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Abstract— License plate (LP) detection in the wild remains
challenging due to the diversity of environmental conditions.
Nevertheless, prior solutions have focused on controlled envi-
ronments, such as when LP images frequently emerge as from
an approximately frontal viewpoint and without scene text
which might be mistaken for an LP. However, even for state-
of-the-art object detectors, their detection performance is not
satisfactory for real-world environments, suffering from various
types of degradation. To solve these problems, we propose a
novel end-to-end framework for robust LP detection, designed
for such challenging settings. Our contribution is threefold:
(1) A novel information-theoretic learning that takes advantage
of a shared encoder, an LP detector and a scene text detector
(excluding LP) simultaneously; (2) Localization refinement for
generalizing the bounding box regression network to comple-
ment ambiguous detection results; (3) a large-scale, comprehen-
sive dataset, LPST-110K, representing real-world unconstrained
scenes including scene text annotations. Computational tests
show that the proposed model outperforms other state-of-the-
art methods on a variety of challenging datasets.

Index Terms— License plate detection, deep learning, informa-
tion theory, multi-task learning, intelligent traffic surveillance.

I. INTRODUCTION

OBJECT detection research has attracted great interest in
recent years, with models being applied widely in many
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Fig. 1. Detection in wild scenes and an illustration of license plate (LP)
vs non-LP class. A typical image in our LPST-110K, showing unconstrained
settings. The first column (a, c) is detection results for the state-of-the-art
RetinaNet [4]. The second column (b, d) shows the our results, indicating
fewer detection errors and better regression. The last column (e) is an
illustration of scene text relation.

traffic-related applications [1]–[6]. A variety of methods have
demonstrated high accuracy in detecting license plates (LP)
under controlled settings.

While existing detectors successfully applied to the LP
detection problem, many key challenges still remain in uncon-
strained wild scenarios. For example, real-world LP detection
causes the following problems: modifications of prior settings
to adapt to wild, incorrect detection results, ambiguity in
classifying objects associated with scene text, low-quality
visual data, uneven lighting, motion blur, and others. How-
ever, such scenarios are becoming increasingly common and
gaining significant popularity in a variety of applications,
including civil security, crowd analytics, law enforcement, and
street view images. Despite being the most common scenario,
LP benchmarks still do not consider real-world cases, and
therefore many problems are not adequately addressed. As a
result, state-of-the-art detectors struggle with these images.

To clearly ascertain what makes LP detection difficult, some
common cases in the wild must be considered where LP
and scene text appear at the same time as multiple instances
(see Figure 1). Based on this basic observation, we identify
two major drawbacks in two aspects. First, LP and the scene
text (not LP) are not correctly distinguished, which in return
may cause false detection of each other. In fact, the LP is
a child class that belongs to the scene text, so they must
be distinguished and there must be enough variability to
distinguish class categories. The existing LP benchmarks,
however, did not include scene text in the sample, nor were
they explicitly addressed in learning and evaluation. Secondly,
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the detected bounding box does not contain all the characters
in the LP. Basically, LP detection is necessarily linked to
continuing tasks related to recognition or de-identification;
therefore, sophisticated localization is essential for identi-
fying information. Yet, for detailed extra tasks, it is still
challenging to localize enough information contained in LPs.
Interestingly, as shown in Fig.1 (a, c), the state-of-the-art
detector exhibits prominent negative results for scenarios in the
wild.

A well-designed LP detection framework should tackle
the problems above (see in Figure 1(b, d)). In this paper,
we propose an end-to-end framework which is composed of
a single shared feature encoder and two parallel detection
branches. The single shared encoder learns a global feature
across all detection tasks (LP and non-LP respectively). More
specifically, due to non-LP objects (scene text but not LP), our
framework is divided into 1) LP detection network and 2) non-
LP detection network. Different from traditional LP detection
models, we explicitly prevent learning of non-LP objects.
To this end, we bring a novel information-theoretic loss to
minimize mutual information between the embedding feature
and non-LP distribution that interferes with LP detection. Prior
to the unlearning of non-LP distribution, we hypothesize that
the existence of non-LP is known and that the relevant meta-
data, such as additional labels corresponding to the semantics
of the non-LP instances are accessible. In this scenario, the dis-
crimination problem between LP and non-LP based on mutual
information can be formulated in terms of an adversarial
problem. One network has been trained to detect the non-LP
instances. Instead, the other network has been trained to detect
only LP instances, which is the ultimate goal of the overall
architecture, while maximizing the discrimination between
LP and non-LP based on mutual information. Therefore,
we adopt an adversarial training strategy, which is achieved
by minimizing mutual information while estimating optimal
LP detection independence. Furthermore, we propose a local-
ization refinement module with a sharing block. This module
provides valuable information on the quality of bounding box
regression for sophisticated localization.

To summarize, this paper makes the following novel
contributions:

• A novel information-theoretic loss for LP detection.
We propose a new framework that is discriminative to
detect LP even in unconstrained scenes. We note that our
approach to calculating mutual information could likely
exclude non-LP, resulting in high accuracy (Sec. III.C).

• Localization refinement module. We generalize the
bounding box regression network to complement ambigu-
ous detection results. As far as we know, there has been
no other previous work to utilize regression networks for
refinement of localization (Sec. III.D).

• A novel LP detection dataset. We collect a new large-
scale dataset, LPST-110K, containing images captured
from unconstrained scenes. To the best of our knowledge,
LPST-110K is the first dataset to address LP and scene
text simultaneously for LP detection. By evaluating state-
of-the-art detection models on LPST-110K, we demon-
strate the accuracy improvement of our proposed model
compared with other approaches (Sec. IV).

II. RELATED WORKS

In this section, we review the deep learning algorithms in
intelligent transportation systems (ITS) and the LP detection
methods related to our methods. The deep learning in ITS, the
license plate detection and license plate detection benchmarks
are included in this section.

A. Deep Learning in ITS
In recent years, deep learning algorithms have achieved

impressive results in computer vision [7]–[10]. In many mod-
ern transportation systems, deep learning has begun to play
a critical role as a means to acquire more robust recognition
or surveillance, by learning from existing task-specific bench-
marks. It is performed to solve more complex traffic conditions
by designing a non-linear model based on a data-driven
paradigm with existing benchmarks. Many traditional prob-
lems such as road detection [11], [12], street scene labeling/
recognition [13], [14], crowd counting [15], [16], traffic flow
estimation [17], [18], or license plate detection [19], [20]
and recognition [21]–[23] can be investigated to utilize these
techniques. Specifically, depending on the existing benchmarks
and detection algorithms, robust license plate detection can
help take to help guide a more comprehensive understanding
and control of traffic conditions. While researchers have uti-
lized limited benchmarks and universal detection algorithms,
we have found that conventional algorithms are not always the
solution in every situation. Developing a more robust solution
is a non-trivial task, but is required to outperform current
capabilities. We therefore investigate what efforts and trials
have been made in prior works for license plate detection
algorithms and benchmarks in the following subsections.

B. License Plate Detection
Early works have devoted much effort to improving LP

detection performance based on the framework of image
binarization model [24], [25], segmentation model [26], edge-
based model [27], and region-based model [28]. In this way,
several approaches have remarkably shown the use of different
hierarchical schemes for detecting a vehicle region as part of
extracting the LP region. Nevertheless, these methods cannot
perform well on complex backgrounds and in unconstrained
settings.

More recently, as Deep Convolutional Neural Networks
(DCNN) [29], [30] have shown good classification perfor-
mance, researchers have begun to deal with some compli-
cated situations. Particularly, as deep feature-based object
detectors [6], [31] have been developed, many studies have
started to detect LP under difficult situations. Prior knowledge-
based methods based on vehicle detection [19], [32]–[38]
have greatly reduced false positives despite background clut-
ter. Data-driven methods [35], [39]–[42] have been used to
increase the detection accuracy by exploiting useful deep
representations with the augmentation transforms. Specifi-
cally, [20], [35], [41] may be the most similar to ours, because
they also focus on unconstrained environments. However,
these studies still do not consider the existence of non-LP, thus
have not reached a wide diffusion. Our work is distinguishable
in that we try to address the non-LP instance in unconstrained
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TABLE I

KEY PROPERTIES FOR LP DETECTION BENCHMARKS. #IMAGE.: NUMBER OF IMAGES. W. ST.: THE PRESENCE OF SCENE TEXT IN THE IMAGE.

#INSTANCE.: NUMBER OF INSTANCES WITH BOUNDING BOX ANNOTATION. #LP/IMAGE.: AVERAGE LPS PER IMAGE. #ST/IMAGE.: AVERAGE SCENE

TEXT (LP AND NON-LP) INSTANCES PER IMAGE. VARIATIONS IN TILT DEGREES.: GREAT HORIZONTAL TILT DEGREE (15◦∼45◦) AND VERTICAL

TILT DEGREE (15◦∼45◦). VARIATIONS IN DISTANCE.: THE DISTANCE FROM THE LP TO THE CAMERA LOCATION IS RELATIVELY DIVERSE.

VARIATIONS IN BLUR.: BLURRY IMAGE DUE TO MOTION BLUR AND HAND JITTER WHILE CAPTURING IMAGES

cases. Moreover, our experiments show that our completed
method improves LP detection performance in the real-world
scenarios.

C. License Plate Detection Benchmarks

Many benchmarks for LP detection were designed for
training and testing simultaneously and a few surveys are
shown in Table I. Representative LP detection datasets include
AOLP [43], SSIG [44], PKU [45], CD-HARD [35], UFPR [33]
and CCPD [41]. Surprisingly, none of these provide scene-
text annotations, even though they are the main cause of the
erroneous detection.

As evident in Table I, our new LPST-110K dataset,
described in Sec. IV, provides all text annotations that exist
in the image that have not been attempted in any datasets.
Moreover, our datasets, which focused on rough scenes in
uncontrolled environments, were challenging and particularly
related to motion blur, uneven lighting, large slope angle and
low resolution. The exceptions are UFPR [43] and CCPD [41],
which consist of many of the aforementioned non-constraining
conditions. In particular, the CCPD [41] provides a huge
number of samples that cannot be compared with other bench-
marks. Despite this fact, these images provide only one to three
samples per image, but LPST-110K provides as few as three
to as many as 20 LP annotations per image. More importantly,
classification of LPs and non-LP texts on the LPST-110K gets
confused between each other, making them a challenge for
detection. To our knowledge, LPST-110K is the first dataset
to provide text annotations as well as enormous numbers of
instances (LP and non-LP) in an image, even collected from
unconstrained scenes.

III. PROPOSED METHODOLOGY FOR LICENSE

PLATE DETECTION

In this section, we first introduce the problem settings,
which will be discussed in Section III-A. We then present
the license plate detection architecture used in our experi-
ments in Section III-B. In addition, we formulate the loss
functions for each part of the whole architecture in detail
(Section III-C-III-D) and define the overall training procedure,
described in Section III-E. Finally, we illustrate how to per-
form the inference for the proposed model in Section III-F.

A. Problem Settings
In order to make the descriptions clear, we introduce sev-

eral notation prior to the introduction of the overall idea of
the study. Unless noted otherwise, all notations refer to the
following terms. All the symbols and notation used in this
paper are summarized in Table II. As shown in Fig 1, our
goal is to detect LP from each image example x ∈ X , where
X denotes an input space for images. Then, the input image x
contains an LP y(x) ∈ Y and a non-LP scene text n(x) ∈ N
classification and 4-tuples bounding box coordinate labels. Let
X and Y be two random variables. In this paper, we consider
X and Y include the value of x and y(x) respectively. We also
represent N and Y as an non-LP class that interferes with LP
detection and a LP class respectively. In addition, we define
a latent function n : X → N , where n(x) denotes the target
non-LP instance of x .

As already mentioned, our proposed network takes the input
image x and outputs both LP detection y(x) and non-LP
detection n(x) results simultaneously. Thus the input image x
is fed into the encoder (ResNet + FPN) for feature extraction
f : X → R

K , where K is the number of the features extracted
by f , parametrized as θ f . Additionally, we replace the original
RPN structure with two parallel RPN structures: RPN for LP
g : R

K → Y and RPN for non-LP h : R
K → N . The para-

meters of each network are denoted as θg ∈ [θgloc, θgcls ] and
θh ∈ [θhloc, θhcls ], assuming the regression and classification
sub-network parameters, respectively.

B. Architecture Design

As discussed in Section 1, we propose to utilize
information-theoretic learning to improve the performance of
LP detection, which aims to construct rich feature represen-
tations for complex and challenging scenes. As shown in
Fig 2, our overall architecture is divided into three parts:
1) a backbone network f , 2) a LP detection sub-network
g, and 3) a non-LP detection sub-network h. Existing two-
stage detectors like Faster RCNN consist only of f and g,
but our method additionally utilizes h to further maximize
the discrimination between LP and non-LP in feature rep-
resentation learning. Specifically, we include a localization
refinement module (LRM) while learning g and h. It is
worth mentioning that proposed architecture provides the
complementary information to minimize mutual information
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TABLE II

NOTATION USED IN THIS PAPER

Fig. 2. Overall architecture of LP detection network. The network f is
constructed with ResNet-50 and FPN.

between the embedding feature and non-LP distribution and
boost LP-specific detection performance.

The input of our proposed architecture is the image x , the
output is the LP and non-LP detection results for training
and the only LP detection results for inference. A standard
deep learning-based detection network is designed, moti-
vated by [4], [31], [46]. First, the backbone network of
ResNet-50 [47] is established by building FPN [46] with three
upscaling-layers for feature extraction as an encoder f . Sub-
sequently, our task-specific detection networks, well-known
RPN [31], includes two parallel structures (i.e. one for LP g
and the other for non-LP h), which provide two fully convo-
lutional sub-networks. These sub-networks in RPN structures
are attached to each feature map of the encoder network in
parallel to each other.

The first is a regression sub-network which performs a
bounding box regression for sophisticated localization around
the object in the image using the encoder’s output f (x), repre-
sented as the x and y-axes coordinates in the upper-left corner
and the x and y-axes coordinates in the lower-right corner of
the rectangle. Secondly, classification sub-network produces
a class-specific confidence score Ci , i denotes the number of
classes including the background (assuming multi-class cases).
Therefore, each anchor box has i numbers indicating the class
probabilities.

C. Mutual Information Maximization via Adversarial Loss
In constrained scenes, one-class object detection task with

only an LP class can improve the precision and localization
accuracy with small false-positive rates and high-IoU scores

simultaneously. In unconstrained images, however, there are
scene-texts that look like LPs and arbitrarily shaped LPs.
Thus, such phenomenon has produced unsatisfactory results in
terms of LP detection performance. Ideally, LP-discriminative
features should explicitly ignore non-LP related features inside
the learned network. Therefore, for maximizing inter-class
variance, the objective is to perfectly remove the following
characteristics from detection network:

I(Y ; n(X)) �≈ 0, (1)

where I(·) denotes the mutual information between two ran-
dom variables. To handle this problem, our ultimate goal is to
learn the network with the following characteristics:

I(g( f (X)); n(X)) ≈ 0. (2)

We decide to add the mutual information term to the objective
function for training networks. To be specific, during the train-
ing process, we should explicitly define a classification stage
for non-LP, which aims to confuse non-LP data distribution
from the extracted features.

We hope the LP-specific detector is trained to maximize
to inter-class variations related to non-LP images. A good LP
detector would, therefore, have characteristics that are close to
the characteristics which are irrelevant for all non-LP visual
representation, especially scene-text without LP. Therefore,
we replace g( f (X)) with f (X) because g, the RPN network
that determines detection output, receives f (X) as its input.
This means that if the entire network recognizes n(X), which
is non-LP information, as disrupted information for LP detec-
tion, it already has that property from f (X) extracted from the
input image X . In this case, we derive the following objective
function:

min
θ f ,θg

Llp(θ f , θg) + ιobjI( f (X); n(X)), (3)

where Llp is the standard detection loss [4], [31], [46] includ-
ing Euclidean loss for regression Lgloc and cross-entropy loss
for classification Lgcls . ιobj is a trade-off hyper-parameter to
control the relative importance of the two terms.
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In information theory, the mutual information term in
Eq. (3) can be explicitly expressed as follows:

I( f (X); n(X)) = H ( f (X)) − H ( f (X)|n(X))

= H (n(X)) − H (n(X)| f (X)), (4)

where H (·) and H (·|·) are the marginal and conditional
entropy, respectively. Here, the marginal entropy H (n(X))
can be eliminated from the objective function because it
is a constant that is completely independent of θ f and θg

during the optimization process. However, the entropy term
in Eq. (4) can be changed to the problem of calculating the
posterior distribution. To be specific, we can instead calculate
the negative conditional entropy −H (n(X)| f (X)) with the
posterior P(n(X)| f (X)) explicitly. However, the posterior
distribution in objective function is still intractable. We can
instead approximate posterior with a parameterized distribu-
tion, Q, with an additional desideratum (mutual information
constraint):

min
θ f

Ex̃∼PX (·)[Eñ∼Q(·| f (x̃))[log Q(ñ| f (x̃))]],
s.t. Q(n(X)| f (X)) = P(n(X)| f (X)). (5)

The objective is directly calculated with Q in Eq. (5). Hence,
the backbone network f can be trained under the additional
desideratum with no change to the basic training procedure.

It is difficult to calculate or optimize while satisfying
the constraint in Eq. (5). The intuitive meaning of mutual
information constraint is clear: the smaller the KL divergence
between P and Q, the greater the closeness between Q
and P , indicating that Q gets more information from P as
learning gradually continues. Therefore, an approximation of
the posterior distribution, the parameterized model Q, can
be achieved through KL divergence. Modeled with tractable
distribution, the novel regularization loss, LI T , can be written
as follows:
LI T = Ex̃∼PX (·)[Eñ∼Q(·| f (x̃))[log Q(ñ| f (x̃))]]

+ μDK L(P(n(X)| f (X))||Q(n(X)| f (X))), (6)

where DK L denotes the KL divergence and μ is the balancing
parameter for the two terms. We can instead approximate the
auxiliary distribution, Q, with the non-LP RPN network h,
thus the KL divergence in Eq. (6) is minimized. Approx-
imating P(n(X)| f (X)) with the additional network h will
minimize DK L , making the problem in Eq. (6) tractable.

By making DK L(P(n(X)| f (X))||Q(n(X)| f (X))) as small
as possible, we employ the cross-entropy loss between n(X)
and h( f (X)) with parameters θ f , θh . Here, loss of the addi-
tional network h in operation h ◦ f can be obtained as

LN (θ f , θh) = Lhcls − Lhloc, (7)

where Lhcls w.r.t. θhcls and Lhloc w.r.t. θhloc are classification
and localization losses for h RPN sub-networks, respectively.
We note that the mutual information term in Eq. (3) is
related to classification and not to sophisticated localization.
For example, embedded features extracted via f rely heavily
on non-LP’s classification features, regardless of the results
of localization. In an extreme case, even if localization is

Fig. 3. Illustration of localization refinement process. Each localization
sub-network in detection head calculates the last feature map lgloc and lhloc

respectively considering all proposal boxes. It is utilized into l�gloc and l�hloc
using a sharing block on the concatenation of each last feature in addition
to the identity feature. Best viewed on the computer, in color and zoomed in.

inaccurate, it is enough to perceive only non-LP information
in the image.

We can rewrite the formulation of Eq. (6) by relating to
Eq. (7) in an adversarial manner. Ideally, the LP-invariant
features of f should confuse h which aims at detecting the
non-LP. Conversely, the f leverages a model g to detect the
only LP by minimizing the detection loss. Namely, we adopt
a minimax problem on the θ f and θh , encouraging f to
encode only LP-specific visual features into the representa-
tions, in which case the classification capability of the non-LP
might be harmful. Here, we define the last DK L term of
Eq. (6) as the LI T and can be rewritten as follows:
min
θ f

max
θh

Ex̃∼PX (·)[Eñ∼Q(·| f (x̃))[log Q(ñ| f (x̃))]]
− μLN (θ f , θh). (8)

Specifically, we train the detection network to minimax
Eq. (3) by alternating information theory terms into Eq. (8),
and primal detection loss can be further expressed as:

min
θ f θg

max
θh

Lgloc + Lgcls

+ ιobjEx̃∼PX (·)[Eñ∼Q(·| f (x̃))[log Q(ñ| f (x̃))]]
− μ(Lhcls − Lhloc). (9)

Optimizing this loss function requires adversarial learning
strategy [48], [49] of the networks, f , g and h. In addition,
we apply gradient reversal layer (GRL) [50] after f (X).

D. Localization Refinement Module

In order to make the regressed bounding box coordinates
by the localization sub-network easier to predict, we also
introduce the process of localization refinement. To provide
the complementary information of the bounding box in the
training process, we employ a sharing block S(·) for refining
the localization feature.

We are given a set of feature maps l by the localization sub-
networks, where {l = [lgloc, lhloc]} contains the last feature
maps for gloc and hloc respectively. Then, l is fed into the
proposed S for the localization refinement and output l �, where
{l � = [l �gloc, l �hloc]} the refined feature maps corresponding
to gloc and hloc respectively. Figure 3 shows the process of
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localization refinement. The architecture for the sharing block
S of the localization information follows three consecutive
operations: Batch Normalization (BN) [51], followed by a
PReLU [52] activation function and a 1 × 1 convolution layer.
The sharing block S connects the concatenated feature map
between the last feature map of the localization sub-networks,
lgloc and lhloc, respectively. This gives rise to the following
layer transition: lS = S(lgloc, lhloc), where lS denotes the
output of the S. Motivated by [47], we add a skip-connection
between the output of the sharing block and the last feature
map l in each localization sub-network:

l � = S(lgloc, lhloc) + l. (10)

Our refinement module plays two roles, where the first is to
complement each localization information of sub-network by
maximizing the opportunities for useful conjunctions. In fact,
optimizing Eq. (9) will make the localization network hloc

of the non-LP detector h more stable by LN . That is, hloc

is likely to have the ability to accurately locate not only LP,
but also scene-text that looks like LP. Thus, it is likely to
complement gloc. The other role is to promote the localization
sub-networks to regress precise objects.

E. Training

A pre-trained CNN model [53] is employed as the backbone
network. For stable gradient calculation, we optimize the
objective function Eq. (9) in an alternative way [48], [54]
instead of a straightforward way and the modified optimization
objective in terms of g ◦ f and h ◦ f can be represented as
Eq. (11) and Eq. (12) respectively:

min
θ f θg

Lgloc + Lgcls , (11)

and

min
θ f θh

(−ιobjEx̃∼PX (·)Eñ∼Q(·| f (x̃))[log Q(ñ| f (x̃))])
+ μ(Lhcls − Lhloc). (12)

At the beginning of training, g ◦ f was trained to detect the
LP including non-LP information. h from feature extractor
with non-LP information also learned to detect non-LP ade-
quately. As the learning progresses, f is led to extract as much
LP-specific features excluding non-LP information as possible,
and the h increasingly struggles to detect non-LP because f
gradually leverages to make h a poor performing network.
At the end of learning, f extracts only LP-invariant feature
embedding while ignoring non-LP information completely,
given enough capacity. Due to the embedded f , g detects only
LP and h is guided to the detector with poor performance,
as shown in Fig 4. Further analysis on the proposed method
is presented in Section. V.C-E.

F. Inference

At the testing phase, the h(·) task is removed. Given a test
image Xtest , the g ◦ f output is the detection result via feature
extractor f and LP detection network g. Then, the output
result is represented as L P Rresult follows:

L P Rresult = g( f (Xtest)). (13)

IV. NEW BENCHMARK: LPST-110K

There are many datasets of LP detection [33], [35], [41],
[43], [44] which are available mainly for LP detection. How-
ever, these datasets do not provide annotation of the scene text
(not LP) bounding box.

We collected images of LP and scene-texts to make the
new dataset and the benchmark. The dataset is focused on
images taken from moving and static cameras as it is meant
to be useful for real-world applications. LPST-110K collected
images from hundreds of dash and surveillance cameras are
being mounted in driving vehicles and building respectively,
including locations in East Asia and Europe. We include the
scene texts, such as non-LP (e.g. traffic sign, wallpaper text,
banner, commercial advertisements, etc.), and also includes
LP. By doing so, we do not restrict that the instances are
taken from the uncontrolled settings (Table I). Each correctly
detected scene texts is captured in 5 images, as it is passing by
the camera or themselves. The dataset contains 110,000 scene
text instances of 9,795 images. The scene texts are divided into
two classes: 51,031 LP instances and 58,969 non-LP instances.
The properties in the dataset are shown in Table I and samples
from the dataset are in Figure 5-7 and 9-10. The data include
information about the 2D bounding box for each instance and
recognition annotation with letters extracted manually.

Our proposed dataset is very challenging in diverse ways:
density, image quality, illumination, angle, distance and com-
plex background, and so on. For example, density (How
objects densely indicated in image?, LP/LP + nonLP) is
closest to real-world scenarios, that frequently appear on the
scenes of all images. We reflect such property to LPST-110K
as follows: AOLP - 1/1, SSIG - 4.34/4.34, UFPR - 1/1,
CD-HARD - 1/1, CCPD - 1/1, LPST-110K - 5.21/11.00.
Besides, our dataset is also unique and difficult due to the exis-
tence of non-LP, because their presence is the biggest obstacle
to LP detection. As we analyze, the non-LP instance will cause
more false-positive errors. The resolution of each image is
1280 (Width) × 720 (Height) × 3 (Channels). Specifically,
this resolution is enough to leverage LP-related tasks. Also, the
images in LPST-110K are compressed by h264 codec setting,
and unlike most existing LP detection datasets, our tilt degrees,
distance, illumination, and blur degrees are diverse and not
just frontal or rear. LPST-110K is representative of real-world
scenarios where LP detection may be desired.

V. EXPERIMENTS

A. Implementation Details

All the reported implementations are based on Pytorch
as learning framework, and the method was done on the
NVIDIA TITAN X GPU and one Intel Core i7-6700K CPU.
For stable training, we use a gradient clipping trick and the
Adam optimizer [55] with a high momentum. All models are
trained for the first 10 epochs with a learning rate of 10−4,
next 11-20 epochs with the learning rate of 5×10−5, and then
for the remaining epochs at the learning rate of 10−5. For f ,
we used the ResNet-50 as the backbone, which is pre-trained
on ImageNet [53] except for the last fully connected layer.
It was then fused with the upsampled result from the deeper
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Fig. 4. The training process of g ◦ f . g ◦ f (black, solid line) are trained to detect the LPs using f (·) as input so that it can classify between samples from
the LP data distribution (red, dotted line) and non-LP data distribution (blue, dotted line). The horizontal line below is the feature extraction from which f
is sampled. The upper horizontal line is part of the multi-data distribution of XL P (LP data distribution) and X N L P (non-LP data distribution). The upward
arrows indicate how the mapping (XL P , X N L P ) = (g ◦ f ). (a) The initial state before learning randomly is mapped regardless of the distribution of the data.
(b) At the beginning of the training, (g ◦ f ) learns both LP and non-LP information. (c) After several steps of training, (g ◦ f ) will be guided to intensively
learn LP and will gradually ignore non-LP. (d) Lastly, at the end of the training, the LP distribution will reach a point at which sampled LP data distribution
because it is learned to ignore non-LP information.

FPN layer. Finally, we apply a 3 × 3 on a 256 feature size
convolutional layer with the same padding as the feature for
object detection. Subsequently, this applies two additional 3 ×
3 on 256 feature size, /2 convolution on the deepest layer of
the backbone to detect extremely large objects.

For classification sub-networks (gcls and hcls ) and local-
ization sub-networks (gloc and hloc), a fully convolutional
network is employed, consisting of four times 3 × 3 on 256
feature size convolutional layers with the same padding and
PReLU [52] activation. Each sub-network is trained with
CCE loss [56] for classification and L1 smooth loss [2] for
4-axis box coordinates regression. The experimental results
are presented in the following sections.

B. Datasets and Evaluation Metrics
We test our method on five LP detection benchmarks

AOLP [43], UFPR [33], PKU [45], CCPD [41] and newly col-
lected dataset, named LPST-110K. The first four benchmarks
are collected for addressing license plates, while the last one
targets at providing not only LP but also non-LP scene text.
In existing datasets, all except LPST-110K are the annotated
dataset only for LP. Since non-LP detection network h requires
non-LP data, we initially train the proposed model using only
LPST-110K except them. To provide more kind comparisons
for its performance, we also retrain g ◦ f during freezing h
using existing datasets.

AOLP [43] can be split into three categories: AC, LE and
RP. Testing images of each subset consist of 581, 757, and 611
images.

UFPR [33] images are partitioned into train, validate, and
test splits. Training consists of 50% of the images (1,800
images); 20% of the images (900 images), are used for
validation. The rest, 1,800 images is used for testing.

PKU [45] images are captured in daylight (G1), daylight
with sun-glare (G2), nighttime (G3), nighttime with reflective
glare (G4). It provides 3,977 images and 4,389 LP instances.

CCPD [41] consists of 150K images for testing. Most
images in this dataset are extremely distorted.

LPST-110K contains 9,795 images and their asso-
ciated 110,000 scene text bounding boxes, which are
divided into 5,795/4,000 images for training and testing,
respectively. In addition, LP and non-LP instances consist of

29,891/29,078 and 21,065/29,966 bounding boxes (training/
testing), respectively.

Evaluation Metrics As for our proposed model, precision,
recall, F-measure, AP are utilized as evaluation protocols. For
AOLP, UFPR, CCPD benchmarks, we employ precision and
recall metrics that have been widely used in LP detection
evaluation. Define precision as:

Precision = Tp

Tp + Fp
, (14)

where Tp and Fp are the correctly estimated bounding box
and the incorrectly estimated bounding box. The precision is
the ratio of the quantity of the correctly detected bounding
boxes among all the acquired bounding box candidates. The
more the detection network produces more non-GT bounding
boxes as true positives, it will acquire higher precision.

Define recall as:

Recall = Tp

Tp + Fn
, (15)

where Fn is the quantity of the undetected ground truth. The
recall is the ratio of the correctly estimated bounding boxes
among all the ground truths. The more the detection network
fails to detect the GT bounding box, the lower the recall.

The IoU is defined as follows:

IoU = area(Rdet ∩ Rgt)

area(Rdet ∪ Rgt)
, (16)

where Rdet and Rgt are area of the detected bounding box
and the ground truth respectively. The detected bounding box
is considered correct when its IoU overlaps the ground truth
region by more than 50% (IoU > 0.5).

In addition, we adopt an F-measure that has been used in the
PKU benchmark for LP detection evaluation. The F-measure
is calculated as follows:

F − measure = 2 × (Precision × Recall)

(Precision + Recall)
. (17)

For LPST-110K, we adopt the average precision (AP) at
IoU = .50:.05:.95 (standard challenge metric) and AP at IoU =
.75, AP.75 (STRICT LP detection metric).
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Fig. 5. Qualitative Results on LPST-110K (first rows), UFPR (second row), and AOLP (last row). Green bounding boxes are ground truth annotations of
LP and red bounding boxes are the detection results. (a): input image; (b): detection result in baseline; (c): adds information loss to (b); (d): adds localization
refinement module to (c) - namely ours. Best viewed on the computer, in color and zoomed in.

Fig. 6. Ablation Qualitative Results on LPST-110K. Best viewed on the computer, in color and zoomed in.

C. Comparisons With State-of-the-Art Methods
For the AOLP, PKU, UFPR, CCPD and LPST-110K, our

proposed method can significantly improve the performance of
detection, including challenging real-world images as shown
in Fig 5 and 7. The results assure that our method consistently
enhances the LP detection performance in various datasets. For
the AOLP dataset, Table III shows that precision and recall
values are nearly as accurate as recent methods. In AOLP,
our method generally outperforms the existing state-of-the-art
methods. In Table III, [59] has partially better results than
our method (e.g. 100 vs 99.71 in the AC subset Precision).
However, [59] creates very unrealistic synthetic images that
cannot be found in a typical traffic scene to improve this

performance, which consists of 450,000 images. In AOLP,
using 450,000 datasets for a slight performance improvement
requires excessive training time and is inefficient than our
method in terms of hardware efficiency. More importantly,
our approach leads to better performance in precision, which
implies that our method decreases the false positive error
regardless of non-LP. This indicates that our method is most
suitable as a backbone for our approach both in terms of
performance and hardware.

Table IV summarizes the performance of the detection
improvement of our approach over the baseline on the three
datasets. Specifically, our method obtains the highest per-
formance (99.17%) and (96.1%) in UFPR and CCPD, and
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Fig. 7. Qualitative detection Results on LPST-110K (Challenging samples). The first two rows are images taken from the Driving View and include
license plates with unusual positions or very tiny size. The samples in the last row are images taken from the drone view, and the angle size variations are
very frequent. Red bounding boxes are LP detection results and yellow bounding box non-LP results. Best viewed on the computer, in color and zoomed in.

TABLE III

COMPARISON OF DETECTION RESULTS BY DIFFERENT METHODS ON THE AOLP DATASET

TABLE IV

COMPARISON OF DETECTION RESULTS BY DIFFERENT METHODS ON THE PKU, UFPR AND CCPD DATASETS

outperforms other state-of-the-art methods by more than 0.5%
and 1.6%. Partially, the performance in PKU is lower than
other method [58] (e.g. 100 vs 99.65 in G4 subset) However,
in all subsets except for the G4 subset, our method outperforms
the others, even on the overall average. In addition, in the

more unrestrained and challenging UFPR and CCPD, the
performance outperforms any other methods. Please note that
UFPR and CCPD are much more challenging than PKU.
UFPR and CCPD are more diverse and complex in terms of
both geometric and semantic views. It is worth addressing that
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TABLE V

COMPARISON OF DETECTION RESULTS BY DIFFERENT BACKBONE NETWORKS ON AOLP, PKU, UFPR, CCPD AND LPST-110K DATASETS

the new method can benefit from the proposed information loss
because it prevents non-LP detection even the wild scenes.

Table V reports the results for the newly collected
LPST-110K. Still, we can see the same pattern that our method
non-trivially increases detection accuracy in both experiments:
1) targeted only LP and 2) targeted all of scene texts. Our
approach robustly improves the performance regardless of the
presence of non-LP as shown in Figure 5-7.

D. Ablation Study
We perform an ablation study about the effect of the pro-

posed information-theoretical loss and localization refinement
module. In the baseline, the results of detection often find the
non-LP objects. On the other hand, our approach can improve
detection performance, because it provides LP-invariant fea-
tures around unconstrained scenes. Table V shows how much
detection accuracy is improved by the proposed method with
ablation manner. When employing information-theoretical loss
and localization refinement module (LRM) to the baseline, the
LP detection performance is further improved by 0.42% and
0.48%. Especially, GRL [50] is used in both LP and non-LP
modules before the feature extraction network f . Although
the GRL was originally proposed to solve domain discrimi-
nation problem, we obtained the performance improvements.
Figure 5 and 6 shows the qualitative results. Consequently, all
the components improves LP detection performance notice-
ably, and clearly ignores non-LP information.

To further investigate the effect of the proposed model,
we apply the non-LP detection condition to identify the
information-theoretical loss from affecting the avoidance of
non-LP. The results are shown in the last column (non-LP)
of Table V and Figure 5-6. Surprisingly, the precision and
recall decrease by 17.1% and 16.8% compared to the baseline.
In addition, Figure 8 shows a PR curves on LTSP-110K with
AP .75, which demonstrate our method proves that each of our
components is more effective than the baseline. These results
assure that both modules are profitable.

E. Model Analysis
We discuss some model analysis, including “LP recognition

results,” “Error study,” and “the impact of additional network,”
are discussed in the following:

1) LP Recognition Results: The LP detection and recogni-
tion (LPDR) task aims at assessing the overall, end-to-end,

Fig. 8. PR Curves on LTSP-110K with IOU = 0.75 (higher curve is
better.)

LPR system performance. For this task, we define a true
positive LP detection and recognition as 1) the LP has been
precisely localized within the image with IoU > 0.5 and 2) all
the characters in the LP have been precisely recognized. The
LPDR performance is also measured in terms of accuracy,
as defined in the LP detection task.

For character recognition (CR), we utilize a CNN-LSTM
encoder and decoder. In the encoder, the input is an output
from the proposed detector. In the same vein, the area of the
LP is mostly very small relative to the input image. Therefore,
only seven lower convolutional layers of the encoder are used
to extract features with two 2 × 2 max-pooling operations.
The encoder network is followed by Bi-directional LSTM [70]
each of which uses 256 hidden units that explicitly control data
flow. For the decoder, we employ the attentional mechanism
with GRU [71] and LSTMs. In the inference phase, the
decoder predicts an individual text class yk at step k until
the last step of scene text, where k is the number of predicted
characters. Additionally, we show the LPDR results of the
images acquired on the LPST-110K as shown in Fig 10.

The AOLP [43] dataset is challenging because the LP’s
angle contains oblique samples in terms of distortion. On the
other hand, in terms of resolution, all images are relatively
easy to recognize because they consist of high resolution sam-
ples rather than other datasets. Throughout the experiments,
we compared our method with other state-of-the-art LPR
methods. Overall, our method obtains the highest performance
(97.36%/99.09%/98.63%), and outperforms others in LE and
RP subsets.

PKU and UFPR datasets samples are far from the camera,
causing an issue in terms of resolution. However, they are
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TABLE VI

LPDR PERFORMANCE. FULL LPR PERFORMANCE (PERCENTAGE) COMPARISON OF OUR METHOD WITH THE EXISTING METHODS. IN [43] THE

AUTHORS PROVIDED AN ESTIMATIVE, AND NOT THE REAL EVALUATION. BEST RESULTS IN EACH CATEGORY ARE IN BOLD

Fig. 9. Error study on PKU (first row), CCPD (second row), and
LPST-110K (3rd-4th rows) dataset. In the first column, Green bounding
boxes are ground truth annotations of LP. In the second column, Red bounding
boxes are our detection results. In the last column, the red bounding boxes are
false-positive errors and the green bounding boxes are false-negative errors.

almost invariant in terms of distortion because the captured
environments are hardly affected by the tilted LP angle or
lighting. Under such conditions, the proposed method achieves
a competitive performance over most state-of-the-art LPR
methods, as shown in Table VI. Specifically, we note the
role of localization refinement module, where tiny-LPs often
appear in these dataset, and are likely to be unclassified as
non-plates because they contain minimal pixel information.
Nevertheless, our method produces high-performing localiza-
tion that can be further adapted from LP, thereby reducing the
false-positive and false-negative error. In Table VI, last two
rows (baseline and ours) show that results of our method.

2) Error Study: We tested our approach on LPST-110K
and four existing benchmarks for LP detection, and show
how it to surpasses existing detection methods achieving
remarkable performance. However, even the best results on
LPST-110K are far from being saturated, suggesting that these
unconstrained scenes remain a challenging frontier for future
work. Figure 9 shows some cases of failure, including some
false recognition results. These results identify that more
progress is needed to further improve detection performance.
From Figure 9, it can be observed that the overall imaging

conditions are low-quality images collected in unconstrained
environments. For example, the image in the first row contains
uneven illumination from the night and image in the second
row is taken at very tilted angle. Specifically, the cases of
the LP images in the 3rd to 4th rows are captured at very
low-resolutions.

The probable causes of failure include low-quality images
and severe interferences. In the first row, a false-positive error
occurred, and they have a background and form very similar
to LP. Then, since the LP in the second row is very tilted
and low quality, not only did it fail to detect correctly, but
it also caused another false detection by the logo. Finally,
the last two rows show false detection due to banners and
occlusion. Considering the failure cases of errors, most errors
can be solved by prior knowledge related to text recognition
information, and if not, our proposed method is almost close
to the human-level.

3) Impact of Additional Network: In this section, we fur-
ther perform experiments to analyze the performance of our
proposed method. We compare the structure of our additional
network h with other types of networks to demonstrate the
efficiency of a dual network with different purposes. The
objective of the LP detector is to detect as many LPs as
accurately as possible. Our ultimate goal is to provide the
possibility to be able to recognize even the hard positive
LPs contained in the unconstrained image. In Table VII, the
performance of detection is shown to depend on how the
structure is designed. We can see that additional network
h with different objectives show better performance among
them. The existing method [4] that focuses too much on
LPs tends to ignore the characteristics of hard-positive LPs,
and does not even provide a chance for recognition (see the
Baseline). Most importantly, when a two-class object detector
simultaneously detects both LP and non-LP, we can identify
that the results exhibit fairly high performance. This implies
that the two-class detector can detect LP quite accurately.
Although it may work well for us to find the right candidate
for the target we want, it still causes too many errors and
only shows the same or slightly better performance than our
method (24.5%/21.1% and 20.2%/15.3% in IoU = .5 and
22.1%/21.1% and 9.3%/7.7% in IoU = .75). This confirms that
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TABLE VII

ADDITIONAL ANALYSIS ON LPST-110K DATASET. BASELINE IS RETINANET [4] WITH RESNET-50 [47]. THE HIGHER LP-RELATED RESULTS, THE

BETTER. AND THE LOWER NON-LP-RELATED RESULTS, THE BETTER. BEST RESULTS IN EACH CATEGORY ARE IN BOLD

Fig. 10. Qualitative LPDR results of our proposed method. Green
bounding boxes are ground truth annotations of LP and red bounding boxes
are the results from our method.

the proposed method can effectively perform discriminative
feature learning and filter out unnecessary candidates.

F. Speed
The training speed is about 7.9 iterations/s, taking less

than 2 days to reach convergence. In terms of inference,
compared to other methods, the proposed model shows a good
accuracy-speed trade-off. It is designed for highly accurate LP
detection, running at 14 FPS for the input scale 1280 × 720.
Though being a little slower than the fastest method [41],
it overcomes [41] accuracy by a large margin. Besides, the
speed of ours could be boosted with greater batch size.

VI. CONCLUSION

In a controlled environment, the performance of modern LP
detectors is amazing, but still limited. This study focuses on
unconstrained real-world scenes, including scene text samples,
and provide LPST-110K, a new benchmark for such real-world
images, for training and testing with detection annotations.
In many emerging state-of-the-art detectors, our experiments
on this benchmark show their performance is not guaranteed in
a complex environment. To solve this problem, the LPST-110K
is used to provide two techniques for robust LP detection in
these environments. The first is novel information-theoretical
learning that takes advantage of three networks for exploiting
LP oriented information. The second technique is a localiza-
tion refinement for generalizing the bounding box regression
network to complement ambiguous detection results. Exten-
sive experiments on diverse benchmarks demonstrated the
effectiveness of our method when detecting challenging LPs
accurately. This study is helpful for recognition compared to
other contemporary approaches.

Future work will address a number of challenging cases
identified by this work, in particular the wide variation in
how well a combination of text detection and text recognition
process improves performance of a license plate detection.
Further research could investigate how to complementary

connect the text recognition result of a single image to license
plate detection, and in turn develop a unified license plate
detection and recognition framework.
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