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Abstract—Predicting the future can significantly improve the
safety of intelligent vehicles, which is a key component in
autonomous driving. 3D point clouds can accurately model 3D
information of surrounding environment and are crucial for intel-
ligent vehicles to perceive the scene. Therefore, prediction of 3D
point clouds has great significance for intelligent vehicles, which
can be utilized for numerous further applications. However, due
to point clouds are unordered and unstructured, point cloud
prediction is challenging and has not been deeply explored in
current literature. In this paper, we propose a novel motion-based
neural network named MoNet. The key idea of the proposed
MoNet is to integrate motion features between two consecutive
point clouds into the prediction pipeline. The introduction of
motion features enables the model to more accurately capture
the variations of motion information across frames and thus
make better predictions for future motion. In addition, content
features are introduced to model the spatial content of individual
point clouds. A recurrent neural network named MotionRNN is
proposed to capture the temporal correlations of both features.
Moreover, an attention-based motion align module is proposed
to address the problem of missing motion features in the infer-
ence pipeline. Extensive experiments on two large-scale outdoor
LiDAR point cloud datasets demonstrate the performance of
the proposed MoNet. Moreover, we perform experiments on
applications using the predicted point clouds and the results
indicate the great application potential of the proposed method.

Index Terms—Point cloud, prediction, autonomous driving.

I. INTRODUCTION

REDICTING the future is an essential capability of
intelligent vehicles, which allows for anticipation of what
will happen in the future and can significantly improve the
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safety of autonomous driving [1]-[6]. 3D point clouds can
provide accurate 3D modeling of the surrounding environ-
ment and have been widely used in numerous applications
(e.g., object detection [7]-[10], semantic segmentation [11]-
[14], and localization [15]-[17]). Compared to existing video
prediction [5], [18]-[20], the prediction of 3D point clouds
can provide an opportunity for a better understanding of
future scenes [21], which can help intelligent vehicles perceive
the environment and make decisions in advance. However,
3D point clouds are unordered and unstructured [22], which
makes the prediction of 3D point clouds more challenging than
video prediction and there is little exploration of point cloud
prediction in the current literature.

Based on the above observations, we study a problem named
Point Cloud Prediction in this paper. Concretely, given a
sequence contains 7 frames of point clouds {Py,---, Pr},
point cloud prediction aims to predict 7, future frames
{Pr+1,---, Pryr,}. The prediction of future point clouds can
be formulated as a per-point motion prediction problem. Intu-
itively, the prediction model should be capable of capturing the
variations of motion information across point cloud frames,
which can benefit from explicitly estimating motion features
between two point clouds. However, the introduction of motion
features in point cloud prediction has not been explored in
existing methods [23], [24].

To address the above problem, we propose a motion-based
neural network named MoNet for point cloud prediction. Dif-
ferent from previous works [23], [24], the key idea of MoNet is
to integrate motion information between two consecutive point
clouds into point cloud prediction. Motion features between
two point clouds are extracted using a motion encoder, which
allows the network to accurately capture the variations of
motion information. Content features of an individual frame
are introduced to model the spatial content of a point cloud
itself, which helps preserve spatial structures of point clouds.
The combination of content and motion features can exploit
complementary advantages and result in better performance.
To capture the temporal correlations of both features across
frames, we propose a recurrent neural network (RNN) named
MotionRNN. Unlike standard RNN and its variants like Long
Short-Term Memory (LSTM) [25] and Gated Recurrent Unit
(GRU) [26] which can only process one-dimensional features,
the proposed MotionRNN associates the states with the coordi-
nates of points to maintain the spatial structure of point clouds.
During the inference pipeline, an attention-based motion align
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module is proposed to estimate the motion features to address
the absence of the next point cloud. The overall architecture
of the proposed MoNet is shown in Fig. 1.

To verify the effectiveness of the proposed method, we per-
form extensive experiments on two large-scale outdoor LIDAR
point cloud datasets, namely KITTI odometry dataset [27]
and Argoverse dataset [28]. Both qualitative and quantitative
results show that the proposed MoNet significantly outper-
forms baseline methods and is capable of effectively predicting
the future point clouds. Besides, the experiments on applica-
tions indicate the great application potential of the proposed
method.

To summarize, our main contributions are as follows:

« A novel motion-based neural network named MoNet is
proposed for point cloud prediction, which can effectively
predict future point clouds.

« Motion features are explicitly extracted and integrated
into point cloud prediction and the combination of
motion and content features results in better performance.
Besides, MotionRNN is proposed to model the temporal
correlations of both features.

o An attention-based motion align module is proposed in
the inference pipeline to estimate the motion features
without future point clouds.

II. RELATED WORKS

We briefly review the most related works to point cloud
prediction, including trajectory prediction, video prediction,
sequential point clouds processing and point cloud prediction.

A. Trajectory Prediction

Trajectory prediction aims to forecast the future trajectories
of dynamic objects (e.g., vehicles, pedestrians). Traditional
trajectory prediction methods are typically based on kine-
matic constraints and road information [29], [30]. However,
the handcrafted rules-based methods are brittle in complex
environments due to the weak modeling capability. Recently,
numerous deep learning-based trajectory prediction methods
have emerged. Among them, recurrent neural network is a
commonly used method to extract temporal features [31],
[32]. Graph convolutional networks (GNN) [33]-[35] and
generative adversarial network (GAN) [36], [37] are utilized
to model spatial correlations and interactions. However, the
above methods are only for the prediction of dynamic objects
rather than the complete future scenes.

B. Video Prediction

Video prediction aims to predict future images given a
sequence of previous frames, which is conceptually analo-
gous to point cloud registration (i.e., predicting the whole
scene in the future). ConvLSTM [38] is the seminal work
in video prediction, which introduced 2D convolutions into
LSTM to extract visual representations. Based on ConvL-
STM, Wang et al. [20] proposed ST-LSTM to memorize spa-
tial appearance and temporal variations simultaneously. Video
pixel network (VPN) [39] utilized PixelCNNs to directly
estimate the discrete joint distribution of the raw pixel values
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for video prediction. Villegas et al. [40] proposed to decom-
pose motion and content and independently capture each
information stream, which is in line with the idea of using both
motion and content features in our work. Eidetic 3D LSTM
(E3D-LSTM) [19] was proposed to integrate 3D convolutions
into RNNs for video prediction and exploit complementary
advantages. Generative adversarial network (GAN) has also
been widely applied in video prediction to improve the quality
of generated images [5], [41]. The key of video prediction
is the process of spatial-temporal correlation between frames,
which also inspires the method design of this paper.

C. Sequential Point Clouds Processing

Processing sequential point clouds is challenging due to that
point clouds are disordered and unstructured. The proposed
method is also a kind of sequential point clouds processing,
while is more focused on the prediction task. FlowNet3D [42]
utilized flow embedding layer to model the correspondence
of points between two point clouds, which is a representative
work to process consecutive point clouds using deep learning-
based method. Liu et al. [43] proposed MeteroNet, which
learns to aggregate information from spatio-temporal neigh-
boring points to learn representations for dynamic point cloud
sequences. In [44], a cross-frame global attention module and
local interpolation module were proposed to capture spatial
and temporal information in point cloud sequences for point
cloud semantic segmentation. In [45], a weight-shared LSTM
model named PointLSTM was proposed to update state infor-
mation for neighbor point pairs to perform gesture recognition.
Choy et al. [46] proposed 4D spatio-temporal convolutional
network for 3D-video perception. Fan er al. [47] provided a
point spatio-temporal (PST) convolution for informative point
cloud sequence representations.

D. Point Cloud Prediction

Point cloud prediction has not been deeply explored in lit-
erature. Fan and Yang [23] proposed PointRNN to model tem-
poral information across point clouds for future point clouds
prediction. They proposed a point-based spatiotemporal-local
correlation named point-rnn to replace concatenation opera-
tion in standard RNN to process moving point clouds. Very
recently, Weng et al. [24] adopted an encoder-decoder archi-
tecture to predict future point clouds and utilizes the predicted
point clouds to perform trajectory prediction. Wencan and
Ko [48] proposed to joint predict and segment the point
cloud, which mainly focused on the semantic segmentation
and the prediction accuracy is similar with [23]. However,
motion features have not been explored in previous point cloud
prediction methods.

III. METHODOLOGY
A. Overall Architecture

Given a point cloud sequence {Pi,---,Pr} € RN*3,
the goal of point cloud prediction is to predict T, future
point clouds {Pr4q,---, PT+T,,} e RV*3, To achieve that,

we propose a novel motion-based neural network named
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Overall architecture of the proposed MoNet. The left part displays the embedding pipeline, where the MECell (Motion Embedding Cell) firstly

extracts content features and motion features and then captures temporal information across point clouds. The right part shows the inference pipeline and the
MICell (Motion Inference Cell) is adopted to replace MECell to predict future frames.

MoNet. As shown in Fig. 1, MoNet can be divided into two
parts, namely embedding pipeline and inference pipeline. The
basic module MECell in the embedding pipeline is utilized
to hierarchically downsample the point clouds and extract
spatial-temporal correlated hidden states across frames. The
embedded hidden states are then passed into the inference
pipeline. Similarly, the key module MICell in the inference
pipeline receives the hidden states of the last frame and
predicts the hidden states of the current frame, which are
then hierarchically upsampled to generate the future motions
of point clouds using the decoder module. We will describe
the two pipelines in detail below.

Denotations: We denote the point coordinates, content fea-
tures and motion features of frame 7 in layer / as X! € RM>*3,

[ ¢ RM*df and M,l c RNIXdlM, where N; is the number
of points in layer /, dlE and dlM are numbers of channels of
content and motion features, respectively.

B. Embedding

As shown in the left part of Fig. 1, the key component of the
embedding pipeline is the MECell (i.e., Motion Embedding
Cell) and the structure is displayed in left part of Fig. 2.
As we mentioned before, content features of an individual
frame and motion features of consecutive point clouds can both
contribute to point cloud prediction. However, previous works
only model the temporal information of point cloud sequence
and do not explicitly extract the motion features between
point clouds. Thus, we explicitly decompose content and
motion features for better prediction Given features and point
coordinates (X!7!, EI71), (Xt+1, t+1) of two consecutive
point clouds from the last layer [ — 1, the content encoder is
firstly adopted to extract point coordinates and content features
(x!,E!), (X', ,, E! ) of current layer /. Then motion encoder
is followed to generate motion features M,l corresponding
to frame ¢, which models the per-point motion information
from frame ¢ to frame ¢ + 1. After that, M/, Ef, Xg, the
states SL1 and coordinates XL] from last frame ¢+ — 1 are
passed into a recurrent neural network named MotionRNN
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Fig. 2. Left: MECell (Motion Embedding Cell). Right: MICell (Motion

Inference Cell).

to simultaneously capture the temporal information of motion
features and content features across point clouds and generate
the states S! of current frame 7.

1) Content Encoder: We adopt a PointNet++ [49]-like
structure to encode the content features of point clouds. Given
X, =1and E; =1 from the last layer, firstly N; points X; ! are sam-
pled from X, - usmg Furthest Point Sampling (FPS). For each
point x; € X f, k neighboring points {xil, s, xf } are searched
in X 5—1 around x; using k-nearest-neighbors (<NN) method to
generate a cluster. The relative coordinates {xi1 —Xi, xf —
x;} and the relative distances {”xi1 —Xill, -, xf‘ — X; |} are
calculated as geometric features of the cluster, where |||
denotes Euclidean distance. The geometric features are then
concatenated with content features {eil, S, ef.‘ } to generate a

feature map, where eij is the content feature corresponding to
xi] . After that, the feature maps of all clusters are passed into
Shared Multilayer Perceptron (Shared-MLP) with maxpool
layer to generate content features Ef of the current layer /.
2) Motion Encoder: Motion encoder is proposed to model
the motion information between two consecutive point clouds.
The input of motion encoder are the point coordinates and

content features (Xl El) (Xt 415 E;1) of two point clouds,
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i41- For
each point x; in Xf, we search k neighboring points in Xﬁ 41
and then use a similar strategy as content encoder to generate
geometric features. The feature map is a concatenation of
geometric features, content features of neighboring points in
X f 41 and content features of the center point x;. After that,
Shared-MLP with maxpool layer are followed to generate
motion features M,l . Intuitively, the content features of two
point clouds and geometric features between two frames all
contribute to the generated motion features, which enables the
motion encoder to capture the changes of contents and point
coordinates across two point clouds. Thus, motion features
of frame ¢ can be considered as a representation of motion
information from frame ¢ to ¢ + 1.

3) MotionRNN: General RNN models like LSTM and GRU
can only process one-dimensional features. However, spatial
information is important in the representation of point clouds.
A one-dimensional global feature is hard to preserve the spatial
structure and local details of point clouds thus is not applicable
for large-scale point cloud prediction. Based on the above
consideration, we propose a novel recurrent neural network
named MotionRNN for point cloud prediction. The key idea of
MotionRNN is that the states correspond to point coordinates
one by one and the content and motion features are combined
to update the states. The inputs of MotionRNN are the points
XL] and states SL] from last frame, the points X!, content
features Ef and motion features Mtl of current frame and the
output are the points X! and states S! of current frame.

We provide two versions of MotionRNN, namely Motion-
GRU and MotionLSTM. Taken MotionLSTM as an example,
the states S! consists of hidden states H/ € RN 47 and cell
states C! € RM*4 For each point in X!, k neighboring
points are searched in X 571 and the similar strategy in content
encoder is adopted to generate the geometric features Gf and
also clusters. Denote the hidden state and cell state of clusters
as I-_I,lf1 and C_’L], then the updates for MotionLSTM at #-th
step in layer / can be formulated as:

and the output is the motion features from X! to X’

I'=¢ (maxpool(MLP([c';ﬁ, A, M, Ef])))
Fl =0 (maxpool(MLP([Gﬁ, al, M, Ef])))

0,1 =0 (maxpool(MLP([Gﬁ, I:I,l_l, M,l, Ef])))

C! | = maxpool(MLP([G!, C!_|1))
C~‘Il = tanh (maxpool(MLP([Gi, I:I,l_l, M,l, Ef])))
cl=Fol_+1lod!
H! = 0! © tanh(C?) (1)

where o (+), [-] and © represent Sigmoid function, concatena-
tion operation and Hadamard product, respectively. Similarly,
the updates for MotionGRU can be represented as Eq. 2, where
the states S! consists of only hidden states H, .

Zl=0 (maxpool(MLP([c';f, al M, Ef])))

Rl=¢ (maxpool(MLP([c';ﬁ, al M, Ef])))

13111_1 maxpool(MLP([Gﬁ, 1-?,1_1]))
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A! = tanh(MLP((R' © A |, M!, EIY))
H =z oH_+(1-2z)oH )

Compared to standard RNN models, the proposed Motion-
RNN corresponds states to coordinates one by one. This
representation can well maintain the spatial structure of point
clouds, thus is more applicable for point cloud prediction.
Different from PointRNN [23], the motion features and content
features are incorporated into the recurrent neural network,
which enables the network to simultaneously capture the
variations of motion information and temporal correlations of
spatial contents across frames.

C. Inference

In the embedding pipeline, the motion features and content
features are extracted and the temporal correlations are mod-
eled using the proposed MotionRNN. In general prediction
models, the process in the inference pipeline is exactly the
same as that in the embedding pipeline, where the output states
of the last frame of the embedding pipeline are duplicated
to the first cell of the inference pipeline to predict the first
future frame [38], [S0]. However, this general strategy is not
applicable to our method. Noting that the motion features of
frame ¢ are generated using the content features of frame ¢
and 7 + 1. However, the next frame 7 + 1 does not exist for
the last frame T of the embedding pipeline so that the motion
features of frame 7 is not available.

To address the above problem, we propose MICell (i.e.,
Motion Inference Cell) in the inference pipeline to replace the
MECell in the embedding pipeline. The architecture of MICell
can be seen in the right part of Fig. 2. Given (Xﬁj, Efj)
and (Xﬁ_l, Ef_l), the content encoder and motion encoder
are the same as that in MECell. However, to overcome the
lack of motion features of frame ¢, a motion align module is
applied after the motion encoder to align the motion features
of frame t — 1 to frame 7, which is the only difference between
MECell and MICell. Then the estimated motion features M/
and content features E! with coordinates X! are input into
MotionRNN to generate the states S,l. Finally, the decoder is
followed to decode the hidden states of frame ¢ to the 3D scene
flow SF; of points in P; and the future point cloud P4 can
be calculated as P41 = P; + SF;. Here we adopt the Feature
Propagation module in PointNet++ [49] as the decoder and
decode the hidden states in a coarse-to-fine manner.

1) Motion Align: Motion align module is introduced to
estimate motion features M! of current frame ¢ from the
motion features of last frame. Noting that the motion fea-
tures are corresponding to the points coordinates one-by-
one. To estimate the motion features, we make two basic
assumptions based on the fact that the time between two
consecutive point clouds is small: (1) From frame t — 1 to
frame ¢, the movement of a point is limited; (2) From frame
t — 1 to frame 7, the motion feature of a point will not change
significantly. Based on the above two assumptions, the motion
feature of a point in the current frame can be estimated given
the motion features of its neighboring points in the previous
frame.
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Fig. 3. The architecture of the proposed motion align module. The left
circle represents a k-nearest-neighbors cluster, where the red point is a point
in frame ¢, blue points are neighboring points in frame # — 1 and white points
represent other points in frame 7.

Here we adopt an attention mechanism to perform the
estimation of motion features. The network architecture of
the proposed motion align module is shown in Fig. 3. Taken
a point xtl in Xf as an example, k neighboring points are
searched in Xﬁ_l and the geometric features g/ € R¥** are
extracted using the same operation as described in the content
encoder. The geometric features are then concatenated with
motion features rhﬁ_l e RFX4" of the neighboring points to
produce a feature map. Shared-MLP and maxpool layer with
a Softmax function are followed to predict attentive weight
for each neighbor point. The motion feature m for a point
in frame 7 can be represented as the welghted sum of the
motion features of the neighboring points in frame ¢ — 1.
This operation will be applied on all points in X f to generate
motion features Mtl Intuitively, the attention mechanism can
assign higher weights to the neighboring points that are more
likely to be corresponding to the center point x,l. As a result,
the motion align module can reasonably estimate the motion
features of frame ¢.

2) Loss: We adopt Chamfer Distance (CD) between the
ground truth point cloud P, € RV*3 and the predicted point
cloud 13, € RN>3 as the loss function. Chamfer Distance [51]
is a commonly used metric to measure the similarity between
two point clouds, which can be formulated as Eq. 3, where
Il denotes Euclidean distance.

1 . 2 1 . 12
L=— Z min H)E’—fo +— min H)?’ —x/ H 3)
N “~— xiep, N =~ ;i ic P
xieP x/eb
IV. EXPERIMENTS
A. Datasets
The proposed method is evaluated on two large-

scale outdoor LiDAR datasets, namely KITTI odometry
dataset [27] and Argoverse dataset [28]. KITTI dataset con-
tains 11 sequences (00-11) with ground truth, and we use
sequence 00 to 05 to train the network, 06 to 07 to validate and
08 to 10 to test. We use the 3D tracking branch in Argoverse
dataset and follow the default splits to train, validate and test
the networks. For each dataset, we sample 10 consecutive point
clouds as a sequence, where the first 5 frames are the input
point clouds and the last 5 frames are used as the ground truth
of predicted point clouds.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 8, AUGUST 2022

B. Baseline Methods

We compare our method with several baseline methods
to demonstrate the performance. (1) PointRNN (LSTM)
and PointRNN (GRU): PointRNN is proposed in [23] and
we call the two variations using LSTM and GRU as
PointRNN (LSTM) and PointRNN (GRU). The networks
are re-trained on the two datasets due to the different
pre-processing of point clouds in [23]. (2) PointNet++
(LSTM) and PointNet++ (GRU): We define two addi-
tional baselines based on the encoder-decoder architecture of
PointNet++ [49]. Firstly the input point clouds are encoded
into one-dimensional global features. Then, LSTM or GRU is
utilized to model the temporal information and the generated
global feature is decoded into the predicted per-point motions
to generate future point clouds. (3) Scene flow: We utilize the
3D scene flow estimation network FlowNet3D [42] to estimate
the 3D scene flow between the last two input point clouds and
use the estimated scene flow to predict the future point clouds.
FlowNet3D is fine-tuned on the two datasets using Chamfer
Distance as loss function to achieve better performance.

C. Implementation Details

Noting that we provide two versions of MotionRNN named
MotionLSTM and MotionGRU, and MoNet using the two
versions are denoted as MoNet (LSTM) and MoNet (GRU),
respectively. We stack multi-layer MECell and MICell to con-
struct a hierarchical structure and we use a 3-layer architecture
in our implementation as shown in Fig. 1. The points and
states of last frame for the first MECell are initialized to
zero and the input content features of the first layer (i.e., the
input point clouds) are also initialized to zero. We summarize
the details of the network structure of the proposed MoNet
in Table I. MotionLSTM is omitted here due to that the
parameters of MotionLSTM are the same as MotionGRU.
Layer represents different layers in the hierarchical architec-
ture, Channels denotes the output channels of Shared-MLP
and k is the number of neighboring points. The network is
implemented using PyTorch [52] and Adam [53] is used as the
optimizer. The point clouds are downsampled to 16384 points
using random sampling during training. The network is trained
and evaluated on a single NVIDIA GeForce RTX 2080Ti.

D. Qualitative Evaluation

We provide a sample of point cloud prediction results of
different methods on KITTI odometry dataset in Fig. 4 to
demonstrate the performance. The point clouds are down-
sampled to 32768 points during pre-processing. The images
from left to right display the future point clouds from frame
t = 1tot =5 and different rows represent the results of
different methods. For a fair comparison, all of the methods
using recurrent neural network are based on GRU. Besides,
we zoom in an area containing the point cloud of a vehicle
for better visualization. According to Fig. 4, the point clouds
predicted by our MoNet (GRU) are more consistent with the
ground truth point clouds than other baseline methods. From
the zoomed-in point clouds, the proposed method precisely
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Fig. 4. Qualitative visualization of predicted point clouds of different methods on KITTI odometry dataset. From left to right are the predicted future point
clouds from r = 1 to r = 5. Rows from top to bottom display the ground truth point clouds and the predicted results of MoNet (GRU), PointRNN (GRU),

PointNet++ (GRU) and Scene flow.

TABLE I
DETAILS OF THE NETWORK STRUCTURE OF THE PROPOSED MONET

Model Layer Channels k

1 [32,32,64] 32

Content encoder 2 [64,64,128] 16
3 [128,128,256] 8

1 [64,64,64] 16

Motion encoder 2 [128,128,128] 8
3 [256,256,256] 8

1 [128] 16

MotionGRU 2 [256] 16

3 [512] 16

1 [32,16] 16

Motion align 2 [64,32] 16
3 [128,64] 16

predicts the position of the vehicle and the geometry of the
point cloud is well preserved. Compared with our method,
the point clouds of the vehicle from PointNet++ (GRU)
are deformed, which is due to the poor representative ability
of one-dimensional global features. PointRNN (GRU) cannot
correctly predict the position of the vehicle due to the lack
of explicit modeling of motion information. Based on the
qualitative results, the proposed method can precisely predict
the motion of the point clouds and well preserve the details
of point clouds.

E. Quantitative Evaluation

1) Evaluation Metrics: We adopt two metrics to evaluate the
performance, namely Chamfer Distance (CD) [51] and Earth
Mover’s Distance (EMD) [54]. CD is described previously
in Eq 3. EMD is also a commonly used metric to compare
two point clouds, which is implemented by solving a linear
assignment problem between two point clouds. Given two
point clouds P; € RV*3 and P, € RV*3, EMD can be
calculated as:

1
EMD = in — x —¢(x
¢:g,n—l>lP, N AZA ”x ¢(x)H

XJeP;j

“)

where ¢ : f’t — Py is a bijection from 13, to P;. Due to
the high computational complexity of EMD, the point clouds
are downsampled to 16384 using random sampling during
pre-processing in quantitative evaluation.

2) Chamfer Distance: We calculate the Chamfer Dis-
tance (CD) between predicted point clouds and ground truth
ones on 5 future frames on KITTI and Argoverse dataset and
display the results in Fig. 5. For better comparison, we display
the results using LSTM and GRU on the left two images
and right two images in Fig. 5, respectively. The CD of our
methods is lower than other baseline methods by an obvious
margin on two datasets. For example, the average CD on
KITTI dataset of MoNet (LSTM) is about 30% smaller than
the best baseline PointRNN (LSTM). The Chamfer Distance
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the results using LSTM and the right two images show the results using GRU.

(c) KITTI odometry dataset (GRU) (d) Argoverse dataset (GRU)
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Earth Mover’s Distance (EMD) of the proposed methods and baseline methods on KITTI odometry dataset and Argoverse dataset. The left two

images display the EMD using LSTM and the right two images show the results using GRU.

TABLE I

COMPUTATION TIME (MS) FOR PREDICTING 5 FRAMES WITH DIFFERENT
NUMBER OF POINTS

Number of points 16384 32768 65536
MoNet (GRU) 91 129 280
PointRNN (GRU) 89 1255 268.7
PointNet++ (GRU) 48 86 233

Scene flow 64 115 216

increases as the number of predicted frames increases, which
is due to the increase in uncertainty. However, the growth of
CD of our method is much slower than other methods, which
demonstrates the robustness of the proposed method.

3) Earth Mover’s Distance: Earth Mover’s Distance (EMD)
on two datasets are shown in Fig. 6. Compared with CD, EMD
is more sensitive to the local details and the density distribution
of the point clouds [55]. According to Fig. 6, the proposed
MoNet significantly outperforms other baseline methods on
this metric. For example, the EMD of the 5th frame on
Argoverse dataset of our MoNet (GRU) is about 8% smaller
than PointRNN (GRU) and 15% smaller than PointNet++
(GRU). The lower EMD indicates that our methods preserve
the local details of point clouds better, which is also verified
by the qualitative experiments results.

F. Efficiency

Noting that the content features and motion features of pre-
vious frames do not need to be recalculated when a new point
cloud is generated by the LiDAR. The computation time for
predicting 5 future frames with 16384, 32768 and 65536 points
is shown in Table II. According to the results, the proposed

TABLE III

PRECISION, AVERAGE EUCLIDEAN DISTANCE (AED) AND AVERAGE
HEADING ERROR (AHE) OF 3D OBJECT DETECTION RESULTS FROM
PREDICTED POINT CLOUDS OF DIFFERENT METHODS

Method Precision AED (m) AHE (°)
MoNet (GRU) 0.763 0.173 2.267
PointRNN (GRU) 0.498 0.232 2.862
PointNet++ (GRU) 0.458 0.237 3.039
Scene flow 0.444 0.231 2.887

method has a similar computation time with PointRNN, how-
ever, achieves much better performance. Specifically, the com-
putation time of our method is 280 ms even with 65536 points,
which is lower than the time required for typically LiDAR
(10 Hz) to generate 5 frames.

G. Applications

The predicted point clouds can be applied to many applica-
tions like 3D object detection and semantic segmentation.

1) 3D Object Detection: For 3D object detection, we adopt
PV-RCNN [7] to detect cars from the original point clouds
and the predicted ones. We use a metric named precision to
evaluate the quality of the predicted point clouds. A car is
detected if the predicted score is larger than a threshold 7, =
0.9. For each detected car in the original point cloud, we search
for the nearest detection in the predicted point clouds and if
the 2D Euclidean distance is within a threshold 7, = 0.5m
and the heading error is within 7p = 10°, the detection in
the predicted point clouds is considered as valid and the
precision is defined as the ratio of the valid detections. Besides,
we also calculate the average Euclidean distance (AED) and
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Fig. 7. Visualization of 3D object detection on the predicted point clouds and ground truth point clouds. The red bounding boxes represent the detected cars.

average heading error (AHE) of valid detections to evaluate
the accuracy of the predicted point clouds. The experiment is
performed on Sequence 08 of KITTI dataset and the number of
point clouds is set to 65536. The results are shown in Table III.
According to Table III, the average precision across 5 frames
of the proposed method is 0.763, which outperforms other
baseline methods by a significant margin and the results also
demonstrate the high consistency between the predicted point
clouds and the original ones. The low AED and AHE show
that the valid detections in the predicted point clouds are close
to the original ones. We also display some visualization results
of the detections in Fig. 7. The images from left to right show
the point clouds of future frames + = 1 to r = 5 and two
future point cloud sequences are displayed here. According to
the visualization results, the detection results on the predicted
point clouds are highly consistent with that on the ground
truth point clouds. Almost all of the cars detected in the ground

truth point clouds are detected in the predicted ones.
2) Semantic Segmentation: We perform semantic segmen-

tation using RandLA-Net [11] on the predicted and ground
truth point clouds to further demonstrate the effectiveness of
the proposed method. We train RandLA-Net on sequence 00 to
05 and validate it on sequence 06 to 07 of KITTI odometry
dataset [27]. We display visualization results of two future
point cloud sequences of Sequence 08 of KITTI odometry
dataset in Fig. 8. Due to the lack of ground truth semantic
segmentation labels on predicted point clouds, quantitative
evaluation is omitted here. According to Fig. 8, the semantic
segmentation results on the predicted point clouds are highly
similar to that on the ground truth point clouds.

The experiments on the two applications show that the
predicted point clouds can be used for further perception and
indicate the great application potential of the proposed method.

H. Ablation Study

1) MotionLSTM or MotionGRU?: Noting that we provide
two versions of MotionRNN (i.e., MotionLSTM and Motion-

TABLE IV

AVERAGE CD (M) AND EMD (M) OF MONET (LSTM) AND MONET (GRU)
ON TWO DATASETS

Dataset Model CD EMD
MoNet (LSTM)  0.573  91.79

KITTL  \oNet (GRU) 0554 91.97
Arcoverse  MONet (LSTM) 2,105 36821
gov MoNet (GRU)  2.069  364.14

TABLE V

AVERAGE CD (M) AND EMD (M) OF MONET (GRU), WITHOUT (W/O)
MOTION FEATURES AND W/O CONTENT FEATURES ON TWO DATASETS

Dataset Options CD EMD
full model 0.554 91.97

KITTI w/o motion features  0.646 92.98
w/o content features  0.637 93.83

full model 2.069 364.14

Argoverse  w/o motion features  2.200  372.48
w/o content features  2.158  366.40

GRU) to model the temporal correlations. To compare the
performance of the two versions, we calculate the average
Chamfer Distance (CD) and Earth Mover’s Distance (EMD)
of 5 future point clouds of MoNet (LSTM) and MoNet (GRU)
and display the results in Table IV. According to the results,
the performance of MoNet (LSTM) and MoNet (GRU) is
highly similar, which indicates that the proposed method is
not sensitive to different recurrent neural network architec-
tures. The performance of MoNet (GRU) is slightly better
than MoNet (LSTM). Besides, the network parameters of
MotionGRU are less than that of MotionLSTM, which also
results in a faster inference speed and lower memory usage.
Overall, MoNet (GRU) can be a better choice for point cloud
prediction.
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V. CONCLUSION

In this paper, we explore a problem named Point Cloud
Prediction, which aims to predict future frames given past
point cloud sequence. To achieve that, we propose a novel
motion-based neural network named MoNet. Specifically, the
proposed MoNet integrates motion features into the prediction
pipeline and combines that with content features. Besides,
a recurrent neural network named MotionRNN is proposed to

Fig. 8. Visualization results of semantic segmentation on the predicted point clouds and ground truth point clouds.
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Fig. 9. From left to right are future frames r = 1, 3, 5. From top to bottom
are results of ground truth, full MoNet (GRU), model w/o motion features
and w/o content features.

2) Motion Features and Content Features: As we claimed
before, motion features and content features can both con-
tribute to the prediction of future point clouds. To demonstrate
the significance of the combination of motion and content
features, we remove the motion features and content features
separately to compare the performance. The rows from top to
bottom of Fig. 9 display the point clouds of a vehicle from
ground truth point clouds, the results of full MoNet (GRU) and
the results of the model without motion and content features.
The model without motion features results in biased motion
estimation. The model without content features can correctly
predict the motion, however, the point clouds are slightly
deformed. The average CD and EMD of MoNet (GRU) with
and without motion features and content features are shown in
Table V. According to the results, the combination of content
and motion features significantly improves the performance of
the proposed MoNet. For example, the CD without motion fea-
tures and content features are 0.092 m and 0.083 m higher than
full MoNet (GRU) on KITTI dataset, respectively. Besides, the
EMD of the full model is also lower than the model without
motion or content features. Overall, the combination of content
and motion features leverages the strength of both features to
obtain precise motion estimation and better preservation of
local details.

capture the temporal correlations of both features across point
cloud sequence and a novel motion align module is adopted
to estimate motion features without future point cloud frames.
Both qualitative and quantitative experiments are performed on
KITTI odometry dataset and Argoverse dataset to demonstrate
the performance of the proposed method. Abundant ablation
studies show that the combination of motion and content
features enables the model to precisely predict the motions
and also well preserve the structures. Moreover, experiments
on applications reveal the practical potential of the proposed
method.
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