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Abstract—Platoon-based driving is an idea that vehicles follow
each other at a close distance, in order to increase road
throughput and fuel savings. This requires reliable wireless
communications to adjust the speeds of vehicles. Although
there is a dedicated frequency band for vehicle-to-vehicle (V2V)
communications, studies have shown that it is too congested to
provide reliable transmission for the platoons. Additional spec-
trum resources, i.e., secondary spectrum channels, can be utilized
when these are not occupied by other users. Characteristics of
interference in these channels are usually location-dependent
and can be stored in the so-called Radio Environment Maps
(REMs). This paper aims to design REM, in order to support
the selection of secondary spectrum channel for intra-platoon
communications. We propose to assess the channel’s quality in
terms of outage probability computed, with the use of estimated
interference distributions stored in REM. A frequency selection
algorithm that minimizes the number of channel switches along
the planned platoon route is proposed. Additionally, the REM
creation procedure is shown that reduces the number of database
entries using (Density-Based Spatial Clustering of Applications
with Noise) DBSCAN algorithm. The proposals are tested using
real IQ samples captured on a real road. Application of the
DBSCAN clustering to the constructed REM provided 7%
reduction in its size. Utilization of the proposed channel selection
algorithm resulted in a 35 times reduction of channel switches
concerning channel assignment performed independently in every
location.

Index Terms—Radio Environment Map, V2V, Gaussian Mix-
ture Model, interference modeling.

I. INTRODUCTION

THE number of vehicles on the roads consistently grew,

through recent years, causing increasing traffic conges-

tion. This implies not only time delays but also energy

wastes and pollution. An obvious solution to improve road

throughput is to deploy additional infrastructure, e.g., by

building new roads or extending the number of lanes of

existing ones. However, this solution is first time-consuming,

secondly expensive, and finally, it is not always possible to

expand vehicular infrastructure e.g., to build additional lane

under urban conditions. On the other hand, there is an idea

to deal with the mentioned issues by changing the driving

pattern into the so-called platoon-based [1]. Platoon-based
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driving pattern assumes that a group of vehicles will follow

each other, while maintaining short inter-vehicles distance,

e.g., few meters [2]. The first vehicle in the platoon is the

platoon-leader. It is typically responsible for the management,

and coordination of platoon behavior, e.g., adjusting speed, or

inter-vehicle distance. However, also distributed solutions are

under consideration [3]. There are several benefits from the

deployment of the Platoon-based driving. First, short inter-

vehicle spaces improve the road capacity that is also related

to the reduction of traffic congestion [4]. Secondly, vehicles

following the platoon leader save fuel, implying the reduction

of carbon footprint [5]. The shorter the inter-vehicle distance,

the higher the expected fuel savings. However, very short inter-

vehicle distance requires precise and error-free coordination of

vehicles in order to prevent collisions.

This is one of the key challenges in platoon-based driving,

i.e., to ensure safety for vehicles. Each car within the platoon

must be able to adapt its speed to the platoon leader, includ-

ing sudden breakings, while maintaining short inter-vehicles

distance. Studies have shown that for this purpose it is more

beneficial to rely on the short-range wireless communications

sending, e.g., a message about breaking, than on direct mea-

surements from distance sensors [6]. The short-range wireless

communication between vehicles within the platoon can be

realized using, e.g, Dedicated Short-Range communications

(DSRC). The DSRC physical and medium-access layers are

described in IEEE 802.11p, and Wireless Access in Vehicular

Environment (WAVE) standards [7]. WAVE operates in the

dedicated frequency band: 5.850-5.925 GHz, and 5.855-5.925

GHz in the USA, and Europe, respectively. This is one of

the Unlicensed National Information Infrastructure (U-NII)

bands. However, studies have shown that with a growing

number of vehicles utilizing DSRC this amount of spectrum

will not be sufficient to provide low enough latency, and

high reliability [8], [9]. Moreover, similar issues could be

identified while considering platoon communications based on

the cellular technologies e.g. Cellular Vehicle-to-Everything

(C-V2X) [10]. The reason for this is the limited capacity of

the wireless channel. While the intra-platoon spectrum access

could be designed in an orthogonal, collision-free manner, the

orthogonality between transmissions of various platoons and

vehicles cannot be guaranteed. Even if different platoons use

the same waveform, for which orthogonality can be obtained,

it will not be achieved as a result of the lack of coordination,

e.g., in general, different platoons are not time-synchronized
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and can start transmissions in the same time instance. This lack

of orthogonality results in inter-platoon interference, which

reduces wireless channel capacity and causes communication

delays. These delays may further lead to, e.g., instability in

platoon formation, or reduced cyber security [11], [12], [13].

This would further imply larger inter-vehicle distances, that

will significantly reduce the platoon-based driving benefits,

e.g. fuel saves.

From this perspective, it seems reasonable to find an alter-

native frequency band that can be utilized for inter-platoon

communications. Because vehicles within the platoon already

formulate a small network, the whole communication can be

synchronously offloaded to the less occupied frequency band.

Such a procedure cannot be easily applied for general V2V

communications, because it would require special synchro-

nization mechanisms. One solution is to offload the platoon

communications into the unlicensed band, e.g., 2.4 GHz,

where no protection of other users’ transmission is necessary.

Although this approach seems not to be appropriate in the

urban areas, where wireless access points density is large, it

looks promising to be utilized under highway conditions [14].

In [15] a so-called Cognitive Anypath Vehicular Protocol

(CoRoute) was proposed, in order to utilize instantaneous

channel state information, and neighboring vehicles positions

for opportunistic vehicular communication over 2.4 GHz

industrial, scientific, and medical (ISM) band. Authors of

[16] focus on the coexistence of V2X and Vehicular ad-Hoc

network (VANET) systems in the unlicensed band, proposing

a spectrum sensing scheme, vehicle interference models, and

resource allocation algorithm. However, these works do not

consider location-dependent interference characteristics.

Another idea is to look for the additional spectrum resources

in the millimeter-waves band [17], [18]. However, in such high

frequencies radio channel, the achievable range is very limited,

which decreases the connection reliability. Reliability, that is

crucial for platoon stability.

On the other hand, although almost all of the frequency

bands below 3 GHz are assigned to a variety of wireless

systems, they are not fully utilized in practice [19]. Therefore,

there is a possibility to exploit additional spectrum resources

in the moments when these are not occupied by Primary Users

(PUs), i.e., wireless systems that are licensed to transmit in a

given band. This scheme is known in the literature as Dynamic

Spectrum Access (DSA) [20]. DSA can further benefit from

the information about the surrounding radio environment e.g.,

interference. It has been shown that this kind of information

is in most cases related to the location, which makes an

opportunity to create intelligent geolocation databases, known

as the Radio Environment Maps (REMs) [21]. One example

of REMs application is a storage of information about the

unoccupied television channels: so-called TV White Spaces

(TVWS) [22], [23], [24]. It is applicable because the terrestrial

TV signal is stable over time, and location, i.e., location of the

terrestrial TV transmitters along with their transmission power

and channels assignment remains constant over a long-time

period.

Most importantly, the DSA, e.g., TVWS, is a well-suited

solution for intra-platoon communications. The main reason

is the low potential of interference caused by a platoon to

other services. This is caused by relatively small transmission

range, rapid changes of platoon position and other wireless

services typically distanced from the road sites. Various REM

architectures and implementation challenges for the purpose

of DSA in platoon communications using TVWS had been

described in [25]. In [26] authors proposed an algorithm to

exploit TVWS data stored in REM, to apply DSA in V2X

communications. While the above-mentioned REM applica-

tions assume relatively stable spectrum conditions and fixed

PU types, REM can be used to represent more sophisticated

cases as well, e.g., for scenarios with time-varying radio

conditions and heterogeneous PUs. However, in this case,

the PUs-originating interference has to be monitored and

modeled to allow for the required reliability of intra-platoon

communications.

The aim of this work is to propose a REM-based method

of selecting alternative frequencies, where intra-platoon com-

munications can be transferred. The main focus is put on

the assessment of the radio channels quality under complex

interference patterns. We expect that offloading intra-platoon

communications to the high-quality channel, e.g., of low

outage probability, will improve the general performance of

control algorithms e.g. Cooperative Adaptive Cruise Control

(CACC). While the platoon control mechanisms are out of

the scope of this paper, the proposed, advanced models of

interference can be applied to improve platoon stability and

safety modeling done in [13], [12]. The final goal of this

paper is an optimal frequency assignment to the platoon.

The REM contains location-dependent information about in-

terference in a given frequency band. Various radio bands

can be characterized by various interference patterns, varying

over time. We propose to characterize interference at a given

channel and location as a random variable, and REM to

store proper interference distribution parameters. This solution

allows for higher accuracy than typically used single-number

interference characterization, e.g., by its mean power [27],

[25], [26]. As the interference distribution at a given location

will be estimated using a limited number of sensing reports,

its accuracy can be insufficient. On the other hand, the

interference properties in the neighboring locations should be

closely correlated. As a result, some interference distributions

in adjacent locations should be merged in order to increase

accuracy. At the same time, REM size can be reduced.

For this purpose, we propose to modify a Density-Based

Spatial Clustering of Applications with Noise (DBSCAN)

algorithm. The proposed modification aims to incorporate

both geographical neighborhood and interference distribution

similarities in the clustering procedure. Moreover, we propose

a channel quality assessment method utilizing the interference

distributions stored in REM. This channel quality assessment

method is necessary to assign reliable enough channel for

platoon communications. We propose to assign a wireless

channel to the platoon by minimizing the number of frequency

switches along the planned route while providing sufficiently

low channel capacity outage. An optimal solution is proposed

utilizing the well-known Dijkstra algorithm [28]. The test

field for validation of our proposal is the 2.4 GHz band.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS (T-ITS) 3

This part of radio frequencies is occupied by a variety of

systems, e.g. WiFi, Bluetooth, ZigBee, providing various and

non-regular interference patterns. Through the analysis of real

data captured in the 2.4 GHz band during the measurement

campaign, we will show that these interference patterns can be

accurately represented using Gaussian Mixture Model (GMM).

The main contribution of the paper are:

• We propose an outage probability as a metric for chan-

nel quality assessment. The advantage of this met-

ric over, e.g., latency is universality. Moreover, it can

be obtained relatively easily, and irrespective of the

transmission scheme, and medium access algorithms

used. State-of-the-art solutions, e.g., [29], rely on creat-

ing location-dependent Signal-to-Interference-and-Noise-

Ratio (SINR) maps. This approach makes those maps

valid only for devices of equal transmission power and

does not reflect the influence of narrowband interference

on the signal. In our solution, we separate interference

distribution from other parameters, e.g., pathloss and

transmission power. This enables flexibility of providing

frequency band to the platoon on the basis of platoon-

specific requested transmission parameters.

• We propose to train Gaussian Mixture Models (GMMs)

in order to model interference distribution in secondary

spectrum channels. State-of-the-art Radio Environment

Maps usually are designed so as they contain pairs

of location-mean interference power [27], [25], [26].

This approach is sufficient while modeling interference

from relatively stable sources, e.g., terrestrial television

stations. However, such a model cannot be applied to

scenarios where many interference sources of various

transmission schemes operate simultaneously. Under such

conditions more advanced models are necessary, i.e., the

proposed (GMMs).

• We propose to utilize the DBSCAN clustering algorithm

in order to reduce REM size. Among other state-of-the-

art clustering algorithms, DBSCAN has an ability to take

into the account both close geographical distance between

REM entries and similarities between interference distri-

butions. Prior work related to the topic of REMs did not

consider such an approach [27], [25], [26]. The procedure

of DBSCAN clustering can be thought of as a process

reverse to kriging [30]. Instead of interpolating between

REM points, we propose to create clusters (areas) where

interference follows the same distribution.

• We propose to use the Dijkstra algorithm to reduce

the number of channel switches along the planned pla-

toon route. We represent the problem of minimization

of channel switches as a graph, where nodes refer to

locations and edges represent available radio channels.

A similar approach was proposed for the planning of

UAV path [29]. However, in our case due to the nature

of the platoon’s route, the computational complexity is

much lower. Another state-of-the-art channel assignment

algorithms [31], [32] aim at lowering the number of chan-

nel switches in the vehicular communication scenario but

without forecasting the whole platoon route. As a result,

they will not guarantee the performance of our, Dijkstra-

based algorithm.

The rest of the paper is organized as follows: Sec. II

describes REM deployment, channel assessment method, min-

imization of channel switches along the platoon route using

Dijkstra algorithm, and adaptation of DBSCAN algorithm to

enable REM size reduction. The field measurement campaign

setup, together with recorded data distribution analysis is

provided in Sec. III. Evaluation of REM algorithms using the

measurement data is described in Sec. IV. Conclusions are

formulated in Sec. V.

II. RADIO CHANNEL QUALITY ASSESSMENT UTILIZING

RADIO ENVIRONMENT MAPS

In this paper, an autonomous platoon consisting of Nv

vehicles is considered, as it is depicted in Fig. 1. The platoon

is claimed to travel over the route denoted as set of L
geographical locations X = {xl}Ll=1, where xl denotes vector

of earth-centered earth-fixed (ECEF) geographical coordinates

related to platoon location l. The route covers mostly highway

areas. However, urban, and suburban areas can appear at the

beginning and end of the route. The first vehicle is the platoon

leader responsible for the management and behavior of the pla-

toon. This functionality is done by sending proper information

to the following Nv−1 vehicles through a wireless channel. To

ensure short inter-vehicle distance necessary for providing e.g.

fuel saves, the wireless transmission must satisfy requirements

on channel capacity Cth, and reliability expressed e.g. as the

maximum allowable probability of link capacity being below

Cth denoted as Pmax. These requirements must be ensured

for transmission between the platoon leader, and every other

vehicle in the platoon. The resultant maximum transmission

range is the distance between the platoon leader and Nv-th

vehicle, denoted as d. Although there is a dedicated frequency

band for V2V communications around 5.9 GHz, the studies

have shown that it will be highly occupied and transmission

requirements for reliability would not be satisfied [25]. Thus,

the intra-platoon communication is realized in terms of DSA,

by utilization of one of the unoccupied secondary spectrum

channels, denoted as channel i. A major challenge is to choose

a secondary spectrum channel i from the set of available

secondary spectrum channels I satisfying both Cth, and Pmax

in each of the consecutive platoon locations X . Although

platoon can perform spectrum sensing, it is more beneficial

to rely on past knowledge about the radio environment. It

allows to e.g., characterize long term interference patterns over

secondary spectrum channels I at given location xl, and plan

future channel switching along the whole platoon route. We

propose to create an intelligent database of location-dependent

information about the radio environment i.e., REM. REM

aims to assess the quality of secondary spectrum channels

available in consecutive locations, based on past knowledge

about interference distributions. The remaining part of this

section will describe general REM architecture, algorithms for

channel quality assessment and assignment, and method for

reduction of REM size.
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Fig. 1. Illustration of the intra-platoon communication, with the use of the
secondary spectrum channels.

A. REM for Platoon Communication

The general aim of the REMs is to provide the network

with location-dependent data describing the radio environ-

ment, to, e.g., enable DSA. However, REM is not only

the database. It provides intelligent mechanisms of location-

dependent data acquisition, processing, and storage. The high-

level REM architecture consists of the so-called Measurement

Capable Devices (MCDs) providing the data, REM storage

and acquisition unit, and REM manager responsible for proper

data processing in order to handle communication with REM

users [33].

For the purpose of intra-platoon communications, REM

manager, storage, and acquisition units can be deployed as

an extension to the existing cellular network infrastructure.

Then, data exchange between the platoon leader and REM

can be realized with the use of roadside units. The platoon

can act both as an MCD, and REM user. When platoon

acts as MCD it provides REM with batches of interference

samples tagged with its geographical coordinates. These raw

interference samples are processed by the REM manager unit

to obtain their statistical models. Finally, model parameters,

are saved in the REM storage unit. When platoon acts as a

REM user it requests the REM manager to assign secondary

spectrum channel i ∈ I for intra-platoon communications at

location xl based on transmission parameters given by the

platoon leader, and interference model parameters saved in

REM. The high-level idea of this procedure is depicted in

Fig. 2. The platoon leader sends to REM information about its

location and desired transmission parameters. REM determines

which secondary spectrum channel is the best for intra-platoon

communication, and sends index i of this channel to the

platoon leader. To enable optimization of secondary spectrum

channel assignment along the whole platoon route, we consider

centralized REM architecture. However, the major research

issue related to the procedure of selection of secondary spec-

trum channel is the assessment of the available radio resources,

possibly located at various frequency bands.

B. Outage Probability Estimation

To assign a frequency band to a given platoon, a channel

quality assessment method is necessary. The most effective

Fig. 2. Concept of REM utilization for platoon communications.

approach from the perspective of platoon stability is to use

the latency as a metric [34]. However, in general case its

estimation is not straightforward, i.e., the latency depends

on the used radio access technology and medium access

protocol. Moreover to accurately estimate the latency the

distribution of the incoming packets should be known. Instead,

a reasonable comparison between radio channels, irrespective

of the particular system properties, e.g., utilized coder or

modulation, can be done on the basis of capacity being the

upper bound estimate of the real system throughput. Such

an approach is legitimated by the literature, e.g., to compare

various frequency bands, in the context of Dynamic Spectrum

Access [35], or for the purpose of communications with

unmanned aerial vehicles [29]. However, in Sec. II-C, we will

show that there exists a relation between the radio channel

capacity and latency. We decided to compute the capacity of a

single channel as a sum over the capacities of component nar-

row frequency sub-channels. The first motivation is that var-

ious interference sources can have various frequency-specific

emission characteristics. The second reason is that many con-

temporary systems utilize multi-carrier communication based

on the Orthogonal-Frequency-Division-Multiplexing (OFDM),

e.g., 802.11p, Digital Video Broadcasting- Terrestrial (DVB-

T), 5G. Thus Shannon capacity between most distanced cars

within the platoon, at location xl, can be computed as follows:

c(i,xl) = B
∑

k∈K

log2

(

1 +
P

(i,xl)
tx · L(d)(i,xl)

σ2
n + I

(i,xl)
k

)

, (1)

where, i stands for the secondary spectrum channel index,

K is the set of active sub-channels used in intra-platoon

communications, B is the sub-channels spacing, P
(i,xl)
tx is the

transmitter power per sub-channel (maximum power reported

by the platoon leader), σ2
n is the noise power over sub-

channel band, I
(i,xl)
k stands for the interference power on

sub-carrier k, and L(d)(i,xl) is distance d dependent channel

gain (including TX and RX antenna gains). Typically radio

channel gain randomly varies over frequency, and time. There

are several empirical models of this phenomenon proposed

for the evaluation of V2V communications [36]. However,

measurement studies have shown that when vehicles follow

each other at close distance, e.g., below 200 m, there would be

mainly Line-Of-Sight (LOS) propagation between them [37].

While there exists an advanced radio channel model, uti-

lizing geometry of the surrounding scatters [38], this will
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be not useful for this application. The platoon would not

have such detailed information about e.g., the location of

buildings and other vehicles. Thus, less complex, yet well-

established distance-dependent models can be used,e.g., two

slope pathloss model [39]. Although channel impulse response

will influence a single sub-channel, its influence should be

averaged when considering the whole band. Moreover, the

channel response variations caused by fast fading cannot be

estimated before transmission occurs in the channel. On the

other hand, the interference I
(i,xl)
k from primary systems can

significantly vary over locations and frequencies affecting

capacity. As a result, we propose to make an assumption about

the flat channel, to focus on the interference impact on the

channel capacity.

Crucial for the platooning purpose is the reliable, transmis-

sion of the messages containing information about platoon

leader velocity and acceleration. The low communication

reliability and high latency can significantly decrease the

benefits from platoon driving pattern, or in the worst cause

a platoon crash. However, the required capacity is relatively

low, e.g., using 802.11p safety messages are transmitted using

minimal supported bit-rate [40]. However, the platoon requires

that the capacity is available, e.g., it is more important to

provide often the minimum required channel capacity, than

high instantaneous channel capacity rarely. As such channel

outage probability is of higher importance than ergodic or

maximal channel capacity. Due to the randomly changing

interference, the capacity c(i,xl) becomes a random variable.

As a result the probability of capacity being below a certain

threshold is of high importance. Such situation occurs when

the temporal signal-to-interference ratio (SINR) is very low.

Thus it is reasonable to use the Shannon formula simpli-

fication for low SINR [41]: log2

(

1 +
P

(i,xl)
tx ·L(d)(i,xl)

σ2
n+I

(i,xl)

k

)

≈

1
ln 2 ·

(

P
(i,xl)

tx ·L(d)(i,xl)

σ2
n+I

(i,xl)

k

)

. This allows for the following trans-

formation of (1):

c(i,xl) ≈
B · P

(i,xl)
tx · L(d)(i,xl)

ln 2
·
∑

k∈K

1

Î
(i,xl)
k

, (2)

where Î
(i,xl)
k = σ2

n + I
(i,xl)
k . Now the outage probability

formula is given as:

P
(i,xl)
out = P

(

∑

k∈K

1

Î
(i,xl)
k

<
ln 2 · Cth

B · P
(i,xl)
tx · L(d)(i,xl)

)

, (3)

where Cth is the minimum required link capacity that supports

the safe operation of the platoon. It can bee seen that due to

the Shannon formula simplification for low SINR, the outage

probability is only a function of single random variable, i.e.,

cumulative interference power
∑

k∈K

1

Î
(i,xl)

k

. Moreover, the

interference distribution in a particular location can be charac-

terized in terms of one instead of K-dimensional distribution.

This will much simplify the data representation in REM. The

interference in wireless communications usually follows the

log-normal distribution [42]. Following this phenomenon, it

seems reasonable to take the logarithm of (3). As a result, we

expect to deal with Gaussian-like distributions instead of log-

normal, which are much more complex to model. Both sides

of (3) are always positive, thus logarithm of both sides can be

found as:

P

(

χ(i,xl) < ln
ln 2 · Cth

B · P
(i,xl)
tx · L(d)(i,xl)

)

, (4)

where χ(i,xl) = ln
∑

k∈K

1

Î
(i,xl)

k

is the interference power

distribution related to the frequency channel i, and location xl.

Now the outage probability, can be computed, using the distri-

bution of χ(i,xl), which characterizes interference, and some

constants provided by the platoon leader, i.e., its transceiver

bandwidth, maximal transmit power and minimum required

link capacity. The χ(i,xl) distribution parameters related to

geographical locations are envisioned to be stored in REM.

The modeling of χ(i,xl) on the basis of field measurements

will be described in Sec. III-B.

C. Relation Between Outage Probability and Latency

Although in this paper the outage probability is considered

as a MAC-independent channel quality assessment metric,

it can be mapped to the transmission latency, if necessary.

Since there is usually no acknowledgment procedure in V2V

communications when sending safety messages, and some

Listen-before-talk procedure is used (e.g., in IEEE 802.11p

standard), it can be expected that a delay occurs when the

channel is busy. In the idealized model the channel is busy if

its instantaneous capacity is lower than the capacity required

for the transmission Cth. At such time instance the achieved

data rate equals zero. On the other hand, if the channel capacity

exceeds required threshold, the data rate is fixed as a result of a

single modulation-coding scheme used for broadcast messages

and equals for the perfect system Cth. This allows to calculate

mean data rate in a channel as (1−P(c(i,xl) < Cth))Cth. This

is the upper bound of the mean data rate that can be achieved

in this channel. From this perspective, we can formulate the

lower bound of the latency as a function of outage probability,

and under the assumption of fixed packet size D. The formula

is given by:

τ (i,xl) ≥
D

(1− P(c(i,xl) < Cth))Cth
. (5)

A similar way of modeling latency is used in some works

focused on the control algorithms, e.g., [43], [34]. Observe

that the actual mean delay τ (i,xl) will be probably higher

as a result of radio access technology not achieving channel

capacity and because of limitations of the Medium Access

Control scheme. We propose to observe the outage probability,

a well-established metric, irrespective of various possible

transmission technologies of the platoon and the neighboring

wireless systems.

D. Radio Channel Assignment

Using (4) the outage probability related to every channel

i in each location xl belonging to the platoon route can be

estimated. The most straightforward channel selection assumes
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selection of the channel related to the lowest outage probabil-

ity:

î(xl) = argmin
i

P

(

χ(i,xl) < ln
ln 2 · Cth

B · P
(i,xl)
tx · L(d)(i,xl)

)

.

(6)

However, such an approach can result in frequent channel

switching. In the worst-case channel will be switched in every

new location. This is not encouraged from the perspective

of connection stability. In practical implementations, it is

enough to ensure the outage probability being below the given

threshold Pmax. Thus we can define a channel assignment as

the optimization problem, where the target is to minimize the

number of channel switches along the platoon route, subject

to outage probability being below the required value:

min
i(xr)

L−1
∑

l=1

s(i(xl), i(xl+1)),

s.t. P(c(i
(xl),xl) < Cth) ≤ Pmax

(7)

where l is the index representing consecutive platoon locations,

and L is the total number of locations along the platoon route,

and s(i(xr), i(xr+1)) is the cost of a single channel switch,

defined as follows:

s(i(xl), i(xl+1)) =

{

1, if, i(xl) 6= i(xl+1)

0, if i(xl) = i(xl+1)
. (8)

We propose to solve the optimization problem (7) by using

graph theorem. The graph representation of channel assign-

ment is depicted in Fig. 3. The example graph is constructed

assuming 3 channels and 5 locations. Nodes represent radio

channels providing sufficient outage probability, in consecutive

locations. Graph edges stand for the channel switching cost.

Following (8), the cost is equal to 1, when channel switching

occurs, and 0 otherwise. Additionally, two nodes ”START”,

and ”END” are introduced with edge costs equal to 0. The op-

timization problem can be now solved in terms of finding the

shortest path between ”START” and ”END” nodes. Because

all graph edges are non-negative, the optimal solution to the

problem of finding the shortest path can be computed using

Dijkstra algorithm [28]. The problem can be alternatively

expressed as a linear programming problem. While linear

programming belongs to a class of convex optimization, the

Dijkstra algorithm provides global optimum [44].

The worst-case computational complexity of the Dijkstra

algorithm on any directed graph is [45]:

O(E + V logV ), (9)

where E denotes the total number of edges and V the number

of vertices. The worst-case number of vertices is calculated

considering that in each location, out of L along the platoon

route, there are I possible wireless channels. While each

of these location-channel pairs constitutes a vertex, the total

number of vertices can be calculated as:

V = L · I (10)

From each of these vertices, I edges start, being connected

to the maximum of I possible channels in the next location.

Fig. 3. Example of a graph representation of channel switching problem.
There are 3 channels, and 5 platoon locations. Nodes represent available radio
channels in the secondary spectrum.

The worst-case number of edges is the number of vertices

V multiplied by the maximum number of available radio

channels I giving:

E = V · I = L · I2. (11)

The resultant worst-case computational complexity of the

Dijkstra algorithm is given by:

O(E + V log V ) = O
(

L · I2 + L · I logL · I
)

. (12)

The channel assignment scheme computed in REM with the

use of Dijkstra algorithm can be sent to the platoon leader. If

the platoon route changes or there is a significant interference

distribution change, the calculations have to be repeated.

E. Reduction of REM Size

One could imagine that there will be potentially a lot of data,

obtained over many locations in REM. On the other hand, there

is a possibility that there exists a spatial correlation between

them, i.e., the interference χ(i,xl) follows the same distribution

over neighbouring geographical locations. The challenge is to

choose a clustering algorithm proper for REM data. Successful

clustering will be able to increase the statistical correctness of

the interference distribution estimates and decrease the REM

size, i.e., the amount of data that has to be processed. It should

be able to deal both with distance in terms of distribution, and

geographical position, i.e., the aim is to connect geographically

close points, where χ(i,xl) follows the same distribution. One

simple and popular clustering algorithm is the so-called K-

means [46]. The major drawback of this method is that

it requires a-priori the number of clusters to be created.

A method that overcomes this issue is, e.g., hierarchical

clustering [47]. However, this method cannot simultaneously

deal with two distance measures. The solution, where both

numbers of clusters is not fixed, and there is a possibility

of incorporating both geographical distance and distribution
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similarity measure is the so-called Density-Based Spatial Clus-

tering of Applications with Noise (DBSCAN) [48]. Originally

DBSCAN, has two parameters: neighbourhood radius ǫ, defin-

ing maximum radius used for neighbourhood search, and Np

being the minimum number of points to formulate a cluster.

However, there is a possibility to define a more complex

function for neighbourhood determination. In order to cluster

REM entries being both in geographically close distance, and

characterized with similar χ(i,xl) distributions, we propose

to define neighbourhood radius for geographical distance ǫg,

and neighbourhood radius for distribution similarity ǫKS . The

geographical distance between two points is computed in terms

of Euclidean distance, which is proper when using ECEF

coordinates:

dg(xl,xl′) = ||xl − xl′ ||, (13)

where || · || denotes an Euclidean norm, and xl vector of

ECEF geographical coordinates related to REM entries l,

and l′ respectively. The neighborhood radius for geographical

distance ǫg must be obtained based on empirical studies.

The similarity measure between interference distributions is

defined in terms of Kologomorov-Smirnoff distance [49]:

dKS(i,xl,xl′ ) = sup
z

|F (z)(i,xl) − F (z)(i,xl′)|, (14)

where F (z)(i,xl) denotes the cumulative distribution function

of χ
(i,xl)
i . The neighbourhood radius can be computed on the

basis of critical value c(α) related to the significance level α:

ǫKS = c(α) ·

√

n+m

n ·m
, (15)

where n and m are the number of data samples used to

estimate F (z)(i,xl) and F (z)(i,xl′),respectively. Precomputed

values of c(α), proper for Kolmogorov distribution can be

found in tables [50]. Let us introduce two auxiliary logic

formulas: Qg(xl,xl′) : dg(xl,xl′) < ǫg, and QKS(xl,xl′ ) :
∀ i, dKS(i,xl,xl′ ) < ǫKS . Finally, the function that deter-

mines if two data points in REM can be classified as neighbors

during DBSCAN procedure can be formulated as:

f(xl,xl′ ) =

{

1, if Qg(xl,xl′) ∧QKS(xl,xl′)

0, otherwise.
(16)

Using the above equation as an alternative distance function,

DBSCAN can be performed to cluster the REM data. The ǫg
must be obtained based on empirical study. It is reasonable to

start from a low ǫg value and increase it and observe, e.g., max-

imum distance to the nearest neighborhood over all clusters.

The REM entries within a single cluster share similar χ(i,xl)

distribution over all channels i, and are geographically close to

each other. These REM entries can be merged, to reduce REM

size. One important property of DBSCAN is that a particular

group of points, i.e., REM entries, can remain without cluster

assignment. REM entry without cluster assignment cannot be

merged to another, because it is either characterized with

unique χ(i,xl) distribution, or too geographically distanced

from other REM entries.
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Fig. 4. Measurement campaign route between Poznań, and Kórnik, mostly
along the S11 speedway.

III. MEASUREMENT CAMPAIGN

To assess the proposed methods with realistic input data

field measurements were conducted. We have arbitrarily se-

lected three non-overlapping WiFi™ channels of center fre-

quencies 2.412 GHz, 2.437 GHz, and 2.462 GHz, i.e., channel

numbered widely as 1, 6, and 11. The 2.4 GHz band is treated

as the worst case scenario with a high number of interference

sources of various types. The data has been collected along the

route between Poznań, and Kórnik in Poland, as depicted in

Fig. 4. The route has been traveled from Poznań to Kórnik and

back. The major part of the route was a two-lane speedway

S11 placed mostly in the low urbanized area. However, the

few first kilometers of the measurement campaign are carried

in Poznan downtown. The last part of the measurements is

carried close to Kórnik representing a small town or suburban

scenario. As such the measurements should be representative

of all main types of propagation environments.

A. Measurement Setup

The measurement data were collected in terms of in-phase

and quadrature (IQ) received signal samples collected using

the Rhode&Schwarz FSL6 spectrum analyzer. There was an

omnidirectional antenna PCTEL LPBMLPVMB/LTE of 3 dBi

gain, installed on the rooftop of the car, and attached to

the spectrum analyzer. The spectrum analyzer was configured

to obtain maximal sensitivity (turned on preamplifier and 0

dB input attenuation) resulting in about -84 dBm of thermal

noise (measured over 20 MHz bandwidth) reported with the

sampling frequency of 20 Msps. Also, there was a U-Blox

GPS receiver reporting car position every second with the use

of messages defined by the National Marine Electronics As-

sociation (NMEA) protocol. Both GPS module and spectrum

analyzer are plugged into the laptop using USB, and Ethernet

connections, respectively. The whole setup was controlled

by the Matlab software, including data capturing, and time

stamping both the IQ samples from spectrum analyzer and
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Fig. 5. Example of a spectrogram for the received signal. Samples at both
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and to not consider distortions caused by spectrum analyzer frequency
characteristics.

position from GPS receiver. The power supply was provided

from the car 12 V socket.

The spectrum analyzer collects 65536 IQ samples in one

frequency channel at one measurement. Next, the center

frequency is sequentially switched between the chosen WiFi

channels: 1st, 6th, and 11th. Each IQ sample vector is tagged

with a geographical position and time. In most cases, the

sensing in each channel is repeated approximately every 250

ms. However, after 50 observations the laptop saves the

observed samples as a file to the hard drive. This introduces

around 6.5 seconds of stoppage in the data collection. There

were 248 files with measurement data captured in total along

the route.

B. Data Analysis

To extract the interference and noise power (Î
(i,xl)
k ) related

to each of the sub-carriers a Discrete Fourier Transform (DFT)

was applied to the collected IQ samples. While the samples

were collected with a sampling rate of 20 MHz, DFT of 128

points was used. This results in the same subcarrier spacing

as in the IEEE 802.11p standard. As IEEE 802.11p uses 10

MHz of bandwidth with 64 subcarriers, only the middle 64

subcarriers are considered for further processing. This allows

discarding subcarriers belonging to a roll-off frequency range

of the spectrum analyzer. An example of a spectrogram with

the bandwidth of interest marked is depicted in Fig. 5. The

measurement data processed with the use of the 128 point

DFT is available online [51].

As was already mentioned captured data is organized in

files, containing vectors of IQ samples. These vectors of IQ

samples can be seen as the batches of data measured by the

platoon at a certain location and send to REM for further

processing. Measurement data having the same geographical

position tag reported via NMEA messages are used to for-

mulate one REM entry. Examples of the estimated probability

density functions (PDFs) of χ(i,xl) over various WiFi channels

and locations are depicted in Fig. 6. The first observation is

that the distributions vary over channels, thus outage proba-

bility also will vary. As a result, there would exist a channel

being the best for opportunistic transmission in a particular

location. Second observation is that the χ(i,xl) distribution

varies over locations. This justifies the idea of REM and

the spatial divisions of data. Final observation is that χ(i,xl)

follow non trivial distributions. In some cases these have

multimodal distributions, i.e., having more than a single peak.

In other cases χ(i,xl) distribution is characterized with non-

regular tails. This can be justified by the nature of interference

generated from many sources with varying characteristics. If

there was only a single interference source, there would be

only one peak in PDF of χ(i,xl). However, if there are several

sources of temporal interference having different transmission

characteristics, then multiple peaks are expected to occur in

χ(i,xl) PDF, representing different configurations of interfer-

ence sources. Under some channels, and locations there might

be one most common configuration of interference sources,

then instead of clearly visible multiple peaks, the distribution

tails are shaped in a non-trivial way. This is expected in the

2.4 GHz band where many communication systems operate

simultaneously, e.g., WiFi and Bluetooth. Such a non-trivial,

e.g., multimodal distributions can be efficiently modeled using

the so-called Gaussian Mixture Model (GMM) [52]. GMM

represents the random variable PDF as the weighted sum of

J component Gaussian densities. In our case modeling of the

one-dimensional distribution of χ(i,xl) is considered:

p(χ(i,xl)) =

J
∑

j=1

wjN (χ(i,xl)|µj , σj), (17)

where p(χ(i,xl)) denotes the distribution of χ(i,xl), wj is the j-

th mixture component weight, i.e., the probability that χ(i,xl)

comes from the j-th mixture component, N (χ(i,xl)|µj , σj) is

the conditional Gaussian distribution of χ(i,xl), i.e., Gaussian

distribution of χ(i,xl), under assumption that it comes from

the j-th mixture component. Finally µj is the mean, and σj

is the standard deviation of j-th mixture component. GMM

can be then represented in this case by the vector of weights

w, the vector of components means µ, and vector of standard

deviations σ. Such a model seems adequate for being stored

in REM, as it represents the distribution with only a few

parameters instead of, e.g., histogram, direct PDF, or raw

interference samples. A common approach to obtain estimates

of distribution parameters is the so-called maximum likelihood

(ML) estimation. However, in the case of GMM the log-

likelihood function is nonlinear, i.e., the logarithm of the

sum over exponential functions [52]. There is no closed-form

ML GMM parameter estimator. However, there is an iterative

algorithm called expectation-maximization (EM), which can

be utilized [53].

One of the challenges related to the modeling distribution

with GMM is obtaining the proper number of components, i.e.,

high enough to reflect accurately interference distribution but

low enough not to introduce overfitting. To ensure this, GMM

fits are evaluated in terms of Akaike Information Criterion

(AIC), which is the function of model log-likelihood, and the

number of parameters [54]:

AICJ = ωJ − 2 ln L̂, (18)
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where ωJ is the number of parameters of GMM with J

components, and L̂ is the maximum of likelihood function

related to GMM having J components. In the case of GMM

modeling one-dimensional distribution of χ(i,xl), ωJ equals

3J . We have fitted GMM to measurement data, using vari-

ous number of mixture components J . For each model the

corresponding AICJ was computed. In addition AIC related

to the model exploiting only average value of χ(i,xl) is

computed. This model stands for the state-of-the-art approach

in REM [27], [25], [26]. A representative result, obtained by

fitting interference distribution from a single measured samples

file, is depicted in Fig. 7. The lower AICJ value is the better,

i.e., the best balance between GMM accuracy and number of

parameters is provided. It can be seen that GMM model signif-

icantly outperforms the state-of-the-art average power model

for any considered number of mixture components. Between

the GMM models, the one consisting of 5 components offers

the lowest value of AIC. Based on these measurements we

decided to model χ(i,xl) as 5 component GMM for all REM

entries The obtained GMM parameters would be then stored in

REM, for the purpose of channel assignment (see Sec. II-D).

In fully deployed REM we can expect that newly collected

interference samples should result in the update of the GMM

16.95 17 17.05 17.1
longitude [deg]

52.24

52.26

52.28

52.3

52.32

52.34

52.36

52.38

52.4

la
tit

ud
e 

[d
eg

]

-1

0

1

2

3

4

5

6

7

8

9

10

C
lu

st
er

 In
de

x

Example of the 
same cluster over 
distant locations

Kórnik

Fig. 8. Results of REM entries clustering using DBCAN, for Np = 2, ǫKS =
0.12, and ǫg = ∞. The points marked with index −1 could not be clustered.

parameters stored in REM, e.g., newer samples are more

important than the old ones as the interference characteristics

can evolve in time. This can affect both the number of mixture

components J , and mixture component parameters: wj , µj ,

and σj . One method for adaptive adjusting number of mixture

components, and recursive update of wj , µj , and σj , utilizing

exponential averaging had been described in [55]. However,

application and in-depth verification of this approach would

require a much larger data set. We leave it open for future

research.

C. DBSCAN Clustering

The REM constructed, according to the interference model-

ing procedure described in the previous subsection is claimed

to contain some redundant data. I.e., some of the GMMs

parameters describing χ(i,xl) are expected to be very similar.

To reduce those similarities REM size reduction algorithm

using DBSCAN (see Sec. II-E) is launched on the REM.

The DBSCAN-based algorithm takes three arguments: Np

minimum number of points to formulate cluster, neighbour-

hood radius for geographical distance ǫg and distribution

similarity ǫKS. We set Np = 2 , because it is the lowest

supported value, which results in the highest opportunity for

finding similar REM entries. The value of ǫKS is computed

using (15). Each distribution was obtained using the same

number of samples: n = m = 25600, i.e., there were

50 vectors of measurement data utilized to create a single

REM entry, after 128-point DFT each vector has a time

resolution of 512 samples. We took commonly used in statistic

c(α = 0.05) = 1.358. The resultant neighbourhood radius

for distribution similarity is ǫKS = 0.012. Initially the neigh-

bourhood radius for geographical distance would be set to

be very large in order to evaluate only similarities between

distributions. The result of DBSCAN performed on the REM

data is depicted in Fig. 8. There, are 10 clusters created, that

are allowed to achieve about 12 % reduction of the REM

size. It can be seen that more REM entries can be clustered

together in the low urbanized area. However, there are REM
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entries having the same χ(i,xl) distributions but quite distant to

each other, e.g., the maximum distance to the nearest neighbor

(NN) within the same cluster is about 5 km. This is a negative

phenomenon in terms of REM entries merging as the intuition

is that more distant points should create separate areas. This

justifies the introduction of the second neighborhood radius ǫg.

We have examined several ǫg values. The resultant maximum

distance to NN within-cluster is depicted in Fig. 9. Results are

compared to the maximum distance between consecutive REM

entries marked with the dashed line. It can be observed that

slightly above the threshold of 400 m, the maximum distance

to NN within-cluster exceeds the maximum distance between

original REM entries. The geographical neighborhood radius

ǫg is set to the value of 400 m. The results of DBSCAN

clustering obtained for ǫg = 400 m, are depicted in Fig. 10.

It can be seen that only REM entries being in the close

geographical neighborhood can be grouped. The biggest area

covered with a single cluster is the forest area, while in

the more urbanized regions no clusters could be identified.

The DBSCAN provides about 7% REM size reduction. This

value is less than, 12% reported previously, due to constraint

on grouping together only REM entries being within close

geographical distance. Although this gain is moderate, we

can expect that gains will increase while measurement density

rises. Moreover, as the 2.4 GHz band of consideration presents

the most varying interference conditions, it is expected that

in another band more homogeneous interference sources will

result in higher REM size reduction.

IV. EVALUATION OF THE REM-BASED CHANNEL

ASSIGNMENT

In order to evaluate the proposed REM-based channel

assignment method, a 10-truck platoon is considered, traveling

from Poznań to Kórnik and back, as it is depicted in Fig. 4.

To obtain numerical results, a well-established, two slope path

loss model is used [39]. Through analysis of measurement

data authors of the model observed that path loss exponent

is rapidly changing after distance between two vehicles d ex-

ceeds the critical value dc. The received signal strength (RSS)
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ǫKS = 0.12, and ǫg = 400 m. The points marked with index −1 could not
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observed by the receiver at distance d from the transmitter is

given by:

P (d) =











P (d0)− 10γ1 log10(
d
d0
) +Xσ1 if d0 ≤ d ≤ dc

P (d0)− 10γ1 log10(
dc

d0
) if d > dc

−10γ2 log10(
d
dc
) +Xσ2

,

(19)

where γ1 and γ2 are path loss exponents, Xσ1 , and Xσ2 are

zero-mean Gaussian distributed random variables that model

the effect of shadowing, and P (d0) is the RSS at the reference

distance d0. We assume the P (d0) is computed with the use

of the Free Space Loss model, for the reference distance of

d0 = 1 m.

The set of parameters used by the platoon is presented

in Tab. I. The maximal inter-vehicles distance in a single

platoon is set to 200 m. It is an approximate length of a 10-

truck platoon. Transmitted power per subcarrier Ptx value is

the maximum allowed in 2.4 GHz band [56]. This includes

antenna gains. The number of sub-carriers and sub-carrier

spacing follows the 802.11p standard [7]. Finally, 3 Mbit/s

is set to be the desired capacity Cth. It is the lowest sup-

ported bitrate in 802.11p, claimed to be used for emergency

messages [40]. The radio channel parameters are dc = 100 m,

γ1 = 2, γ2 = 4, σ1 = 5.6 dB, and σ2 = 8.4 dB. These are

proper for the considered 2-lane street scenario [39].

Now the algorithm, where the channel providing the lowest

outage probability is chosen for platoon communication in

every location according to (6) is evaluated. The assigned

channels are depicted on the map and as a function of

distance from start in Fig. 11 and Fig. 13, respectively. It

can be easily observed, that this scheme encourages frequent

channel switching The channel is changed 140 times along

the route. As it was mentioned in Sec. II-D, the number of

channel switches can be reduced, as it is necessary only to

provide a sufficient level of outage probability. Following the

acceptable bit error rate in [40], we set maximum allowed

outage probability to: Pmax = 10−4. With the use of this

value, the channel assignment along the planned platoon
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TABLE I
PLATOON CONFIGURATION AND RADIO PARAMETERS

Parameter Value

frequency f 2.4 GHz

distance d 200 m

sub-carrier spacing B 156.3 kHz

number of used sub-carriers Nf 48

transmitted power per sub-carrier Ptx 20 dBm −10 log10(Nf)

desired capacity Cth 3 Mbit/s

critical distance dc 100 m

path loss exponent γ1 2

path loss exponent γ2 4

Xσ1 standard deviation σ1 5.6 dB

Xσ2 standard deviation σ2 8.4 dB
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Fig. 11. Results of channel assignment performed independently in every
platoon location using (6).
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Fig. 12. Results of channel assignment based on the Dijkstra algorithm.

route has been optimized using the Dijkstra algorithm (see

Sec. II-D). The obtained results are depicted in Fig. 12, and

Fig. 13, respectively. With the use of the Dijkstra algorithm,

the number of channel switches has been drastically decreased.

Instead of 140 there are only 4 channel switches along the

route, which stands for almost 35 times reduction.

Finally, we have compared the proposed solutions against

two state-of-the-art algorithms aimed at dynamic channel se-

lection for vehicular communications. First algorithm follows

bumblebees behaviour [32]. This will be called a Bumblebee

algorithm here. The algorithm observes the mean interference

power variation in the chosen channel over time. If the mean

interference power observed in the current location is 15%
greater than the one observed in the previous location, the

channel is switched to the best one, i.e., of the lowest mean

interference power. The 15% cost should prevent frequent

channel switching. The second state-of-the-art algorithm uti-

lizes machine learning techniques in order to obtain statistics

of channel occupancy [31]. We will refer to this algorithm as

Learning-Based. Similar to the proposed approach, Learning-

Based algorithm utilizes a location-dependent database. How-

ever, instead of direct modeling of channel characteristics,

channel occupancy is translated onto the reward. The authors

of [31] assumed the arbitrary values of the reward 3 for the

free channel and −3 for the busy channel. In every platoon

location, channel statistics are an exponential average of the

reward. We have trained the Learning-Based algorithm with

the use of our measurement data, and under the assumption

that the channel is busy when Pmax is exceeded.

Comparison between channels selected along the platoon

road, by the proposed algorithm based on equation (6), pro-

posed application of Dijkstra algorithm, Bumblebee algorithm,

and Learning-Based algorithm is depicted in Fig. 13. The

most important information that can be observed is that both

Bumblebee algorithm (yellow stars) and Learning-Based al-

gorithm (green circles) sometimes chose channels that exceed

the allowable level of outage probability Pmax, i.e., 6, and

12 times respectively. It is due to modeling inaccuracies.

Bumblebee utilizes mean interference power to assess the

quality of radio channel and Learning-Based algorithm stores

an exponential average of the reward, not interference distri-

bution itself. Instead, the proposed Dijkstra algorithm utilizes

REM, storing information about interference distribution that

prevents the outage for selected channels from exceeding

Pmax. Furthermore, it can be seen that both Bumblebee,

and Learning-Based algorithms do not switch channels as

often as in the case of channel assignment based on (6).

outperforms them. This relation is clearly visible in Fig. 14. In

the case of Bumblebee, and Learning-Based algorithm channel

switching occurs 24, and 18 times, respectively. However,

when the Dijkstra algorithm is used the platoon switches

channel only 4 times. It stands for the 6 times reduction in

relation to the Bumblebee algorithm and 4.5 times reduction

in relation to the Learning-Based algorithm. It is because the

Dijkstra algorithm optimizes the channel switching globally

along the whole route using knowledge from REM. The

Bumblebee algorithm utilizes only locally available sensing

samples. Although Learning-Based algorithm also utilizes a

database with location-dependent data, the channel selection

algorithm is designed so as it does not take into account the

dependencies between consecutive locations like our solution

does.

Finally, Fig. 15 shows a lower bound of latency com-

puted using (5) along the platoon road, for the packet size

D = 400 bytes [8]. It can be observed that in most of the

locations latency is on the level of 1.067 ms. This is because
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Fig. 13. Results of the channel assignment along the platoon road.
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Fig. 14. Total number of channel switches along the platoon road.

in those locations outage probability is close to 0, and a

fixed throughput equal to channel capacity Cth is assumed

in (5). Although in the locations where outage probability is

the highest the lower bound latency increases by up to 35 µs

(by 3%), in practice delays are expected to be much longer,

e.g., due to the specific medium access algorithm. Still, this

3% increase can have a non-negligible, negative impact on

the platoon control system. In Fig. 16 there is a comparison

of the lower bound of latency between the proposed Dijkstra

algorithm, and two state-of-the-art solutions: Bumblebee al-

gorithm and Learning-Based algorithm. We can see that the

proposed algorithm is characterized by the lowest lower bound

of latency oscillating around the level of 1.0667 ms, and not

exceeding the level of 1.0671 ms. The highest peaks could

be observed for the Bumblebee algorithm, it is caused by

the modeling inaccuracies, i.e., channel selection based on the

mean interference power. The performance of Learning-Based

algorithm is in-between these two algorithm mentioned above.

Still some latency peaks can be observed. This is because

Learning-Based algorithm utilizes better model of channel
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Fig. 15. Lower bound of latency along the platoon road for packet size
D = 400 bytes.
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Fig. 16. Lower bound of latency along the platoon road for different channel
selection algorithms, and packet size of D = 400 bytes.

characteristic than Bumblebee algorithm, but not as good as

the proposed GMM model.
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V. CONCLUSIONS

In this paper, we have presented the design of REM with

aim of selecting a proper secondary spectrum channel for

intra-platoon communications. This included a method for

assessment of available secondary spectrum channels quality,

application of Dijkstra algorithm for frequency selection in

order to reduce the number of channel switches along the

platoon route, and utilization of DBSCAN for the purpose

of REM size reduction.

The observed non-trivial distributions of interference can be

effectively modeled with GMM of 5 components as proved

using AIC. This GMM interference model can be effectively

used to construct REM. The size of REM can be reduced

by grouping REM entries of similar interference distributions,

and being in close geographical distance. It can be done using

the proposed modification to the DBSCAN algorithm, and

provide the reduction of REM size of about 7%. Finally, the

assignment of the secondary spectrum channel independently

in every platoon location results in a high number of chan-

nel switches. The proposed, Dijkstra algorithm-based method

reduces the number of channel switches about 35 times.

In the future, additional measurement campaigns are neces-

sary, e.g., to observe how GMM parameters are changing over

the daytime. Having more data captured over different day-

time, algorithms for recursive GMM updates can be evaluated.

Also, interference distribution should be evaluated under other

frequency bands potentially promising for opportunistic intra-

platoon communication e.g., TVWS, WiFi™ 5 GHz band.

Finally, an advanced network simulator can be developed to

study the proposed REM algorithms under realistic conditions,

where also interference from other platoons will be taken into

the account.
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