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Artificial Intelligence in Railway Transport:

Taxonomy, Regulations and Applications
Nikola Bes̆inović, Lorenzo De Donato, Francesco Flammini, Rob M.P. Goverde, Zhiyuan Lin∗, Ronghui Liu,

Stefano Marrone, Roberto Nardone, Tianli Tang, Valeria Vittorini

Abstract—Artificial Intelligence (AI) is becoming pervasive in
most engineering domains, and railway transport is no exception.
However, due to the plethora of different new terms and meanings
associated with them, there is a risk that railway practitioners,
as several other categories, will get lost in those ambiguities and
fuzzy boundaries, and hence fail to catch the real opportunities
and potential of machine learning, artificial vision, and big data
analytics, just to name a few of the most promising approaches
connected to AI. The scope of this paper is to introduce the basic
concepts and possible applications of AI to railway academics
and practitioners. To that aim, this paper presents a structured
taxonomy to guide researchers and practitioners to understand
AI techniques, research fields, disciplines, and applications, both
in general terms and in close connection with railway appli-
cations such as autonomous driving, maintenance, and traffic
management. The important aspects of ethics and explainability
of AI in railways are also introduced. The connection between AI
concepts and railway subdomains has been supported by relevant
research addressing existing and planned applications in order
to provide some pointers to promising directions.

Index Terms—artificial intelligence, railway transport, ma-
chine learning, computer vision, traffic management, predictive
maintenance.

I. INTRODUCTION

It is now widely accepted that Artificial Intelligence (AI)

is influencing almost every bit of our life. A survey from
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Economic Intelligent Unit (conducted in late-2016) found that

44% of executives said delaying AI implementation will make

their business vulnerable to new, disruptive tech start-ups [1].

Railway is no exception. Although AI is still in its very infancy

for the railway sector, there is certain evidence showing that its

potential should not be underestimated. For instance, Torsino

et al. [2] listed several facets in railways where AI can play

an important role: customer service, optimisation of complex

railway systems, and improving safety and security of urban

rail networks. They concluded that “It is clear AI systems can

be powerful and can solve the critical challenges that railways

are facing today.” Gilbert et al. [3] stressed the importance

of AI for the future railway industry and believe that AI

will soon become a common tool used throughout the rail

industry. Several topics are discussed where AI is supposed to

act as a game-changer for the railway sector, such as capacity

management, life cycle cost, maintenance, reducing error from

both humans and computers, high-level automation and auto-

adaptive systems. In essence, many AI experts and railway

practitioners believe that the role of AI in the railway sector

will become more and more influential, and a pivoting time

where AI is used as a common tool will be seen in the future.

In recent years, the term Artificial Intelligence has increas-

ingly become an integral part of daily life in the form of

smartphones, intelligent vocal assistants, etc. However, due

to its widespread use, the term AI is often improperly used

as a synonym of closely related concepts such as Machine

Learning, Deep Learning and Big Data. Thus, there tends

to be a lack of clear consensus on what AI represents and

thus much confusion and misunderstanding among researchers

and practitioners exist in both academic literature and public

communications [4], [5].

A taxonomy is a means of classifying entities according to

their natural relationships. It provides a common vocabulary

to discuss and share information about a specific topic. We

find examples of taxonomy papers in different fields including

supply chains [6], aviation [7] and manufacturing [8], and

in railways, on taxonomy for performance of railway oper-

ations [9], mechanical energy harvesting [10], development

of mass transit systems [11], and communication errors in

maintenance [12]. Similarly, researchers focused commonly

on specific subdomains of AI and proposed taxonomies in

different fields. For example, a taxonomy has been defined for

6G communication networks (addressing among others ITS)

[13], supervised regression learning for road traffic forecasting

[14], supervised learning for intrusion detection systems in

SCADA environments [15], evolutionary algorithms in road
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transport [16], and in railways specifically, taxonomy on

machine learning and deep learning railway track predictive

maintenance [17], [18]. However, a holistic view on AI in

railways does still not exist. Also, a general AI taxonomy

suited to railway transport and transport in general is missing.

Our contention is that an important use of a taxonomy for

AI is to inform researchers and practitioners about which

methods are appropriate to assist with decision-making in

railway domains.

This paper aims to define AI, introduce taxonomy and make

necessary relations between AI and railway transport. The

goal of the paper is to bring together two domains and the

corresponding experts from AI and railways and define AI

for the railway domain. This would pave the way for a better

understanding of terminology and concepts of AI to railway

industry on one side, and introduce railway subdomains to AI

experts. This detailed taxonomy of AI is complemented by a

survey of AI used in railways. In addition, a focus is placed on

research niches that are still unexplored by the communities

in different railway subdomains. The open issues and research

directions for the implementation to railways endowed with

artificial intelligence are also discussed. In fact, we not only

give high-level future directions but also support it with some

existing research from similar (transport) domains, wherever

it is possible.

The remainder of the paper is organised as follows. Sec-

tion II presents the methodology for mapping railway transport

to AI. Section III gives a definition of AI from the perspective

of the railway transport domain. Section IV introduces a

taxonomy of AI. Next, Section V reports relevant guidelines

and regulations on AI, including ethics and explainability, and

identifies their particular importance for railways. Section VI

gives the mapping results of AI approaches applied to railway

problems (VI-A), and presents the existing challenges for

future AI applications in railways for specific subdomains (VI-

B and VI-C). In particular, VI-B highlights the new problems

that are more tangible and could be tackled by extending

approaches from similar domains, and VI-C highlights the

more challenging (out-of-the-box/greenfield) research direc-

tions, i.e., research that has not been addressed in comparable

domains. Finally, Section VII brings final concluding remarks.

II. METHODOLOGY

We aim to uncover the use of AI in railway systems with

the goal of highlighting already existing as well as potential

applications. This section describes the applied methodology

for mapping these current usages and future opportunities

of AI in railways. The focus is on the railway transport

subdomains including 1) maintenance and inspection, 2) safety

and security, 3) autonomous driving and control, 4) trans-

port planning and management, 5) revenue management, 6)

transport policy and 7) passenger mobility. In addition, to

identify promising potential research, we also looked into

related domains such as other transport modes (e.g. road and

air), supply chain and manufacturing. To showcase a structured

overview of these current and potential research, we map

railway subdomains to different classes of AI, based on an

AI taxonomy introduced in Section IV.

For finding relevant papers, we searched journal and confer-

ence papers using the Scopus database. Also, we enriched the

search with successful real-world applications in professional

magazines and technical reports, for which the Google search

engine was used. Still, scientific papers form a great majority

of the reviewed documents. The keywords used were designed

as a combination of a term from AI context and a term from

railway domain context, also ‘railway’, or another domain,

is added where needed. For example, a string consisting of

‘expert systems’, ‘passenger mobility’ and ‘railway’ was used.

Sometimes, for a single AI or railway context, the keywords

may be separated in the search, e.g. ‘safety’ and ‘security’

were used separately. In addition, terms like ‘ethics’ and

‘explainability’ were considered as well.

For mapping, we build matrices showing the intersections

between railway and AI. For each cell, we define its current

state representing whether it is recognised in scientific research

and/or in practice. To do so, each cell receives certain (Y), po-

tential (P), or uncertain (U) based on the corresponding match.

Where appropriate, the relevant papers, i.e. from railways or

other domains, are given to support the conclusion of a cell.

We determine whether an entry in the three tables belongs to

Y, P or U by the following rules:

Y: Applications of the exact match are found in academic

journal/conference papers and/or successful real-world

applications are found in magazines/news or other media.

P: Similar applications of the match are found in academic

journal/conference papers and/or real-world applications.

For instance, an application of AI in another sector other

than rail but the principles are possibly transferable.

U: No explicit literature/report/applications can be found by

the databases, even from other related domains. In addi-

tion, we use our own judgement based on the expertise

and experience of the authors.

In essence, the cells marked Y represent existing AI research

in railways. Instead, the cells with P and U represent future re-

search directions that are worth considering for more detailed

investigations, some of which could be possibly transferred

with more ease from related domains (Ps) than others (Us).

The results of this mapping are presented in Section VI.

III. A DEFINITION OF ARTIFICIAL INTELLIGENCE

In order to highlight the potential of AI in railways, it is

essential to provide a comprehensive definition of what AI

actually represents and justify why future intelligent railways

are expected to be different compared to traditional railway

automation systems, including automatic train protection and

legacy driverless systems. A basic definition associates AI to

any machines acting in a way that seems intelligent [19] or

exhibiting characteristics that are typical of human reasoning.

In other words, according to this general definition, the re-

search on AI aims at creating intelligent agents that think and

act like humans. The main limitation of such a definition is

the lack of a universally accepted definition of ‘intelligence’.

Conceptually speaking, intelligence refers to the ability of an

agent (e.g. a human being) to learn, understand, reason, plan

and solve problems. These aspects are very hard to quantify,
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describe and measure in a quantitative way. Therefore, in the

context of the AI domain, one of the most common definitions

of intelligence is based on the ability of an agent to pass ‘the

imitation game’, also known as Turing test [20]: a machine

is deemed intelligent if it is indistinguishable from a human

during an interaction with an impartial observer.

Over the years, more structured and detailed definitions have

been introduced, e.g. [19], [21], [22], [23]. Interestingly, they

are very similar in some aspects (e.g. the ability to learn from

experience or to take autonomous decisions) while tend to

differ when it comes to defining in which ‘shape’ AI can be

deployed (e.g. robot, software program, electronic computer,

etc.). These existing definitions were trying to capture the

broad nature of AI and its potential coverage of various

domains and areas. By doing so, for certain domains, such

definitions may be too abstract and they could be difficult

to grasp and thus would not be widely accepted. Therefore,

these aspects of such general definitions tend to reduce its

uptake leading to no common agreement on what AI actually

represents.

To address this challenge, we need a definition of AI which

is suitable to support next-generation railway transport and

traffic engineering. To this aim, we need to stress some aspects

that are crucial when considering AI application in the railway

domain: 1) Being able to learn from experience and adapt to

the environment (e.g., energy optimised driving and obstacle

detection through artificial vision and other sensors adapting to

changing environmental conditions and learning from driver’s

behaviour and past reactions); 2) Take autonomous decisions

in uncertain scenarios by interacting with other intelligent

entities (e.g., cooperative driving, including virtual coupling,

through train-to-train communication); 3) Accomplish tasks

that would require critical intelligence if done by a human

(e.g., reputation-based multi-source information fusion for

safety/security decision making); 4) Exclude trivial automation

that does not take account uncertainties and/or unexpected

scenarios (e.g., non-defensive and non-robust railway automa-

tion approaches that do not support holistic fault-tolerance,

resilience, and self-diagnostics/self-healing); and 5) Suitable

to hardware, software, or hybrid implementation at multiple

edge, fog and cloud computing levels (e.g., digital twins im-

plementing machine learning models for data-driven predictive

maintenance by monitoring a large number of similar railway

infrastructure and rolling stock).

One possible definition accounting for those aspects is the

following: AI is the discipline gathering all the aspects that

allow an entity to determine how to perform a task and/or

take a decision based on the experience matured by observing

samples and/or by interacting with an environment, possibly

competing against or cooperating with other entities. The

term aspects refers to algorithms, theoretical formulations

and computational technologies (both hardware and software)

directly or indirectly designed to make an entity accomplish

a task that would require intelligence if accomplished by a

human. The term entity refers to both purely software, purely

hardware and any hybrid variants of the two (e.g. a software, or

a robot, or a virtual agent). The phrase experience matured is

explicitly intended to include both the concepts of learning (i.e.

gain new knowledge from some example) and of data-driven

inference (i.e. inferring consequences from some priors).

All the factors we stressed above are essential to characterise

AI in railways since they allow us to exclude from the class

of future intelligent railways all the widespread approaches

using a coded (i.e., programmed by someone) automatism. An

example of this is current driverless trains, which implement

Automatic Train Operation (ATO) together with Automatic

Train Protection (ATP) to safely perform a series of well de-

fined actions, according to some pre-defined rules and schedule

[24]. According to the provided AI definition, those driverless

trains cannot be considered as intelligent systems because they

do not have the capacity to take autonomous decisions in

the presence of uncertainties or unexpected scenarios, learn

from experience, adapt to changes in the environment such as

obstacles on the track, etc. Instead, the provided AI defini-

tion includes all algorithms designed to perform data-driven

problem-solving and decision-making which are expected to

have a huge potential and impact in future railways.

In addition, AI-supported railways can benefit from other

smart domains such as smart cities [25] and smart trans-

port/ITS [26], [27]. For example, real-time predictions of

customer demand and other traffic modes conditions could

provide services more efficiently, timely and sustainably. Also,

it will allow better interaction with other public transport

modes involving on-demand shared systems (e.g., shared taxis,

flexible car sharing, shared bikes) for better door-to-door

journeys. Simultaneously, smart cities and ITS can be powered

by railway AI applications. For example, smarter railways will

help to understand holistic traffic and city conditions in normal

statuses as well as during emergency situations (disruptions,

accidents, adverse weather). For example, it could provide

information about incidents on a railway network in order to

increase the responsiveness of a smart city transport system.

Also, it will increase mobility and city dynamic flows of future

interconnected smart cities and lead to seamless connections

and faster journeys.

When focusing on AI as a discipline, we need to define a set

of means, techniques, applications, etc., interconnected with

each other, in order to define AI as a whole. Therefore, Section

IV provides an AI taxonomy including the main components

and their interrelations.

In addition, certain research areas that are related to AI

tend to be mixed with AI and/or introduced as equal. Some

examples are digital twins, big data, and augmented reality.

Digital Twins represents a set of tools, means and procedures

born with Computer-Aided Design (CAD) systems with the

aim of realising the digital version of an entity under analysis.

Augmented Reality (AR)1 is a sector that is living a growing

interest for both entertainment (e.g. video games) and profes-

sional (e.g. remote medicine) applications. Big Data represents

a discipline associated with the collection, manipulation and

analysis of huge, varied, valued and heterogeneous (typically

non-structured) amounts of data.

1The considerations made also stand for virtual and mixed reality.
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Fig. 1: Artificial Intelligence Taxonomy Class Diagram.

IV. AI TAXONOMY

Having introduced our definition for AI in the railway

domain, also taking into account essential requirements of

future intelligent railways, this section defines an AI taxonomy

with the aim of framing the complexity of AI terminology.

The taxonomy is represented by a UML class diagram, which

allows for a more formal and effective representation [28].

The proposed taxonomy consists of three main concepts:

• AI Technique, representing methods, algorithms and

approaches enabling systems to perform tasks commonly

associated with intelligent behaviour, e.g. machine learn-

ing, evolutionary computing;

• AI Research Field, representing research areas that rely

on AI techniques and would not exist without them, e.g.

expert systems, data mining, pattern recognition;

• AI Application, representing cross-domain applications

that leverage AI to improve performance and usability,

e.g. computer vision, speech recognition, planning and

scheduling.

The class diagram is depicted in Figure 1, where classes

represent concepts of our taxonomy. Example of classes,

according to the definitions given above, are Artificial Intelli-

gence, AI Research Field, AI Technique and AI Application.

Among the concepts, different kinds of relationships can

exist. Black rhombi identify compositions, that are whole/part

relationships, where, if a composite is deleted, all other parts

associated with it are deleted. An example is the composition

between Artificial Intelligence and AI Technique, with the

aim of stressing the fact that, without AI, the latter can

not exist. Full arrows with solid lines represent inheritances,

which model concepts with a generalization hierarchy. For

example, there is an inheritance of PROLOG from Logic

Programming, to indicate that the former inherits all the

properties (including connections to the other elements) from

the latter, adding to them its own characteristics. Dotted

lines represent dependencies (weak relationships), while solid

lines indicate associations (strong relationships), where the

navigation direction is represented by the arrow itself. For

example, the use dependency between AI Research Field and

AI Technique indicates that the former may use the latter

to accomplish its goals. Similarly, the relies on association

between AI Application and Artificial Intelligence indicates

that the former is strongly depended on the latter. In both

cases, numbers at the sides of a line represent the cardinality

of the relationship. For example, 0..* on the left side of the

relies on association indicates that there may be (or not) AI

Applications relying on AI, i.e. taking advantage of any AI

Research Field or AI Technique. For example, according to

such definition, a mathematical rail traffic optimisation model

(e.g., one coming from Operations Research) on its own, may

be considered as not “intelligent”. Instead, it would become

”intelligent” when combined with an AI technique.

It is worth highlighting that we primarily focus on potential

railway applications, based on the definition we provided in

the previous section. Moreover, as AI is constantly evolving

and possibly new concepts would need to be added as they

emerge, the proposed taxonomy is flexible and intended to

accommodate newly rising concepts. The following of this

section detail the main classes of our AI taxonomy. A more

extensive description of the AI classes is given in [29].

AI Techniques. Defining artificial intelligence is usually

about making a machine able to do something that would

require intelligence if done by humans. In AI Technique we

gather all the means, algorithms and disciplines that allow

an artificial entity to perform such intelligent tasks. There

are three main sub-classes. First, Evolutionary Computing

focuses on the algorithms and techniques inspired by bio-

logical evolution such as e.g. evolutionary algorithms, swarm
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intelligence. Second, Logic Programming represents a set of

programming paradigms based of first-order logic to infer

new knowledge starting from some priors such as PROLOG.

Third, Machine Learning represents an integrated concept

that satisfies the following rationale: Machine Learning can

perform a given task by means of a specific ML Algorithm

trained by using a specific Learning Paradigm, in a particular

Learning Scenario, and considering a fixed Training Modality.

Hence, the class Task defines the goal that the user wants

to obtain such as classification, regression, and clustering.

ML Algorithm represents the sequence of operations used

to train a specific model such as support vector machines,

tree-based, Bayesian, and artificial neural networks. Learning

Paradigm refers to the strategy used to guide the algorithm

during the learning process such as supervised, unsupervised,

and reinforcement learning. Learning Scenario describes the

distinctive characteristics of the task under analysis such as

multi-task, single-task, and one shot. Lastly, Training Modality

indicates how the training phase is implemented as the transfer

of knowledge from another task/domain (transfer learning),

and the training from scratch.

AI Research Fields. The term AI Research Field refers to

domains, disciplines or research areas born with or under the

AI umbrella, and that can not exists without it. In particular,

the term refers to those fields in which the use of AI is not a

matter of performance or effectiveness, but the core of the field

itself. Some notable examples, represented as UML classes,

are: Expert Systems, the branch of AI focusing on software

intended to emulate the decision process made by experts in

some fields (e.g. physician for medical imaging); Data Mining

(DM), the set of procedure intended to mine information from

raw data; Pattern Recognition, the discipline studying how

to recognise, detect and discriminate samples by leveraging

patterns in data; Adversarial Search, the study of environ-

ments where agents act in an environment populated with

other adversaries. DM is an essential step of the knowledge

discovery from data process and aims at extracting information

from data (potentially voluminous and heterogeneous datasets

[30]) by leveraging intelligent methods [31] (i.e. ML). In our

taxonomy, we kept DM detached from ML as DM focuses

more on “discovering” and “extracting” knowledge from data,

while ML focuses on “learning” from data to perform actions.

AI Applications. In the proposed class diagram (Figure 1),

AI Application is connected to AI by means of a one-way

association, meaning that the former uses the latter (and not the

other way round). Within this class we gather all the domains,

research areas, topics, etc., that are not strictly bounded to

AI. Nonetheless, they are increasingly relying on AI, to the

point of starting to be (wrongly) considered feasible only with

AI. The set of AI applications is extremely wide. Among all,

some of the common ones are Scheduling and Planning, the set

of tools leveraging AI for arranging activities and operations,

Operations Research, and in particular its sub-fields leveraging

AI to improve optimisation procedures, Natural Language

Processing and Speech Recognition, the ability of a system to

understand and produce non structured texts or voices, Image

processing and Computer Vision, including image acquisition,

processing, inferring, etc., by means of an AI algorithm,

Robotics, the set of algorithms designed to govern a robot.

V. GUIDELINES AND REGULATIONS

Ethics and explainability in AI represent two of the topics

that raise more concerns to EU citizens. For this reason,

existing guidelines on these topics need to be addressed and

discussed with reference to the seven railway subdomains

introduced in Section III.

According to the guidelines introduced by the AI High-

Level Expert Group [32], trustworthy AI must be lawful,

meaning that it must respect all applicable laws, norms, and

regulations; ethical, meaning that it should respect ethical

principles and values; robust, from both the technical perspec-

tive and taking into account its social environment. Moreover,

in order to be deemed trustworthy, AI systems should follow

the human-centric approach, meaning that the final decisions

shall be left to people, the command and responsibility chain

should be reconstructable, AI applications should be fail-safe

and it shall benefit human beings, including future generations.

Due to the advancement of technology, results obtained

in safety-critical systems, like railways, are not easily inter-

pretable [33]. New initiatives towards Explainable AI (XAI)

[34] are rising and becoming ever important. XAI refers

to methods and techniques to make outputs understandable

by humans. XAI deals with three particular and different

concepts: Interpretability (also called Transparency) is the

characteristic of a model to be at a level that makes sense for

a human observer, so enabling interventions aimed at taking

impartial decisions and improve robustness; Explainability is

the characteristic of a model to take actions and procedures

for clarifying its behaviour; Comprehensibility is the char-

acteristic of a model to represent its learned knowledge in a

human-understandable fashion.

It is clear that transport and railways are generally relevant

sectors to consider ethical and explainability aspects. However,

not all the applications pose risks of such significance to justify

legislative intervention. It is thus necessary to focus attention

on the specific application by evaluating its potential risks and

impacts on human beings, wellness, and the environment. In

general, with respect to the railway subdomains, we could say

that in most of them AI could have mostly a minor/medium

impact on the wellness of human beings and the environment,

and major only in some subdomains. A minor impact can

be expected in all the subdomains except for those directly

affecting the safety of people, which are safety and security,

and autonomous driving and control [35]. For instance, an AI

application aiming at reducing the replacement of consumable

components (e.g. rails, switches, rolling stock) does not require

a significant legislative intervention, even if it could offer ben-

efits to special waste disposal and to environmental pollution.

At a medium level, also ethical concerns arise from applying

AI to staff scheduling such as drivers, crew, and maintenance

workers. In an ideal AI-based staff schedule, the efficiency

of an operational plan and the rights of staff well-being such

as having appropriate breaks and working patterns should be

well balanced. Similarly, we can imagine several applications

of AI in all these subdomains with a minor/medium impact on
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the wellness of human beings and the environment, but where

ethical concerns from the application of AI subsist.

Finally, a strong impact on ethics and a significant legislative

intervention would be required in the two subdomains cited

above. For example, the braking decision when approaching

an obstacle of automated driving systems is a typical target

application where the balance between the highest safety and

the passengers’ comfort is unstable. The questions that could

arise include: What is the right decision for an AI system, for

instance, applied in obstacle detection, to mitigate the effect

of false positives? And, what is the right decision for the

same system when an animal or a road vehicle is detected

on the track? These are just two of the possible questions

that arise when starting to think about the potentials of AI in

railways. For example, in road transport, [36] highlights key

ethical issues in the use of AI in automated driving; while [37]

discusses the dangers of the Moral Machine (MM) experiment

in Autonomous Vehicles, alerting against both its uses for

normative ends and the whole approach it is built upon to

address ethical issues. Further lessons on ethical issues of AI

can be learnt from other sectors, such as healthcare [38] and

robotics [39].

Looking at the explainability of AI, it shall be considered

when developing models and systems across the whole railway

transport, without distinction between the subdomains. So far,

XAI has not gained attention in railway transport, with an

exception of [40]. In [40], the problem of discerning different

reasons for the occurrence of train delays is studied. In

particular, methods from XAI help to classify to which amount

the primary and secondary features contribute to a specific

prediction of the model. For other domains, a comprehensive

review of XAI in various business and industry sectors is given

in [41], where case studies are reported in recommendation

systems, sales, lending, and fraud detection. An article [42] on

Supply Chain Brain discusses the XAI issue in supply chains.

These can be used to build on and define an important aspect

of XAI for railways.

Overall, we could say that surely the subdomains of safety

and security and automated driving and control shall receive

greater and immediate attention from the legislative point

of view, while ethical concerns could arise also from AI

applications in all other subdomains as, for example, control

and staff scheduling. Finally, explainability aspects shall be

addressed in all subdomains.

VI. MAPPING AI TO RAILWAY APPLICATIONS: CURRENT

RESEARCH AND OPPORTUNITIES

We give three matrices showing the intersections between

railway subdomains and AI research fields, techniques, and

applications, respectively. Table I gives intersections with AI

research fields, Table II gives intersections with AI techniques

and Table III gives intersections with AI applications. Section

VI-A describes the existing AI research in railways, marked Y

in the tables. Section VI-B represent potential future research,

marked P. Finally, Section VI-C gives cells that currently do

not have recognised relevant research, marked uncertain U, but

which are worth considering for more detailed investigations,

and which could lead to more substantial research advances

for both railways and AI.

A. Existing applications

We give existing applications of AI in railways per subdo-

main as defined in Tables I-III.

Maintenance and inspection. Applications of AI in rail-

way maintenance and inspection have been developed for

addressing infrastructure (e.g. [47]) and rolling stock (e.g.

[103]). Reference [43] gives a survey on applications of visual

inspection based on image processing in the railway industry

and sets the future research directions of visual inspection

technology. [44] gives a review on the application of various

AI and expert systems for fault diagnosis of high-speed rail-

ways, while [110] reports the pioneering work in autonomous

systems for condition monitoring of railway infrastructure. In

[47], the Dutch infrastructure manager ProRail uses pattern

recognition and image processing technology to predict where

and when a malfunction will occur in switches. The switches

are equipped with sensors that transmit information about the

power consumption, vibrations and heat of the switches. By

analysing the generated data, the prediction can be realised

before a disruption would happen. Machine learning and Deep

Learning approaches have found great applicability for Defect

Detection and Prediction tasks [83], [84], [85].

In [103], a preventive maintenance (PM) scheduling prob-

lem for a rolling stock system is considered. The goal was to

determine the PM interval for components in a rolling stock

system. The total expected costs for the system life cycle and

system availability are used as optimisation criteria.

Safety and security. Most of the AI (research fields) have

been recognised in the sub-domain of safety and security

including incident analysis and station security. Reference

[52] explores the employment of the decision tree (DT)

method in safety classification and the analysis of accidents

at railway stations to predict the traits of passengers affected

by accidents. In [56], Wayside Train Monitoring Systems

(WTMS) are introduced, which use pattern recognition for

defect detection in uncontrolled environments. The authors in

[88] developed a prediction model for the railway disruption

length using Bayesian Networks.

Among the AI applications, in [105], Natural Language

Processing is used in determining accident causation by

exploiting text analysis approaches. Investigation reports of

railway accidents in the UK were reviewed and analysed, to

reveal the presence of entities which are informative of causes

and failures. The proposed method is able to assist risk and

incident analysis experts to study causal relationship between

causes and failures towards the overall safety in rail industry.

In [109], computer vision techniques are used for various

types of security applications, including train stations. Accord-

ing to the authors, the challenge does not lie on acquiring

surveillance data from video cameras, but for identifying what

is valuable, what can be ignored, and what demands immediate

attention.

Autonomous driving and control In autonomous driving

and control we recognised the use of evolutionary algorithms
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TABLE I: Intersection between railway subdomains and AI research fields

Expert systems Data mining Pattern recognition Adversarial search

Maintenance

and inspection
Y:

visual inspection [43]

fault diagnosis [44]
P:

maintenance planning [45]

defect prediction [46]
Y:

defect prediction [47]

failure prediction [48]

defect detection [49]

P: maintenance planning [50]

Safety and security Y: risk assessment [51] Y: accident prediction [52], [53] Y: defect detection [49] P: risk assessment [54]

Autonomous driving

and control
Y: intelligent train control [55] P: intelligent train control [56] U Y: energy optimization [57]

Traffic planning

and management
Y:

train rescheduling [58]

train timetabling [59]
Y:

performance assessment [60]

delay pattern recognition [61]

train dispatching [62]

Y: train rescheduling [63] Y train timetabling [64]

Revenue management U P:
revenue forecasting [65]

RM system design [66]
U P:

RM simulation [67]

pricing [68]

Transport policy P:

urban public transport

decision making [69]

strategy selection [70]

P:
public transit analyses [71]

decision making [72]
U P:

public transport

policy making [73], [74]

Passenger mobility P: flow management [75] Y: flow prediction [76], [77] U Y:
flow simulation [78]

passenger planning [79]

TABLE II: Intersection between railway subdomains and AI techniques (All results for Logic Programming are “U”, and

therefore not included in the table.)

Evolutionary

computing

Machine

learning

Maintenance

and inspection
P:

defect prediction[80]

failure prediction[81]

defect detection [82]

Y:
defect prediction[83]

defect detection[84], [85]

Safety and security Y:
train protection[86],

speed error reduction[87]
Y: accidents [53] disruptions [88]

Autonomous driving

and control
Y:

energy optimization [89]

intelligent train control [90]
Y: intelligent train control[55]

Traffic planning

and management
Y: train timetabling [91], [92] Y:

delay analysis[40], train rescheduling [93]

train timetabling [63], [94], train shunting[95]

Revenue management P: revenue simulation [96] P:
overall revenue management[97]

inventory control and prediction[98]

Transport policy P: energy network policy making [99] U

Passenger mobility P: demand forecasting [100] Y: flow prediction [101], [102]

and reinforcement learning for optimal train control. Reference

[89] proposed a method for energy optimisation of the train

movement applying control based on genetic algorithms. The

algorithm was tested based on a real subway line in Milan.

Reference [55] presents two train control algorithms – an

expert system and a reinforcement learning – to operate the

train similar to an experienced driver with real-time data to

reduce energy consumption whilst maintaining comfort level

and punctuality.

Traffic planning and management. Traffic planning and

management is another sub-domain where many AI research

fields have been extensively used tackling traffic state pre-

diction, timetabling and traffic rescheduling as well as some

more strategic planning decisions like equipment layout using

e.g. clustering, reinforcement learning and evolutionary algo-

rithms.

In the 70s, the first expert systems for real-time train dis-

patching were developed [58]. In [59], expert systems are used

for intelligent train operations. In [60], a data analytics ap-

proach is designed for train timetable performance measures,

where automatic train supervision data is used. To analyse

train delay patterns, [61] applies data clustering techniques and

[120] uses regressions and random forest techniques. Finally,

[62] gives a comprehensive survey on the use of data-driven

approaches for train dispatching management.

In [93], a scalable reinforcement learning algorithm is

proposed for scheduling railway lines. The goal is to define

track allocations and arrival/departure times for all trains of

a line, provided with their initial positions, priority, dwell

times, and running times, while minimising the total priority-

weighted delay. Reference [63] solves the problem of optimis-

ing dispatching and rerouting in the Swiss railway network by

deep reinforcement learning and pattern recognition, where

the recorded data is variable over time and only contains a

few valuable events. To overcome the deficiency of the lack

of valuable data, they use the high computational power of

modern GPUs to simulate millions of physically plausible

scenarios. Artificial data are then used to train their algorithm.

Similarly, reinforcement learning has been used for train

scheduling [94] and shunting in yards [95].

Since most traffic planning and management problems are

NP-hard, evolutionary algorithms are often used to get near-

optimal solutions within reasonable time. In [92], an alter-

native mathematical model to tackle the timetabling problem
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TABLE III: Intersection between railway subdomains and AI applications

Operational research

and scheduling

NLP & speech

recognition

Computer vision

& image processing

Autonomous systems

& robotics

Maintenance

and inspection
Y: defect & fault detection[103] P: defect detection[104], [105] Y:

defect detection[47]

failure detection[48]

P: autonomous

maintenance [106], [107]

Safety and security U Y: railway accidents[108] Y: anomaly detection[109] Y:
railway accidents[110]

anomaly detection[111]

Autonomous driving

and control
Y: energy optimization [57], [112] U P: autonomous driving [113] U

Traffic planning

and management

P: ML-based

timetabling and rescheduling [114]
P: overall management [115] U U

Revenue management P:
pricing [116]

RM system design[117]
U U U

Transport policy P: policy making [99]
P: tourist satisfaction

analysis [118]
U U

Passenger mobility U
Y: passenger

sentiment analysis [119]
U U

is proposed and a Genetic Algorithm is used for solving the

model in order to rapidly obtain near-optimal solutions. Com-

putational experiments were conducted based on a German

railway network. Reference [91] presents a heuristic model

based on the concept of Fixed Path + Genetic Algorithm. The

Fixed Path model assumes that the path of the trains is fixed for

preparing the train schedule. The GA is used for selecting for

each train the minimum-time path to arrive at the destination.

Combined, they give a schedule minimising the travel time

of each train while maximising capacity of the network. This

paper also shows that rail traffic can be improved regarding

the increase of timetable stability and maximizing capacity

subject to safety constraints. More strategically, [87] combined

a genetic algorithm, particle swarm optimisation algorithm,

and Kalman filtering for determining the best locations of

balises in order to minimise speed error of railway vehicles.

Passenger mobility. Passenger mobility has received not

as much research attention as in other subdomains, mostly

for predicting passenger flows in railway and metro networks.

Reference [77] also uses data mining to forecast railway

passenger flows. A combination of methods such as data

warehousing, data mining and neural networks are used. In

particular, the result was applied to the Ticket Selling and

Reserving System of Chinese Railways. In [101], artificial

neural networks are used for forecasting passenger flows

on metro lines. Artificial Neural Networks are trained by

using simulated data from a dynamic loading of the line.

The proposed method was tested on Line 1 of the Naples

metro system in Italy. Computational experiments show that

the proposed approach is able to forecast the flows on metro

sections with satisfactory precision. Reference [102] proposes

a deep learning based architecture for metro passenger flow

prediction. This architecture is highly flexible and extendable,

suitable for the integration and modelling of external environ-

mental factors, temporal dependencies, spatial characteristics,

and metro operational properties in short-term metro passenger

flow prediction. It achieves a high prediction accuracy due

to the ease of integrating multi-source data as evidenced by

computational experiments. Differently, [119] used NLP to

evaluate passenger satisfaction with the system operations

by analysing the information extracted from the tweets from

customers.

B. Potential applications: promising research directions

We identify some examples of potential applications of AI

in railways as defined in Tables I-III. These are formed based

on existing ones in similar (transport) domains.

Data mining for maintenance and autonomous driving.

One of the essential challenges to be tackled is using auto-

mated data processing and analysis techniques for efficient

exploration/understanding of new knowledge, from the huge

amount of complex data structures. Approaches from e.g.

manufacturing [45] could be translated to railway maintenance

as well. Next to that, it becomes important to protect in-

frastructure condition monitoring data between maintenance

operating companies. For example, to address it, [46] created

an organisational architecture that integrates data produced

in factories on their activities of reactive, predictive and

preventive maintenance. The main idea would be to develop

a decentralised predictive maintenance system based on data

mining concepts. In addition, fast real-time/online data mining

are prerequisite for online learning and autonomous driving.

Therefore advanced collecting, combining and processing data

from different sources (i.e. sensors, cameras) is a must to

provide accurate information to the AI-based control system

[56].

Evolutionary computing for maintenance and defect

detection. Methods for finding an optimal set of parameters

i.e. feature selection methods, would provide benefits to defect

detection in railway maintenance such as signal fault, track

inspection, and so on. Feature selection techniques are used

to maximise discrimination: the selection method could use

a genetic algorithm to optimise various parameters of the

system. For example, [82] proposed a model for texture

segmentation in wood manufacturing using Gabor filters to

the analysis of texture and defect regions found on wooden

boards. Also, possible applications are seen for using GA

for preventive maintenance [80], [81]. These would lead to

providing to focus on the most important characteristics while
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disregarding the others, and thus lead to smaller required

datasets and hopefully simpler and more efficient AI models.

Autonomous systems for maintenance. Unmanned aerial

vehicles like drones can be used for efficient and regular

inspection of railway resources, including rail tracks, catenary

and power system. For example, [107] presented using UAVs

for plant inspection. In general, use of automated systems

in maintenance tasks tends to provide additional support in

automating operations leading to increased efficiency, produc-

tivity and safety [106].

Computer vision for automated driving. Computer vision

based on deep learning could become extremely useful for

complex tasks of object detection (e.g. an obstacle on tracks)

and semantic segmentation (e.g. distinguish between signals,

signs, rails, and road crossings). Recently, the image recogni-

tion methods using deep learning proved to be far superior to

the methods used prior to the appearance of deep learning in

general object recognition competitions [113].

Machine learning for autonomous driving. The concepts

of ML for automated car driving are likely to be transferred

from road to railways once the techniques in car driving

are mature enough, e.g. [121], [122], [123]. ML may play

a key role in this area but this is not as simple as out-of-the

box deployment of strategies and models developed in related

fields. Weston [128] argues that a system-centric approach not

only allows us to meet the necessary requirements for real

world deployment but also affords the machine learning com-

munity new opportunities for developing the next generation

of intelligent algorithms.

Adversarial search for maintenance scheduling. In main-

tenance scheduling, facility managers and staff must deal with

many daily maintenance requests despite various limitations,

such as limited budgets and staff, which can cause delays in

responding to some maintenance requests. Maintenance work

is scheduled according to various priorities. For example, in

[50] facility managers considered the impact of each problem

in terms of system failure and safety, and proposed a frame-

work to incorporate the interplay between energy efficiency

and occupant satisfaction. This can be extended to the railway

context in order to optimise maintenance planning and reduce

impacts on traffic operations.

Adversarial search for security. For security applications

in railway stations and terminals, new approaches combin-

ing traditional security risk management methodologies with

agent-based modelling and Monte Carlo simulation can be

used for risk assessment, and risk mitigation. Similar appli-

cations for airports security [54] may represent a promising

basis. In addition, there might be potential to extend this ap-

proach to important station shunting yards, depots, signalling

and control centres. Lastly, applying this method to on-board

trains will also further improve the security of passengers.

Operations research for traffic planning and manage-

ment. Most typical traffic management problems can be

modelled as combinatorial optimisation problems, which are

traditionally solved by classical optimisation approaches such

as branch-and-bound or heuristic-based methods. Recently,

there have been considerable advances in solving combina-

torial optimisation problems by mathematical programming

and machine learning [114]. This implies that as there is

great potential in solving railway planning and scheduling

problems using AI given the fast-growing research interests

in the theoretical optimisation community.

NLP for railway transport. NLP has a significant potential

in railways to process unstructured or semi-structured doc-

uments/records, such as maintenance and disruption reports,

social networks. As such, it can find applications in subdo-

mains such as maintenance, traffic planning and management

and transport policy. Maintenance records can be successfully

processed by NLP to determine the most critical components,

which can further lead to determining optimised maintenance

strategies [104]. For example, [105] used NLP to detect dupli-

cate defect reports at Sony Ericsson Mobile Communications.

For railway traffic management, NLP could be investigated for

design, implementation and usage of ontologies and natural

language in order to bridge the gap between a “machine read-

able representation of data” and a “user friendly presentation

of data” [115]. The adoption of ontologies could enable the

management of Centralized Traffic Control (CTC) logic and

the improvement of the user interface through the exploitation

of natural language queries. Also, it could create automatically

a human readable description of the ontology structure and of

its instances that can describe “informally” the structure of

the railway CTC and its rules, without losing any coherence

and information. For transport policy, the potential of applying

big data and text mining technologies from social media could

support policy makers in transport analysis and policy making,

including NLP as a powerful tool for text mining and analysis

[118]. The article is about generic transport policy making,

and there is no reason that railways, as an important sector of

transport, would be excluded from this potential direction.

AI for revenue management. Future revenue management

systems for railway transport can use AI for ticket pricing, seat

and discount allocation, and overbooking [116], defining com-

petitive pricing of offered services between multiple operators

[68], and developing adaptive RM systems that could auto-

matically learn by directly interacting with customers [117],

[98]. Revenue management systems for railway transport share

certain features with other RM systems while having their

own uniqueness. As the applications of AI in RM systems

in other areas becomes mature such as airline [97], there is a

possibility that they can be transferred to the railway sector,

since the differences between the RM systems in different

fields should not be significant enough to challenge such a

transferring process.

AI for transport policy. Using AI for policy making is

rather at its early stages of development, but certain promising

applications of expert systems, optimisation techniques, adver-

sarial search and data mining could be envisioned [124]. Policy

planning can often be modelled as a combinatorial problem

[99], and using an AI-based techniques could provide the best

planning actions. Also, game-theoretic approaches combined

with ML or EC could be used for negotiating and/or auctions

when competing for certain activities, where each participant

is typically seeking to maximise his/her utility [125], [73]. In

railways, these can be used for bidding of multiple operators to

award a concession for traffic services or maintenance works.
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Alternatively, it can be used to describe the dynamic inter-

actions between the government, public transport company,

and travellers when deciding to open a new line or a station

[74]. Expert systems like the ones in public transport for

deciding on preferable technologies could be useful for rails

as well, for e.g. developing mobility management strategies

[69], [70]. By having the increased availability of smart cards

and vehicle movement data also comes to the new need

for applications of more advanced mining methods to learn

patterns and preferences required for policy management, and

also for improving mobility and transport planning [71].

Evolutionary computing for passenger mobility. Trans-

port predictions including passenger and freight demand, are

expected to become be increasingly important as the system

is likely to get more dynamic and data-driven. To do achieve

that, apart from ML techniques, genetic algorithms could be

considered as well. For example, [100] presented a forecasting

tool for predicting airline passenger demand using GA, and

demonstrated its more accurate, reliable, and greater predictive

capabilities as compared to the traditional statistical models.

C. Uncertain applications: challenging research directions

The topics marked with Uncertain (U) in Tables I-III rep-

resent more adventurous, i.e. challenging to reach, research

opportunities in the future that seem to be not recognised yet

by the research community and practitioners at the moment.

We recognise that some of the current U intersections could

provide promising research directions at the crossings of, for

example, traffic management & computer vision/speech recog-

nition, autonomous driving and logic programming, security

and operations research, transport policy and machine learning.

In particular, we determine the following directions:

1) Trustworthy AI for automated driving and safety.

Developing regulations and standardised certification pro-

cesses are required to precisely quantify the trustwor-

thiness of an AI-based system, and thus its safety and

dependable characteristics to be able providing e.g. safe

autonomous train operation, which is of utmost impor-

tance for system performance. Therefore, it is advised to

exploit Explainable AI (XAI) approaches to make these

future systems more understandable.

2) Computer vision for passenger mobility. Computer

vision can provide advanced motion tracking both at

stations and onboard including passenger crowd charac-

terization and emotion recognition to monitor passenger

satisfaction, including driverless vehicles, and provide

personalised trip advisors and experience, among others

to visually impaired persons.

3) Computer vision for Traffic planning and manage-

ment. Visual support tools could be used to help dis-

patchers with more user friendly interfaces and provide

the right information and at the right time.

4) Logic programming for human-based decision mak-

ing. logic programming could be used to develop decision

support tools based on experienced practitioners, e.g.

planners, dispatchers, and maintenance workers.

5) Operations research for safety and policy. Operations

research-based models can be used to tackle new (cyber-

) security challenges. Also, during pandemics, such as

Covid-19, distancing between passengers, i.e. seat allo-

cation, could be optimised using OR-based models in

order to increase the passenger health safety on board. In

addition, the increased awareness of AI usability among

strategical decision/policy makers can be expected, and

new applications could arise in transport policy.

Finally, some of the Us tend to be trivial for lack of ap-

plications (as no connections can be defined) such as revenue

management & pattern recognition, or autonomous systems

and robotics & revenue management and transport policy.

Thus, today, it is rather difficult to envision possible related

applications in the future. However, further developments

of AI and railway technologies could indeed generate new

potential uses of AI in these subdomains as well.

VII. CONCLUSIONS

This paper defined a taxonomy for AI in railways. It gives

a comprehensive definition of AI that is relevant and highly

useful for railway academics and practitioners. To address the

complex world of AI and bring it towards railways, we classify

AI into three main classes: research fields, techniques and

applications, and explain their main characteristics. Further,

differently from earlier research, this paper covers railway sys-

tems holistically including maintenance, safety and security,

autonomous driving, transport planning, revenue management,

transport policy and passenger mobility. As such it makes a

first step in recognising AI in the railway domain.

We mapped the current railway research to the AI taxonomy

and recognised that maintenance has generated the most AI-

related research, where pattern recognition, machine learning,

computer vision and image processing are the most frequently

used AI areas in research fields, techniques and applica-

tions respectively. Other rail subdomains received attentions

from almost none to medially found papers. Notably, safety

and security share similar AI categories to those found in

maintenance and inspection, possibly because many safety

and security problems inherently link with maintenance and

inspection. The use of AI in Autonomous driving & con-

trol and traffic planning and management has been more

popular than it used to be. In particular, the latter has got

all Ys in AI research fields. We also notice that operations

research, a powerful traditional tool in railway operations,

heavily intersects with planning and management. Revenue

management, Transport policy and Passenger mobility are the

least populated subdomains in terms of Ys, which could mean

either there is great potential in applying AI to some of them,

or some are simply not appropriate areas for introducing AI at

the moment. It is also worth remarking that logic programming

has never been used in any rail subdomains. Finally, ethics in

AI and explainable AI still remain to gain attraction in all

railway subdomains.

In addition, we determined some promising research di-

rections. First, some relevant AI applications exist in other

domains, similar to railways, however, such problems have not
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been addressed in railways yet, such as AI-based advanced

autonomous driving, and safety and security applications.

Second, we also determined topics that have no AI research

in rail nor in other related domains. Some examples are

revenue management and transport policy. This makes them

even more suitable for more fundamental contributions to

railway research in future. Third, AI-powered railway can, on

one side benefit from other smart domains such as smart cities

and ITS, and on the other support them towards increasing

their “smartness“ through machine learning and other AI

techniques, which would lead to future data-driven and flexible

transport systems. Overall, we recognise that AI research is

at its dawn in the railway domain and we expect a growing

interest in existing problems using new techniques as well as

finding new problems to be solved by new AI techniques. This

all together makes the railway domain a fruitful future playing

field for new AI advances.
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