arXiv:2111.02964v1 [cs.RO] 4 Nov 2021

Using Graph-Theoretic Machine Learning to Predict
Human Driver Behavior

Rohan Chandra, Aniket Bera, and Dinesh Manocha

Abstract—Studies have shown that autonomous vehicles (AVs)
behave conservatively in a traffic environment composed of
human drivers and do not adapt to local conditions and socio-
cultural norms. It is known that socially aware AVs can be
designed if there exists a mechanism to understand the behaviors
of human drivers. We present an approach that leverages
machine learning to predict, the behaviors of human drivers.
This is similar to how humans implicitly interpret the behaviors
of drivers on the road, by only observing the trajectories of their
vehicles. We use graph-theoretic tools to extract driver behavior
features from the trajectories and machine learning to obtain
a computational mapping between the extracted trajectory of a
vehicle in traffic and the driver behaviors. Compared to prior
approaches in this domain, we prove that our method is robust,
general, and extendable to broad-ranging applications such as
autonomous navigation. We evaluate our approach on real-world
traffic datasets captured in the U.S., India, China, and Singapore,
as well as in simulation.

I. INTRODUCTION

Autonomous Vehicles (AVs) are an active area of research,
successfully employing tools from machine learning [27],
perception [30], planning and driver behavior modeling [52].
Recently, there have been multiple breakthroughs in perception-
based tasks in autonomous driving in areas that include object
detection [28], tracking [6], [10], trajectory prediction [11], [7],
[12], and planning [14], [40]. While these advances have been
widely successful, current AVs still lack the ability to interact
with multiple human drivers in dense traffic scenarios [13]
such as intersections and merging on highways.

As a precautionary measure, AVs are designed to behave
conservatively in order to maximize safety [53]. A recent
study [55] conducted real-world AV experiments and collected
factors that may associate with how people’s opinions change
before and after experiencing a ride in an AV. However,
conservative AV behavior is not always desirable or necessary,
particularly given potential consequences like low efficiency
and shortsighted behavior, which frequently frustrate other
human drivers [58]. For example, in [58], a Tesla driver is
observed to be executing a lane-change maneuver. The Tesla
AutoPilot slows down to wait for an excessively large gap
in the target lane thereby blocking the traffic behind it in the
current lane. This causes frustration and inefficiency among the
blocked drivers. Furthermore, some studies [53] have pointed
out that aggressive driving for AVs is even desirable in certain
situations like reconnaissance, material transport, emergency

Manuscript received January 31, 2021; revised October 3, 2021. This work
was supported in part by ARO Grants WO11NF1910069 and WO11NF1910315,
Semiconductor Research Corporation (SRC), and Intel.

All authors are with the the Department of Computer Science, University
of Maryland, College Park, MD, 20742, USA. e-mail: rchandrl @umd.edu.

handling, or efficiency-sensitive application. Sometimes it is
even desirable simply based on human preference.

There is prior work on predicting human driver behavior
from trajectory data using machine learnings [47], [52], [9],
[8], [5]. The two main approaches for this task include inverse
reinforcement learning (IRL) and machine learning (regression
and clustering techniques). Due to the data-driven nature of
these methods, they incur two predominant limitations, which
are inherent to most learning-based techniques in artificial
intelligence research. First, these data-driven methods are
constrained to a narrow range of traffic environments and
fail to generalize to different environments. Furthermore, it
has been shown both empirically and theoretically [4] that
data-driven methods are not robust to fluctuations or noise in
the sensor measurements (GPS, lidars, depth cameras etc.).
These limitations prevent the current driver behavior prediction
systems from being used in other AD tasks such as navigation.

Furthermore, in autonomous driving, it is important to handle
the unpredictability and aggressive nature of human drivers
during navigation. While there is considerable research on
designing navigation algorithms [51], much of it assumes little
to no interaction with human drivers. However, in real-life
circumstances, drivers may act irrationally by moving in front
of other vehicles, suddenly changing lanes, or aggressively
overtaking. One such instance occurred in 2016 when an AV
by Google collided with an oncoming bus during a lane change
maneuver [19]. The AV assumed that the bus driver was going
to yield; instead, the bus driver accelerated. Therefore, we
need navigation methods that can account for different driver
behaviors.

Main Contributions: In light of the limitations presented
by data-driven methodologies, we present a fundamentally
different approach to driver behavior prediction that can
generalize to widely varying traffic scenarios while also being
robust to realistic fluctuations in sensor noise. Our model
not only alleviates the problems of prior approaches in order
to predict human driver behavior, but also extends existing
navigation research to behaviorally-guided navigation. Our
main contributions include:

1) A new approach to predict driver behavior from raw ve-

hicle trajectories using graph-theoretic machine learning.
In this approach, called StylePredict, we use the concept
of vertex centrality functions [48] and spectral analysis to
measure the likelihood and intensity of driving styles such
as overspeeding, overtaking, sudden lane-changes, etc.
This process generates driver behavior features that can
then be used for training machine learning algorithms.

2) Extending current navigation research [51] to

behaviorally-guided local navigation. This novel

approach to navigation computes a local trajectory
for the AV, taking into account the aggressiveness or
conservativeness of human drivers. For example, the AV
learns to slow down around aggressive human drivers
while confidently overtaking conservative drivers.
StylePredict can be deployed in real-world traffic. We
test extensively on real-world traffic datasets (Section V-B,
Table III) collected in India, Singapore, U.S.A, and China.
These datasets contain sensor noise (latency, precision, presence
of outliers, etc.) identical to that expected in the real world. In
Section IV-E and Table II, we demonstrate robustness of our
method to these sensor issues.

II. RELATED WORK
A. Graph-based Machine Learning

Graph-based machine learning is a sub-field in machine
learning where the input data is organized as graphs. While the
core learning algorithms themselves, including neural networks,
LSTMs [29], and convolutional neural networks, remain the
same, they are now referred to as graph neural networks
(GNNs) [62], Graph-LSTMs [12], and graph convolutional net-
works (GCNs) [63], respectively. Graph-based machine learning
algorithms have been widely used in trajectory prediction,
computer vision and natural language processing [64]. GNNs,
Graph-LSTMs, and GCNs, however, are “deep” networks and
require a huge amount of training data in order to produce
meaningful results.

In this work, we instead use “shallow” graph-based machine
learning, which includes learning algorithms based on logistic
regression [44], multi-layer perceptrons, and support vector
machines [18], which require fewer computational resources
than deep learning-based methods.

B. Data-Driven Methods for Driver Behavior Prediction

Data-driven methods broadly follow two approaches. In the
first approach, various machine learning algorithms including
clustering, regression, and classification are used to predict or
classify the driver behavior as either aggressive or conservative.
These methods have mostly been studied in traffic psychology
and the social sciences [46], [54], [61]. So far, there has been
relatively little work to improve the robustness and ability to
generalize to different traffic scenarios, which require ideas
from computer vision and robotics. In this work, we bridge the
gap between robotics, computer vision, and the social sciences
and develop an improved graph-theoretic machine learning
model for human driver behavior prediction that alleviates the
limitations of prior approaches.

The second approach uses trajectory data to learn reward
functions for human behavior using inverse reinforcement
learning (IRL) [47], [52], [49]. IRL-based methods, however,
have certain limitations. IRL requires large amounts of training
data and the learned reward functions are unrealistically tailored
towards scenarios only observed in the training data [47], [49].
For instance, the approach proposed in [47] requires 32 million
data samples for optimum performance. Additionally, IRL-
based methods are sensitive to noise in the trajectory data [52],
[49]. Consequently, current IRL-based methods are restricted
to simple and sparse traffic conditions.

C. Navigation Research in Autonomous Driving

Navigation in robotics is a well studied area of research.
At a broad level, navigation methods can be categorized
into approaches for vehicle control, motion planning, and
end-to-end learning-based methods. Techniques for vehicular
control methods assume apriori an accurate motion model
of the vehicle. Such methods can be used for controlling
vehicles at high speeds or during complex maneuvers. Motion
planning methods can be further sub-divided into lattice-
based [25], probabilistic search-based [32], or use non-linear
control optimization [37] approaches.

In addition to vehicular control and motion planning methods,
many learning-based techniques are also used [23], [24],
[22]. These methods are based on reinforcement learning
where one finds an optimal policy that directly maps the
sensor measurements to control commands such as velocity
or acceleration and steering angle. Li et al. [35] formulate
the navigation problem as one of action prediction using the
proximity relationship between agents along with their visual
features.

However, the above methods do not consider the interaction
among human drivers. Typically, in order to model dynamic
obstacles, prior methods have either assumed a linear constant
velocity model [22]. Our behavior-based formulation can be
integrated with these methods. We refer the reader to [51] for
a detailed review on recent planning and navigation methods.

D. Interpretation of Driver Behavior in Social Science

Many studies have attempted to define driver behavior for
traffic-agents. Sagberg et al. [50] extract and summarize the
common elements from these definitions and propose a unified
definition for driver behavior. We incorporate this definition in
our driver behavior model.

Definition II.1. (Sagberg et al. [50] Driver behavior refers
to the high-level “global behavior”, such as aggressive or
conservative driving. Each global behavior can be expressed as
a combination of one or more underlying “specific styles”. For
example, an aggressive driver (global behavior) may frequently
overspeed or overtake (specific styles).

The main benefit of Sagberg’s definition is that it allows for
a formal taxonomy for driver behavior classification. Specific
indicators can be classified as either longitudinal styles (along
the axis of the road) or lateral (perpendicular to the axis of
the road). We can formally characterize driver behavior by
mathematically modeling the underlying specific indicators.

Problem I1.1. In a traffic video with N vehicles during any
time-period At, given the trajectories of all vehicles, our
objective is to mathematically model the specific styles for
all drivers during At.

In Section IV-B, we elucidate on “mathematically modeling”
a specific style. In Section III, we construct the “traffic-
graph” data structure used by our approach. We introduce
the ideas of vertex centrality in Section IV-A followed by a
presentation of our main approach in Section I'V-B. We describe
the experiments and results in Section V. We conclude the
paper in Section VII.

III. REPRESENTING TRAFFIC DATA USING GRAPHS

The behavior of drivers depend on their interactions with
nearby drivers. StylePredict models the relative interactions
between drivers by representing traffic through weighted
undirected graphs called “traffic-graphs”. In this section, we
describe the construction of these graph representations. If we
assume that the trajectories of all the vehicles in the video are
extracted using state-of-the-art localization methods [2] and are
provided to our algorithm as an input, then the traffic-graph,
G, at each time-step ¢ can be defined as follows,

Definition IIL.1. A “traffic-graph”, G;, is a dynamic, undi-
rected, and weighted graph with a set of vertices V(t) and
a set of edges E(t) C V(t) x V(t) as functions of time
defined in the 2-D Euclidean metric space with metric function
f(z,y) = ||z — yl|*. Two vertices v;,v; € V are connected
if and only if f(vi,vj) < p, where p is a distance threshold
parameter.

We use N to represent the maximum number of vehicles
tolerated by our system. N is typically fixed as some large in-
teger (e.g., 1000) for each vehicle. Most real world commercial
and academic systems use large high-performing computers
to run computations involving large matrices [17]. Therefore,
large values of N do not impose a computational burden on
our approach. Road-agents at each time instance ¢ in a traffic
scenario can be represented using a traffic-graph G;. Each
vertex in the graph G, is represented by the vehicle position
in the global coordinate frame, i.e. v; + [z;,9;] " € R%. The
spatial distance between two vehicles is assigned as the cost
of the edge connecting the two vehicles.

In computational graph theory, every graph G can be
equivalently represented by an adjacency matrix, A. For a
particular traffic-graph G, the adjacency matrix A is given
by A(i,5) = (v, v;) if f(v,v;) < p,i # j (otherwise
0). Adjacency matrices allow linear vector operations to be
performed on graph structures, which are useful for analyzing
individual vertices. For example, each non-zero entry in the j®
column corresponding to the i row of the adjacency matrix
stores the relative distance between the i and ;™ vehicles. A
is initialized as an N X N identity matrix.

However, considering the traffic-graph and its corresponding
adjacency matrix only at a current time-step ¢ is not useful in
describing the behavior of a driver. The behavior of a driver
also depends on their actions from previous time-steps. To
accommodate this notion, at each time-step ¢, we populate A
with principle sub-matrices A; of size ¢ X t,

_ A -
Az
Ay ar ais 0
a1 a2 az3
ag; asz 1
0 1

ANxN

The sub-matrix for the next time-step, A;11, is obtained by
the following update,

(t+1) x (t+1)

| [Addexe | O
At“{ 0 1

where 60(8)T € RUADX(+D) s a sparse update matrix and
Jd,0(9) are update vectors defined as follows,

} + 60(6) 7, (1)

[6117#0 B 011707
oy oy
011 O 0 d1
§= o(d) =
01 0 0 én
L 0 1_ (t+1)x2 -1 0 4 (t+1)x2

Here, o is a permutation that swaps the two columns in .
If the j row of § is non-zero, then that implies that the j®
road-agent has formed a new edge with a new vehicle that
came into its proximity; this new vehicle will be added to
the current traffic-graph. This new vehicle is identified by a
unique ID number provided by the localization sensor (GPS or
lidar). For example, if a vehicle with ID 1(j = 1) has formed a
new edge connection with another vehicle. This corresponds to
011 # 0. The update rule in Equation 1 ensures that a vehicle
adds edge connections to new vehicles while retaining edge
connections with previously seen vehicles.

A candidate vehicle is categorized as “new” with respect
to a vehicle if there does not exist any prior edge connection
between the vehicles and the speed of the old vehicle is greater
than the candidate vehicle. If an edge connection already exists
between the vehicle, then the candidate vehicle is said to have
been “observed” or “seen”. The dimension of A is constant
(N x N). Once the upper limit N has been achieved (/N
different vehicles have been observed), then A is re-initialized
as an N x N identity matrix. As the behaviors of each vehicle
are determined in an online manner, “erasing” the old vehicles
from the matrix to make way for new vehicles does not affect
their behavior computation; their behaviors have already been
computed and stored. If the number of vehicles is less than N,
then the “unused” entries in A are simply left as 0. Finally,
vehicles appearing and disappearing from the field of view of
the ego-vehicle does not impact the size of A. If a vehicle
does not remain in the field of view of the ego-vehicle for a
sufficient amount of time, then our algorithm does not consider
that vehicle in the adjacency matrix A.

IV. STYLEPREDICT: MAPPING TRAJECTORIES TO
BEHAVIOR

A. Centrality Measures

In graph theory and network analysis, centrality mea-
sures [48] are real-valued functions (: V — R, where
V denotes the set of vertices and R denotes a scalar real
number that identifies key vertices within a graph network.
So far, centrality functions have been restricted to identifying
influential personalities in online social media networks [42]

Form traffic-graphs at each

Read the positions of time step and compute all

Measure style likelihood
and intensity

Compute centrality
polynomials

C

all vehicles graph matrices
A B ;
| .| Laplacian
' . i| from
Traffic- ot—1
Graph at :
current -
time
= =~
s I = -
Traffic Snapshots Adjacency Degree Laplacian
over Matrix Matrix Matrix

t time-steps

60 90 100

70 80
Frame Number

01 Overspeeding

0.14
30.12
50.10
So.08

Perform
polynomial
regression

Compute Analyze

derivatives

Centrality
Measures

0.06
0.04
0.02

65 66 67 68 69 70 71 72
Frame Number

Figure 1: Overview: The autonomous vehicle reads the positions of all vehicles in realtime. The positions and corresponding spatial distances
between vehicles are represented through a traffic-graph G; (Section IIT). We use the centrality functions defined in Section IV-A to model
the specific driving style corresponding to the global behaviors as outlined in Table 1.

Table I: Definition and categorization of driving behaviors [50]. We
measure the likelihood and intensity of specific styles by analyzing
the first-and second-order derivatives of the centrality polynomials.

Global Specific Centrality SLE SIE
Overspeeding Degree (¢4) 11 Derivativel 12" Derivativel
Aggressive Overtaking / SLC ~ Closeness (¢.) |1% Derivativel 124 Derivativel
Weaving Closeness ((.) Extreme Points e-sharpness
Driving Slowly Degree (¢4) 11 Derivativel 12" Derivativel

Conservative

No Lane-change Closeness ((.) I1% Derivativel (2" Derivativel

and key infrastructure nodes in the Internet [33], to rank web-
pages in search engines [43], and to discover the origin of
epidemics [57]. There are several types of centrality functions.
The ones that are of particular importance to us are the
degree centrality and the closeness centrality denoted as (4(t)
and (.(t), respectively. These centrality measures are defined
in [8] (See section III-C). Each function measures a different
property of a vertex. Typically, the choice of selecting a
centrality function depends on the current application at hand.
In this work, the closeness centrality and the degree centrality
functions measure the likelihood and intensity of specific
driving styles such as overspeeding, overtaking, sudden lane-
changes, and weaving [8].

B. Algorithm

Here, we present the main algorithm, called StylePredict,
for solving Problem II.1. StylePredict maps vehicle trajectories
to specific styles by computing the likelihood and intensity of
the latter using the definitions of the centrality functions. The
specific styles are then used to assign global behaviors [50]
according to Table I. We summarize the StylePredict algorithm
as follows:

1) Obtain the positions of all vehicles using localization
sensors deployed on the autonomous vehicle and form
traffic-graphs at each time-step (Section III).

2) Compute the closeness and degree centrality function
values for each vehicle at every time-step.

3) Perform polynomial regression to generate uni-variate
polynomials of the centralities as a function of time.

4) Measure likelihood and intensity of a specific style for
each vehicle by analyzing the first- and second-order
derivatives of their centrality polynomials.

5) Classify the centrality polynomials, obtained from step
3, as either aggressive or conservative using machine
learning algorithms such as Multi-Layer Perceptrons
(MLPs).

We depict the overall approach in Figure 1. We begin by
using the construction described in Section III to form the
traffic-graphs for each frame and use the definitions in [8] to
compute the discrete-valued centrality measures. Since central-
ity measures are discrete functions, we perform polynomial
regression using regularized Ordinary Least Squares (OLS)
solvers to transform the two centrality functions into continuous
polynomials, .(t) and (4(¢), as a function of time. We describe
polynomial regression in detail in the following subsections.
We compute the likelihood and intensity of specific styles by
analyzing the first- and second-order derivatives of (.(¢) and
Ca(t) (this step is discussed in further detail in Section IV-D).

C. Polynomial Regression

In order to study the behavior of the centrality functions
with respect to how they change with time, we convert the
discrete-valued ([t] into continuous-valued polynomials ((t),
using which we calculate the first- and second-order derivatives
of the centrality functions as explained in Section IV-D.

In this work, we choose a quadratic' centrality polynomial
can be expressed as ((t) = By + Bit + Bot?, as a function of
time. Here, 3 = [y B1 2] are the polynomial coefficients.
These coefficients can be computed using ordinary least squares
(OLS) equation as follows,

B=(MTM)"M'¢)
Here, M € RT*(4+1) i the Vandermonde matrix [39]. and is
given by,

'A polynomial with degree 2.

| Conservative

Aggressive (Over-speeding)

| | Aggressive (Overtaking)

@ 5 @ T (@ o
<l A e) = =
Ju) =) (=" =
5 e . -
+ | _E» — Y=) @ = 0
a5 S @ =

(a) In all three scenarios, the ego-vehicle is a gray vehicle marked with a blue outline. (leff) A conservative vehicle, (middle) an overspeeding vehicle in the

same lane, and (right) a weaving and overtaking vehicle.

Degree
Degree

Closeness

0 10 20 30 40 50 60
Frame Number

55 60 65 70 75 80 85 90 95 20 40 60 80
Frame Number

100
Frame Number

(b) Constant degree centrality function for con- (c) Monotonically increasing centrality function (d) Extreme points for closeness centrality func-

servative vehicle.

for overspeeding vehicle.

tion for weaving vehicle.

Figure 2: Measuring the Likelihood of Specific Styles: We measure (degree and closeness centrality) the likelihood that an ego-vehicle
(grey with a blue outline) has a specific driving style by computing the magnitude of the derivative of the centrality functions as well as
the functions’ extreme points. In Figure 2b, the derivative of the degree centrality function is 0 because the ego-vehicle does not observe
any additional new neighbors (See Section 1V-D), so the degree centrality is a constant function; therefore, the vehicle is conservative. In
Figure 2c, the vehicle overspeeds and, consequently, the rate of observing new neighbors is high, which is reflected in the magnitude of the
derivative of the degree centrality being positive. Finally, in Figure 2d, the ego-vehicle demonstrates overtaking/sudden lane-changes and
weaves through traffic. These behaviors are reflected in the magnitude of the slope and the location of extreme points, respectively, of the

closeness centrality function.

1t 2 td

1ty t2 td
M=)

1oty 3 ... t4

D. Style Likelihood and Intensity Estimates

In the previous sections, we used polynomial regression on
the centrality functions to compute centrality polynomials. In
this section, we analyze and discuss the first and second deriva-
tives of the degree centrality, (4(t), and closeness centrality,
Cc(t), polynomials. Based on this analysis, which may vary for
each specific style, we compute the Style Likelihood Estimate
(SLE) and Style Intensity Estimate (SIE) [8], which are used
to measure the probability and the intensity of a specific style.

a) Overtaking/Sudden Lane-Changes: Overtaking is when
one vehicle drives past another vehicle in the same or an
adjacent lane, but in the same direction. The closeness centrality
increases as the vehicle navigates towards the center and vice-
versa. The SLE of overtaking can be computed by measuring
the first derivative of the closeness centrality polynomial
using SLE(t) = ‘%t@ . The maximum likelihood SLE,,x
can be computed as SLE;,x = maxseas SLE(t). The SIE
of overtaking is computed by simply measuring the second

derivative of the closeness centrality using SIE(t) = ‘% .

Sudden lane-changes follow a similar maneuver to overtaking
and therefore can be modeled using the same equations used
to model overtaking.

b) Overspeeding: The degree centrality can be used to
model overspeeding. As A; is formed by adding rows and
columns to A;_; (See Equation 1), the degree of the i vehicle
(denoted as 6;) is calculated by simply counting the number
of non-zero entries in the ™ row of A;. Intuitively, a drivers
that are overspeeding will observe new neighbors along the
way (increasing degree) at a higher rate than conservative, or
even neutral, drivers. Let the rate of increase of 6; be denoted
as 0;. By definition of the degree centrality and construction
of A, the degree centrality for an aggressively overspeeding
vehicle will monotonically increase. Conversely, the degree
centrality for a conservative vehicle driving at a uniform speed
or braking often at unconventional spots such as green light
intersections will be relatively flat. Therefore, the likelihood
of overspeeding can be measured by computing,

0¢q(t)
ot

SLE(t) = ’

Similar to overtaking, the maximum likelihood estimate is
given by SLE,.. = maxseca;SLE(¢). Figures 2b and 2c
visualize how the degree centrality can distinguish between an

overspeeding vehicle and a vehicle driving at a uniform speed.

¢) Weaving: A vehicle is said to be weaving when it “zig-
zags” through traffic. Weaving is characterized by oscillation in
the closeness centrality values between low values towards the
sides of the road and high values in the center. Mathematically,
weaving is more likely to occur near the critical points (points
at which the function has a local minimum or maximum) of the
closeness centrality polynomial. The critical points ¢. belong to
the set 7 = {t.| 8%7(;0) = 0}. Note that 7 also includes time-
instances corresponding to the domain of constant functions that
characterize conservative behavior. We disregard these points
by restricting the set membership of 7 to only include those
points t. whose e—sharpness [20] of the closeness centrality
is non-zero. The set T is reformulated as follows,

_), |9G(te)
T = {tc o= 0}
9Ge(t) |, OC(te)

.t — F —F
S o T o

3)

where B.(y) € R? is the unit ball centered around a point y
with radius €. The SLE of a weaving vehicle is represented
by |T|, which represents the number of elements in 7. The
SIE(t) is computed by measuring the e—sharpness value of
each t. € T. Figure 2d visualizes how the degree centrality
can distinguish between an overspeeding vehicle and a vehicle
driving at a uniform speed.

d) Conservative Vehicles: Conservative vehicles, on the
other hand, are not inclined towards aggressive maneuvers such
as sudden lane-changes, overspeeding, or weaving. Rather, they
tend to stick to a single lane [1] as much as possible, and drive
at a uniform speed [50] below the speed limit. Correspondingly,
the values of the closeness and degree centrality functions in the
case of conservative vehicles remain constant. Mathematically,
the first derivative of constant polynomials is 0. The SLE of
conservative behavior is therefore observed to be approximately
equal to 0. Additionally, the likelihood that a vehicle drives
uniformly in a single lane during time-period At is higher
when,

~0and max SLE(t)~ SLE(t.).
teB (t*)

‘aCc(t) ’
ot

The intensity of such maneuvers will be low and is reflected
in the lower values for the SIE.

E. Robustness to Noise

In the formulation above, our algorithm assumes perfect
sensor measurements of the global coordinates of all vehicles.
However, in real-world systems, even state-of-the-art methods
for vehicle localization incur some measurement errors. We
consider the case in which the raw sensor data is corrupted by
some noise €. Without loss of generality, we prove robustness
to noise for the degree centrality. Further, the analysis can
be extended to other centrality functions. The discrete-valued
centrality vector for the i agent is given by ¢* € RT*1,
Therefore, ¢1[2] corresponds to the degree centrality value of
the 1% agent at t = 2.

In the previous section, we showed that a noiseless estimator
may be obtained by solving an ordinary least squares (OLS)
system given by Equation 2. However, in the presence of noise
€, the OLS system described in Equation 2 is modified as,

B=M"M)*M{ (4)

where (' = ¢’ + e. Then we can prove that ||3 — || = O(e).
We defer the proof to the supplementary material.

F. Behavior Classification Using Machine Learning

We treat the centrality polynomials computed in Section I'V-C
as features in a supervised learning paradigm. While our
formulation is such that any classification algorithm can be used,
we select Multi-Layer Perceptron (MLP) as the classification
model due to its superior performance. We defer a comparison
between different ML algorithms to Section V.

Formally, let ® denote the MLP model that takes in a
centrality feature vector, ((t), as input and produces a 1-hot
vector encoding, § = ®(((¢)), of the behavior prediction as
output. Let y denote the corresponding ground-truth label for
that agent. Then, for N agents, a loss function can be framed
as follows,

N

L) = ly: — &) (5)
i=1

where ¢ denote the MLP model parameters. The goal of the

classification problem is to find the optimum values of 6, say

0*, that minimizes Equation 5. More simply,

0* = arg min £(6)
0

V. EXPERIMENTS AND RESULTS

We begin with a discussion of the evaluation metrics, the
Time Deviation Error (TDE) and the weighted classification
accuracy, for validating and measuring the accuracy of behavior
prediction methods in Section V-A. Then, we describe the real-
world traffic datasets and simulation environment used for
testing our approach and outline the annotation algorithm used
to generate ground-truth labels for aggressive and conservative
vehicles in Section V-B. We use the TDE to validate our
approach and analyze the results in real-world traffic datasets
in Section V-C. Finally, we analyze the weighted accuracy of
StylePredict and compare with state-of-the-art graph classifica-
tion and behavior prediction methods in Section V-D.

A. Evaluation Metrics

1) Time Deviation Error (TDE) [8]: We use the TDE
to validate our approach to modeling driver behavior
using StylePredict. The TDE measures the temporal
difference between the moments when a human identifies
a behavior and when that same behavior is modeled using
StylePredict. The TDE is given by the following equation,

TDEslyle = 6)

f

tsLE — E[T] ’

where E denotes the expected time-stamp of an exhibited
behavior in the ground-truth annotated by a human
and f is the frame rate of the video. tg g is obtained
using arg max, -, SLE(t) as explained in Section IV-B,
E[T] is computed using Algorithm 1, described in the
following section.

2) Weighted Classification Accuracy: To measure the ac-
curacy of StylePredict in predicting future behaviors,
we report a weighted classification accuracy, which is
defined as the fraction of correctly predicted behaviors,
weighted by class frequencies .

B. Datasets and Simulation Environment

Our testing environments consist of both simulation and
real-world trajectory data. The simulation includes a top-view
of the traffic while the trajectory data has been captured from
front-view vehicle-based sensors. Both settings are the same
in the sense that they provide the same type of information —
the coordinates of each vehicle with respect to a fixed frame
of reference (camera center in the case of top-view or the
ego-vehicle in the case of front view).

a) Simulation Environment: We use the Highway-Env
simulator [34] developed using PyGame. The simulator consists
of a 2D environment where vehicles are made to drive along
a multi-lane highway using the Bicycle Kinematic Model [45]
as the underlying motion model where the linear acceleration
model is based on the Intelligent Driver Model (IDM) [59]
and the lane changing behavior is based on the MOBIL [31]
model. We note here that more sophisticated car models such
as the Ackermann steering model may be used. While many
popular vehicle simulators [21], [38] do provide the option
of Ackermann modeling, these simulators do not provide the
behavior-rich environment needed for testing our algorithm.
Therefore, we restrict ourselves to [34] that can generate
aggressive and conservative driver behaviors. Furthermore, most
simulators that use Ackermann steering do so for modeling
safety by preventing slipping of the tires during tight turns
such as U-turns or intersection turns. Since our environment
consists of a straight road with no turns, the Ackermann model
holds little advantage over the Bicycle kinematic model in our
case.

b) Real-World Datasets: We have evaluated StylePredict
on traffic data collected from geographically diverse regions
of the world. In particular, we use data collected in Pittsburgh
(U.S.A) [15], New Delhi (India) [7], Beijing (China) [60], and
Singapore (private dataset). The format of the data includes
the timestamp, road-agent I.D., road-agent type, and spatial
coordinates obtained via GPS or lidars. We understand that the
characteristics of drivers in a particular city may not mirror
those in other cities of the same country. Therefore, all results
presented in this work correspond to the traffic in the specific
city where the dataset is recorded.

One of the main issues with these datasets is that they do not
contain labels for aggressive and conservative driving behaviors.
Therefore, we obtain ground-truth driver behavior annotations
using Algorithm 1. We directly use the raw trajectory data
from these datasets without any pre-processing or filtering step.

Algorithm 1: Computing E[T] for each video in a
dataset.
Input

: M participants, set of starting frames
S = {s1,82,...,5m}, set of ending frames
E = {61,62,...761\/[}
Output: E[T] for a video
s* = min S
e =max F
Initialize a counter ¢, = 0 for each frame ¢ € [s*, e*]
for ¢t € [s*,e*] do
if t € [sy, €] then
‘ Ct < Ct + 1
end
PT=t)=c

N=T-- RN B N T I S

end
E[T] =" ter, t = s, 8"+ 1,...,¢*

—
>

Table II: Analysing Simulation Results using TDE: We analyze
StylePredict by varying the traffic density, number of lanes, and the
noise parameter € (Equation 4). We observe that TDE increases as
these parameters increase in value. We discuss these results in detail
in Section V-C.

Density TDE Robustness TDE # Lanes TDE
N=5 0.08s e=10"%* 0.001s L=2 0.10s
N =13 0.15s e=10"3 0.001s L=4 0.27s
N =20 0.56s e=10"2 0.013s L=6 0.53s
N =25 0.79s e=10"1 0.050s L=8 0.98s

For each video, the final ground-truth annotation (or label) is
the expected value of the frame at which the ego-vehicle is
most likely to be executing an aggressive driving style. This is
denoted as E[T]. The goal for any driver behavior prediction
model should be to predict the aggressive style at a time stamp
as close to E[T] as possible. The implied difference between
the two time stamps is measured by the TDE metric.

The TDE metric is computed by Equation 6. Here, t51 g =
arg max, -, SLE(t), as explained in Section IV-B. We use
Algorithm 1 for computing E[T]. We recruited M = 35
participants with driving experience in at least two countries
out of USA, Singapore, China, and India. This ensured that
participants are “expert” annotators we are able to obtain gold-
standard labels. For each video, every participant was asked
to mark the starting and end frames for the time-period during
which a vehicle is observed executing an aggressive maneuver.
Participants were asked to watch out for typical traits such
as overspeeding, overtaking, sudden lane-changes, weaving,
driving slowly in single lanes etc. Once the start and end frames
are recorded, we proceed by using Algorithm 1 as explained
in Section V-B(b). Participants were allowed to scrub back and
forth during a video and replay any moment any number of
times. Furthermore, participants were allowed to zoom into a
video to inspect styles more closely. We ignore repetitions and
did not observe any control errors.

For each video, we end up with S = {s1,s2,...,s)} and
E ={ey,ea,...,ep} start and end frames, respectively. We
extract the overall start and end frame by finding the minimum

Table III: We report the Time Deviation Error (TDE) (in seconds (s))
for the following driving styles: Overspeeding (OS), Overtaking (OT),
Sudden Lane-Changes (SLC), and Weaving (W) along with their %
appearance in various real-world datasets. On average, we find that it
is easiest to predict weaving and sudden lane-changes in India. This
observation agrees with our cultural analysis in Section V-C

Styles
Dataset oS oT SLC w
TDE % TDE % TDE % TDE %
U.S. [15] 0.25s 83 0.67s 2 0.23s 14 0.26s 1
Singapore 0.54s 27 0.88s 27 1.21s 27 1.28s 18
China [60] 0.74s 24 0.44s 32 0.39s 36 0.23s 8
India [7] 0.81s 16 0.38s 40 0.19s 28 0.06s 16

and maximum value in S and E, respectively (lines 1 —2). We
denote these values as s* and e*. Next, we initialize a distinct
counter, ¢, for each frame ¢ € [s*, e*] (line 3). We increment
a counter ¢; by 1 if t € [sy,,, €] (lines 4 — 7). The value of the
counter ¢ is assigned to P(T") (line 8). The E[T’] of P(T") can
then be computed using the standard definition of expectation
of a discrete probability mass function (line 10). Algorithm 1
is applied separately for each video in each dataset.

C. Validating StylePredict Using TDE

In Table II, we report the average TDE in seconds (s) in
simulation environments. We used Algorithm 1 to compute the
TDE in various simulation settings. First, we varied the traffic
density by increasing the number of vehicles from 5 to 25. As
the number of vehicles grows, the TDE increases, which is to
be expected since it is harder for a human participant to spot
different styles in denser traffic resulting in a detection delay
and therefore higher TDE. Next, we analyzed the robustness
property by varying the noise parameter € (Equation 4). We
opted for € = {107%4,1073,1072,107 !} as this range reflects
the most common values of error that may occur in nature. TDE
for values lower than 10~* all converged to 0. We naturally
observe that the TDE increases with more noise. Finally, we
varied the number of lanes from 2—8 (1 lane is invalid as lateral
styles cannot be observed in a single lane) and observe that
the TDE increases with the number of lanes. This is because,
with more space available, it is unclear to human participants
whether a particular maneuver is aggressive or neutral. On the
other hand, overtaking and lane-changing in a 2—lane highway
is very evident and easy to spot, resulting in a lower TDE.

In Table III, we report the average TDE in seconds (s) in
different geographical regions and cultures for the following
driving styles: Overspeeding (OS), Overtaking (OT), Sudden
Lane-Changes (SLC), and Weaving (W). The traffic conditions
differ significantly due to the varying cultural norms in different
countries such as Singapore, the United States (U.S.), China,
and India. For instance, traffic is more regulated in the U.S. than
in Asian countries such as India or China, where vehicles do not
conform to standard rules such as lane-driving. Such differences
contribute to different driving behaviors. Our quantitative results
in Table III and qualitative results in Figure 3 show that
our driver behavior modeling algorithm is not affected by
cultural norms. Across all cultures, the average TDE is less

Table IV: We compare the weighted classification accuracy of
StylePredict versus supervised learning-based SOTA methods on the
Argoverse dataset [15]. Additionally, we compare the accuracy of
different supervised learning machine learning and deep learning
algorithms.

Dataset Method Weighted Accuracy
DANE [36] 65.50%
Cheung et al. [16] 62.50%
Argoverse StylePre(.lict w. LR 69.90%
StylePredict w. RNN 70.80%
StylePredict w. SVM 75.00%
StylePredict w. MLP 89.90 %

than 1 second for every specific style. Aggressive vehicles are
still associated with high centrality values, while conservative
vehicles remain associated with low centrality values.

In Figure 3, we show traffic recorded in Singapore (fop
row), the U.S. (second row), China (third row), and India
(bottom row). In each scenario, the first three columns depict
the trajectory of a vehicle executing a specific style between
some time intervals. The last column shows the corresponding
centrality plot. The shaded colored regions overlaid on the
graphs in Figures 3d and 3p are color heat maps that correspond
to P(T') (line 8, Algorithm 1). The orange dashed line indicates
the mean time frame, E[T], and the blue dashed line indicates
ts.e. The main result can be observed by noting the negligible
distance between the two dashed lines, i.e. the TDE.

In the first row (corresponding to traffic in Singapore),
for instance, our approach accurately predicts a maximum
likelihood of a sudden lane-change by the white sedan at
around the 75" frame (blue dashed line, Figure 3d), with an
average TDE of 0.88 seconds. Similarly, in the second row
(corresponding to traffic in the U.S.), we precisely predict the
maximum likelihood of the vehicle overspeeding by the vehicle
denoted by the red dot at around the 30" frame with a TDE
of 0.25 seconds. Note that in both cases the TDE (the distance
between the blue and orange dashed vertical lines) is < 1
second.

D. Analyzing Behavior Prediction Using Weighted Accuracy

We compare our approach with Dynamic Attributed Network
Embedding (DANE) [36] and Cheung et al. [16]. Both baselines
predict human behavior but differ in their techniques. DANE
also uses a graph-based approach (although not based on
centrality) where the main step consists of computing the
spectrum of the Laplacian matrix. Cheung et al., on the other
hand, use linear lasso regression on trajectory features, extracted
from raw traffic videos. We present a comparison using the
weighted accuracy with DANE and Cheung et al. in Table IV
where we show an improvement of up to 25%.

StylePredict uses a multi-layer perceptron (MLP) [26] for the
classification task. However, other classifiers in the machine
learning literature such as logistic regression (LR), support
vector machines (SVM)), and deep neural networks (RNNs)
may be used. In Table IV, we compare the results of replacing
the MLP with different classifiers and benchmark the different
output accuracies against the MLP.

(a) Frame 65.

(e) Frame 20.

(m) Frame 66.

(n) Frame 68.

stE
0.05 E[T) |

» 0.04 |

w

20.03

(]

$0.02

Co.01
0.00

50 60 70 80 90 100
Frame Number

(d) Sudden Lane-Change.
0.10 = = ——

0.09
20.08
L
5,0.07
j3
00.06
0.05

E(T);

[1tsLE
]

0.04 : 1
15 20 25 30 35 40 45
Frame Number

(h) Overspeeding.

0 60 70 80 90 100
Frame Number

(1) Weaving.
]

L.
tsiet| E[T]
L

2 . (B
65 66 67 68 69 70 71 72
Frame Number

(0) Frame 70. (p) Overspeeding.

Figure 3: Driver Behavior Modeling in Singapore (fop row), US. (second row), China (third row), and India (bottom row): In each
row, the first three figures demonstrate the trajectory of a vehicle executing an aggressive driving style (sudden lane change, overspeeding,
weaving, and overspeeding, respectively), while the fourth figure shows the corresponding closeness or degree centrality plot. The shaded
colored regions overlaid on the graphs in the first two rows are color heat maps that correspond to P(7T’) (line 8, Algorithm 1).

VI. BEHAVIORALLY-GUIDED NAVIGATION

In autonomous navigation, it is important to handle the
unpredictable and/or aggressive nature of human drivers (See
Section I). In this section, we show that, unlike existing
navigation methods [51], StylePredict can be used to train
a behaviorally-guided navigation policy that takes into account
the conservative or aggressive nature of human drivers. We
begin by generating behaviorally-guided trajectories for vehi-
cles in existing traffic simulators [34] using StylePredict for
training a reinforcement learning (RL) navigation policy in
Section VI-A. This is followed by a discussion of the RL
model used to obtain the behaviorally-guided navigation policy
in Section VI-B. Finally, in Section VI-C, we show that such a
behaviorally-guided navigation policy allows an AV to perform
more efficient lane changes and adapt its speed according to
the behavior of the vehicles around it.

A. Augmenting Traffic Simulators with Driver Behavior

Existing traffic simulators [34], [38] assume a fixed motion
model that does not take into account the nature of other drivers.
Such simulators inevitably produce navigation policies that are

not behaviorally-guided. Therefore, we use the StylePredict
algorithm to augment such traffic simulators with driver
behavior information such that they generate behaviorally-
guided trajectories. The behavior of a vehicle in the Highway-
Env simulator [34] is controlled using a set of parameters
described in the supplementary material. To simulate aggressive
and conservative behaviors, we find the appropriate range for
these parameters by iteratively performing the following steps:

1) We initialize the simulator parameters as random values.

2) We use the parameters to simulate the trajectories for
each vehicle. By varying the parameters, the vehicles
perform longitudinal and lateral maneuvers with certain
likelihoods and intensities.

3) We use StylePredict to measure these likelihoods (SLE)
and intensities (SIE) following the framework introduced
in Section IV. These measures indicate the aggressiveness
or conservativeness of a driver. For instance, a high
likelihood and intensity of lane changing and overspeed-
ing would indicate an aggressive driver. Based on this
feedback, we update the parameters for the next episode.

4) We repeat steps 2 and 3 until the likelihoods and inten-

10

(d) AV approaches conservative vehicle.

(e) AV confidently switches to adjacent lane.

(f) AV overtakes conservative vehicle.

Figure 4: Behavior-Guided Navigation: While interacting with aggressive (fop) and conservative (bottom) vehicles. We indicate the AV,
aggressive, and conservative vehicles in green, red, and blue, respectively. (Top) The AV senses that the red vehicle is aggressive and therefore
decides to slow down instead of overtaking. (Botfom) The AV notices the conservative vehicle in front and decides to confidently overtake it.

sities of maneuvers match those of a desired behavior
(aggressive or conservative).

The final set of parameter values corresponding to aggressive
and conservative behaviors is used to instantiate aggressive
and conservative vehicles at runtime, shown as red and blue
vehicles in Figure 3. Our enhanced traffic simulator results in
trajectories with varying levels of aggressiveness, in terms of
maneuvers like overspeeding, overtaking, and so on.

B. Training the Behaviorally-Guided Navigation Policy

We use RL to learn a behaviorally-guided navigation
policy offline using the enhanced simulator with behaviorally-
augmented trajectories, and deploy it at runtime. We formulate
the RL model as a Markov Decision Process (MDP) and use
deep Q-learning [41] to train the navigation policy. We refer
the reader to [40] (Sections IV and V) for further details on
the RL model.

We frame the navigation problem as a Markov Decision
Process (MDP) represented by M := {S, A, T,v,R}. The
sets of possible states and actions are denoted by S and A,
respectively. 7 : S x § x A — R captures the state transition
dynamics, « is the discounting factor, and R is the set of
rewards defined for all of the states in the environment. The
state of the world S at any time step is equal to a matrix
F x V, which includes the state s of every vehicle in the
environment. V' is the number of vehicles considered, and
F' is the number of features used to represent the state of a
vehicle. The environment consists of a highway road with four
single-direction lanes, along with conservative and aggressive
traffic agents that are generated using StylePredict. The ego-
vehicle can take five different actions: A4 ={"accelerate",
"decelerate”, "right lane-change", "left lane-change", "idle"}.
The motivation behind the reward function R is based on our
objective for training an agent that can safely and efficiently
navigate in dense traffic while respecting other road agents in
its neighborhood. The state transition matrix 7~ boils down to
a state transition probability P(s’|s), which is defined as the
probability of beginning from a current state s and arriving at a
new state s’. This probability is calculated by the kinematics of
the simulator, which depends on the underlying motion models,
and thus it is equal to 1, establishing a deterministic setting.

Table V: We measure the average speed (Avg. Spd.) and the number
of lane changes (#LC) for the ego-vehicle when it is (left) navigating
in the default simulator (without any varying behaviors), (middle)
interacting with conservative agents only, and (right) interacting with
a combination of conservative and aggressive traffic-agents.

Model Default Conservative Aggressive
(n=20) Avg. Spd. (m/s) #LC Avg. Spd. (m/s) #LC Avg. Spd. (m/s) #LC
MLP 22.65 4.1 19.7 2.9 28.8 2.6
GCN 22.26 0.82 18.9 2.33 29 14
Model Default Conservative Aggressive
(n=10) Avg. Spd. (m/s) #LC Avg. Spd. (m/s) #LC Avg. Spd. (m/s) #LC
MLP 23.75 6.25 21.4 3.5 29.16 2.06
GCN 23.6 0.35 20.6 1.6 28.9 1.3

C. Benefits of Behaviorally-Guided Navigation

Experiment Setup: We evaluate both dense (/N = 20) and
sparse (/N = 10) highway traffic scenarios, where N represents
the number of vehicles. We perform experiments with two
different RL policies using a graph convolutional network
(GCN) [63] and a multi-layer perceptron (MLP) [26]. MLP
and GCN are two different neural network architectures used
to train a navigation policy using deep reinforcement learning.
The choice of the underlying architecture determines, in
part, the type of navigation policy trained and may result
in different characteristics. The MLP and the GCN differ in
several ways, including input data format, applications, and
internal operations. We employ Q-Learning [41] to learn an
autonomous navigation policy. Specifically, we use the MLP
and GCN to receive observations of the state space as input and
implicitly model the behavioral interactions between aggressive
and conservative agents and the ego-vehicle. Ultimately, the
MLP and GCN learn a function that receives a feature matrix
that describes the current state of the traffic as input and
provides us with the optimal) values of the state space. Finally,
the ego-vehicle can use the learned model during evaluation
time in order to navigate its way around the traffic by choosing
the best action that corresponds to the maximum () value for
its state at every time step.

We apply two metrics to evaluate over 100 episodes and
average them at test time:

o Average Speed of the AV, which captures the distance per
second covered in a varying time interval.

o Number of lane changes performed by the AV on average
during the given duration. In general, fewer lane changes
imply that the ego vehicle can cover the same distance

with fewer maneuvers.

Finally, we vary the behavior of traffic agents between conser-
vative and aggressive behaviors and evaluate the performance
of our action prediction and navigation algorithms. In the
conservative environment (Table V, “Conservative” column),
the environment is populated by conservative agents only,
while in the aggressive environment (“Aggressive” column), a
significant number of the agents are aggressive, but there are
also some conservative agents.

Analysis and Insights: We observe two advantages of
behaviorally-guided navigation, which we discuss below:

1) Intelligent Lane-Changing: We observe that behavior-
guided navigation allows AVs to switch lanes more intelligently,
than those navigating without any knowledge of driver behavior.
More specifically, in conservative traffic the AV learns to
confidently overtake slow-moving traffic whereas in aggressive
traffic the AV executes fewer lane changes around aggressive
agents in its vicinity.

To support this claim, we visualize this result in Figure 4. In
Figures 4a, 4b, and 4c, we show that the AV quickly approaches
the aggressive vehicle from the rear. However, rather than
overtaking it (the AV has sufficient space), the AV chooses
to decelerate and wait to resume acceleration when it is safe
to do so. In contrast, in Figures 4d, 4e, and 4f, we show that
the AV (green) confidently overtakes the conservative vehicle
(blue).

However, when navigating without driver behavior modeling,
the AV does not follow a consistent lane-changing pattern.
For instance, we see in Table V under the “Default, #LC”
column, that the AV performs an excessive number of lane
changes with one policy (MLP), but mostly follows the traffic
with very few lane changes with the other policy (GCN).
Dependence of lane changes on the type of navigation policies
is undesirable as the choice of policy often depends on several
factors such as computational resources, type of application,
different performance measuring metrics, and so on. These
factors may vary for different situations and may potentially
result in unsafe lane-changing in dense traffic. With the default
simulator, the # of lane changes performed by a vehicle depends
exclusively on the type of navigation policy (Table V - 4.1 for
MLP and 0.82 for GCN in the dense traffic setting).

2) Adapting Speed to Different Behaviors: Behavior-guided
navigation allows AVs to adapt their speeds to the nature of
traffic around them. To be specific, AVs slow down more
often in preparation to overtake slow moving conservative
agents whereas they are able to maintain high speeds in fast
moving aggressive traffic. We provide evidence for this result
in Table V under the Avg. Spd. columns, where we show that
the average speed of the ego-vehicle is lower in conservative
environments than in aggressive environments. This variation
of speed is desirable since it is reflects that ego-vehicle slows
down to overtake conservative vehicles and is able to maintain
a high speed in fast-moving aggressive traffic. Such adaptability
results in better fuel efficiency, increased safety, and reduced
likelihood of frustrations among drivers. However in default
traffic, the ego-vehicle is unable to adapt its speed (Table V).

VII. CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We have presented a new approach for driver behavior mod-
eling that uses the idea of vertex centrality from computational
graph theory to explicitly model the behavior of human drivers
in realtime traffic using only the trajectories of the vehicles in
the global coordinate frame. Our approach is robust, general,
and can be integrated with existing navigation methods to
perform behaviorally-guided navigation.

There are several interesting directions of future work.
Our work is currently limited to straight roads. It would be
useful to apply our approach to additional scenarios, including
roundabouts, intersections, and merging. Another aspect of
future work includes extending our approach for decision-
making. While our current approach stops at modeling the
driver behavior, a natural extension of our work includes
combining our algorithm with motion and decision planning
techniques for end-to-end self-driving.

APPENDIX A
PROVING ||8 — 8| = O(e).

Proof. M is T x (d+1) Vandermonde matrix where d < T is
the degree of the resulting centrality polynomial. Vandermonde
matrices are known to be ill-conditioned with high condition
number kK = —= that increases exponentially with time 7.
From the noisy gnystem given by Equation 4, we have,

f= (T M) T
B=MTM)"MT((+e)
B=B+(M"M)*Me

(7

From Equation 7, || — 3| = ||[(M T M) Me|| which can be
shown to be approximately in the order O(ke). Therefore, the
error between the true solution 3 and the estimated solution in
the presence of noise B, depends on the condition number x
of the matrix M. A higher value of x implies that the trailing
singular values of M " M, denoted by ¥ = {0?,03,...,02}
have very small magnitudes. When inverting the matrix
M T M, as in Equation 7, the singular values are inverted
(by taking the reciprocal) and are represented by L' =
{(e}) ", (03)7",...,(02)"}. After the inversion, the trailing
singular values now have large magnitudes, ||(c2)7']| > 1.
When multiplied by e, these large inverted singular values
amplify the error, resulting in a large value of || — 8]|. In
Figure 5, it can be seen by the red curve that under general
conditions, k increases exponentially for even small matrices
(we fix d = 2 and increase T from 0 to 20).

However, there are many techniques that bound the condition
number of a matrix by regularizing its singular values. In our
application, we use the well-known Tikhonov regularization [3].
Under this regularization, after the inversion operation is
applied on M "M, the magnitude of the resulting inverted
singular values are constrained by adding a parameter «. The
modified inverted singular values can be expressed as z

J?+O£2 '
The addition of the o in the denominator keeps the overall
magnitude of the inverted singular value from “blowing up”.
In our approach, as M is fixed for every 7T, we need only

x10%°

M Regulated Condition Number
mmm Condition Number

Condition Number
S

0 5 10 15 20
Matrix Size

Figure 5: Robustness to Noise: We show that by regularizing the
noisy OLS system given by Equation 4, we can reduce the original
condition number (red curve) while at the same time upper bounding
the reduced condition number (blue curve) by § — 1. The reduced
condition number helps stabilize the noisy estimator £3.

search for the optimal o once for every 7. Using the Tikhonov
regularization, we upper bound the condition number x by
§ — 1 (Figure 5). Therefore || — 8| = O(ke) = O(e) as
Kk — 1.

O

APPENDIX B
SIMULATION PARAMETERS

We use the Highway-Env simulator [34] developed using
PyGame [56]. The simulator consists of a 2D environment
where vehicles are made to drive along a multi-lane highway
using the Bicycle Kinematic Model [45] as the underlying
motion model. The linear acceleration model is based on the
Intelligent Driver Model (IDM) [59], while the lane changing
behavior is based on the MOBIL [31] model.

The linear acceleration model is based on the Intelligent
Driver Model (IDM) [59] and is computed via the following
kinematic equation,

ta = a |1 - (3)! - (SpReely?

o Sa

®)

Here, the linear acceleration, v,, is a function of the velocity
Vg, the net distance gap s, and the velocity difference Awv,,
between the ego-vehicle and the vehicle in front. Equation 8
is a combination of the acceleration on a free road ¥ . =
a[l — (v/vo)?*] (i.e. no obstacles) and the braking deceleration,
—a(5*(Va, Avy)/84)? (i.e. when the ego-vehicle comes in
close proximity to the vehicle in front). The deceleration term
depends on the ratio of the desired minimum gap (s*(vq, Avy))
and the actual gap (s,), where s*(v,, Avy) = so+vT + 2“%
So 1s the minimum distance in congested traffic, vT" is the
distance while following the leading vehicle at a constant
safety time gap 7', and a,b correspond to the comfortable
maximum acceleration and comfortable maximum deceleration,
respectively.

The lane changing behavior is based on the MOBIL [31]
model. According to this model, there are two key parameters
when considering a lane-change:

1) Safety Criterion: This condition checks if, after a lane-
change to a target lane, the ego-vehicle has enough room
to accelerate. Formally, we check if the deceleration

Table VI: We show the simulation parameters that define the
conservative and aggressive vehicle classes.

Model Parameter Conservative Aggressive
Time gap (T) 1.5s 1.2s
IDM Min distance (sq) 50 m 25 m
Max comfort acc. (@) 3.0 m/s? 6.0 m/s?
Max comfort dec. (b) 6.0 m/s? 9.0 m/s?
Politeness (p) 0.5 0
MOBIL Min acc gain (Aag) 0.2 m/s? 0 m/s?
Safe acc limit (bsg fe) 3.0 m/s? 9.0 m/s?

of the successor agrge in the target lane exceeds a pre-
defined safe limit byq fe:

Grarget > _bsafe

2) Incentive Criterion: This criterion determines the total
advantage to the ego-vehicle after the lane-change,
measured in terms of total acceleration gain or loss.
It is computed with the formula,

—a,) > Aagp,

aego — Qego T p(an —ap +ao

where Gego — Gego represents the acceleration gain that
the ego-vehicle would receive after to the lane change.
The second term denotes the total acceleration gain/loss
of the immediate neighbours (the new follower in the
target, a,,, and the original follower in the current lane,
a,) weighted with the politeness factor, p. By adjusting
p the intent of the drivers can be changed from purely
egoistic (p = 0) to more altruistic (p = 1). We refer the
reader to [31] for further details.

The lane change is executed if both the safety criterion is
satisfied, and the total acceleration gain is more than the defined
minimum acceleration gain, Aayp,.

Additionally, the desired velocity vg is set to 25 meters per
second and 40 meters per second for the conservative and
aggressive vehicle classes, respectively. Finally, the desired ve-
locities for the conservative vehicles were uniformly distributed
with a variation of £10% to increase the heterogeneity in the
simulation environment.

ACKNOWLEDGEMENT

This work was supported in part by ARO Grants
WOI11NF1910069 and W911NF1910315, Semiconductor Re-
search Corporation (SRC), and Intel.

REFERENCES

[1] K.I. Ahmed, “Modeling drivers’ acceleration and lane changing behavior,”
Ph.D. dissertation, MIT, 1999.

[2] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous localization
and mapping: A survey of current trends in autonomous driving,” IEEE
Transactions on Intelligent Vehicles, vol. 2, no. 3, pp. 194-220, 2017.

[3] D. Calvetti and L. Reichel, “Tikhonov regularization of large linear
problems,” BIT Numerical Mathematics, vol. 43, no. 2, pp. 263-283,
2003.

[4] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 ieee symposium on security and privacy (sp). 1EEE,
2017, pp. 39-57.

[5]

[6]

[7]

[8

[t}

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

R. Chandra, A. Bera, and D. Manocha, “Stylepredict: Machine theory
of mind for human driver behavior from trajectories,” arXiv preprint
arXiv:2011.04816, 2020.

R. Chandra, U. Bhattacharya, A. Bera, and D. Manocha, “Densepeds:
Pedestrian tracking in dense crowds using front-rvo and sparse features,”
arXiv preprint arXiv:1906.10313, 2019.

, “Traphic: Trajectory prediction in dense and heterogeneous traffic
using weighted interactions,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 8483-8492.

R. Chandra, U. Bhattacharya, T. Mittal, A. Bera, and D. Manocha,
“Cmetric: A driving behavior measure using centrality functions,” arXiv
preprint arXiv:2003.04424, 2020.

R. Chandra, U. Bhattacharya, T. Mittal, X. Li, A. Bera, and D. Manocha,
“Graphrqi: Classifying driver behaviors using graph spectrums,” arXiv
preprint arXiv:1910.00049, 2019.

R. Chandra, U. Bhattacharya, T. Randhavane, A. Bera, and D. Manocha,
“Roadtrack: Realtime tracking of road agents in dense and heterogeneous
environments,” arXiv, pp. arXiv—1906, 2019.

R. Chandra, U. Bhattacharya, C. Roncal, A. Bera, and D. Manocha,
“Robusttp: End-to-end trajectory prediction for heterogeneous road-agents
in dense traffic with noisy sensor inputs,” in ACM Computer Science in
Cars Symposium, 2019, pp. 1-9.

R. Chandra, T. Guan, S. Panuganti, T. Mittal, U. Bhattacharya, A. Bera,
and D. Manocha, “Forecasting trajectory and behavior of road-agents
using spectral clustering in graph-lstms,” IEEE Robotics and Automation
Letters, 2020.

R. Chandra, M. Mahajan, R. Kala, R. Palugulla, C. Naidu, A. Jain,
and D. Manocha, “Meteor: A massive dense & heterogeneous behavior
dataset for autonomous driving,” arXiv preprint arXiv:2109.07648, 2021.
R. Chandra and D. Manocha, “Gameplan: Game-theoretic multi-agent
planning with human drivers at intersections, roundabouts, and merging,”
arXiv preprint arXiv:2109.01896, 2021.

M.-E. Chang, J. W. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan, and J. Hays, “Argoverse: 3d
tracking and forecasting with rich maps,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

E. Cheung, A. Bera, E. Kubin, K. Gray, and D. Manocha, “Identifying
driver behaviors using trajectory features for vehicle navigation,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 1EEE, 2018, pp. 3445-3452.

N. Corp., “Tesla unveils top av training supercomputer pow-
ered by nvidia al00 gpus,” https://blogs.nvidia.com/blog/2021/06/22/
tesla-av-training-supercomputer-nvidiaal00-gpus/, 2021.

C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273-297, 1995.

A. Davies, “Google’s self-driving car caused its first crash,” 2016.

L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio, “Sharp minima can
generalize for deep nets,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp.
1019-1028.

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA:
An open urban driving simulator,” in Proceedings of the Ist Annual
Conference on Robot Learning, 2017, pp. 1-16.

M. Everett, Y. F. Chen, and J. P. How, “Motion planning among dynamic,
decision-making agents with deep reinforcement learning,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 1IEEE, 2018, pp. 3052-3059.

T. Fan, X. Cheng, J. Pan, D. Monacha, and R. Yang, “Crowd-
move: Autonomous mapless navigation in crowded scenarios,” arXiv
preprint:1807.07870, 2018.

T. Fan, P. Long, W. Liu, and J. Pan, “Fully distributed multi-robot
collision avoidance via deep reinforcement learning for safe and efficient
navigation in complex scenarios,” arXiv preprint arXiv:1808.03841, 2018.
D. Ferguson, T. M. Howard, and M. Likhachev, “Motion planning in
urban environments: Part ii,” in 2008 IEEE/RSJ International Conference
on Intelligent Robots and Systems. 1EEE, 2008, pp. 1070-1076.

M. W. Gardner and S. Dorling, “Artificial neural networks (the multilayer
perceptron)—a review of applications in the atmospheric sciences,”
Atmospheric environment, vol. 32, no. 14-15, pp. 2627-2636, 1998.

S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep
learning techniques for autonomous driving,” Journal of Field Robotics,
vol. 37, no. 3, pp. 362-386, 2020.

T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis, and D. Manocha,
“M3detr: Multi-representation, multi-scale, mutual-relation 3d object
detection with transformers,” arXiv preprint arXiv:2104.11896, 2021.
S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[30]

(31]

[32]

[33]
[34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

[51]

[52]

[53]

[54]

J. Janai, F. Giiney, A. Behl, A. Geiger et al., “Computer vision for
autonomous vehicles: Problems, datasets and state of the art,” Foundations
and Trends® in Computer Graphics and Vision, vol. 12, no. 1-3, pp.
1-308, 2020.

A. Kesting, M. Treiber, and D. Helbing, “General lane-changing model
mobil for car-following models,” Transportation Research Record, vol.
1999, no. 1, pp. 86-94, 2007.

S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,”
The international journal of robotics research, vol. 20, no. 5, pp. 378400,
2001.

G. Lawyer, “Understanding the influence of all nodes in a network,”
Scientific reports, vol. 5, no. 1, pp. 1-9, 2015.

E. Leurent and J. Mercat, “Social attention for autonomous decision-
making in dense traffic,” arXiv preprint arXiv:1911.12250, 2019.

C. Li, Y. Meng, S. H. Chan, and Y.-T. Chen, “Learning 3d-aware
egocentric spatial-temporal interaction via graph convolutional networks,”
arXiv preprint arXiv:1909.09272, 2019.

J. Li, H. Dani, X. Hu, J. Tang, Y. Chang, and H. Liu, “Attributed network
embedding for learning in a dynamic environment,” in Proceedings of the
2017 ACM on Conference on Information and Knowledge Management.
ACM, 2017, pp. 387-396.

A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1: 43 scale rc cars,” Optimal Control Applications
and Methods, vol. 36, no. 5, pp. 628-647, 2015.

P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flotterod,
R. Hilbrich, L. Liicken, J. Rummel, P. Wagner, and E. WieBner,
“Microscopic traffic simulation using sumo,” in The 2Ist IEEE
International Conference on Intelligent Transportation Systems. 1EEE,
2018. [Online]. Available: https://elib.dlr.de/124092/

D. Manocha, Algebraic and numeric techniques in modeling and robotics.
University of California at Berkeley, 1992.

A. Mavrogiannis, R. Chandra, and D. Manocha, “B-gap: Behavior-
guided action prediction for autonomous navigation,” arXiv preprint
arXiv:2011.03748, 2020.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,
“Human-level control through deep reinforcement learning,” nature, vol.
518, no. 7540, pp. 529-533, 2015.

S. A. Morelli, D. C. Ong, R. Makati, M. O. Jackson, and J. Zaki,
“Empathy and well-being correlate with centrality in different social
networks,” Proceedings of the National Academy of Sciences, vol. 114,
no. 37, pp. 9843-9847, 2017.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.
M. Park, K. Jang, J. Lee, and H. Yeo, “Logistic regression model for
discretionary lane changing under congested traffic,” Transportmetrica
A: transport science, vol. 11, no. 4, pp. 333-344, 2015.

P. Polack, F. Altché, B. d’Andréa Novel, and A. de La Fortelle, “The
kinematic bicycle model: A consistent model for planning feasible
trajectories for autonomous vehicles?” in 2017 IEEE Intelligent Vehicles
Symposium (IV). 1EEE, 2017, pp. 812-818.

G. Qi, Y. Du, J. Wu, and M. Xu, “Leveraging longitudinal driving
behaviour data with data mining techniques for driving style analysis,”
IET intelligent transport systems, vol. 9, no. 8, pp. 792-801, 2015.

N. C. Rabinowitz, F. Perbet, H. F. Song, C. Zhang, S. Es-
lami, and M. Botvinick, “Machine theory of mind,” arXiv preprint
arXiv:1802.07740, 2018.

F. A. Rodrigues, “Network centrality: An introduction,” A Mathematical
Modeling Approach from Nonlinear Dynamics to Complex Systems, p.
177, 2019.

D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan, “Planning for
autonomous cars that leverage effects on human actions.” in Robotics:
Science and Systems, 2016.

F. Sagberg, Selpi, G. F. Bianchi Piccinini, and J. Engstrom, “A review
of research on driving styles and road safety,” Human factors, vol. 57,
no. 7, pp. 1248-1275, 2015.

W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and decision-
making for autonomous vehicles,” Annual Review of Control, Robotics,
and Autonomous Systems, 2018.

W. Schwarting, A. Pierson, J. Alonso-Mora, S. Karaman, and D. Rus,
“Social behavior for autonomous vehicles,” Proceedings of the National
Academy of Sciences, vol. 116, no. 50, pp. 24 972-24 978, 2019.

D. Seth and M. L. Cummings, “Traffic efficiency and safety impacts of
autonomous vehicle aggressiveness,” simulation, vol. 19, p. 20, 2019.
B. Shi, L. Xu, J. Hu, Y. Tang, H. Jiang, W. Meng, and H. Liu, “Evaluating
driving styles by normalizing driving behavior based on personalized

https://blogs.nvidia.com/blog/2021/06/22/tesla-av-training-supercomputer-nvidiaa100-gpus/
https://blogs.nvidia.com/blog/2021/06/22/tesla-av-training-supercomputer-nvidiaa100-gpus/
https://elib.dlr.de/124092/

driver modeling,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 45, pp. 1502-1508, 2015.

X. Shi, Z. Wang, X. Li, and M. Pei, “The effect of ride experience on
changing opinions toward autonomous vehicle safety,” Communications
in Transportation Research, vol. 1, p. 100003, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2772424721000032
P. Shinners, “Pygame,” http://pygame.org/, 2011.

M. Sikié, A. Lan¢ié, N. Antulov-Fantulin, and H. Stefan&i¢, “Epidemic
centrality—is there an underestimated epidemic impact of network
peripheral nodes?” The European Physical Journal B, vol. 86, no. 10, p.
440, 2013.

D. Tesla, “25 miles of full self driving | tesla challenge 2 | autopilot I,”
https://www.youtube.com/watch?v=Rm8aPR0aMDE, 2019.

M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in
empirical observations and microscopic simulations,” Physical review E,
vol. 62, no. 2, p. 1805, 2000.

P. Wang, X. Huang, X. Cheng, D. Zhou, Q. Geng, and R. Yang, “The
apolloscape open dataset for autonomous driving and its application,”
IEEE transactions on pattern analysis and machine intelligence, 2019.
W. Wang, J. Xi, A. Chong, and L. Li, “Driving style classification
using a semisupervised support vector machine,” IEEE Transactions on
Human-Machine Systems, vol. 47, pp. 650660, 2017.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Transactions on
Neural Networks and Learning Systems, 2020.

S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph convolutional
networks: a comprehensive review,” Computational Social Networks,
vol. 6, no. 1, p. 11, 2019.

Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,”
IEEE Transactions on Knowledge and Data Engineering, 2020.

[55]

[56]
[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

Rohan Chandra is a PhD student in computer
science at University of Maryland, College Park, USA
(UMD). He received a Bachelors degree in ECE from
Delhi Technological University, New Delhi, India,
and a Masters degree in computer science from UMD.
His research interests include trajectory prediction,
behavior modeling, and navigation in autonomous
driving.

Aniket Bera is an Assistant Research Professor in
the Department of Computer Science with affiliated
appointments with the Brain and Behavior Institute
and Maryland Robotics Center. Prior to this, he was
a Research Assistant Professor at the University
of North Carolina at Chapel Hill, where he also
received his Ph.D. in 2017. His core research interests
are in Human Modeling and Simulation, Affective
Computing, and Virtual Reality. He is a faculty with
the GAMMA group and has advised and co-advised
over 20 MS and Ph.D. students. He has authored
over 50 papers and his work has won multiple awards at top VR conferences.
His research involves novel combinations of methods and collaborations in
affective computing, computer graphics, computational psychology, machine
learning, and social robotics to develop real-time computational models to
learn and simulate human-like agents with expressive behaviors. Dr. Bera
has previously worked in many research labs, including Disney Research and
Intel Labs, and his work has been featured in many media outlets including
Forbes, WIRED, FastCompany, etc. A more detailed description can be found
at http://cs.umd.edu/ ab.

Dinesh Manocha is the Paul Chrisman-Iribe Chair
in Computer Science & Electrical and Computer
Engineering and Distinguished University Professor
at University of Maryland College Park. His research
interests include virtual environments, physically-
based modeling, and robotics.He has published more
than 600 papers & supervised 40 PhD dissertations.
He is an inventor of 10 patents, which are licensed
,f to industry. He is a Fellow of AAAI, AAAS, ACM,
and IEEE, member of ACM SIGGRAPH Academy,
and Bézier Award recipient from Solid Modeling
Association. He received the Distinguished Alumni Award from IIT Delhi the
Distinguished Career in Computer Science Award from Washington Academy
of Sciences. He was a co-founder of Impulsonic, a developer of physics-based
audio simulation technologies, which was acquired by Valve Inc in November
2016.

https://www.sciencedirect.com/science/article/pii/S2772424721000032
http://pygame.org/
https://www.youtube.com/watch?v=Rm8aPR0aMDE

	I Introduction
	II Related Work
	II-A Graph-based Machine Learning
	II-B Data-Driven Methods for Driver Behavior Prediction
	II-C Navigation Research in Autonomous Driving
	II-D Interpretation of Driver Behavior in Social Science

	III Representing Traffic Data Using Graphs
	IV StylePredict: Mapping Trajectories to Behavior
	IV-A Centrality Measures
	IV-B Algorithm
	IV-C Polynomial Regression
	IV-D Style Likelihood and Intensity Estimates
	IV-E Robustness to Noise
	IV-F Behavior Classification Using Machine Learning

	V Experiments and Results
	V-A Evaluation Metrics
	V-B Datasets and Simulation Environment
	V-C Validating StylePredict Using TDE
	V-D Analyzing Behavior Prediction Using Weighted Accuracy

	VI Behaviorally-Guided Navigation
	VI-A Augmenting Traffic Simulators with Driver Behavior
	VI-B Training the Behaviorally-Guided Navigation Policy
	VI-C Benefits of Behaviorally-Guided Navigation
	VI-C1 Intelligent Lane-Changing
	VI-C2 Adapting Speed to Different Behaviors

	VII Conclusions, Limitations, and Future Work
	Appendix A: Proving - = O().
	Appendix B: Simulation Parameters
	References
	Biographies
	Rohan Chandra
	Aniket Bera
	Dinesh Manocha

