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Abstract—This paper proposes an algorithm to model and
process streams of LiDAR data under an autonomous vehicle
framework. LiDAR is assumed to be an exteroceptive sensor
that allows the vehicle to have dynamic 3D scene perception
of its surroundings. We employ an encoder-decoder architec-
ture based on 3D-Convolutional layers called 3D Convolution
Encoder-Decoder (3D-CED), together with a transfer learning
strategy to extract a set of features from point clouds, which
are relevant in the context of autonomous driving. The resulting
features allow to make predictions of the future point cloud data
and detect multiple abstraction level anomalies in controlled
scenarios by utilizing a probabilistic switching dynamic model
called High Dimensional Markov Jump Particle Filter (HD-
MJPF). Moreover, a comparison is provided between piecewise
linear, piecewise nonlinear, and nonlinear predictive models at
multiple abstraction levels of anomaly detection. Our approach
is evaluated with data collected from the LiDAR sensors of the
autonomous vehicle while performing certain tasks in a controlled
environment.

Index Terms—3D-Convolutional Encoder Decoder, Trans-
fer learning, High Dimensional Markov Jump Particle Filter,
Anomaly detection, LSTM, Hierarchical Generalize Dynamic
Bayesian Network.

I. INTRODUCTION

Intelligent vehicles that attempt to minimize (or even
eliminate) human intervention are known as autonomous or
driverless vehicles. These vehicles are endowed with ex-
teroceptive and proprioceptive sensors that allow them to
monitor surrounding and internal information, respectively.
The usage of heterogeneous sensors, e.g., cameras, LiDAR,
Radar, GPS, etc., facilitates the learning of different tasks
and leveraging the vehicle’s understanding of the context in
which it is involved [1], [2], [3]. Recent developments in image
processing techniques have enabled the industries to resolve
some of the practical complexities of autonomous vehicles
(AV) [4], [5]. A vehicle cannot be fully autonomous with a
single front camera [6]. It will be like to drive a car without
side and back mirrors, which induces a high probability of
encountering accidents. However, those type of accidents can
be prevented by considering a broader perception of the envi-
ronment [7]. To drive safely on the road, drivers must maintain
a safe distance from the surrounding vehicles/objects to avoid
collisions. Therefore, intentionally or unintentionally, drivers
perceive a circular region of interest around the vehicle. A

similar approach is adapted to bring a higher level of autonomy
in vehicles, where the side and back mirrors need to be
replaced with multi-cameras (depending on the architecture of
vehicles) to provide full coverage around the vehicle [8]. Using
more than one camera may introduce overlapping regions
among images. Additionally, images may be highly affected
by shadowy areas, and illumination levels. These problems
can be diminished with LiDAR, which provides a 360-degree
coverage around the vehicle and is less affected by weather
conditions than conventional images [9]. In 2009, Waymo bet
heavily on the use of LiDAR for self-driving vehicles. And
in 2019, introduced the first fully self-driving taxi service,
which consists of three sensors, i.e., LiDAR, Radar, and a
front camera, which has proven to offer high levels of safety
in the real world situations [10].

LiDARs are expensive as compared to standard cameras but
are becoming more affordable. Recently, Apple has introduced
sophisticated LiDAR technology [11] as one of the features in
their products, which motivates industries to launch LiDAR
sensors at accessible prices, which triggers the research to-
wards such a type of technology. Advances in LiDAR provide
a more precise real-time 3D map of the environment, which
in-turn enhances the decision-making ability of AVs under
challenging conditions.

This paper uses deep learning techniques together with clas-
sical machine learning (ML) and signal processing algorithms
to develop a self-aware model for AVs. Our model allows
a vehicle to make inferences on LiDARs’ point cloud and
detect multiple abstraction level anomalies w.r.t previously
seen experiences. The detection of anomalies is the primary
step for autonomous agents to perceive the environment and
perform actions accordingly.

The proposed approach is evaluated with the real-time
LiDAR data collected from the AV. Apart from AVs, Li-
DAR has wide applications in forestry, ecological, land
classification, and geological applications. The proposed
methodology is applicable in these fields with slight mod-
ifications. However, the focus of this work is to enable
the AV to detect anomalies (unknown segments of point
clouds (objects) or unknown dynamics) by using prob-
abilistic inferences. The code for the proposed method-
ology is shared on “https : //github.com/Hafsa −

https://github.com/dcampoc/LiDAR_Anomaly_Detection
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Iqbal/LiDAR Anomaly Detection”.
Detailed contribution. i) This paper proposes an algorithm

that uses LiDAR sensory data to make inferences about future
changes in the surrounding environment and detect anomalies.
ii) Multiple abstraction level anomalies, i.e., Continuous Level
(CL), Discrete Level (DL), and Voxel Level (VL), are detected
and perform the comparison between piecewise linear (PL),
piecewise nonlinear (PNL), and nonlinear (NL) models.
iii) Our approach employs deep learning techniques that allow
us to take advantage of 3D CNN architectures together with
transfer learning and fine-tuning and adapt them for 3D
Reconstruction and an anomaly detection task.
iv) This work aims to develop a framework to analyze the high
dimensional LiDARs’ point cloud and potentially combine
it with approaches already developed for positional [12],
video [13], and control [14] data in autonomous transportation
systems.
v) An ablation study and additional results (from the KITTI
dataset) for anomaly detection are provided to analyze the
validity of the proposed methodology.

Paper organization. The rest of the paper is organized as
follows: Section II discusses the state of the art that deals
with the modeling and understanding of sensory data in the
context of autonomous driving. Section III describes in detail
the proposed methodology that consists of two phases; training
and testing of the proposed methodology, which allows us
to perform anomaly detection in LiDAR data. Section IV
explains the experimental dataset used for evaluating the pro-
posed methodology. Section V shows the results and provides
discussion on the performance of the proposed methodology.
Section VI presents the conclusion with the future extensions
and applications of the proposed method.

II. RELATED WORKS

AVs should be capable of identifying new situations and
update their predictive models accordingly to make deci-
sions [15]. Many advanced autonomous systems have emerged
in the past decades with the ability of detection and mapping in
the real environment [16], handover transitions from automa-
tion to manual driving [17], overtaking [18] and detection of
cracks on roads [19]. Although AVs are constantly improving,
there are still some unanswered gaps and open issues pre-
venting the full automation of self-driving vehicles. Recently,
many signal processing techniques, together with classical
ML and deep learning algorithms, have drawn the attention
of the research community and established themselves as a
strong contestant against statistical models for developing fully
autonomous systems [20], [21]. Information of the depth in
3D point clouds made LiDAR more efficient as compared
to cameras [22]. Recently, researchers introduce methods to
fuse the LiDAR with cameras to enhance the performance
efficiency of the autonomous agents [23], [24], [25].

In recent works [11],[12], techniques based on probabilistic
reasoning and ML have been demonstrated to be useful
for modeling and estimating the low-dimensional data, e.g.,
vehicle’s positional information and steering angle data. Some
works have used LiDAR data to dynamically detect features of
surrounding areas in an autonomous driving context. In [26],

researchers use LiDAR together with a frontal camera to assess
the quality of the roads. Authors in [27], use LiDAR to evalu-
ate the impact of the work zone geometry on traffic operations.
The work in [28] proposes a way for estimating lane widths in
work zones based on LiDAR information. Additionally, several
works [29], [30], [31] have tackled the problem of classifying
point clouds by extracting features through Convolutional
Neural Networks (CNN). In literature, there are some well-
known approaches such as; Volumetric CNNs (e.g., 3D-CNN,
FPNN, Vote3D), Multiview CNNs, Spectral CNNs, Feature-
based DNNs, and PointNet [32], [33], [34], [35]. However,
these approaches suffer from certain limitations, i.e., data
sparsity, computational cost, sparse volumes, nontrivial to
scene understanding, constrained on power or meshes. These
works do not focus on dynamic anomaly detection and track-
ing of relevant features coming from LiDAR streams in the
context of autonomous driving. Therefore, we utilize the 3D-
Convolutional feature extraction method to make inferences of
future states (features) of LiDAR data in a vehicular context.

3D point clouds are challenging to organize in grid format
due to specific characteristics such as; disordered, irregular,
varying number of points, and invariant to point ordering.
There are various approaches to encode the 3D point clouds
into a dense and gird-like structure [32], [36]. In this paper,
a simple and efficient approach called 3D-voxelization [37] is
employed and provided as an input to the 3D-Convolutional
Encoder (CE) and obtained as an output from the 3D-
Convolutional Decoder (CD). The 3D-Convolutional Encoder-
Decoder (CED) network is employed to reduce the dimen-
sionality of LiDAR sensory data and extract the features.
Transfer learning, which has already proven to be an important
strategy in autonomous driving [38], is employed to take well-
established features from point cloud classification tasks and
use them to leverage features from an autonomous driving
environment. Transfer learning potentially enables the algo-
rithm to continuously learn from new situations and update the
model without training the 3D-CED from scratch. These fea-
tures are used in a probabilistic framework to make inferences
of future states and detect multiple abstraction level anomalies.
In surveillance systems and AVs [39], [40], the detection
of anomalies is an interesting topic for researchers. Usually,
anomaly detection is performed with low-dimensional data,
e.g., positional or control data, and not much work has been
done in the specific case of LiDAR for AVs. Existing methods
based on deep learning techniques do not provide a solution
that uses deep-features to make inferences on LiDARs’ point
clouds and detect anomalies probabilistically in the domain
of autonomous driving. In this work, a clustering algorithm
is used to learn a set of piecewise dynamical models, which
allow us to represent the entire problem as a Hierarchical-
Generalize Dynamic Bayesian Network (H-GDBN) that relates
the current and future state at different levels of inference.
Predictions of future state vectors are handled by a Markov
Jump Particle Filter (MJPF), which is a type of Switching
Linear Dynamical Systems [41], [42] that uses GSs to make
multilevel (continuous and discrete) inferences by employing
a Particle Filter (PF) coupled with a bank of Kalman Filters
(KFs). In this work, a modified MJPF called High Dimensional

https://github.com/dcampoc/LiDAR_Anomaly_Detection
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Fig. 1: Block diagram of proposed methodology. It consists of two phases, i.e., offline training phase: used to learn the
information from the point clouds of LiDAR (training data sequences) and online testing phase: used to make inferences of
future states, which helps to detect anomalies from the testing point clouds of LiDAR.

Markov Jump Particle Filter (HD-MJPF) is used for the high
dimensional data of LiDARs’ point clouds.

III. PROPOSED METHODOLOGY

This section is subdivided into two phases: Offline training
and Online testing phase. Training phase consists of the 3D-
CED to extract the features from the LiDARs’ point clouds
and represent it as an H-GDBN model to learn the scenario
from these features. While in the Testing phase, HD-MJPF
is proposed to make inferences of future states and detect
anomalies. Block diagram of the proposed methodology is
shown in Fig. 1.

A. Offline training phase

1) 3D-Convolutional Encoder-Decoder (3D-CED): As
mentioned before, since point cloud representations collected
from a LiDAR (sensor) are available, a 3D-CNN is adapted
for extracting features to detect anomalies in time-series data.

This work uses an Encoder-Decoder architecture. The en-
coder allows us to represent the raw LiDAR data as a set of
bottleneck features (states) that can be tracked through time
by using learnable predictive models. Such predictive models
are powerful as they allow an intelligent system to predict
the future behavior of features coming from high-dimensional
data, i.e., LiDAR observations, therefore having an idea about
how the environment should look like in the future based on
previously acquired experiences. On the other hand, 3D-CD
(Convolutional Decoder) decoder allows us to transform the
bottleneck features (encoder’s output) into the 3D represen-
tation initially provided to 3D-CE (Convolutional Encoder).
Such a transformation enables us to predict future LiDAR
observations, facilitating a qualitative/quantitative comparison
of our system’s predictions with LiDAR’s raw observations.
Fig.2 shows the architecture of the proposed neural network.
Its different layers are further explained and justified in the
following subsections.

Softmax and Classification 
layer

Relu layer
Transposed 3D-
Convolutional layer

Max pooling layer

Occupancy grid             
3D-Convolutional layer

(1,6,2)
(32,3,1)128

3D-Convolutional Encoder (3D-CE) Bottleneck 3D-Convolutional Decoder (3D-CD)

128 features

32x32x32 

6x6x6 

(32,5,2)
(32,3,1)

32x32x32

256
128
𝐿2x2x2 (32,2,2)

Reshape layerFully connected layer

Fig. 2: Network architecture of 3D-Convolutional Encoder-
Decoder. L in 3D-CE is composed of softmax and classifica-
tion layer (removed while extracting features).

2) Transfer learning and Fine tuning: Although our objec-
tive is to generate models that can predict future behaviors
and detect anomalies on data series coming from LiDAR, we
take advantage of the architectures from the state-of-art that
tackle the problem of feature extraction from the LiDAR’s
point clouds. Accordingly, we identified the benchmark dataset
ModelNet40 [43], which consists of 12311 CAD models from
40 object categories; and another smaller dataset named the
Sydney Urban Objects dataset [44], which contains a variety
of common urban road objects scanned with a Velodyne HDL-
64E LIDAR, collected in Sydney, Australia. Latter dataset
includes the classes relevant to the transportation systems, e.g.,
vehicles, pedestrians, traffic signs and trees. Additionally, we
replicate the training process shown in the work [34], which
considers a classification network over LiDAR data and we
demonstrate the robustness of their classifier in both datasets
mentioned above.

The corpus of the ModelNet40 is larger than the Sydney
Urban dataset as well as our data (introduced in Section IV).
Therefore, we use two Transfer Learning (TL) processes, one
for the encoder and another for the decoder, to adapt it.
This leverages the information of vehicle data by using an
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initial robust representation of point clouds of Modelnet40.
Accordingly, both TL processes are explained as follows:

TL for the encoder. We use 3D-CE trained with Mod-
elNet40 data and fine-tune it with data of transportation
systems. Accordingly, we removed the last classification layer
of 40 classes and replaced it with another one with three
main classes observed in our own dataset focused on vehicle
systems, namely pedestrian, tree, and building. The fine-tuning
of the network is performed with labeled data from the Sydney
Urban dataset and LiDAR observations coming from our
dataset focused on vehicle navigation. The main idea is to
take advantage of TL and use it in the context of AVs.

The classification approach described above is a fundamen-
tal step to verify the performance of the encoder. After the
fine-tuning operation, we remove the soft-max classification
layer (L) at the end of the neural network and then consider the
128 features extracted from the last convolutional layer (see
bottleneck features in Fig.2) as a meaningful representation of
point cloud data coming from a transportation context. The
resulting network is here referred as 3D-CE.

TL for the decoder. The decoder takes 128 dimensional
features extracted from the 3D-CE as an input and uses a set
of transposed 3D-Convolution layers that resemble an inverted
version of 3D-Convolution layers, see Fig. 2. Such an archi-
tecture is referred as a 3D-Convolutional Decoder (3D-CD)
that outputs the 3D-voxel reconstruction of the point cloud.
For the training of 3D-CD, a procedure similar to the training
of 3D-CE is employed. Consistently, the 128-dimensional
feature vectors of the ModelNet40 dataset are used as an
input to train the decoder, which provides their respective 3D-
Voxel representation as an output. After obtaining such an
initial version of the 3D-CD, 128-dimensional feature vectors
from the Sydney Urban dataset and from our own data(see
Section IV) is employed to fine-tune the network, allowing it
to reconstruct the realistic LiDAR observations (coming from
a vehicular context) based on the proposed features.

Fig. 3: LiDAR as perception sensor in the context of au-
tonomous driving. Objects surrounding a vehicle and its dy-
namics can be used to define the normality of a given situation
faced by a vehicle.

3) Data Pre-Processing and voxelization: At each time-
step, LiDAR provides a 3D map of the environment in the form
of point clouds xk. We follow pre-processing step to obtain
3D voxel representation Xk before the feature extraction such
that;

Xk = F (xk), (1)

where F is the pre-processing function of the point cloud,
comprises of two steps; filtering and attention mechanism.

Filtering. This step includes fixing the plane, selecting of
area of interest, removing ground points, inliers and outliers.

To find and fit the plane to the 3D point cloud, we use M-
estimator SAmple Consensus (MSAC) algorithm [45]. Once
we define the point cloud in a fixed plane, ≈ 4m2 radius is
selected around the vehicle as an area of interest, as shown in
Fig. 3. A point in a point cloud is considered an outlier if its
distance to the nearest points is above a threshold and removed
from the point cloud. This threshold is selected based on the
standard deviation from the mean distance to the neighbors.

Attention mechanism. This step includes the segmentation
of point cloud, selection of the nearest segment, and 3D-
voxelization. Filtered point cloud is segmented into different
parts based on the clustering-based method. Distance between
each segment is optimized (see, [46]) by considering the
characteristics of the environment as well as the intensity of
each segment of the point cloud. This optimization helps to
avoid the clutter of objects in a single segment. Therefore, each
segment contains specific information about the environment,
such as tree, pedestrian, building/pillar, that comes inside the
area of interest of vehicle. In this paper, we select the nearest
segment to the vehicle as a potentially risky object/segment.
Therefore, the decision of a normal/abnormal situation de-
pends on the selected nearest segment and its dynamics.
This choice is performed for the feasibility of the proposed
approach but can be extended to multi clusters/objects. The
nearest segment wrt vehicle’s position is rasterized into 3D-
voxel grid (array) [37] with the resolution defined as d×d×d.
At each time-step, we have a 3D-voxel representation of the
nearest segment Xk around the vehicle. Xk is provided as an
input to the 3D-CE for feature extraction.

4) Learning predictive models: At each time-step, the 3D-
CE is responsible for transforming Xk into a 128-dimensional
feature vector that we used to make inferences of future
states of LiDARs’ observations by using a Bayesian model.
Accordingly, we consider two types of predictive models to
estimate future instances of LiDARs’ point clouds:

Piecewise models. This model assumes that future vector
states, i.e., dynamics, are related to current states linearly.
Hence, it is proposed to find a set of N linear models
that are employed to make inferences of future states. Such
an approach is based on the concept of Generalized states
(GSs) [47], which facilitates the learning of Piecewise Linear
(PL) dynamic models in a data-driven way by considering an
extended version of traditional states, which include their time-
derivatives (motion) over time. Accordingly, by considering
a memory of a single time-step, it is possible to write the
GSs of the LiDAR data as the current 128-dimensional feature
vector concatenated with its motion vector computed based on
the precedent feature vector. Resulting in a 256-dimensional
feature vector that takes the following form:

z̃k = [zk, żk]
ᵀ, (2)

where zk = φ(Xk) and żk = zk − zk−1. The function
φ(·) corresponds to the 3D-CE, which takes the 3D voxel
representation Xk, see Eq.(1); and outputs its encoded version
(128 feature vector). Consequently, a clustering algorithm [48],
[49] is used to group similar GSs into a set of M clusters, such
that z̃ = {z̃m}m=1,...,M . Cluster of similar GSs, (from Eq.(2))
can be written as; z̃m = [zm, żm]ᵀ.
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Each resulting cluster encodes a region of the feature vectors
where their motion is expected to be quasilinear. Accordingly,
a linear dynamic model can be associated with each cluster
m, such that:[

zk+1

żk+1

]
=

[
zk + E(żm(k)) + wk

E(żm(k)) + wk

]
, (3)

where E(·) is the expected value operator, which provides
the mean of the respective clusters m, and wk represents the
Gaussian noise. m(k) indexes the active cluster at time k;
and it corresponds to the closest cluster to the current GS
z̃k. The linear dynamical model in Eq.(3) can be employed
to estimate the next GS, i.e., p(z̃k+1|z̃k). The effectiveness of
the proposed piecewise model is compared with a piecewise
nonlinear version; which uses a Long Short-Term Memory
(LSTM) for each cluster m that approximates the following
GSs given the history of the k past GSs, such that:

z̃k+1 ≈ Gm(z̃γ), γ = {k − (k− 1), k − (k− 2), . . . , k}, (4)

where Gm(·) represents the LSTM network trained on GSs
coming from the cluster m, where m is the closest cluster
to z̃k and γ is the set of time-steps corresponding to the
similar observations that are clustered together. Each cluster
is defined by following dynamic switching parameters s̃m =
{Gm, Cm, Qm, ξm, T}: i) LSTM trained for each cluster Gm,
ii) centroid of clusters Cm, iii) covariance of cluster Qm, iv)
radius of cluster ξm and v) transition matrix encodes the prob-
ability of transitions between the clusters T . These switching
parameters s̃m are used to learn probabilistic graphical model
called Hierarchical Generalize Dynamic Bayesian Network
(H-GDBN), i.e., a DBN using GSs [50]. H-GDBN provides the
graphical representation of objects and their dynamics, which
AV observes at each time-steps.

Eq.(3) and Eq.(4) show two different alternatives to esti-
mate the future GSs from past observations by using a set
of piecewise models. Such models represent the horizontal
arrows in the intermediate level (orange block) in Fig.4, which
encode inferences at the continuous level. On the other hand,
inferences at the discrete level, i.e., cluster transitions (see blue
horizontal arrows in Fig.4), is predicted by using a transition
matrix T that encodes the probability of going from a single
cluster s̃1 to another cluster s̃2. Accordingly, a particle filter
uses T to model the discrete probability distribution of the
following active cluster given the current one, i.e., p(s̃k+1|s̃k).
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Fig. 4: H-GDBN: Proposed causal relationships between vari-
ables involved in the modeling and inferences of LiDAR data.

Nonlinear (NL) model. This model assumes that current
and feature vector states are related through a single nonlinear

function. In this case, an LSTM network is directly considered
to estimate the next GSs, i.e., z̃k, given the history of k past
GSs. In this case, we do not consider any clustering algorithm
over GSs and use a single nonlinear model for predicting
the future GS (see Fig.5(b)). Such a model can be written
as follows:

z̃k+1 ≈ L (z̃k), k = {k − (k− 1), k − (k− 2), . . . , k}. (5)

Note that Eq.(5) resembles Eq.(4); however, the former
considers all training data to learn a single model, whereas the
latter learns a set of M piecewise models for predicting the
next GS. Although this approach does not include a discrete
level of inference (blue level in Fig.4), we propose that a
single LSTM network trained with enough data may capture
the nonlinear dynamics of data series coming from the 3D-
CE. This paper compares the single LSTM approach in Eq.(5)
with the piecewise models described before in Eq.(3) and
Eq.(4) based on their capabilities of detecting anomalies and
predicting future LiDAR instances.

B. Online testing phase
In the online testing phase, each point cloud passes through

the pre-processing step and attention mechanism to encode
the features of the nearest segment of the point cloud to
the vehicle, at each time-step. An extended version of the
Markov Jump Particle Filter (MJPF) for high dimensional
data is proposed here to make inferences of future states and
anomaly detection by employing learned H-GDBN.
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Fig. 5: Block diagram of the predictive models: (a) Piecewise
linear (PL) and Piecewise nonlinear (PNL), (b) Nonlinear (NL)
models.

1) High Dimensional Markov Jump Particle Filter (HD-
MJPF): MJPF is proposed to make inferences of the future
states by employing H-GDBN (see Fig. 4) at continuous as
well as the discrete level and detect the multiple abstraction
level anomalies. In our work, we utilize the Piecewise Linear
(PL) and Piecewise Nonlinear (PNL) version of MJPF for high
dimensional data called HD-MJPF. HD-MJPF is a Switching
Dynamical Model which constitutes a bank of KFs at the
continuous level (CL) and a Particle Filter (PF) at the discrete
level (DL). HD-MJPF comprised of two main stages, i.e.,
prediction and update [50] at both levels, i.e., CL and DL.

Prediction stage. The PL model of HD-MJPF uses
learned H-GDBN comprised of dynamic switching parameters
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s̃m = {Cm, Qm, ξm, T} to make inferences over the futures
states (continuous and discrete) of LiDARs’ observations (see
Fig.5(a)). At CL, GSs are predicted p(z̃k+1|z̃k, s̃k) for each
particle, as shown in Fig. 4 and coupled with a PF to make
inferences at DL, i.e., p(s̃k+1|s̃k) (see Fig. 4). The predictions
at the DL are performed by using the transition matrix T in
each particle. In the PNL model of HD-MJPF, predictions
at the DL are computed similarly to the PL model. On the
other hand, predictions at the CL are performed with LSTM,
i.e., Gm, associated with the selected cluster, i.e., m from
the discrete state s̃k+1 (see Fig.5(a)). Since LSTMs have
nonlinear characteristics, therefore, KFs at the CL cannot be
used. To tackle the nonlinearity, we used Unscented Kalman
Filter (UKF) [51] to make inferences of the future states.

Update stage. It is performed when a new observation
(point cloud from LiDAR) at time-step k is available, so the
KFs and PF update bases on the information at k−1 to make
predictions at k. At the CL, the update is performed by KF
and UKF of PL and PNL models, respectively. At the DL, re-
sampling of the particles is performed based on the anomaly
measurements, i.e., CL, DL and VL for PL and PNL models.

2) Anomaly measurement: The difference between the pre-
dictions made by learned predictive models and the actual
encoded features obtained from the future LiDAR observation;
facilitates the definition of temporal anomaly measurements.
Here, the definition of anomalies are two-fold: i) Anomalies
come when prediction do not fall inside the range of the
threshold of any learned clusters of trained features, i.e.,
ξm = 2σ(zm) (see Section III-A4) [50], or ii) Anomaly related
to the dynamics arise when different dynamics are observed
with respect to the learned dynamics within a clusters that are
obtained from the training features (blue shaded time-steps in
color-coded ground-truth Fig.7 and 9(i)) [52]. Therefore, when
an anomaly is detected among the dynamic features, it can
be described as the deviation of the prediction with respect
to the current observation and its dynamics. The proposed
methodology allows us to compute the multiple abstraction-
level anomalies, explained as follows:

Continuous level (CL). At CL, anomalies are influenced
only by GSs; therefore, it can be considered a local mea-
surement of anomalies without taking into account the rel-
evant active clusters. It is estimated by taking Bhattacharya
distance [53] between the predicted GSs z̃v,Pk|k−1 and the
actual updated GSs z̃v,Pk|k (from Fig.4 and 5), related to the
vehicular features v and particle P of the PF, at each time-
step. Mathematically, it can be defined as:

θdbk = min
P

∑L
v=1Dbh(z̃

v,P
k|k , z̃

v,P
k|k−1)

L
, (6)

where θdbk provides the CL anomaly measurement, L is the
total dimension of the vehicular features and Dbh is the Bhat-
tacharya distance. θdbk shows high peaks when observations
and their dynamics are different from the learned dynamics of
training features.

Discrete level (DL). Event level anomalies are computed at
the discrete level, which shows the errors in the learned tran-
sitions between different clusters. If the predicted transition is

different from the learned transitions, this indicates the false
event that our model does not learn before and vice versa.
For the computation of false events, we use Kullback-Leibler
Divergence [54]. Mathematically, it is defined as:

θklk = min
P

∑L
v=1Dkl(T (ms̃k|k)

v,P ,O(ms̃k|k−1
)v,P )

L
, (7)

where O(ms̃k|k−1
) is the predicted transition and estimated as;

O(ms̃k|k−1
) ∼

{
0 if |s̃k−1,s̃k|

ξsm
> 1

1− |s̃k−1,s̃k|
ξsm

Otherwise,

and θklk provides the discrete level anomaly measurement,
T (ms̃k|k)

v,P is the learned transitions computed from the
transition matrix T when the cluster m is active at time-step
k related to the vehicular feature v and particle P . Therefore,
at DL, anomalies come due to the presence of outliers in
generalized coordinates, and the predicted transitions become
different from the learned transitions between the cluster.

Voxel level (VL). 3D-CD allows to compute the anomalies
at the VL. For the computation of the VL anomalies, con-
tinuous level prediction of HD-MJPF, i.e., z̃k|k−1, is passed
through the 3D-CD. The decoder reconstructs the predictions
into corresponding voxels, i.e., X̂reconstk . Here, the MSE is
used for the computation of VL anomalies between the voxels
of the reconstructed predictions and the observed voxel Xtestk−1.
Mathematically, it can be defined as:

θmsek = mse(Xtestk−1, X̂
reconst
k ), (8)

where θmsek provides the VL anomaly measurement and
X̂reconstk are the voxels obtained from the reconstructed con-
tinuous level predictions of HD-MJPF by utilizing the 3D-CD.
VL anomalies are analogous to the CL anomalies; however,
it refers to the observation model instead of the dynamic
model. Therefore, an anomaly is detected if the observation is
fallen inside a cluster whose distribution is different from the
observation.

IV. EXPERIMENTAL DATASET

Velodyne LiDAR Puck (VLP-16) is used to collect the
point cloud dataset from the AV called as “iCAB” [48]. It
provides 360◦ real-time coverage around the vehicle with
3D distance and calibrated reflectively measurements. VLP-
16 supports 16 channels which provide approximately 300,000
points/second, 360◦ horizontal and 30◦ vertical field of view,
with the ±15◦ precision range. Experiments are performed
in a close environment [48], [55], [52], [56]. Two different
scenarios are considered for the training and testing purposes,
described as follows:

A. Scenario I: Rectangular maneuver

In this scenario, the vehicle follows a rectangular maneuver,
see Fig.6(b) in a closed environment. 3D point clouds collected
from the iCAB at different time-step is shown in Fig.6(a).
iCAB does not encounter any anomalous situation during this
experiment therefore, the LiDARs’ point clouds related to
this experiment are used for the training and learning of the
dynamic models.
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Fig. 6: Point clouds from iCAB at different time-step where the blue arrows represent consecutive LiDAR observations. In
these point clouds, vehicle is moving straight and then starts taking turn towards the left side (a) Scenario I; Rectangular
maneuver (c) Scenario II; Emergency stop while pedestrian comes in front of the vehicle; where the red square encodes the
presence of a pedestrian. (b, d) Positional plots of the Scenario I and Scenario II, respectively used to evaluate the proposed
methodology.
B. Scenario II: Emergency Stop maneuver

In this scenario, while performing a rectangular maneuver, a
pedestrian comes in front of the vehicle. Therefore, the vehicle
performs an emergency stop and waits for the pedestrian to
pass and then starts to continue maneuvering, see Fig.6(d). The
obtained 3D point clouds for this scenario at different time-
step, are shown in Fig.6(c). iCAB encounter an anomalous
situation in this experiment; therefore, LiDAR’s point clouds
from this experiment are used to test the proposed algorithm.

V. EXPERIMENTAL RESULTS

In this section, we present the results of the proposed
algorithm. Scenario I (Rectangular maneuver) is used for
training, and Scenario II (Emergency stop) is used to test the
proposed algorithm. The main idea consists of first collecting
and processing LiDARs’ point cloud to learn from Scenario I.
Then, observe the new experiences from Scenario II in the
testing phase and are detected as an anomaly. We include
results regarding the reconstruction of voxel representation of
Point clouds from the 3D-CD and the accuracy of the entire
network after transfer learning. Additionally, we compare
different models for making inferences of future states in an
HD-MJPF framework through ROC curves.

A. Anomaly detection

Testing data from scenario II (see, Section IV-B and
Fig. 6(c)) are utilized for the testing of the proposed method-
ology. First, the H-GDBN (see, Fig. 4) is learned from the
normal scenario (see, Section IV-A and Fig. 6(a)). This learned
model is used in the testing phase and detect anomalies (see,
Fig.7(a-h)) from the testing dataset by using the proposed pre-
dictive models, i.e., PL, PNL, and NL model. Blue shaded area
in Fig.7 indicates the time-steps when iCAB performs curves,
while the pink shaded area indicates the time-step when iCAB
encounters the pedestrian, i.e., an unknown segments of point

cloud wrt learned segments which encodes in H-GDBN. High
peaks at these time-steps depict the presence of an anomalous
situation. Anomaly measurement in Fig. 7 shows how well
the presence of pedestrian (pink area) and its dynamics can
be detected from the LiDARs’ point cloud.

DL anomaly. The PNL and the PL models enable us
to detect anomalies at DL (see, Fig. 7(a, b)). Anomalies at
DL come when the learned transitions T (ms̃k|k−1

) between
the clustered GSs (from H-GDBN) are not as same as the
predicted transitions O(ms̃k|k−1

). In the NL model, predic-
tions are made over the vehicular features from the LSTM;
therefore, it cannot provide us DL anomalies.

CL anomaly. CL anomaly can be computed for all three
predictive models, i.e., PNL, PL, and NL (see Fig. 7(c, d, e)).
θdbk shows high peaks when predicted GSs z̃k|k−1 are different
from the actual GSs z̃testk|k (see, Section III-B2). High peaks at
curves (blue shaded area) depict that the curves performed
by AV during the training experiment are different from the
testing experiments, which indicates the presence of unknown
dynamics within learned clusters.

VL anomaly. Fig. 7(f, g, h) exhibits the anomaly measure-
ment at VL where high peaks are obtained in the shaded
area, i.e., pink and blue. The high peaks in the shaded
area indicate that the learning model encodes the necessary
features/information from the environment that required for
anomaly detection. θmsek (see, Eq.(8)) shows the presence of
pedestrians (pink area), and its dynamics can be decoded from
the predicted features by utilizing the 3D-CD. VL anomaly
provides an advantage to go back to the voxel level and
observe the elements that cause the anomaly, whether it is
an unknown segment of point cloud or unknown dynamics.

Computation of multiple abstraction level anomalies pro-
vides us a set of anomaly measurements that can better explain
the reason of the anomaly. It allows incremental learning
of the LiDAR’s point clouds by employing GSs features
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Fig. 7: Anomaly signals from the online testing phase: (a, b)
DL anomalies for PNL and PL models, respectively. (c, d, e)
CL anomalies for PNL, PL and NL models, respectively. (f,
g, h) VL anomalies for PNL, PL and NL models. (i) color-
coded ground-truth label anomalies where {green, blue, red} =
{normal, unknown dynamics, unknown segments wrt learned
H-GDBN}, respectively.
associated with the anomalies [56]. Fig.7(e) shows the color-
coded ground truth for the anomaly detection with respect to
the rectangular maneuver. Green color shows the presence of
the normal point cloud, whereas the blue and red indicate the
presence of anomalies wrt dynamics and unknown segments
from the learning models, respectively.

B. Performance Evaluation

True Positive Rate (TPR) and False Positive Rate (FPR) of
θdbk and θmsek are used to compute the ROC curves, shown
in Fig. 8. The color-coded anomaly (see, Fig.7(i)) are used as
ground-truth, where blue and red region indicates the presence
of anomalies. Table I contains the Area under the curve (AUC),
Accuracy (ACC), and Precision measurements of the proposed
methodology, which shows the quantitative analysis of the
PNL, PL and NL models. The PNL model outperforms the PL
and NL models. In the PNL model, LSTMs are trained for each
cluster and used together with the UKF to make inferences of
future states at the CL. This improves the prediction at the
CL-PNL. Additionally, VL-PNL outperforms the CL-PL and
CL-NL (see, Table I).

In the NL model, a single LSTM trained with the vehicular
features from Scenario I and used to make inferences over

Scenario II. The NL model shows less accuracy as compared
to the piecewise models. Because NL requires a large amount
of data for the initial training to attain high performance and
accuracy, which is not the case for the piecewise models.
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Fig. 8: ROC curves are computed to observe the performance
analysis of the proposed methodology.

TABLE I: Quantitative analysis of the proposed methodology.

Models AUC (%) ACC (%) Precision (%)

Continuous
Level

CL-PL 84.84 80.29 67.34
CL-PNL 91.85 86.18 74.29
CL-NL 78.16 77.06 63.66

Voxel
Level

VL-PL 88.77 80.74 62.94
VL-PNL 91.50 85.15 73.62
VL-NL 91.52 84.56 76.70

Ablation Study. An ablation study is performed to analyze
the impact of transfer learning and fine-tuning on feature
space, which implicitly allows to observe the performance of
the predictive models, as shown in Table II. This table provides
the quantitative analysis of the anomaly detection by training
the 3D-CED with ModelNet40 and Sydney Urban dataset. For
this purpose, 3D-CED is trained with the ModelNet40 and
Sydney Urban datasets, respectively. Features related to the
iCAB dataset (explained in Section IV) are extracted without
transfer learning. The learning of the predictive models, i.e.,
PNL, PL, and VL, is performed to make inferences of the
future states.
TABLE II: Ablation study is performed based on training
of 3D-CED with ModelNet40 and Sydney Urban dataset.
Moreover, the comparison of the performance analysis of
proposed methodology with transfer learning is provided.

Network Models AUC (%) ACC (%) Precision (%)

Train 3D-CNN
with ModelNet40

dataset [43]

CL-PL 55.82 55.29 55.58
CL-PNL 60.81 51.41 51.12
CL-NL 50.52 51.76 50.22
VL-PL 46.82 52.06 49.77

VL-PNL 64.89 63.09 53.11
VL-NL 66.00 62.94 51.95

Train 3D-CNN
with Sydney Urban

dataset [44]

CL-PL 58.11 60.32 58.71
CL-PNL 60.68 59.21 53.43
CL-NL 52.35 52.94 50.62
VL-PL 64.93 62.79 53.02

VL-PNL 76.67 69.12 55.29
VL-NL 68.74 64.85 53.24

Proposed
methodology with
Transfer Learning

CL-PL 84.84 80.29 67.34
CL-PNL 91.85 86.18 74.29
CL-NL 78.16 77.06 63.66
VL-PL 88.77 80.74 62.94

VL-PNL 91.50 85.15 73.62
VL-NL 91.52 84.56 76.70

The table shows that the performance of both networks
is not well; however, the network trained with ModelNet40
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performs worse than the Sydney Urban dataset. It is because
of the unknown segments of point cloud, which 3D-CED
does not knows and confuses them with other objects. While
the 3D-CED network trained with the Sydney Urban dataset
performed better than the 3D-CED trained with Modelnet40.
However, the performance is still not good. This is due to the
small training dataset; therefore, the inferences are extremely
noisy. Moreover, the comparison between the performance
shown in Table I and II indicates that the transfer learning and
fine-tuning of the network adversely impacts the performance
of the predictive models. This manifests the fact that the fine-
tuning refines the feature space and increases the intra-features
distances, which encodes better the different segments/objects
and their relevant dynamics within the clusters and implic-
itly refines the probabilistic graphical representation i.e., H-
GDBN.

C. Computational Sources

The proposed methodology is implemented in Python and
MATLAB. A GPU (dual NVIDIA® GeForce® GTX 1080
Ti with 8 GB RAM GDDR5X each) is used only to obtain
the pre-trained weights of the network. The online testing is
performed with a CPU (Intel® CoreTM i7-8700 Processor
with 16 GB RAM). The computational time in Table III
depicts the time required for the online testing phase with
CPU, which includes perception and prediction at a time-step
k. Specifically, a point cloud at time-step k passes through the
data pre-processing, attention mechanism, feature extraction,
and predictive modeling steps of the proposed methodology.
The computational time required to extract the bottleneck
features at a time-step k is fixed, i.e., O ∼ 5.337ms. Table III
shows that the increases in the number of particles P in
HD-MJPF have linear relation with time, i.e., P ×M, and
consumes more time to make inferences while it does not
bring much improvement in the accuracy. Therefore, total
time consumption can be estimated as O + (P ×M) where
M ∼ 0.086 ms/particle. Results presented in Fig.7 and 8
are obtained with P = 10.
TABLE III: Execution time of the proposed methodology with
varying number of particle P in HD-MJPF with accuracy
measurement of PNL at CL and VL.

P time (ms) ACC at CL (%) ACC at VL (%)
[bottleneck + prediction]

5 O + 0.43 85.88 83.64
10 O + 0.86 86.18 85.15
15 O + 1.30 86.61 85.66
20 O + 1.72 86.98 85.90
30 O + 2.54 87.10 86.34

D. Additional Result

This section provides additional results to validate the pro-
posed methodology in a complex/urban environment. The pre-
trained network is fine-tuned with the Sydney Urban dataset
[44] that includes all classes, i.e., bicycle, biker, building, bus,
car, scooter, pillar, etc. Training features are extracted from the
iCAB dataset (see Fig.6(a)), which comprised of the tracking
of trees, buildings, or pillars (normal situation). The well-
known KITTI dataset [57] is employed for the online testing
phase. For this purpose, two sequences of 3D point clouds,
i.e., one is from the city, and the other is from the campus

environment, are utilized. This also proves the validation
of the proposed methodology in an unknown environment
(different from the learned). Here, the objective is to detect
the anomalies, i.e., unknown observations (different from the
training features) and the unknown dynamics of the known
segments of point clouds. Multiple abstraction level anomalies,
i.e., DL, CL, and VL, are computed from the 3D point cloud
sequences (see Fig.9). Quantitative analysis is performed with
the ROC curves (as explained in section V-B), and comparison
is provided between the predictive models, i.e., PNL, PL, and
NL (see Table IV). Fig.9(i) is the color-coded ground-truth that
shows the green shaded time-steps as the normal time-steps,
whereas blue and red color depicts the presence of unknown
dynamics or segments of point clouds wrt learning model,
respectively.
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Fig. 9: Anomalies from the KITTI dataset in two different
environment (A) 2011-09-26, drive 0113, City [57] (B) 2011-
09-28, drive 0037, Campus [57]. Discrete level anomaly
signals are; (a) DL-PNL and (b) DL-PL, Continuous level
anomaly signals are; (c) CL-PNL, (d) CL-PL, (e) CL-NL, the
voxel level anomaly signals are; (f) VL-PNL, (g) VL-PL, (h)
VL-NL models and (i) color-coded ground-truth label.

City dataset. For testing purposes, the KITTI dataset is
employed from the city (2011-09-26, drive 0113). In Fig.9,
the grey shaded area depicts the time-steps when AV observes
static cars. The pink shaded area indicates the time-steps when
AV confronts bicyclists, which came from the front of the
AV and AV turn right to avoid it while the blue shaded
time-steps indicates when AV turn left after avoiding the
bicyclists and take the left turn to enter in a left road. Fig.9(c,d)
shows approximately similar accuracy in the detection of the
anomalies. Fig.9(e) shows that NL cannot be able to capture
the information of the static cars and the left turn of AV
(unknown dynamics); however, at VL, 3D-CD successfully
reconstructs the voxels and detect the corresponding anomalies
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(see Fig.9(h)). This depicts the advantage of the three-level
architecture when employed to make inferences of the future
states. Fig.9(i) is the color-coded ground-truth used for the
quantitative analysis of the anomalies. Green color indicates
the normal time-steps, whereas blue and red color depicts the
presence of unknown dynamics or segments of point clouds
(objects) wrt the learning model, respectively.

Campus dataset. KITTI dataset, collected from the cam-
pus road (2011-09-28, drive 0037), is employed for testing
purposes. In Fig.9, the pink shaded area indicates the time-
steps when bicyclists pass in-front (horizontal) of the AV.
The blue shaded area indicates the time-steps when AV turns
right to move to the right road. The pink shaded time-steps
(at the end of the anomaly signal) indicate when AV again
observes bicyclists moving in the opposite direction in the
second lane of the road. Although it is not an anomalous
situation but the learning model, i.e., H-GDBN, does not know
the dynamics of the bicyclists; therefore, it is captured as an
anomaly. PNL model at DL anomaly signal (see Fig.9(a))
shows high peaks even in the starting time-steps because AV
is static, i.e., unknown dynamics. While DL-PL (Fig.9(b))
does not show peaks in pink shaded time-steps. CL anomalies
Fig.9(c,d) from predictive models, i.e., PNL and PL, show
approximately the same performance. However, NL is not
able to detect the unknown dynamics of the AV; therefore,
it does not have peaks in the blue shaded area. While the
anomalies at VL (see Fig.9(e,f,g)) shows approximately a
similar performance with a bit of variation in the fluctuation
of anomaly signal. Similar performance at VL depicts the
importance of the reconstruction of voxels/point clouds in the
field of automation.

TABLE IV: Quantitative analysis of the proposed predictive
models when tested with the KITTI [57] dataset.

Data Models AUC (%) ACC (%) Precision (%)

KITTI
City

dataset [57]

CL-PL 92.71 93.75 72.64
CL-PNL 93.23 95.83 87.05
CL-NL 85.42 85.42 62.85
VL-PL 92.19 93.75 74.33

VL-PNL 93.23 93.75 82.87
VL-NL 93.06 95.83 72.97

KITTI
Campus

dataset [57]

CL-PL 94.14 96.05 70.35
CL-PNL 95.57 96.15 80.12
CL-NL 86.01 88.16 75.69
VL-PL 80.47 80.26 70.89

VL-PNL 87.74 85.53 74.46
VL-NL 85.63 80.26 67.04
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Fig. 10: ROC curves corresponding to the anomaly measure-
ments at CL and VL from the KITTI [57] Campus and City
dataset.

Fig.9(i) shows the color-coded ground-truth labels for the

KITTI dataset employed for the quantitative analysis of the
anomaly detection. Table IV and Fig.10, show the AUC,
accuracy, and precision measurements corresponding to the
anomaly measurements at CL and VL.

VI. CONCLUSION

3D-CED is employed with a transfer learning that allows us
to pretrain the network with the ModelNet40 dataset and use
it with fine-tuning in the context of the transportation system
to detect anomalies. We generate meaningful features for the
tracking and representation of point clouds from vehicular
technology to bring the high dimensional data of LiDAR to a
low dimensionality. A probabilistic switching dynamic model
called HD-MJPF is utilized to make an inference of future
states and detection of multiple abstraction level anomalies.
Three different prediction models, i.e., piecewise linear (PL),
piecewise nonlinear (PNL), and nonlinear (NL) models, are
proposed for anomaly detection. Training and testing of the
proposed methodology are performed with the real-time data
of the AV. This shows that the PNL outperforms PL and NL by
attaining 86.18% and 85.15% accuracy for anomaly detection
at the CL and VL, respectively. Some additional results with
KITTI dataset are provided to validate the proposed method-
ology.

For future work, feature-level fusion between LiDAR, cam-
era, and odometry trajectories can be performed to improve the
accuracy of the learning models to tackle complex situations,
such as weather conditions. The proposed approach also has
an application in the field of cooperative dynamic learning
models, as the features of an agent encode the dynamics of
the other agent and vice versa. The proposed methodology can
be extended for the incrementally learning [58] of the complex
situations with slight modification, such as clustering of the
similar objects/features corresponding to the anomalies, can be
employed for the fine-tuning of the network which implicitly
enriches the knowledge embedded in H-GDBN; this leads to
the continual learning of the AV from surroundings.
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