
1

Fixed-Dimensional and Permutation Invariant State
Representation of Autonomous Driving

Jingliang Duan, Dongjie Yu, Shengbo Eben Li*, Wenxuan Wang, Yangang Ren, Ziyu Lin and Bo Cheng

Abstract—In this paper, we propose a new state represen-
tation method, called encoding sum and concatenation (ESC),
to describe the environment observation for decision-making in
autonomous driving. Unlike existing state representation meth-
ods, ESC is applicable to the situation where the number of
surrounding vehicles is variable and eliminates the need for man-
ually pre-designed sorting rules, leading to higher representation
ability and generality. The proposed ESC method introduces a
feature neural network (NN) to encode the real-valued feature
of each surrounding vehicle into an encoding vector, and then
adds these vectors up to obtain the representation vector of
the set of surrounding vehicles. Then, a fixed-dimensional and
permutation-invariance state representation can be obtained by
concatenating the set representation with other variables, such
as indicators of the ego vehicle and road. By introducing the
sum-of-power mapping, this paper has further proved that the
injectivity of the ESC state representation can be guaranteed
if the output dimension of the feature NN is greater than the
number of variables of all surrounding vehicles. This means that
the ESC representation can be used to describe the environment
and taken as the inputs of learning-based policy functions. Exper-
iments demonstrate that compared with the fixed-permutation
representation method, the policy learning accuracy based on
ESC representation is improved by 62.2%.

Index Terms—Permutation-invariance, state representation,
autonomous driving.

I. INTRODUCTION

AUTONOMOUS driving has become a research hotspot
since it can enhance road safety, ease road congestion,

free human drivers, etc. Decision-making is the core com-
ponent of achieving high-level autonomous driving. Although
rule-based methods have been widely used to realize decision-
making, manually encoding rules is not always feasible due to
the highly dynamic and stochastic nature of driving scenarios
[1], [2]. The learning-based method is a promising technology
to realize high-level autonomous driving by directly learning a
parameterized policy that maps state representations to actions
from data using supervised learning or reinforcement learning
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(RL) [3]. Recent learning-based decision-making researches
tend to use multi-layer neural networks (NNs) to represent the
policy due to their remarkable fitting and generalization capa-
bilities [4]–[6]. According to the state representation meth-
ods, the learning-based decision making can be divided into
two categories: (1) end-to-end (E2E) decision making, which
directly maps the raw sensors outputs to driving decisions,
and (2) tensor-to-end (T2E) decision making, which describes
states using real-valued representations, such as velocity and
position.

The E2E decision-making method has been widely inves-
tigated during the last two decades, because it reduces the
need for perception algorithms. In the late 1980s, Pomerleau
built the first end-to-end autonomous driving system, called
ALVINN, that took images consisting of 32× 32 binary values
and an 8× 32 matrix from a laser range finder as inputs and
output steering angles [7]. After training based on 1200 labeled
samples, the NAVLAB vehicle equipped with ALVINN could
drive in a 400m road without obstacles at the speed of 1m/s.
Similarly, NVIDIA trained a convolutional driving policy NN
for autonomous highway driving, which describes states using
images from a single front-facing camera paired with the
steering angles [8], [9]. In addition to supervised learning
methods, Lillicrap et al. (2016) employed an RL algorithm,
called DDPG, to learn a policy NN for lane-keeping on the
TORCS simulation platform, which took simulated images as
inputs and output acceleration quantity and steering wheel an-
gles [10]. Besides, many other related works on E2E decision-
marking for autonomous driving can be found in [11]–[18].
Since there is a great difference between the sensor outputs of
the simulated environment and the actual vehicle, the learned
policy based on simulated perception is difficult to apply
to real vehicles, or only applicable to simple driving tasks
such as lane-keeping [7], [15]. Besides, the sensor outputs are
also sensitive to the configuration of vehicle sensors, which
limits the generalization of E2E decision-making methods in
different vehicles.

Compared with E2E decision-making that takes raw sensors
information as states, preliminary studies showed that real-
valued representations perform better, due to the reduced state
space being easier to learn and the real values making it easier
for the system to generalize [19]. Besides, the driving style and
intention represented by pre-designed values can also be taken
as policy inputs to further improve driving performance [20].
Therefore, T2E decision-making has achieved great success in
autonomous driving [21]–[25]. Duan et al. (2020) represented
driving states using a 26-dimensional vector, consisting of
indicators of the ego vehicle, the road and the nearest four
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vehicles, realizing smooth and safe decision making on a
simulated 2-lane highway via RL [26]. Guan et al. (2020)
included a total of 16 variables from the ego vehicle and
seven surrounding vehicles (position, speed, etc.) in the state
representation to handle the cooperative longitudinal decision-
making in a virtual intersection [27]. The information of
different vehicles is sorted according to a pre-designed order
to form the final state vector.

In summary, the T2E method needs to concatenate percep-
tion information of the ego vehicle, surrounding vehicles and
roads into a state vector and then perform policy learning
based on the vectorized state space. Although T2E has shown
its advantages in terms of policy performance and generaliza-
tion ability to vehicles with different sensor systems, it suffers
from two challenges: (1) dimension sensitive problem and (2)
permutation sensitive problem. The former means that T2E can
only consider a fixed number of surrounding vehicles since
the input dimension of the parameterized policy must be a
predetermined value [19], [26], [27]. The latter indicates that
the information of surrounding vehicles needs to be permuted
according to manually designed sorting rules because different
permutations lead to different state representations and policy
outputs [21]–[24]. It is usually difficult to design a proper sort-
ing order for complex driving scenarios such as intersections.
These two challenges will not only limit the generality of T2E
for different driving scenarios, but also hurt the performance
of the learned policy.

In this paper, we propose a new state representation method,
called encoding sum and concatenation (ESC), to describe the
environment observation for learning-based decision making in
autonomous driving. The main contributions and advantages
of this paper are as follows:

1) The proposed ESC method introduces a feature NN
to encode the real-valued feature of each surrounding
vehicle into an encoding vector, and then adds these
vectors up to obtain the representation vector of the
set of surrounding vehicles. A fixed-dimensional and
permutation-invariance state representation is obtained by
concatenating the set representation with other variables,
such as indicators of the ego vehicle and road. Different
from the fixed-permutation representation method used
in existing T2E studies [21]–[24], [26], [27], ESC is
applicable to the situation where the number of sur-
rounding vehicles is variable and eliminates the need for
manually pre-designed sorting rules, leading to higher
representation ability and generality.

2) By introducing the sum-of-power mapping, we have
further proved that the injectivity of the ESC state rep-
resentation can be guaranteed if the output dimension of
the feature NN is greater than the number of variables
of all surrounding vehicles. This means that the ESC
representation can be used to injectively describe the
environment. Besides, we further show that, by taking
the ESC representation as policy inputs, we can find the
nearly optimal feature NN and policy NN by simultane-
ously optimizing them using gradient-based updating.

3) Function approximation experiments on six policy learn-
ing benchmarks demonstrate that, compared with the

fixed-permutation representation method used in [21]–
[24], [26], [27], the policy learning error based on the
ESC representation is reduced by 62.2%.

In Section II, we describe the state representation problem,
and analyze the effect of dimension sensitivity and permuta-
tion sensitivity on policy learning. Section III proposes the
ESC state representation method. In Section IV, we present
experimental results that show the efficacy of ESC. Section V
concludes this paper.

Notation: Rd denotes the set of d-dimensional real-valued
vectors. N denotes the set of natural numbers. O denotes the
set of all observed information. X denotes the set of surround-
ing vehicles. x denotes the real-valued feature vector of each
surrounding vehicle. s denotes the state vector. M denotes the
number of surrounding vehicles within the perception range.

II. PROBLEM DESCRIPTION

In this section, we first describe the state representation
problem. Then, we analyze the effect of dimension sensitive
and permutation sensitive issues on the performance, general-
ity, and sample complexity of policy learning.

A. Observation and State

We denote the observation set of driving scenarios as O ∈
O, which consists of: (a) the information set of surrounding
vehicles X = {x1, x2, · · · , xM}, where xi ∈ Rd1 is the real-
valued feature vector of the ith surrounding vehicle, and (b)
the feature vector containing other information related to the
driving task xelse ∈ Rd2 , such as indicators of the ego vehicle
and road geometry. Thus, O = {X , xelse}. The set size M of
X , i.e., the number of surrounding vehicles within the percep-
tion range of the ego car, is constantly changing due to the
dynamic nature of the traffic. Assuming that the range of the
number of surrounding vehicles is [1, N ]∩N, the space of X
can be denoted as X = {X |X = {x1, · · · , xM}, xi ∈ Rd1 , i ≤
M,M ∈ [1, N ]∩N}, i.e., X ∈ X . Noted that the subscript i of
xi in X represents the ID of a certain surrounding vehicle. For
example, X = {xM , xM−1, · · · , x1} indicates that all vehicles
are arranged in descending order according to the ID of each
surrounding vehicle. Different permutations of these vehicles
do not have an essential distinction since they represent the
same traffic situation. But when they are input into some policy
functions, the order matters.

We denote the mapping from the observation set O to state
representation s as U(O), i.e.,

s = U(O) = U(X , xelse). (1)

Current T2E researches usually concatenate the variables in
O to obtain the state representation vector s. According to
the permutation of surrounding vehicles xi in s, there are
two commonly used approaches: (1) all-permutation (AP)
representation and (2) fixed-permutation (FP) representation.
The AP method aims to consider all possible permutations of
surrounding vehicles in s,

s = UAP(O) = [x>ς(1), · · · , x
>
ς(M), x

>
else]
>, (2)
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where UAP(O) : O → RMd1+d2 denotes the AP mapping
and ς represents any possible permutation. For example, this
representation method will take s1 = [x1, · · · , xM ] and
s2 = [xM , · · · , x1] as two different states although they
represents the same traffic situation. Unlike the AP method,
the FP method only considers one permutation, which arranges
the objects in X according to a pre-designed sorting rule o,
i.e.,

s = UFP(O) = [x>o(1), · · · , x
>
o(M), x

>
else]
>, (3)

where UFP(O) : O → RMd1+d2 denotes the FP mapping.
According to (2) and (3), the change of vehicle number

M or the permutation of surrounding vehicles may lead to
different state vectors s, bringing two challenges: (1) dimen-
sion sensitivity and (2) permutation sensitivity. To find a better
state representation method, it is necessary first to analyze the
impact of these two issues on policy learning.

B. Dimension Sensitivity

The state dimension of AP and FP methods is
dim(UAP(O)) = dim(UFP(O)) = Md1 + d2, which is
proportional to the number of surrounding vehicles M . Since
M ∈ [1, N ]∩N is constantly changing during driving, dim(s)
is not a fixed value. However, the input dimension of the
parameterized policy must be a predetermined fixed value due
to the structure of the approximate functions, such as neural
network (NN) and polynomial functions. This means that T2E
methods based on AP or FP representation are only valid
when the number of surrounding vehicles is fixed [21]–[24].
Assuming that only Z surrounding vehicles are considered, as
shown in Figure 1, when M > Z, we need to select Z vehicles
from X based on pre-designed rules. When M < Z, we need
to add Z −M virtual vehicles far away from the ego to meet
the input requirement of the policy function without affecting
decision-making. The former will lead to information loss,
while the latter will bring information redundancy. Therefore,
it is crucial to select an appropriate value of Z according to
the requirements of different driving tasks, which also limits
the generality of AP and FP methods.

𝒔 

Policy NN

𝒙else  𝒳 

ego

Outputs

(a)

𝒔 

𝒙else  𝒳 

ego

Policy NN

Outputs

(b)

Fig. 1. Dimension sensitivity. (a) M > Z. (b) M < Z. When M >
Z, some surrounding vehicles cannot be input into the policy function
due to dimensional limitations; while when M < Z, we need to
supplement the policy inputs with the information of virtual vehicles.

C. Permutation Sensitivity
As illustrated in Figure 2, assuming the number of sur-

rounding vehicles M is fixed, different permutations of xi
correspond to different state vector s, thereby leading to
different policy outputs. In other words, s and policy outputs
are permutation sensitive to the order of surrounding vehicles.
However, a reasonable driving decision should be permutation
invariant to the order of objects in X because all possible
permutations correspond to the same driving scenario. To
analyze the effect of permutation sensitivity, we first define
the permutation invariant function as follows.

ego

Actuator

≢ 

𝒙else  𝒙else  𝒳 𝒳 

𝒔2 𝒔1 

Outputs 1 Outputs 2

Fig. 2. Permutation sensitivity. For the same driving scenario, differ-
ent permutations bring different policy inputs, which may result in
different policy outputs.

Definition 1. (Permutation Invariant Function). Function
F : X × Rd2 → Y is permutation invariant to the or-
der of objects in the set X if F ({x1, · · · , xM}, xelse) ≡
F ({xς(1), · · · , xς(M)}, xelse) for any permutation ς .

For example, F ({x1, · · · , xM}, xelse) =
∥∥∑

x∈X x
∥∥
2

+∥∥xelse∥∥2 is a permutation invariant function w.r.t. X . Similarly,
we define the permutation sensitive function as

Definition 2. (Permutation Sensitive Function). Function F :
X × Rd2 → Y is permutation sensitive to the order of
objects in the set X if ∃ς such that F ({x1, · · · , xM}, xelse) 6≡
F ({xς(1), · · · , xς(M)}, xelse).

We denote the expected driving policy as FPI(X , xelse) :
X × Rd2 → Y , which is permutation invariant w.r.t. X .
The objective of T2E decision-making methods is to learn a
parameterized policy π, which takes U as inputs, such that

π(U({xς(1), · · · , xς(M)}, xelse);ψ∗) ≈ FPI(X , xelse),
∀ς,∀X ∈ X ,∀xelse ∈ Rd2 ,

(4)

where ψ is the policy parameters and ∗ indicates that the
parameters are optimal. An effective mapping U will sig-
nificantly reduce the sample complexity and error of policy
learning.

For the AP representation method in (2), the policy is
learned by minimizing the following loss

min
ψ

E
X∈X ,xelse∈Rd2 ,∀ς

(
π(UAP(O);ψ)−FPI(X , xelse)

)2
. (5)
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The challenge faced by this method is that there are M !
permutations for a particular set X containing M surrounding
vehicles. This indicates that one driving scenario will cor-
respond to M ! different state representations, which greatly
increases the sample complexity.

For the FA representation method in (3), the policy can be
found by minimizing

min
ψ

E
X∈X ,xelse∈Rd2

(
π(UFP(O);ψ)− FPI(X , xelse)

)2
. (6)

The pre-designed order o of FA guarantees the permutation
invariance of the policy π(UFP(O);ψ) w.r.t. X , reducing the
sample complexity compared with AP methods. However, it
may break the continuity of the policy function w.r.t. each
element in X , i.e.,

lim
x′1→x1,··· ,x′M→xM

π(x′o(1), · · · , x
′
o(M), xelse;ψ)

6≡ π(xo(1), · · · , xo(M), xelse;ψ), ∀ψ.
(7)

Since the position of each surrounding vehicle is dynamically
changing during driving, the position of xi in UFP(O) may
change at a certain time, resulting in a sudden change in the
state s and policy output π(UFP(O);ψ). For example, the
rear vehicle at the current moment may become the preceding
vehicle at a certain moment in the future by overtaking the ego
vehicle. In particular, we will give a special case below for
further explanation. Let xelse ∈ ∅, and X = {[j, 2]>, [1, 5]>},
where j is a variable. The rule o sorts X in increasing order
according to the first element of xi. It follows that when
j ≤ 1, xo(1) = [j, 2]> and xo(2) = [1, 5]>; when j > 1,
xo(1) = [1, 5]> and xo(2) = [j, 2]>. It can be seen that the
permutation of objects in X has changed around j = 1, which
may cause a sudden change in policy outputs, i.e.,

lim
j→1−

π(UFP(O);ψ) = π([1, 2, 1, 5]>;ψ)

6≡ lim
j→1+

π(UFP(O);ψ) = π([1, 5, 1, 2]>;ψ), ∀ψ.
(8)

The policy discontinuity introduced by FA representations may
bring difficulties to policy learning since the expected policy
FPI(X , xelse) should be continuous w.r.t. to each element in
X . Besides, it is usually difficult to design a proper sorting
rule for complex driving scenarios such as intersections.

To conclude, due to the permutation sensitivity, AP and
FP methods suffer from high sample complexity and policy
discontinuity respectively, which may result in poor policy
learning accuracy.

III. ENCODING SUM AND CONCATENATION STATE
REPRESENTATION

Both dimension sensitivity and permutation sensitivity will
increase the policy learning difficulty and limit the applicabil-
ity of T2E decision-making in different driving scenarios. In
the last decade, permutation-invariance approximation meth-
ods have been extensively studied [28]–[30]. However, these
methods are only applicable to (a) countable case where xi is
from a finite set, or (b) uncountable case with fixed set size M
of X where xi is from a continuous space, but barely valid on
uncountable case with a variable set size M . In this section,

the existing permutation-invariance approximation theory is
extended to the field of state representation in autonomous
driving, and an encoding sum and concatenation (ESC) method
is proposed to realize the fixed-dimensional and permutation
invariant state representation of the observation set O.

A. State Representation

As shown in Fig. 3, the mathematical description of the
proposed ESC state representation is

s = UESC(O;φ) =

[
xset
xelse

]
=

[ ∑
x∈X h(x;φ)
xelse

]
, (9)

where h(x;φ) : Rd1 → Rd3 is the feature NN with param-
eters φ and d3 is the output dimension. Different from UAP

and UFP, the ESC mapping UESC(O;φ) is a parameterized
function. ESC first encodes each x in the set X into the
corresponding encoding vector xencode ∈ Rd3 , i.e.,

xencode = h(x;φ). (10)

Then, we obtain the representation vector xset of the sur-
rounding vehicles set by summing the encoding vector of each
surrounding vehicle

xset =
∑
x∈X

h(x;φ). (11)

Feature NN

    

𝒙1 

𝒙𝑀 

𝒙set  ℎ𝝓(𝒙) 

𝒙else  

⋱ 

𝒔 

𝒙encode 1 ⋱ 
𝒙encode 𝑀  , 

, 

Encodings

Fig. 3: ESC state representation.

From (11), it is clear that dim(xset) = dim(hφ) = d3 for
∀M ∈ [1, N ] ∩ N. In other words, xset is fixed-dimensional.
Furthermore, the summation operator in (11) is permutation in-
variant w.r.t. X . Thus, UESC(O;φ) = [x>set, x

>
else]
> is a fixed-

dimensional and permutation invariant state representation of
observation O. Note that if M = 0, one can add a virtual
surrounding vehicle that is far away from the ego vehicle,
which brings no effect on the decision-making.

By taking UESC(O;φ) as the inputs of πψ , the policy
function can be expressed as

π(UESC(O;φ);ψ) = π(
∑
x∈X

h(x;φ), xelse;ψ), (12)

where π(UESC(O;φ);ψ) is permutation invariant w.r.t. set X .
As shown in Fig. 4, the policy falls into two layers: (1) an ESC
representation layer and (2) an decision layer. In the sequel,
we refer to the policy function π(UESC(O;φ);ψ) based on
the ESC representations as the ESC policy.
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Policy NN
ℎ𝝓(𝒙) 𝜋𝝍(𝒙set ,𝒙else ) 

𝜋𝝍( ℎ𝝓(𝒙)

𝒙∈𝒳

𝒙else ) , 

𝒙set  

𝒙else  
𝒙encode 1 ⋱ 
𝒙encode 𝑀  

𝒙1 

𝒙𝑀 
⋱ 

, 

, 

𝒔 

ESC Representation Layer Decision Layer

Feature NN
Encodings

Fig. 4: Policy based on ESC state representation.

B. Injection and Optimality Analysis

In addition to the fixed dimension and permutation invari-
ance properties, to ensure the existence of ψ∗ and φ∗, such
that

π(UESC(X , xelse;φ∗);ψ∗) ≈ FPI(X , xelse),
∀X ∈ X ,∀xelse ∈ Rd2 ,

(13)

the ESC state representation or ESC policy also needs
to be injective w.r.t. the surrounding vehicles set X . If
UESC is an injective mapping, for any X1,X2 ∈ X where
X1 6= X2, it holds that

∑
x∈X1

h(x;φ) 6=
∑
x∈X2

h(x;φ) or
UESC({X1, xelse};φ) 6= UESC({X2, xelse};φ). In contrast, if
it is non-injective, there exist X1,X2 ∈ X where X1 6= X2,
such that UESC({X1, xelse};φ) = UESC({X2, xelse};φ). This
indicates two different driving scenarios correspond to the
identical state representation, which leads to the same policy
outputs, thus impairing driving safety. Therefore, it is crucial
to make sure that there ∃φ† such that UESC(X , xelse;φ†) is
injective.

Before proving the injectivity of the proposed ESC method,
the following two lemmas are needed.

Lemma 1. (Universal Approximation Theorem [31]). For any
continuous function F (x) : Rn → Rd on a compact set Ω,
there exists an over-parameterized NN (i.e., the number of
hidden neurons is sufficiently large), which uniformly approx-
imates F (x) and its gradient to within arbitrarily small error
ε ∈ R+ on Ω.

Lemma 2. (Sum-of-power mapping [28]). Let Z =
{z1, · · · , zm}, where zi ∈ [0, 1] for i ∈ [1,m], and define
a sum-of-power mapping En as

En(Z) =


∑m
i=1(zi)

1

...∑m
i=1(zi)

n

 . (14)

The mapping En(Z) ∈ Rn is an injection (i.e. Z1 6= Z2 →
En(Z1) 6= En(Z2)) if n ≥ m.

Then, the main theorem is given as follows.

Theorem 1. (Injectivity of the ESC State Representation).
Let O = {X , xelse}, where xelse ∈ Rd2 and X =
{x1, x2, · · · , xM}. Denote the space of X as X , where X =
{X |X = {x1, · · · , xM}, xi ∈ [cmin, cmax]d1 , i ≤ M,M ∈
[1, N ]∩N}, in which cmin and cmax are the lower and upper
bounds of all elements in ∀xi, respectively. Noted that the size
M of the set X is variable. If the feature NN h(x;φ) : Rd1 →

Rd3 is over-parameterized with a linear output layer, and its
output dimension d3 ≥ Nd1 + 1, there always ∃φ† such that
the mapping UESC(O;φ†) : X × Rd2 → Rd3+d2 in (9) is
injective.

Proof. Let xi = [xi,1, · · · , xi,d1 ]>. We concatenate the jth
element of each xi into the set Xj = {x1,j , · · · , xM,j}. By
normalizing Xj using the min-max scaling method, for ∀j ∈
[1, d1], we will get

Xnorm,j =
{ x1,j − cmin

cmax − cmin
, · · · , xM,j − cmin

cmax − cmin

}
. (15)

According to Lemma 2, when n ≥ M , the sum-of-power
mapping En(Xnorm,j) expressed as

En(Xnorm,j) =


∑M
i=1

( xi,j−cmin

cmax−cmin

)1
...∑M

i=1

( xi,j−cmin

cmax−cmin

)n
 (16)

is injective when M is a fixed value.
From (16), since N ≥M , the mapping G defined as

G ({Xnorm,1, · · · , Xnorm,d1
}) =


EN (Xnorm,1)

...
EN (Xnorm,d1

)∑M
1 1

 (17)

is also injective. In particular, the existence of item
∑M

1 1
makes the mapping G also suitable for the case where the set
size M is variable.

Furthermore, according to Lemma 1, when d3 ≥ Nd1 + 1,
there always ∃φ†, such that

h(xi;φ
†) =



( xi,1−cmin

cmax−cmin

)1
...( xi,1−cmin

cmax−cmin

)N
...(xi,d1
−cmin

cmax−cmin

)1
...(xi,d1
−cmin

cmax−cmin

)N
1
...



, ∀xi ∈ [cmin, cmax]d1 .

(18)
Then, it directly follows that

xset =
∑
x∈X

h(x;φ†) =



EN (Xnorm,1)
...

EN (Xnorm,d1
)∑M

1 1
...

 . (19)

Similar to (17),
∑
x∈X h(x;φ†) : X → Rd3 is injective, which

means UPI(O;φ†) : X ×Rd2 → Rd3+d2 is also injective.

Next, we will analyze the optimality of the ESC represen-
tation and the ESC policy.
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Lemma 3. (Global Minima of Over-Parameterized NNs [32],
[33]). Consider the following optimization problem

min
ψ
L(ψ) = E

Xi∈B

{1

2
(F(Xi;ψ)− Yi)2

}
,

where Xi ∈ Rn is the training input, Yi ∈ Rd is the associated
label, B = {(X1, Y1), (X2, Y2), . . .} is the dataset, ψ is the
parameter to be optimized, and F : Rn → Rd is an NN. If the
NN F(X;ψ) is over-parameterized, simple algorithms such
as gradient descent (GD) or stochastic GD (SGD) can find
global minima on the training objective L(ψ) in polynomial
time, as long as the dataset B is non-degenerate. The dataset
is non-degenerate if the same inputs X1 = X2 have the same
labels Y1 = Y2.

Theorem 2. Given any continuous function operating on a the
set O, i.e., FPI : X×Rd2 → Y , which is permutation invariant
to the elements in X . Suppose O, X , and X as described
in Theorem 1. If the feature NN h(x;φ) : Rd1 → Rd3 and
policy NN π(UESC(O;φ);ψ) : Rd2+d3 → Y are both over-
parameterized, and d3 ≥ Nd1 + 1, we can find φ∗ and ψ∗

which make (13) hold by directly minimizing L(ψ, φ) using
optimization methods such as GD and SGD, where

L(ψ, φ) = E
X∈X ,

xelse∈Rd2

(
π(UESC(O;φ);ψ)− FPI(X , xelse)

)2
.

(20)

Proof. From Theorem 1, there ∃φ† such that UESC(O;φ†) :
X×Rd2 → Rd3+d2 in (9) is injective. Therefore, from Lemma
1, one has

min
ψ
L(ψ, φ†) ≈ 0. (21)

In other words, there exists a pair of ψ and φ, which makes
π(UESC(O;φ);ψ) approximate FPI arbitrarily close. Although
the nearly optimal parameters may not be unique, according
to Lemma 3, we can find a pair of φ∗ and ψ∗ which makes
(13) hold by directly minimizing L(ψ, φ) using optimization
methods such as GD and SGD.

The existence of the injective mapping given in Theorem
1 can ensure that min{ψ,φ} L(ψ, φ) ≈ 0 holds. Although
the solution UESC(O;φ∗) found in Theorem 2 may be non-
injective, π(UESC(O;φ∗);ψ∗) still approximates the target
function FPI arbitrarily close.

Remark 1. The feature NN hφ is only related to the space X
of set X , but is independent of function FPI. This indicates that
for any different continuous permutation invariant functions
FPI,1 and FPI,2 operating on set O, for the same injective
mapping UESC(O;φ†), there exist ψ1 and ψ2 assuring

π(UPI(O;φ†);ψ1) ≈ FPI,1(X , xelse)

and
π(UPI(O;φ†);ψ2) ≈ FPI,2(X , xelse)

for ∀X ∈ X and ∀xelse ∈ Rd2 , respectively.

Remark 2. In Theorem 1 and 2, we require the feature of each
surrounding vehicle to satisfy x ∈ [cmin, cmax]d1 , where cmin

and cmax are the lower and upper bounds of all elements in x.

We know that for actual autonomous driving applications, the
range of different indicators, such as velocity or heading angle,
may be different. However, by utilizing some normalization
methods, such as min-max feature scaling, we can easily
normalize each element to the same range.

IV. EXPERIMENTAL VERIFICATION

This section validates the effectiveness of the proposed ESC
method in a general policy learning task based on supervised
learning. We take AP and FP representation methods as
baselines.

A. Experiments Design

We set the dimension of x to d1 = 5, and each element of
x is bounded by cmin = −5 and cmax = 5, i.e., x ∈ [−5, 5]5.
Similarly, we set xelse ∈ [−5, 5]10. We assume that the maxi-
mum size of set X is N = 20, i.e., M ∈ [1, 20]. Based on these
settings, we construct six expected policy functions in Table I
as benchmarks. Noted that min(z), max(z), mean(z) in Table
I represent taking the minimum, maximum, and mean value of
elements in z, respectively, and ‖z‖p denotes the p-norm of z.
min(z), max(z), and mean(z) are three typical permutation
invariant operators. For example, the vehicle closest to the
ego vehicle is usually an important reference for decision-
making. The combination of these three operators can form
many representative nonlinear permutation invariant functions.

We will learn a policy to approximate each benchmark using
different state representation methods. Then the performance
of the ESC method can be evaluated by comparing the policy
approximation accuracy of different representations. As shown
in Table II, according to the set size of X , the experiment for
each benchmark is divided into five cases, M = 5, M = 10,
M = 15, M = 20 and M ∈ [1, 20]. In particular, only ESC
is applicable to variable size set X , that is, case 5.

For each case of each benchmark, we randomly generated
a training set Strain containing one million samples and a
test set Stest containing 2048 samples. The jth sample in
Strain or Stest is denoted as {{Xj , xelsej}, yj}, where Xj
and xelsej are sampled uniformly within their space, and
yj = FPI(Xj , xelsej). Given Strain, the policy NN πψ (and
the feature NN hφ for ESC) based on the AP, FP, and
ESC are optimized by directly minimizing (5), (6) and (20),
respectively. For the FP method, the pre-designed order o
arranges the elements of X in increasing order according to
the first element of xi. If the first element is equal, we will
compare the second element, and so on.

Remark 3. According to Theorem 1 and 2, the proposed
ESC method is a general state representation method which
is suitable for the uncountable case where xi comes from a
continuous space with a variable set size M . It can be appli-
cable in many fields, such as UAVs control and autonomous
driving. The experiments provided in this section mainly focus
on the evaluation of state representation ability of the pro-
posed method for general permutation-invariance functions.
Therefore, the experiment is not designed based on specific
driving tasks. The combination of the ESC representation and
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TABLE I: Benchmarks

No. Expected permutation invariant policy functions

1 FPI(X , xelse) = mean(xelse)− 0.2min([‖x1‖3, · · · , ‖xM‖3]) + 0.4mean([‖x1‖1, · · · , ‖xM‖1])×max([‖x1‖2, · · · , ‖xM‖2])

2 FPI(X , xelse) = 0.5min(xelse)×max([max(x1), · · · ,max(xM )])×min([‖x1‖4, · · · , ‖xM‖4])

3 FPI(X , xelse) = 0.2‖xelse‖3 + 2mean([‖x1‖1, · · · , ‖xM‖1])×mean([max(x1), · · · ,max(xM )])

4 FPI(X , xelse) = 5‖xelse‖2 ×
∥∥∥[ min(x1)

‖x1‖2+0.1
, · · · , min(xM )

‖xM‖2+0.1

]∥∥∥
4

5 FPI(X , xelse) = 10‖xelse‖4 ×mean
[
mean(x1)max(x1)

‖x1‖4+0.1
, · · · , mean(xM )max(xM )

‖xM‖4+0.1

]
6 FPI(X , xelse) = 8‖xelse‖2 ×max

[
mean(x1)‖x1‖3

‖x1‖2+0.1
, · · · , mean(xM )‖xM‖3

‖xM‖2+0.1

]

TABLE II: Five experimental settings of each benchmark

Case Set Size M Representation methods

1 5 1) ESC; 2) FP; 3) AP
2 10 1) ESC; 2) FP; 3) AP
3 15 1) ESC; 2) FP; 3) AP
4 20 1) ESC; 2) FP; 3) AP
5 M ∈ [1, 20] ESC

policy learning methods such as RL, and their application in
autonomous driving will be studied in the future.

B. Training Details
For the ESC method, we use a fully connected NN with five

hidden layers, consisting of 256 units per layer, with Gaussian
Error Linear Units (GELU) as activation functions for each
layer [34], for both feature NN and policy NN (See Figure 5a).
The output layer of each NN is linear. According to Theorem
1, the output dimension d3 of hφ should satisfy that d3 ≥
Nd1 + 1 = 101, so we set d3 = 101.

Unlike the ESC method containing two NNs, AP and FP
only need to learn a policy NN. To avoid the influence of
different NN architectures on policy learning accuracy, the
policy NN for these two methods is designed as shown in
Figure 5b. This architecture comprises 11 hidden layers, in
which each layer contains 256 units with GELU activations,
except for the middle layer (i.e., the 6th layer). The middle
layer is a linear layer containing 101 units, which is equal to
the output dimension of hφ. The input dimension is 5M , which
is related to the set size of X . Therefore, the approximation
structures in Figure 5a and 5b have the same number of hidden
layers and neurons. In particular, when M = 1, these two
architectures are identical. This design will greatly reduce the
impact of network structure differences on learning accuracy.
By guaranteeing the similarity of approximation architectures,
we can effectively evaluate the effects of different state repre-
sentation methods.

For all representation methods, we adopt Adam [35] to
update NNs where the decay rate of first- and second-order
moments are 0.9 and 0.999, respectively. The batchsize is 512
and the learning rate is 8× 10−5.

C. Results Analysis
We train 5 different runs of each representation method

with different random seeds, and evaluate the policy learning

   

    

Policy NNFeature NN

Observation

𝒙1 

𝒙𝑀 
⋱ 

Outputs

𝒙else  

× 5 layers 256 neurons
𝒙encode  

𝒙set  

𝒪 

𝒳 

5 layers 256 neurons× 

(a)

Middle layer: 101 neurons

Observation
𝒙else  

𝒪 
𝒳 

5 layers 256 neurons× 

Outputs

5 layers 256 neurons× 

(b)

Fig. 5. NN architecture. (a) The NN architecture of the ESC method.
(b) The NN architecture of AP and FP methods.

accuracy by calculating the Root Mean Square Error (RMSE)
based on Stest. The training curves of benchmark 1 are shown
in Fig. 6. In addition to the cases with fixed-size sets (case
1-4 in Table II), we also train an ESC policy based on the
samples from the variable-size set (case 5). The learned ESC
policy based on case 5 is evaluated when M = 5, M = 10,
M = 15 and M = 20, respectively, shown as the blue solid
lines in Fig. 6.

Fig. 7 and Table III display the final RMSE under each
experimental setting. Results show that the proposed ESC
method outperforms or matches two baselines in all bench-
marks and cases. Among all the cases, the RMSE of the
FP method is 20.7% lower than that of the AP method on
average. This is because the predetermined order o helps to
reduce the sample complexity. Compared with the AP and
FP methods, ESC with fixed M achieves an average error
reduction of 62.2% and 67.5%, respectively. On the one hand,
it is obvious that when considering the same number of
surrounding vehicles (M = 5, 10, 15, or 20), the performance
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TABLE III: The average final RMSE on Stest after training for 3000 iterations. The minimum RMSE for each task is bolded.
± corresponds to a single standard deviation over 5 runs.

Benchmark Numbers of surrounding vehicles ESC (M ∈ [1, N ] ∩ N) ESC (fixed M ) FP AP

1 M = 5 3.78±0.1 3.77±0.15 7.42±0.13 8.5±0.07
M = 10 3.6±0.06 4.29±0.08 7.68±0.07 9.35±0.06
M = 15 3.51±0.02 4.6±0.08 8.42±0.17 10.36±0.41
M = 20 4.19±0.05 5.02±0.06 9.04±0.06 10.93±0.06

2 M = 5 36.87±0.29 30.69±0.36 53.63±0.01 55.83±0.02
M = 10 31.83±0.57 27.76±0.15 56.42±0.05 60.14±0.36
M = 15 30.15±0.67 29.97±1.05 54.18±0.41 56.25±0.12
M = 20 32.6±0.94 33.9±1.08 51.58±0.19 53.56±0.46

3 M = 5 12.46±0.73 10.98±0.19 42.31±1.11 57.56±1.21
M = 10 5.56±0.19 7.62±0.11 33.09±1.05 43.82±0.92
M = 15 3.82±0.17 6.13±0.16 29.59±0.23 44.0±0.34
M = 20 6.77±0.62 5.81±0.34 31.6±0.87 44.94±1.43

4 M = 5 5.96±0.17 4.42±0.36 10.82±0.14 12.28±0.07
M = 10 4.33±0.14 4.7±0.15 9.4±0.21 10.19±0.05
M = 15 3.8±0.08 4.46±0.26 8.3±0.37 9.19±0.1
M = 20 3.89±0.11 4.72±0.07 8.07±0.2 8.53±0.08

5 M = 5 5.57±0.08 3.95±0.17 18.59±0.31 24.79±0.47
M = 10 2.88±0.08 2.39±0.07 16.93±0.24 25.96±0.35
M = 15 2.2±0.06 1.89±0.1 14.82±0.3 24.16±0.46
M = 20 2.1±0.07 1.47±0.03 13.72±0.21 23.26±0.39

6 M = 5 40.88±1.33 43.02±3.11 66.01±1.78 64.97±4.91
M = 10 35.52±0.28 42.9±2.17 219.57±16.9 355.9±6.21
M = 15 43.59±1.28 56.56±0.87 349.63±3.82 679.42±25.02
M = 20 59.64±1.56 62.02±7.02 508.31±17.91 832.74±5.49
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Fig. 6. Training curves of benchmark 1. The solid lines correspond
to the mean RMSE and the shaded regions correspond to 95%
confidence interval over 5 runs. (a) M = 5. (b) M = 10. (c)
M = 15. (d) M = 20.

of ESC (fixed M ) is much better than AP and FP. This
indicates that ESC is more suitable to represent the surround-
ing vehicles set X due to its permutation-invariance property
and continuity. Compared with FP, ESC also eliminates the
requirement of manually designed sorting rules. On the other
hand, the learning accuracy of ESC with variable-size sets

(ESC (M ∈ [1, 20])) is comparable to that with fixed set
size (ESC (fixed M )). Therefore, it suggests that the ESC
method is capable of representing variable-size sets, thereby
eliminating the burden of training different approximation NNs
for scenarios with different numbers of surrounding vehicles.
To conclude, experimental results indicate that the proposed
ESC method improves the representation ability of driving
observation.

D. Future Work

In this paper, the policy NN and feature NN are updated to
approximate the designed target policy in Table I under the
supervised learning framework. The proposed ESC approach
has potential to be adopted in actual state representation appli-
cations of autonomous driving based on supervised learning
or RL. To this end, we first need to normalize all indicators of
surrounding vehicles to the same range. Then, for supervised
learning based decision-making, we can learn both policy and
feature NNs using the labeled data {Oi, a∗i }, where a∗ is
the labeled action. For RL-based decision-making, we can
iteratively find nearly optimal policy and feature NNs using
the samples {Ot, at, rt,Ot+1} collected from the interaction
between the ego vehicle and environments, where r represents
the reward function. In the future, we will focus on the
applications of ESC in supervised learning based or RL-based
autonomous driving.

V. CONCLUSIONS

In this paper, we first analyze the dimension sensitivity
and permutation sensitivity issues faced by existing AP and
FP representation methods. Due to dimension sensitivity, T2E
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Fig. 7. Average final RMSE of different representation methods on all benchmarks. (a) Benchmark 1. (b) Benchmark 2. (c) Benchmark 3.
(d) Benchmark 4. (e) Benchmark 5. (f) Benchmark 6.

methods based on AP or FP representation are only valid
when the number of surrounding vehicles is fixed. Due to the
permutation sensitivity, AP and FP methods suffer from high
sample complexity and policy discontinuity respectively. Both
dimension sensitivity and permutation sensitivity will damage
the policy learning accuracy and limit the applicability of T2E
decision-making in different driving scenarios.

To overcome this problem, we propose the ESC state
representation method to describe the environment observation
for decision-making in autonomous driving. The proposed
ESC method employs a feature NN to encode the real-valued
feature of each surrounding vehicle into an encoding vector,
and then adds these vectors to obtain the representation vector
of the set of surrounding vehicles. By concatenating the set
representation with other variables, such as indicators of the
ego vehicle and road, we achieve a fixed-dimensional and
permutation-invariance state representation. We have further
proved that there exists an over-parameterized feature NN such
that the ESC state representation is injective if the output
dimension of the feature NN is greater than the number of
variables of all surrounding vehicles. Besides, by taking the
ESC representation as policy inputs, the nearly optimal feature
NN and policy NN can be found by simultaneously optimizing
them using gradient-based updating. Experiments demonstrate
the proposed ESC method improves the representation ability
of driving observation, leading to a reduction of 62.2% in
policy learning error compared with the fixed-permutation
representation method.
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