69].
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TABLE III

CHARACTERISTICS OF OPERATION MODELS (SCENARIO 3): CONSTRUCTION AND PLANNING

A BSS configuration and operation model with three charg-
ing strategies is proposed in [22]. With the use of dynamic
and historical data, the model determines the configuration
of chargers, swappers, and reserved batteries. In addition,
the annual battery rental fees are considered to satisfy the
battery swapping demand. The BSS profit model is eval-
uated and compared with other models considering battery
technology, policy, and BSS planning, and it is concluded
that the battery cost and battery swapping price are key
factors determining the BSS’s net income in its life cycle
period.

Reference [69] proposes a battery purchasing and charging
strategy for BSSs with three decision models: a long-term
decision on the number of charging bays, a medium-term
decision on the number of batteries, and short-term decisions
on when and how many batteries to recharge. To address the
time-varying swapping demand and electricity price, a periodic
fluid model is proposed to determine an optimal battery pur-
chasing and charging policy to trade off the battery investment
cost and operating cost. A two-stage optimization model is
designed to determine the optimal amount of battery fluid and
the optimal charging rule.

D. Dispatching and Routing

If the locations and sizes of BSSs are deployed in a region,
when an EV requests a swap, the BSS operator assigns a
target station at which the driver can swap his/her battery,
defined as a BSS dispatching problem in the literature [63],

[70]–[74]. If the road and traffic information are known, the
routing paths from the EVs’ current location to the assigned
BSSs can also be optimized, as in [75]–[78], [81]. Considering
the influence of power on the grid and the management
of swapped batteries, some works study models that charge
batteries in a centralized charging station and deliver fully
charged batteries to distributed BSSs [79], [80], [82]. The
related works on the topic of BSS dispatching and routing
problems are illustrated in Table IV.

1) Dispatching: The basic operation system of the EV dis-
patching problem selects an optimal BSS from candidate BSSs
with several objectives, e.g., maximizing the operation rev-
enue [70], [72]–[74], minimizing the waiting/traveling/delay
time [63], [71], [74], and minimizing the traveling dis-
tance [72], [73].

A self-adaptive dispatching strategy is proposed to enhance
the responsiveness and reconfiguration of BSS systems [70],
which could meet the dynamic swapping demand from
EV drivers and balance the varied demands. The proposed
self-adaptive dispatching strategy includes the EV scheduling
and battery scheduling stages, which determine the optimal
BSS for swapping and battery control (charging, discharging,
sleeping, and swapping) for each BSS.

With the development of mobile edge computing and
vehicle-to-vehicle communication, intelligent BSS manage-
ment is proposed in [71] to determine where to swap the
battery in a distributed system. The objective is to minimize
the average waiting time for each EV at a BSS. Based on
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TABLE IV

CHARACTERISTICS OF OPERATION MODELS (SCENARIO 4): DISPATCHING AND ROUTING

the BSS status and EV reservation information, BSS service
availability is predicted.

Two scheduling models for EV battery swapping have
been proposed with centralized [72] and distributed [73]
approaches. The dispatching problem is defined as assigning
an optimal BSS for each EV based on its current location and
SOC. The objective is to minimize the weighted sum of the
EV traveling distance and electricity cost. In the centralized
solution [72], second-order cone programming relaxation of
the optimal power flow and generalized Benders decom-
position is proposed when global information is available.
In decentralized solutions [73], two solutions are proposed
based on the alternating direction method of multipliers and
dual decomposition, which handle separate BSS entities with
distributed grids, stations, and EVs.

Different from the multiple BSSs in the operation system,
two related works develop an integrated mode with multiple
BSSs and BCSs, where the decision is not only the optimal
BSS but also the optimal charging/swapping method for gain-
ing energy. In [74], a smart charging strategy is proposed to
find an optimal charging station along the path with minimized
travel time and charging cost. Multiple options, including AC

level 2 charging, DC fast charging, and battery swapping
facilities, are deployed at the integrated charging stations. The
authors in [26] also investigate another holistic management
framework for a public electric taxi system with multiple BSSs
and BCSs [63]. The decision guides the taxis to an appropriate
station given time-varying requirements and uncertain demand.
The objective is to reduce the trip delay of all electric taxis.
The effectiveness of the proposed framework is evaluated
under a realistic taxi system in Helsinki city, where the drivers’
trip duration is minimized and the charging performance is
satisfied at the electric taxi, charging, and swapping stations.

2) Routing: In the BSS routing problem, the aim is to find
the optimal BSS at which to swap a battery when the current
traveling path is determined. For example, in the electric taxi
scenario, the vehicle owner prefers to swap the battery during
the pickup tour rather than the drop-off period considering the
customer waiting time. Hence, the EV BSS routing problem is
usually applied to commercial vehicle swapping, e.g., electric
taxis [75]–[77] and electric trucks [78].

In the electric taxi scenario, the aim is to find the optimal
BSS at which to swap batteries without wasting precious time
during operation. Reference [80] proposes a dynamic routing
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model with a look-ahead policy that assigns an optimal taxi
fleet to customers with elastic demand. The aim is to maximize
social benefit, including the limited battery capacity, detours
to BSSs, integration of customer delay, and system cost. Ref-
erence [76] proposes an upgraded urban electric taxi system to
determine the optimal BSS scheme, which determines whether
to assign electric taxis to a BSS. With the use of mobile
sensor networks, historical routes, demand profiles, power
consumption, and driving time between positions in the road
network, the real-time algorithm schedules some occupied
taxis to BSSs earlier than expected, which avoids swapping
congestion at the BSSs. To address customers with special
needs, a dial-a-ride problem is proposed in [45] to assign taxi
routes and schedules to customers. Four types of resources are
defined for EVs: an accompanying person, the seat of a person
with a disability, a stretcher, and a wheelchair. The objective
is to minimize the total routing costs and BSS costs.

A two-echelon capacitated EV routing problem with BSSs
(2E-EVRP-BSS) is presented in [78] to determine the deliv-
ery strategy, where the two echelons indicate different load
capacities, battery driving ranges, power consumption rates,
and battery swapping costs. In the first echelon, the freight is
transported from a depot to the transfer stations (satellites) by
large EVs. In the second echelon, small EVs deliver goods
from satellites to customers. Hence, there are two types of
EVs and two types of batteries for swapping. The goal is
to minimize the total EV travel costs, swapping costs, and
handling costs at the satellites.

3) Deliver Battery to BSSs: In most BSS operation systems,
the swapping and charging processes are executed at the same
station. However, to manage the depleted battery (DB) charg-
ing process, some studies consider swapping the battery at a
BSS, delivering swapped batteries to a BCS, and delivering
the battery to the BSS when it is fully recharged [79]–[82].

Reference [79] proposes scheduling the charging processes
of the chargers in BCSs to minimize the charging cost and
satisfy fully charged batter (FB) demand, where the charging
rate of each charger is determined. The proposed system
consists of four parts: a power system, a centralized BCS,
distributed BSSs, and a transportation system. However, the
DB and FB delivery strategies in transportation systems are
not studied in this research. A dynamic optimization model
is proposed to maximize social welfare to balance customer
demand and operator costs [80]. The proposed model helps the
planning process considering inventory, routing, and dynamic
pricing, where the joint inventory and delivery system is
demonstrated with BCS supply nodes and BSS demand nodes.

From the perspective of the power grid, two studies are
investigated in terms of the power-generation schedule [81]
and distributed operation management [82]. In [81], an EV
battery swapping-charging system is designed to schedule
batteries that are centrally charged and then dispatched via
delivery truck to BSSs. The objective is to minimize the
traveling cost by optimizing the route planned for the trucks,
which would meet the battery demand of all BSSs within
the given time window. A closed-loop supply-chain-based
battery swapping charging system is proposed in [82] to
optimize the charging and logistics of DBs and FBs. In the

proposed network calculus-based service model, three steps
in the battery swapping/collecting processes are defined: the
queue of EVs waiting to be served, the inventory of DBs, and
the inventory of FBs.

E. Power Management

Due to the large-scale energy consumption of BSSs, a series
of studies have been conducted not only to reduce the
BSSs’ influence on the grid but also to enhance the intel-
ligence and collaboration of the power grid and the BSSs.
Three approaches are summarized in Table V to review
the power management studies on BSS operation systems:
microgrids [28], [83]–[85], load forecasting [29], [86], and
energy management [30], [31], [87], [88].

1) Microgrid: In Section III-A3, the recent microgrid BSS
works were reviewed with a focus on the BSS charging
schedule. Here, the microgrid and the BSS are studied with
regard to energy management and the power system.

Real-time energy management for a smart-community
microgrid with a BSS was proposed in [84]; it uses RESs
to supply charging and residential loads. The variability in
supply, demand, and energy prices is investigated without
forecasting methods. The simulation results show that the
proposed system could improve the economics and utilization
of renewable energy. In [83], an optimal scheduling model
is proposed for microgrid resources and the BSS, where the
microgrid consists of PV and wind DG units. The optimal
power flow from the microgrid to the BSS is determined
considering the network constraints, power loss, and reactive
power dispatch. The objective is to minimize the operating
cost of the microgrid, including the cost of active and reactive
power provision.

Two shadow-price-based coordination methods are proposed
in [28] to coordinate the scheduling of microgrids and BSSs,
with a focus on the price and power trading requests between
the two entities. In addition, a coordination mechanism is
defined as an AC power flow model to optimize the operation
of the microgrid and a mixed-integer linear programming
model to optimize BSS operation. The proposed model is
evaluated with a standard IEEE 33-bus system and a BSS
model for serving private EVs and electric buses.

The microgrid plays an important role in the power grid
system, managing distributed renewable energy power gener-
ators and improving customers’ perception of the reliability of
electrical energy. Recently, nanogrids have been introduced as
a smaller type of microgrid that serves a smaller region and
is equipped with a smaller power capacity.

A nanogrid-based BSS energy management system is pro-
posed to determine the optimal sizing and operation of net-
worked nanogrids [85] to enhance energy supply reliability,
resilience, and economics. Three management methods are
presented in this model. First, the system can determine the
optimal size and scheduling of nanogrids, and the BSS can
help to smooth the voltage variation from the RES. Second,
the energy generated from the RES can be stored in the BSS if
the electricity demand is in peak hours. Third, with the use of
a networked nanogrid structure, BSS resources can be shared
by delivering batteries within a transportation network.
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TABLE V

CHARACTERISTICS OF OPERATION MODELS (SCENARIO 5): POWER MANAGEMENT

2) Load/Price Forecasting: In a BSS operation system, the
arbitrary arrival pattern of EV drivers causes an uncertain bat-
tery charging pattern, resulting in the BSS power load demand
following a random distribution. To reduce the influence of
random demands, the charging load characteristics can be
estimated based on method-driven (computational intelligent
algorithms) and data-driven (historical data) approaches. Addi-
tionally, the variation in electricity price is a crucial factor in
the BSS operation system, and it can also be predicted if the
model and data are well determined.

In [29], a stochastic model is defined with four variables:
hourly swapping demands from EV drivers, charging start
time, travel distance from the position of the EV to the
BSS, and charging duration. Then, an estimation model is
defined to forecast the energy consumption of the BSS,
and a generic nonparametric method with a backpropagation
neural network is proposed to estimate the uncertainty in the
charging load demand. In the simulation studies, the predicted
BSS charging load and interval fit the real distribution over
24 hours.

After obtaining the day-ahead energy and reservation capac-
ity data, a discrete cluster model is defined to optimize
the operation model of aggregated BSSs [86]. A bilevel

structure is proposed: the upper level determines the charg-
ing/discharging schedules and reservation capacity of the
BSSs, and the lower level clears the market and provides
marginal prices for each BSS and reserve capacity price.
The proposed framework is evaluated with six BSSs in
the IEEE RTS-24 system, with 32 generators and 9 wind
farms.

In [87], an artificial neural network with a nonlinear autore-
gressive exogenous (NARX) method is used to forecast the
energy price for the next 24 hours, and historical day-ahead
and real-time data are used to train the proposed network.
Thereafter, an optimal energy management system for BSSs
is proposed to address day-ahead, real-time and ancillary
services. An incentive-based V2V game-theoretic model is
proposed to maximize the BSS’s profit. Finally, the proposed
system is evaluated with a fleet of 100 EVs with four differ-
ent types of batteries, and the results validate the proposed
methods.

3) Energy Management: To address the potential influence
of BSSs on the power grid, some new approaches have been
studied in recent years, e.g., fast frequent regulation ser-
vice [30], [31], reinforcement learning [31], deep learning [30]
and the blockchain consensus mechanism [88].
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Two studies on BSS-based frequency regulation services
are conducted in [30], [31] with the use of reinforcement
learning and Q-learning algorithms. In [31], an economic risk
assessment model is investigated in terms of infrastructure
investment for V2G service, battery aging cost, and uncer-
tainties with regard to charging costs. The value at risk is
defined by combining the daily revenue and the long-term
return on investment (ROI), which is a metric for comparing
BSSs with and without proposed regulation models. The ROI
model is formulated as a policy-gradient-based reinforcement
learning algorithm. Another work of these authors uses the
stochastic dynamic problem and deep Q-learning method for
automatic optimal control of a BSS-based fast frequent regula-
tion service [30]. The proposed scheduling strategy maintains
each battery’s fixed regulation capacity within each hour. The
objective is to maximize each BSS’s revenue, and the results
are verified on real-world data.

Concerning data security during the distributed scheduling
in BSS operation systems, a collaborative optimization model
with a blockchain consensus mechanism is proposed in [88].
The transmission network level, distribution network level, and
BSS level are structured in a power system, and the objective is
to minimize the generation cost and daily load variance at each
level. The blockchain consensus mechanism is used to verify
the accuracy of the transaction data, and the production data
of all entities are encoded by a hash function before storage.

In conclusion, five typical BSS decision scenarios are
reviewed in this section, and these are compared in terms of
the operation modes, decision makers, EV categories, number
of battery types, V2G models, focuses, and optimization objec-
tives. These decision scenarios are discussed and summarized
as follows:

• Most of the decision scenarios are studied in independent
models, which should be correlated in future works. For
example, in the construction and planning stage, the deter-
mined BSS locations and number of stock batteries are
preconditions of the charging schedule scenario, while,
in return, the charging schedule could be used to optimize
the charging process to minimize the stock batteries.

• The four operation modes should be extended to five
decision scenarios. In charging schedule scenarios, most
of the operation modes are single BSSs, but there are few
works on determining the charging schedule for multiple
BSS. In the dispatch and routing scenario, the decision
models are mainly for commercial EVs and should be
extended to private EVs and multiple BSSs and BCSs.

• The majority of recent studies handle only one type
of battery. However, with the development of EV tech-
nology, the current BSS operation models should be
extended for multiple types of EVs and batteries. In this
case, the operation modes and decision scenarios should
be revised to address complicated optimization problems.

To solve the above problems in BSS operation scenarios,
extensive research directions are presented in Section IV.

IV. RESEARCH DIRECTIONS

The worldwide promotion of EV technology has accel-
erated the urgent demand for BSSs in recent years, which

creates some challenging research topics and new directions.
Although some works on EV BSS operation models have been
conducted, there are still some gaps in this research area.
Based on the reviewed papers, several research directions are
highlighted in terms of different operation models and decision
scenarios.

A. Extended BSS Models

Most of the existing works build the BSS model as a
typical optimization problem under the different scenarios
discussed in Section III. Although some studies have inves-
tigated building specific mathematical models for swapping
stations, including battery heterogeneity [26], [46], [74], [78],
[81], [87], V2G [30], [31], [45], [50]–[52], [54], [59], [62],
[70], [83], [84], [87], [88], and multiobjective [22], [28], [31],
[50]–[53], [56], [59], [60], [62], [64], [67], [69], [72], [74],
[78], [81], [86], [88] models, there are still large research gaps
in BSS model formulation.

1) Swapping Demand Pattern: The swapping demand pat-
tern from EV drivers is the principal factor in the BSS oper-
ation model. First, different categories of EVs have different
demand patterns, e.g., private EVs, taxis, buses, and trucks, the
swapping frequency of which varies from 1 to 5 days per swap.
Second, the swapping demand during a day also varies with
the traffic flow, weather conditions, and distribution of BSSs.
Third, with the growth in the EV population, the swapping
demand could be forecast by learning-based models with
historical data. In summary, EV drivers’ swapping demand
pattern should be modeled in future research.

2) Battery Specifications: A realistic BSS decision model
should also rely on the development of EV battery technology
considering the battery capacity, acquisition cost, and battery
heterogeneity. First, the capacity of lithium-ion batteries has
reached 50, 75, and 100 kWh in recent years. Thus, previous
works studying lower capacity may not be appropriate for
current situations. Second, with the increasing number of EVs,
the material price and manufacturing cost of batteries have
been reduced, and construction and planning studies should
use the updated battery acquisition cost for optimization.
Third, because the battery pack is one of the most expensive
components in an EV, the BSS should optimize the charging
and swapping process to reduce the battery’s charging damage
and extend the state of health of the battery in the future.
Last, serving multiple types of EVs and batteries is the most
complicated problem in building BSS decision models. With
diverse battery types, the complexity of model formulation and
optimization is much higher than that of single-type cases.
Hence, operation models considering battery heterogeneity
require further study.

3) BSS Specifications: In previous literature, the swap-
ping operation time and number of swapping spots in BSSs
were not fully investigated. For a commercial BSS [20], the
swapping process usually takes approximately five minutes,
including driving into the swapping spot, unloading the used
battery, loading the recharged battery and checking the system.
Hence, the swapping operation time cannot be ignored if the
swapping demand is high. Increasing the number of swapping
spots in a BSS is considered a possible approach to avoid
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Fig. 5. Scenario Correlation.

making drivers wait for the swapping operation. In this case,
more than one EV can swap batteries in parallel, which can
effectively reduce the queuing time. To the best of the author’s
knowledge, no researcher has studied the determination of BSS
swapping spots.

4) Strict Constraints: In real-world applications, the deci-
sion should be subject to a series of constraints, considering
the specification of EVs, batteries, chargers, and power grids.
Some constraints are defined as linear and nonlinear models,
while some constraints cannot be formulated as standard
mathematical models. In EV charging and swapping studies,
the EV charging process follows a constant-current/constant-
voltage strategy, which affects the estimation of the charging
time and SOC. However, the charging process is defined as
a piecewise and nonlinear function and cannot be solved by
some linear programming methods. Hence, to solve real-world
problems, strict constraints are crucial in decision models, and
a more flexible framework should be estimated to determine
the optimal solution in future research.

5) Power Grid: Considering the large electric storage in
batteries, EVs are expected to be an important energy storage
unit in the power system. Collaborating with the power grid
and renewable energy (PV power and wind power), the BSS
can obtain an optimal schedule to minimize the cost of buying
electricity from the grid and minimize the power variation
when the power load is high. Additionally, with the use of
V2G and V2V technology, EV batteries act as a supply unit
in an intelligent power system. The EV and BSS models can
extend the research directions of microgrids, nanogrids and
smart grids in the future.

B. Multiple Scenarios

Fifteen references in the literature have been formulated as
multiple scenario problems; these are indicated in the footnotes
of Tables I to V. References [63], [74], [79] have multiple
scenarios with charging schedules and dispatching & routing,
and references [28], [84], [87] have multiple scenarios with
service policy and power management, which are the two most
popular cases with multiple scenarios in this research area.
In addition, reference [56] presents three scenarios: charg-
ing schedule, dispatching & routing and power management.
In the future, the correlations among the scenarios should
be clarified beforehand, and then multiple scenarios can be
defined for intelligent BSS models.

1) Scenario Correlation: Most of the existing BSS oper-
ation studies concentrate on simple and isolated scenarios,
which have been discussed in Section III. However, in practice,

Fig. 6. Decision Participants.

operations are usually determined by multiple scenarios, and
the correlation relationships among the seven scenarios are
shown in Fig. 5. For example, the charging schedule in a BSS
affects the availability of fully recharged batteries, which is a
precondition for the dispatching and routing decision. Hence,
the correlation among the scenarios should be investigated in
future works.

2) Integrated Scenarios Models: In Fig. 5, seven scenarios
are presented along with their correlations. Separate scenarios
were studied in the previous section. The integrated scenario
models aim to involve multiple scenarios in an integrated
model to represent a realistic BSS operation system. The
directions of the lines indicate the decision sequences among
the scenarios. For example, the localization of BSSs deter-
mines the dispatching process, while the dispatching and
charging schedules are affected interactionally. Concerning the
proposed scenario correlations, integrated models should be
established with multiple scenarios in the future.

C. Collaborative Decision

In Tables I to V, the decision makers correspond to the
purposes of the operation models: BSS operator, EV driver and
power grid. Among the references, works that consider mul-
tiple decision makers include the following. In the charging
schedule scenario, six of the works [48]–[50], [52], [53] have
both the BSS operator and the power grid as decision makers.
In the service policy scenario, references [26], [57], [59] are
determined by the BSS operator and the EV driver, while
reference [61] is determined by the EV driver and the power
grid. In the dispatching and routing scenario, references [63],
[74], [76] have multiple decision makers: the BSS operator and
EV driver, and another aspect of this scenario is determined
by the BSS operator and the power grid [78], [79], [82].
It should be noted that all the references in Table V have
multiple decision makers with BSS operators and power grids,
which are the main concerns of power systems with BSS
operations. Different from the other scenarios, the decisions
of the construction and planning scenarios are made by only
one participant in Table III.

1) Decision Participants: As shown in Fig. 6, there are
multiple participants in the BSS decision models. Because
most recent studies consider a single participant’s objective
(denoted by the self-looped arrow in Fig. 6), the existing
BSS models cannot achieve collaborative decision results.
To establish a realistic model and achieve a global decision,
the BSS operation model needs to consider the effects of
multiple participants. For example, in a single BSS charging
schedule scenario (Section III-A), the power grid, swapping
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station, and EV drivers can be considered together to improve
voltage stability, reduce operating costs and maximize the
QoS, respectively.

2) Collaboration Model: To maximize the participant con-
tributions, the collaboration model should be established by
choosing collaborative participants, confirming participants’
relationships, building solution variables, and determining
decision results. First, the participants should be chosen based
on different decision objectives; the six candidate participants
are given in Fig. 6. Second, the relationship between the
participants should be confirmed based on the decision flow,
as illustrated by the directed lines in Fig. 6. Third, the solution
variables should be built by combining the subsolutions from
all participants, and the decision structure should be further
investigated. Finally, after building the decision models, intel-
ligent algorithms should be studied to solve the optimization
problem.

D. Flexible Decision Structure

Some decision structures and service frameworks have been
formulated in previous studies to solve the multiobjective
problem [26], [62], [62], [69], [69], [70], [78]. However, the
proposed structures are usually defined as bilevel program-
ming [26], [62], [69], [78] or two-stage optimization [62], [69],
[70]. To build realistic BSS decision models and determine
collaborative decisions, a flexible decision structure needs to
be established in the future with the following three aspects:
multiobjective models, hierarchical structures, and optimiza-
tion algorithms. To the best of our knowledge, a flexible
decision structure has not been proposed in previous BSS and
BCS optimization models.

1) Multiobjective Models: Multiobjective models have been
used in BSS decision scenarios in past studies. With the use
of multiobjective models, two or more optimization objectives
can be satisfied. However, these objectives are defined by
the scenarios and participants (see Sections IV-B and IV-C);
hence, hidden attributes and correlations cannot be used to
obtain the globally optimal decision.

2) Hierarchical Structure: Based on the decision scenar-
ios in the BSS operation modes, the current problems are
commonly defined as optimization models with one or mul-
tiple objective values. As discussed in this paper, decision
processes will be crucial in future BSS decision models.
Hence, a hierarchical structure is needed to build decision
models with multiple scenarios and to solve optimization
problems with multiple participants. To solve multiobjective
problems, multilevel decision models have been proposed in
previous works [51], [52], [62], [70], [86], which are a type of
hierarchical structure in the decision process. In future studies,
the hierarchical structure should be applied to both the model
construction and solution optimization procedures.

3) Optimization Algorithms: Because BSS operation
scenarios are defined as complicated optimization models,
comprehensive optimization algorithms should be studied con-
sidering the number of solutions, multiscenario integration,
and interparticipant decision collaboration. First, because of
the increasing EV and BSS/BCS population, the decision

variables grow concurrently. Thus, more efficient algorithms
are needed to solve the NP-hard problem. Second, to handle
multiple scenarios, an algorithm structure is also needed for
decision models with different priorities. Third, when collab-
oration occurs between different participants, a collaboration
algorithm should be proposed to guide the participants to
obtain the global best solutions. Hence, optimization algo-
rithms still need further development.

V. CONCLUSION

In this paper, a comprehensive survey of BSS models for
EVs was presented in terms of the operation modes and deci-
sion scenarios. In particular, the state-of-the-art development
of swapping was introduced, including its current business
operation status worldwide and the advantage of BSS modes,
and some key challenges were summarized. The operation
of BSSs was first classified into four modes with different
combinations of BSSs and BCSs (a single BSS, multiple
BSSs, an integrated BSS and BCS, and multiple BSSs and
BCSs). Under each mode, the flowcharts of the EV, battery,
and charging status were discussed, as well as the specific
operational problems in each mode. Research works on the
BSS operation system were reviewed considering the aspects
of the charging schedule, service policy, construction and
planning, dispatching and routing, and power system. For
each aspect, the BSS mode, decision makers, EV category,
number of battery types, V2G technology, focus, and objective
were summarized and compared in tables. To the best of our
knowledge, this is the first paper to summarize the operation
mode and decision scenarios of BSSs considering realistic
operating procedures and optimization directions, shedding
light on EV BSSs and BCSs. Finally, several research direc-
tions for the future development of BSS models and the
decision methodology were outlined.
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