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Unsafe maneuver classification from dashcam video and GPS/IMU
sensors using Spatio-Temporal Attention Selector

Matteo Simoncini∗12, Douglas Coimbra de Andrade1, Leonardo Taccari1,
Samuele Salti3, Luca Kubin†, Fabio Schoen3, Francesco Sambo1

Abstract—In this paper, we propose a novel deep learning
architecture to classify unsafe driving maneuvers from dashcam
and IMU data. Such architecture processes the output of an
object detection algorithm in combination with raw video frames
and GPS/IMU data. At the core of the architecture there is a
novel Spatio-Temporal Attention Selector (STAS) module, which
(1) extracts features describing the evolution of each object in
the scene over time and (2) leverages multi-head dot product
attention to select the relevant ones, i.e., the dangerous ones or
the ones in danger, to perform classification. We also introduce a
simple but effective methodology to increase the benefit of fine-
tuning the backbone network. Our method is shown to achieve
higher performance than other approaches in the literature
applying attention over single frames.

Index Terms—Unsafe maneuver classification, road scene un-
derstanding, dashcam, GPS, IMU, deep learning, attention, XAI

I. INTRODUCTION

THE unsafe maneuver classification task was firstly intro-
duced in [1], with the aim of classifying a safety-critical

event (i.e., crashes and near crashes) recorded from a dashcam,
according to the unsafe maneuver leading to the dangerous
situation. This task is interesting for multiple reasons. First,
while road deaths are a major global burden, vehicle safety
systems have shown to actively contribute to the reductions of
the number of deaths and serious injuries [2]. Thus, research
in this field aiming at getting a better understanding of safety-
critical events is crucial to mitigate the problem. Second, in
contrast with other works in the literature looking at a single
aspect of these events, this research considers a broader set of
maneuvers, performed both by the ego-vehicle and by other
vehicles, multiple-vehicle maneuvers or single-vehicle ones
(e.g., loss of vehicle control, vehicle over the edge of the road).
These maneuvers were grouped into ten classes, grounded
on a Naturalistic Driving Study (NDS) dataset [3] and, thus,
are representative of the real distribution of unsafe events.
Specifically, the ten classes of unsafe maneuvers introduced
in [1] and considered in this work are reported in Table I.

In this paper, we propose an extension of the approach of
[1], where the authors considered video information and data
from a GPS/IMU module (acceleration, angular velocity and
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TABLE I: List of unsafe maneuvers

Class Description

SL Subject lane change. The subject performs an improper lane
change, potentially from an adjacent lane, an acceleration or
deceleration lane or from a parallel parking spot, drawing
dangerously close to another vehicle in another lane, being it
in front of the vehicle, behind the vehicle and/or with potential
sideswipe threat. Alternatively, the subject invaded the lane of
a car coming in the opposite direction.

ST Subject turn. The subject performs an improper turn, poten-
tially at an intersection, from a driveway or from a perpendic-
ular parking spot, invading the lane or space of another vehicle
proceeding in the same or opposite direction of the vehicle.

NSL Non-subject lane change. As SL but with another vehicle being
the one performing the unsafe maneuver.

NST Non-subject turn. As ST but with another vehicle being the
one performing the unsafe maneuver.

SB Subject brakes. The subject vehicle brakes to avoid the colli-
sion with another vehicle in the same lane and going in the
same direction, potentially performing an evasive maneuver.

SOE Subject over edge. The subject vehicle runs over the edge of
the road or collides with road boundaries.

SLC Subject lost control. The subject vehicle loses control due road
condition, excessive speed or other causes.

SO Subject other maneuver. Other unsafe maneuvers performed
by the subject vehicle.

NSO Non-subject other maneuver. As SO but with another vehicle
being the one performing the unsafe maneuver.

O Other. Collision or near collision with animals, pedestrian,
pedal-cyclist or other objects.

speed) acquired from a dashcam mounted inside the vehicle
and proposed a two-stream architecture based on convolutions.
We propose two major improvements: first, we integrate the
output of an object detection algorithm in the pipeline, to
provide the network with explicit information about the entities
on the road and let it learn high-level representations of the
interactions between them. Second, we leverage attention [4],
[5] to let the network focus on the relevant objects in the
scene, i.e., the one involved in the unsafe maneuver, and on
the relevant temporal segments. While the usage of attention
is motivated by the extremely good results it has obtained in
various fields of the scientific literature [4]–[14], it also has
an interesting by-product: attention forces the network to focus
on a particular portion of the input and to have the resulting
output that mainly depends on that portion. Thus, it provides
an explanation on the reason behind a given prediction by
learning features with an associated semantic meaning [15]
that allow the network to intrinsically explain itself [16]. This
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Fig. 1: An overview of the proposed architecture. In red, the appearance features extracted from the object detector output
(Section III-A), in yellow the features relative to the boxes positions (Section III-C), in green the GPS/IMU features
(Section III-B), in white the per-object feature extracted (Section III-D). Such features are either pooled with a max pooling
layer or fed to the STAS module, composed of a max pooling layer as query vector and multi-head attention (Section III-E).

aspect in particular is known in the scientific literature as
eXplainable Artificial Intelligent (XAI) [15]–[17] and it is of
crucial importance when the output of the model is presented
to or evaluated by a human (in the so-called human-agent
systems), where a motivation behind the prediction might be
necessary to convince of the correctness of the prediction or
to understand the reasons behind a misclassification [18].

In the road-safety domain, and, specifically, to address the
accident anticipation problem, previous works in the literature
attempted to integrate attention with the output of an object
detection algorithm, using Dynamic Spatial Attention (DSA)
[7], [8]. Such module applies attention to all the detected
objects of a single frame, in order to have the network focus on
the most relevant object at a given moment in time, and then
uses a recurrent module to extract the temporal dependencies
between the learned features. In contrast, our aim is to use
attention to select the most relevant object and the most
relevant temporal segment to correctly classify the maneuver,
by explicitly extracting features describing the evolution of
each object in a given set of frames and then selecting the
most relevant one to perform the prediction. We refer to this
approach as Spatio-Temporal Attention Selector (STAS).

Moreover, and as an alternative to the use of the attention
mechanism, we propose to leverage a max-pooling layer to
extract relevant information from the object features. While
such layer is more opaque than attention, i.e., it is harder to
understand the reasons behind a prediction, it showed slightly
superior performance compared to the attention-based ones in
our experiments, suggesting that model explainability comes
with a cost. To summarize, the key contributions of this paper
are the following:

• We propose an architecture that combines the objects ap-
pearance and positions from the video and the GPS/IMU
streams to tackle the unsafe maneuver classification problem
from dashcam data, that includes maneuvers by both the ego
vehicle and other vehicles in the scene.

• We introduce the STAS module, to allow the network to
focus on the relevant objects (i.e., the dangerous or in-
danger) in the scene and on the relevant frames of the input

video to address the classification task, as well as providing
explanations of the network decisions.

• We introduce several methodological novelties and technical
improvements over similar works in the relevant literature,
such as the usage of an RoI pooling layer, widely used in the
CV community, a novel backbone fine-tuning strategy and
a novel way of extracting GPS/IMU features, that are ben-
eficial for the network efficiency and overall performance.

• We perform a broad experimentation phase, showing the
superiority of the proposed approach over baseline methods,
and provide an in-depth ablation study.

II. RELATED WORKS

To the best of our knowledge, the only paper addressing
unsafe maneuver classification is [1]. In this section we
discuss the most relevant papers in the literature, focusing on
closely related tasks using object detection and the usage of
the attention mechanism in the computer vision literature.

Accident / Driving maneuver detection In the context
of accident detection, [19] addressed the problem in an
unsupervised way, first by detecting the object in the scene
for each frame and then by training a network to predict the
object positions in the next frame. A misalignment between
the predicted position and the actual one is considered
a safety-critical event. [20] designed a system based on
object detection and Random Forest to classify safety-critical
events into crashes, near-crashes and safe events. Similarly,
[21] addressed forward collision warning by first detecting
the forward vehicle and estimating the distance from the
ego-vehicle, and then by combining this information with
an abnormal driver behaviour detector. These approaches,
however, does not consider GPS/IMU features, that have
shown to give a great boost in performance [1]. In the context
of ego-vehicle maneuver detection, [22] considered both
video and GPS/IMU as inputs. Video frames were fed to a
pre-trained VGG network while handcrafted features were
extracted from the GPS/IMU data. The two streams were
then fed to an LSTM model. The authors proposed to process
only frames sampled on a uniform spatial basis (i.e. a frame
per meter) instead of a temporal one, which they proved to
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be beneficial for ego-maneuver detection. With this approach,
however, maneuvers performed by other vehicles while the
subject is not moving cannot be detected. [23] proposed a
method to classify subject maneuvers from videos, using a
pretrained model to extract depth from video and the camera
motion information (and, thus, the trajectory performed
by the subject). Then, Dynamic Time Warping is used to
perform the classification. However, in our case, we’re not
interested in detecting the subject maneuver alone, but rather
in classifying the maneuver with respect to its context. In the
context of other vehicle maneuvers detection, [24] designed a
framework based on the detection of road scene objects and
applied tracking and motion detection.

Attention mechanism. The attention mechanism was first
introduced in [4] in the Neural Machine Translation (NMT)
literature, with the aim of giving the decoder the ability to
dynamically focus on parts of the input sentence that are
relevant to predict a target word, instead of being forced
to encode the source sentence into a fixed-length vector.
This is achieved by projecting each word in an embedding
space and computing a similarity measure between words,
represented as a fully-connected operation. [5] generalized
the mechanism proposed in [4] (also referred to as soft
attention) by computing the similarity measure using the
dot product operation and by computing a set of embedding
and attention operations, introducing the multi-head dot
product attention. Later on, the idea of letting the network
focus on a specific part of the data was applied in other
fields of research, e.g., computer vision, mainly in two
ways. [9] proposed to use the attention mechanism in an
encoder-decoder architecture for video captioning, having
the network focus on features extracted from a specific
part of the image. Other works generalized the approach
by considering the features from the output of an object
detector [10], [11]. More recently, the attention mechanism
has been used to increase network representation capability,
focusing on important features and suppressing unnecessary
ones. [13] introduced the Convolutional Block Attention
Module (CBAM), composed of a channel attention module
and a spatial attention one. Starting from a 2D feature tensor,
the first module uses a combination of max-pooling and
average-pooling operations over the spatial dimension, to
get a descriptor that is applied back to the input tensor
via element wise multiplication; the second one performs
a similar operation over the channel dimension. Similarly,
[14] proposed the Squeeze-and-Excitation (SE) block, that
computes a pooling operation over the spatial dimension
(squeeze), applies a channel-wise feed-forward operation to
learn inter-channel dependencies and uses the output to scale
the input tensor (excitation). Finally, attention weights have
been also used to achieve model explainability [9], [25].

Accident anticipation. The usage of attention for accident
anticipation from dashcam videos was first proposed in [7].
They used an object detection algorithm to extract the objects
in the scene and computed the features of a pre-trained convo-
lutional neural network on Places-365 [26] on their locations.
Then, they introduced the DSA system in combination with an

LSTM and a custom loss to predict the car crash as early as
possible. Performance was evaluated on the novel DAD dataset
that, however, is mostly composed of accidents not involving
the ego-vehicle. [8] improved the previous architecture by us-
ing Quasi-Recurrent Neural Network (QRNN) and an adaptive
custom loss. Also, they used a fine-tuned backbone on per-
frame risk factor classification and background classification
task. They evaluated their performance on the broader NIDB
dataset, which is mostly composed of ego-vehicle accidents.

III. METHODOLOGY

In order to address the unsafe maneuver classification
task, we propose an architecture that leverages the video
information and the GPS/IMU data. We first use an object
detector to extract the position and types of all the objects
from each frame and extract appearance and positional features
for each object, as described in Section III-A, and use a
tracking algorithm to link the same real object in different
frames, described in Section III-C. Then, the object features
are enriched with the aligned GPS/IMU features, described in
Section III-B. We apply a set of convolutional operations to
each object, in order to extract high-level descriptors for each
of them and to reduce the temporal dimensionality of the data,
described in Section III-D. Finally, we consider two setups,
either performing a simple max-pooling over the objects and
temporal segments or to use the STAS module, which lever-
ages a multi-head attention layer to select the most relevant
object and temporal segment, described in Section III-E.

A. Object detection and feature pooling

We use a Faster-RCNN [27] with ResNet-101 [28] backbone
as object detector on each frame, and extracted object positions
and classes. At this point, we would like to associate an
appearance vector to each object. One could consider the
output of the detector backbone or consider other backbones,
that could be pre-trained on other tasks [1], [7], [22] or fine-
tuned [8]. In this second case, it is common to extract the crop
of the image for each object and run it through the backbone
[7], [8]. This might result, however, in prohibitive inference
times. For instance, to compute the features of a single frame
with ten objects detected, one would need to compute ten
backbone forward passes. During training, it is possible to
speed up the process by storing locally the backbone outputs.
However, when there are a lot of detections for each frame, this
might also results in high storage costs. In contrast,inspired
by [12] and as widely shown effective in the Computer Vision
community, we are using a RoI pooling layer [29] that allow us
to compute the object features with a single backbone forward
pass both during training and inference.

B. GPS/IMU module

The data coming from the GPS/IMU sensors is used as
input to the GPS/IMU module, as shown in Figure 1. As in
[1], such module has two roles: to align the different sensors
sampling rates and the video timestamps and to extract high-
level features from the raw sensors. We first resample the
signals via interpolation, so that they have the same number
of samples, and this number is a multiple θ = 3 of the number



THIS WORK HAS BEEN ACCEPTED FOR PUBLICATION IN THE IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 4

Fig. 2: Schematic representation of the GPS/IMU module
leveraging depthwise separable convolution applied to each
sensor. Different colors represent different sensors.

of video timestamps. Then, we apply a set of convolutional
operations and, finally, we use a max pooling operation of size
θ, to align the sensors and the video stream.

In contrast with [1], though, we do not use 1D convolutions
over the temporal dimension, but rather apply the same convo-
lutional operation to process each signal independently, with
the idea to learn filters to be applied to a generic signal and to
extract features describing its temporal evolution, preserving
the individual signal semantic meaning. To accomplish this,
we use 2D depthwise separable convolutions [30], [31] as it
was proposed in the audio processing literature [6], [32]. Thus,
starting from an input tensor of shape θT × s, with T number
of frames and s total number of sensor signals, we fist add
an extra dimension, changing the shape of the input tensor to
1× θT × s, with the first dimension representing the number
of channels. Then, we apply a 2D convolution with kernel size
k = 3×1 and with fs = 16 output channels (i.e., filters). The
output tensor, using padding over the temporal dimension to
maintain the same spatial extent, has shape fs×θT ×s Then,
we apply a second 2D convolution with kernel size k = 1× 1
and with 1 output channel, that get then removed to go back
to a tensor of shape θT ×s. While one could stack multiple of
these operations, to learn richer information as in [30], [31],
in this paper we are using a single pair of convolutions, so
that each element of the output sensor retains the temporal
receptive field, i.e., is computed only on the sensor information
around the single frame. A schema of the GPS/IMU module
is reported in Figure 2.

C. Object preprocessing

In Section III-A we showed how to extract a set of positions
and appearance feature from each object of the scene and for
each frame. Let ot = {ot,1, . . . , ot,Nt

} be the set of objects
detected in frame t ∈ {1 . . . T}, with Nt the total number of
objects detected in frame t and ot,i = (at,i, pt,i) where at,i and
pt,i are respectively the appearance features and position of
the i-th object detected in frame t. Without loss of generality,
let us assume ot,i to be relative to the same real object (e.g.,
the same vehicle) for each frame t, with (at,i, pt,i) vectors of
zeros if the i-th object is not present or not detected in the
frame t. Also, instead of considering the maximum number
of detections Nt for each frame t, we can think of having a
fixed number of detection Nobjs for each frame, considering
as zeros the extra objects for each videos and discarding the
exceeding ones. In this setup, we can express the detected
object as a matrix O of size T ×Nobjs with ot,i = (at,i, pt,i).

As a heuristic to decide which objects to keep among the
detected ones, we consider the top Nobjs objects according to
detection total volume, i.e., sum of the detected area for each
object ot,i for each frame t, and we kept the Nobjs objects
with the largest volumes. This simple rule turned out effective
in our experiments, as the relevant objects are close to the
subject vehicle for a large number of frames and, thus, are
among the objects with the largest volume.

In order to build the matrix O, it is necessary to link
the same real-world object in two consecutive frames, ot,i
and ot+1,i, using, for instance, a tracking algorithm on the
detected objects. In this paper, we utilize a greedy tracking
algorithm that uses only object positions, detections confidence
and class information, that have shown to be effective in [20].
In particular, starting from frame t = 0, we assign a unique
tracking id to each object ot,i with confidence ct,i ≥ 0.6.
Then, iteratively for each following frame t:
• we compute the matching between the detections in frame
t − 1 and the ones in frame t and assign to each matched
object the same id;

• we assign a new unique id to all unmatched objects in frame
t with confidence ct,i ≥ 0.6;

• we discard all the remaining detections in frame t.
The matching is again a greedy algorithm that first generates
a set of candidate detection pairs of the same class and with
≥ 0.2, then iterates over such set assigning a matching for
the pairs with the highest IOU values, removing the matched
detections from the candidate set and iterating, so that each
object in frame t− 1 could be a match for at most one object
in frame t (maximum bipartite matching).

D. Object feature extraction

Starting from matrix O and in order to perform the classifi-
cation, we build a matrix X of shape T ×Nobjs, where each
element xt,i is the concatenation of three feature vectors

xt,i =
[
xa
t,i | x

p
t,i | x

g
t,i

]
. (1)

The feature vector xa
t,i is relative to the appearance of the

object and is obtained feeding the output of the RoI pooling
layer of the i-th object and of frame t to a bottlenck layer,
i.e., a linear layer followed by a 1D batch normalization layer
and a ReLU activation, in order to reduce the dimensionality
of the data and make it comparable with the other stream,
as it was proven beneficial in [1]. The feature vector xp

t,i is
relative to the position and class of the detection. It contains
position of the top left corner of the box, normalized in [0, 1],
the normalized width and height of the box, the confidence
of the detection and a one-hot encoded vector indicating the
class of the object. Finally, xg

t,i is the output of the GPS/IMU
module for frame t, as described in Section III-B, replicated
for each object. In addition, we add a flag indicating whether
the box i has been detected in frame t or not. In the latter
case, xa

t,i, x
p
t,i and xg

t,i are zeros. Finally, we add an extra,
always present dummy object to the object matrix, with the
GPS/IMU information xg

t,i only. Such object will cope with
the fact that a video might not have objects other than the
subject vehicle equipped with the dashcam, and will forward
GPS/IMU information to the final classifier.
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(a) The DSA module as proposed in [7]. The feature
vector xt,i are extracted from each frame (in red) and
the attention mechanism is used to produce the attention
map ϕ(xi;α) and the attention weights αt,i. Then, the
map is fed to a RNN.

(b) The STAS module proposed in this paper. The feature vector xt,i are
extracted for each object and for each frame (in red). Then, multiple feature
vectors of the same object are aggregated, into a feature vector yt̃,i representing
the evolution of the object (in orange, in the example two objects were
considered). Finally, the attention map ϕ(Y ;α) and the attention weights αt̃,i

are computed on each object and on each temporal segment.

Fig. 3: Comparision between the DSA module and the STAS module. The figures are displaying single-head attention.

In order to extract features that link together the objects in
two consecutive frames xt,i and xt+1,i, some works in the
literature propose to use a DSA module [7], [8]. Such module
uses the attention mechanism to select the relevant object at
each time step that are then feed to a recurrent layer (e.g. an
LSTM), as showed in Figure 3a. The latter two elements are,
thus, ideally performing the connection between the features
xt,i and xt+1,i, only if the attention weights αt,i and αt+1,i

on the same object are high. Even if this is the case, such
relation is exploited in the very last stages of the network,
i.e., in the recurrent connection and, thus, it might be difficult
to leverage. However, it is worth noticing that such approach
does not require explicit associations, i.e., tracking, between
objects ot,i and ot+1,i, as the DSA module considers all the
objects of a single frame in isolation and the output of the
attention layer is independent from the ordering of the inputs.

In contrast, we believe that extracting object connections
in the early stages of the architecture is crucial, as it allows
the network to extract features that consider the evolution
over time of a single object, e.g. an object getting bigger
and bigger or an object moving from left to right. For this
reason, after building the matrix X and the feature vectors
xt,i, we can extract features yt̃,i related to the evolution of the
objects in the scene. This is done by applying the same set of
convolutional operations to each object. In order to accomplish
this in an efficient way, as reported in Table II, we used 2D
convolutional operations of size 3× 1, thus insisting on three
frames and on a single object. We stacked four convolutions
with a growing number of filters f = 64, 128, 256, 512, always
followed by 2D batch normalization, ReLU activation and 2D
max-pooling operations of size 2 × 1, in order to reduce the
temporal dimension while increasing the number of filters. The
result is a matrix Y of shape T̃×Nobjs where each element yt̃,i

represents the evolution of an object i in a temporal segment t̃,

with t̃ ∈ 1, . . . , T̃ indices of the reduced temporal dimension.

E. Object selection module

We would like to select the most relevant feature vectors
yt̃,i, to perform the classification. In this paper, we propose to
use a multi-head attention layer [5]. Such layer, starting from
three set of vectors, namely keys, queries and values, performs
a weighted sum of the values, where the weight assigned to
each value is computed by a similarity function between the
query and the corresponding key. We are considering the set
of vectors {yt̃,i} as keys and values and the 2D global max-
pooling of such vectors as query. The rationale behind this
choice is that, ideally, the network will generate features that
have higher activations in correspondence to relevant objects.
Then, by pooling along the channel axis we would obtain a
vector that is representative of the relevant object activations:
this has been shown to be effective in highlighting informative
regions [13] and to be good for the classification task [1]. By
using such vector as a query, we are training the network so
that the attention weights are higher in correspondence to the
object features that are the most similar to the pooled vector,
thus, where the object activations are higher and to the relevant
objects. Formally, we are defining the key K, query Q and
value V matrices as

Q =
[
MaxPool(y0,0, . . . ,yT̃ ,Nobjs

)
]

K =

 y0,0

. . .
yT̃ ,Nobjs

 V =

 y0,0

. . .
yT̃ ,Nobjs

 (2)

Then, we use the multi-head attention layer as described
in [5], with the projection size dmodel = 64 and h = 8
number of heads. For each head h, such layer first projects the
input vectors a reduced embedding space of size dmodel, then
computes a set of attention weights {αh

t̃,i
}, i.e., a similarity
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TABLE II: Summarization of object feature extraction module.
The tensor dimensions in the output size column are respec-
tively features, objects and frames, with |xa

t,i| = 128, |xg
t,i| =

7, |xp
t,i| = 20, T = 135 and with Nobjs = 25.

Layer Output Size Structure

Input (xt,i) 155× 26× 135 −
Conv2d 64× 26× 135 1× 3, 64, pad 0× 1
BatchNorm2d 64× 26× 135 −
MaxPool2d 64× 26× 67 1× 2
Conv2d 128× 26× 67 1× 3, 128, pad 0× 1
BatchNorm2d 128× 26× 67 −
MaxPool2d 128× 26× 33 1× 2
Conv2d 256× 26× 33 1× 3, 256, pad 0× 1
BatchNorm2d 256× 26× 33 −
MaxPool2d 256× 26× 16 1× 2
Conv2d 512× 26× 16 1× 3, 512, pad 0× 1
BatchNorm2d 512× 26× 16 −
MaxPool2d (yt,i) 512× 26× 8 1× 2

MultiHeadAttention 512 heads = 8, dropout = 0.1
Fully-connected 10 −

measure based on dot product between each key and the query,
and use them to perform a weighted combination over the
values. The resulting vectors ϕh(Y ;αh) for each head are then
combined together using concatenation and a linear operation
into a single vector ϕ(Y ;α) that is used for the classification,
while the weights αh are averaged into a single vector α that
is used for explainability. The usage of the max pooling as
query vector has been exploited in other field and application
such as [6], [13], [14], but never to perform the selection of
relevant objects as proposed in the paper, thus, we are naming
this layer Spatio-Temporal Attention Selector (STAS).

As an alternative, we propose to use such max-pooled vector
directly for the classification, as in [1]. Note that, by doing
so, the features used for the classification are pooled from any
feature vector of Y instead of being forced, by the attention
layer, to belong mostly to a single feature vector. Relaxing
such constraint might improve performance at the expense of
explainability.

F. Backbone fine-tuning

While using a pretrained backbone on Places-365 [26] to
extract the object appearance feature showed good results in
similar task [1], [7], [22], to fine-tune the backbone would
almost certainly improve the performance. However, when
working with videos, it is hard to fine-tune the backbone
directly on the task, especially if the video are long or have
an high fps, as it generally requires larger datasets and more
GPU memory than available. Thus, many works propose to
fine-tune their backbone on auxiliary tasks. In [8], the authors
propose to use a per-frame risk-factor classification. In [25],
the authors trains their backbone to predict the vehicle steering
and acceleration. In this paper, we fine-tune the backbone on
the same unsafe maneuver classification task but with a smaller
version of the video with lower frame-rate and duration.

We considered video segments of 32 frames at 5 fps, i.e.
6.4 seconds, randomly choosing such segments under the
constraint that at least 75% of the video should be contained
in the segment or all the frames should be event frames.
This approach was possible only knowing the beginning and

Fig. 4: The architecture used to fine-tune the backbone. Below,
a set of examples used for fine-tuning, satisfying (V) or not
satisfying (X) the constraint. In blue, the selected segment, in
red, the safety-critical event, in black the full video.

the end of the safety-critical event in each video. Then, we
used an architecture like the one in Figure 4. We first fed
the video to the backbone and applied a 2D global average
pooling layer. After these operations, the output tensor has
shape F×C, with F = 32 numbers of frames and C backbone
output channels. In our specific case, we considered ResNet-
50, having C = 2048. Then, in line with the residual structure
of the backbone, we considered N = 4 1D adaptations of
the Bottleneck layers proposed in [28] of size C, each of
which applies a point-wise 1D convolution with C/4 = 512
filters, a 1D convolution of size 3 and C/4 = 512 filters and
point-wise 1D convolution with C = 2048 filters, warping
everything with a residual connection between the input of the
three convolutions and the output. In addition to this, we would
want to reduce gradually the temporal dimension. Thus, the
first point-wise operation of each block has a stride s = 2 and
each residual connection is equipped with an additional point-
wise operation, to adjust the number of channels accordingly.
Finally, a 1D global max pooling layer is applied over the
reduced temporal dimension and the resulting vector is used
for classification.

IV. EXPERIMENTAL RESULTS

A. Dataset and implementation details

All the experiments were conducted on the SHRP2 NDS
dataset [3], a collection of more than 8800 safety-critical
events, gathered by more than 3300 drivers between 2010
and 2013. The dataset is composed of videos at 15 fps with
resolution 480 × 356, while the GPS-related sensors have a
sampling frequency of 1 Hz and the IMU of 10 Hz. We
preprocessed the dataset as described in [1] and used the
same annotations. To cope with outliers and sensor drift, we
first rescaled each sensor to have zero mean in each example
and then used a robust scaling strategy, scaling the 25th and
75th percentiles of each sensor in the range [−0.5, 0.5]. The
samples with missing GPS data were discarded. For all the
experiments, as in [1], we re-sampled the videos to 356×256
and considered a random crop of 314×224 during training and
a central crop of the same size during testing, adjusting the
extracted boxes accordingly. Also, as data augmentation, we
used color jittering for the videos and colored gaussian noise
for the GPS/IMU data. Finally, we run all the experiments
in the clip around the event setup, described in [1]. In this
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TABLE III: Per-class results and inference time of the proposed models, without appearance (top row) and with appearance
(bottom row). † the inference time of the object detection algorithm is not included.

Model Inference Average Precision (AP) mAP
SL ST NSL NST SB SOE SLC SO NSO O

Two Stream (Sensors only) [1] 11 ms 0.35 0.55 0.57 0.30 0.80 0.94 0.59 0.65 0.59 0.23 0.556
DSA + LSTM [7], [8] 121 ms † 0.15 0.52 0.62 0.43 0.84 0.90 0.60 0.46 0.37 0.67 0.555
Ours + STAS (w/o appearance) 20 ms † 0.33 0.54 0.75 0.59 0.90 0.89 0.48 0.48 0.68 0.68 0.633
Ours + MaxPool (w/o appearance) 20 ms † 0.38 0.49 0.81 0.66 0.92 0.91 0.64 0.42 0.60 0.61 0.646

Two-Stream [1] 917 ms 0.28 0.54 0.61 0.60 0.91 0.92 0.60 0.68 0.62 0.59 0.635
Two-Stream (Proposed fine-tuning) 917 ms 0.38 0.49 0.81 0.66 0.92 0.91 0.64 0.42 0.60 0.61 0.690
Ours + STAS (Proposed fine-tuning) 952 ms † 0.29 0.55 0.78 0.64 0.96 0.91 0.82 0.61 0.64 0.68 0.700
Ours + MaxPool (Proposed fine-tuning) 952 ms † 0.34 0.72 0.87 0.78 0.95 0.89 0.73 0.45 0.66 0.72 0.712

scenario, only a relatively small clip containing mostly only
the safety-critical event is selected, to highlight the capability
of the model to distinguish the various maneuvers. Starting
from the event start and event end frames, we considered the
2/3 of the event as reference and selected 45 frames after
and 90 frames before. During training, we added a random
offset of ±10 frames to the reference frame. This gave us a
fixed input segment with a total of 135 frames for each event.
In a practical context, one may think to obtain such segment
running a coarse event detection algorithm, e.g., a trigger based
on IMU data, and use the sensor peak as reference point.

All the experiments were conducted using Adam optimizer
[33] with weight decay of 10−4. We used an initial learning
rate of 10−3, decreased by a factor of 0.5 after 50, 70, 90 and
110 epochs. This applies to all the experiments, but the one
with the LSTM, which has a longer convergence time, where
we decreased the learning rate after 100, 150, 200 and 250
epochs. We also clipped the norm of the gradients to 1.0 to
prevent exploding gradients. As for the backbone fine-tuning,
we initialized the backbone with the pre-trained weights of
Places-365 and the 1D convolutions with random weights. We
used Adam with a weight decay of 10−4 and a learning rate
of 10−3, decreased to 10−4 and 10−5 after 50 and 70 epochs.

B. Comparison with state-of-the-art

We consider two variants of the proposed approach.
• Ours + STAS is the architecture described in Section III,

with the extracted features yt̃,i fed to the STAS module.
• Ours + MaxPool is the same as above, but with the extracted

features yt̃,i fed to a global max pooling layer.
We compare the proposed approaches with
• Two-Stream, i.e., the two-stream architecture as proposed in

[1], using both the features extracted from the full frame
and the GPS/IMU data.

• DSA + LSTM, i.e., the porting to the unsafe maneuver clas-
sification problems of DSA-based architectures proposed for
accident anticipation [7], [8]. In particular, the structure of
the network is the same proposed in this paper up to the
extraction of the object features xt,i. Then, we compute
the attention map on each object feature per frame and fed
the result to a LSTM. In contrast with their approach, we
use the multi-head dot product attention, since it has shown
superior results compared to soft attention [5]. Furthermore,
we used xt,i as object features instead of the one proposed
in the original papers, which were describing similar aspects

but in a slightly different way, e.g. using IDT to describe
object motion, in order to be able to assess the impact of the
different attention modules under similar conditions. Finally,
we used standard cross entropy loss instead of the accident
anticipation losses proposed in the papers.
As in [1], we used the mean average precision (mAP) for

evaluation, that is equivalent to computing the mean area under
the precision-recall curve for each class. This metric accounts
for both precision and recall and is robust to class imbalance.

The comparison with the state-of-the-art is reported in
Table III, along with the inference time and per-class average
precision (AP). In the top row, we report several results
not considering the appearance features, i.e., having xt,i =[
xp
t,i | x

g
t,i

]
: this is a valuable set-up to test, since it can

be a lightweight component to add to a pipeline processing
dashcam videos and already performing object detection. First,
we can observe how the proposed approaches outperform
the baselines we evaluate and, in particular, the DSA-based
approaches from [7], [8]. It is worth highlighting, however,
that the sensor only version from [1] is not using the object
positional features. In the bottom row of Table III, instead,
we report the results considering also the appearance features.
Again, we can observe that the proposed approaches outper-
forms the Two Stream baseline, either considering the original
backbone or the fine-tuned version proposed in this paper.

C. Ablation study

The majority of the experiments were made without using
the appearance features and are reported in Table IV. First,
we can see how the usage of the depthwise separable convo-
lutions (DW), without mixing sensor information in the early
stages, significantly improves performance over the standard
1D convolutions (C1D): mAP is 0.576 when using C1D (first
row) and it raises to 0.633 (+0.057) by switching to DW
(third row). This might suggest that mixing up sensors in
the early stages would promote high informative sensors (e.g.
the flow-direction accelerometer) and penalize low-informative
ones, that could, however, be crucial in distinguishing some
corner cases. Second, we evaluated the effect of the possible
values of Nobjs on the final prediction metric. We found the
optimal value to be Nobjs = 25, however, the usage of a
higher number of objects is not significantly detrimental. As
reference, we reported also the results with Nobj = 0, i.e.,
considering only the dummy object, to observe the effect of
adding the objects information. It is worth to highlight that the
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TABLE IV: Tests without using appearance features.

Model Sensors
Nobjs

Object selection mAPDW C1D DSA STAS MaxPool

Ours + STAS (w/o appearance, C1D) X 25 X 0.576

Ours + STAS (w/o appearance) X 0 X 0.525
Ours + STAS (w/o appearance) X 25 X 0.633
Ours + STAS (w/o appearance) X 100 X 0.614
Ours + STAS (w/o appearance) X 250 X 0.602

Ours + MaxPool (w/o appearance) X 25 X 0.646

Ours + STAS (w/o appearance, w/o GPS/IMU) 25 X 0.458
Ours + MaxPool (w/o appearance, w/o GPS/IMU) 25 X 0.459

TABLE V: Tests using appearance features

Model Sensors
Nobjs

Appearance Object selection mAPDW Places-365 ImageNet Fine-tuned STAS MaxPool

Ours + STAS (Places-365) X 25 X X 0.656
Ours + STAS (ImageNet) X 25 X X 0.657
Ours + STAS (Proposed fine-tuning) X 25 X X 0.700

Ours + MaxPool (Proposed fine-tuning) X 25 X X 0.712

Ours + STAS (Proposed fine-tuning, w/o GPS/IMU) 25 X X 0.476
Ours + MaxPool (Proposed fine-tuning, w/o GPS/IMU) 25 X X 0.506

setup with Nobjs = 25 is outperforming Nobjs = 100 which
is outperforming Nobjs = 250: it shows how the heuristic
we used to limit the number of object is not discarding the
relevant ones. Third, we observe how the usage of the max-
pooling layer instead of the STAS module, i.e., not forcing the
network to pick a single object, is slightly beneficial for the
performance, at the expense of the explainability. It is worth
to highlight, however, that the two results are not too distant
from each other, as the difference in terms of mAP is small
(0.013). Finally, we tested the performance of the model when
removing the GPS/IMU features completely, i.e., considering
xt,i = xp

t,i, as such data might not be available in some
vision-only application scenarios. We observed a severe drop
of roughly 0.18 of in the overall mAP, showing the importance
of such type of data, if available, to tackle the unsafe maneuver
classification and confirming the findings of [1].

The experiments in Table V show that, also when con-
sidering the appearance features, the architecture with max-
pooling layer outperforms the STAS module by a relatively
small margin in terms of mAP (0.012), again at the expense of
explainability. Furthermore, we can see that the backbone fine-
tuning we propose improves mAP significantly in both the Two
Stream baseline and the proposed methodology, showing the
effectiveness of the method. Moreover, again, the experiments
without the GPS/IMU data, i.e., having xt,i =

[
xp
t,i | xa

t,i

]
show that such type of data are crucial to solve this task, as
by removing them the performance drops of more than 0.2
in mAP. Finally, we can observe how each experiment out-
performs the appearance-less counterpart of Table IV, clearly
showing the effectiveness of this type of features.

In Table III, we report the per-class AP. Although there
is no clear winner, again in the setup without the appearance
features the proposed approaches are in general outperforming
the baselines in the various classes and the approaches with
the appearance are outperforming their counterparts. SB and

SOE are the classes with the highest AP, probably because
such maneuvers are fairly well distinguishable from the rest
and are the majority classes in the dataset. On the other hand,
most of the models show a relatively low AP on the minority
classes (i.e. SL, ST, SO and NSO). Table III also reports
the inference times of the various models. We can observe
how the inference time of the proposed methods is close
to the Two Stream baseline one, thanks to the ROI pooling
layer that allows the computation of the objects’ appearance
features in a single pass. It is worth to highlight, however,
that the reported times does not include the object detection
algorithm inference time. We used Faster-RCNN with ResNet-
101 with an inference time of 72ms per image, thus requiring
9.7s for a full 135 frames video, as we prioritized accuracy
over speed in the detection generation process. Nevertheless,
requiring object detection as a prerequisite does not add any
extra overhead if the proposed architecture is deployed in an
application already performing object detection. Finally, please
note how the object detection algorithm used at inference time
could be, in principle, different, e.g., faster, from the training
one, although we did no experimentation in this regard.

V. RESULTS VISUALIZATION

In this Section, we provide qualitative results on the object
being selected by the proposed method, since labels on the
relevant object in each scene were not available in our dataset.

We consider the Ours + STAS model with appearance
features and fine-tuned backbone, with the goal of visualizing
the object being selected for the classification. This can be
accomplished by just looking at the attention weights, since the
output is a weighted combination of the object features. The
results are the heatmaps in Figures 5, 6, 7, 8, which have been
independently normalized into [0, 1] for visualization purposes.
Note that each heatmap has the objects on the vertical axis and
the reduced temporal dimension on the horizontal axis. Also,
the top row is always relative to the dummy object that, for
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Fig. 5: Subject turn (ST) event Fig. 6: Non-subject turn (NST) event

Fig. 7: Subject over edge (SOE) event with no objects Fig. 8: Subject over edge (SOE) event with not relevant objects

visualization reasons, has been reported also in the top left
corner of each frame.

Figure 5 shows a Subject Turn event in which the subject
enters an intersection and starts to perform a turning maneuver
ignoring the incoming vehicle in the opposite direction, being
forced to interrupt the maneuver to not hit the other vehicle.
The model is mostly looking at only the incoming vehicle
features to perform the prediction in the moment in which
the subject is forced to interrupt the maneuver, correctly
identifying the relevant object, i.e. the one in danger, at the
right moment.

Figure 6 shows a Non-subject Turn event in which the
subject is travelling on a single lane road approaching an
intersection, when another vehicle enters and go through such
intersection ignoring the subject, that is forced to hard brake.
Again, the model is looking mostly at the right object, i.e.
the car cutting into the subject vehicle path, at the relevant
moment.

Figure 7 shows a Subject Over Edge event in which the
subject is going over the edge of the road. There is no object
in the scene, but a detection of the subject vehicle hood
detected as vehicle by the object detection algorithm. In this
particular scenario, the sensors features are used to perform
the prediction, extracted mainly from the dummy object. In
contrast, Figure 8 shows a Subject Over Edge event with
multiple detected vehicles, which are not relevant to perform
the classification. The network is assigning a high weight to
most of them. We believe that this outcome is due to the fact
that the feature vector of each object xt,i is composed also by
the sensors features xg

t,i, which are crucial for the prediction of
this kind of event. Thus, likely, the resulting yt̃,i features will
be mostly a combination of the sensor feature and be pretty
much the same for all the object, i.e., they will be independent
from the object appearance and position. As a result, the
attention mechanism, which is based on a similarity measure,
will find all the features to have an equal contribution. One
can extend this concept to a context where the same object
is detected multiple times. Then, the appearance and position
feature, and thus the resulting yt̃,i would likely look similar

and the STAS module would assign similar weights to each
detection, again detecting multiple relevant objects. We found
this to be a limitation of the proposed approach, which can
however probably easily overcome by assigning low relevance
to all the objects in the scenes when the largest attention
weights are spread all over the matrix, i.e., when there is no
single clear peak in the weights.

VI. CONCLUSIONS

We presented an architecture that combines object appear-
ance and position, the video stream and the sensors stream
to tackle the unsafe maneuver classification problem. We
discussed two variants of this architecture: the first one uses
the max-pooled vector of the extracted object features directly
for the classification, while the second one leverage the newly
introduced STAS module to also identify the relevant object in
the video, offering network explainability as an interesting by
product. We observe that while the first architecture is better in
terms of mAP on the unsafe maneuver classification task, the
gap between the two is small, suggesting that explainability
comes with a cost on overall performance, but that such cost
can be acceptable, if explainability is desired. Furthermore,
we presented several methodological and practical novelties
over the relevant works in the literature: first, the usage
of depthwise convolutions to process sensors data, in order
to maintain the semantic of each sensor in deeper stages
of the network; second, the usage of an RoI pooling layer
to extract object appearance features in an efficient way
both during training and inference; third, we introduced the
concept of extracting features describing the evolution of a
single object over time, by using a tracking algorithm, and
using such features for classification; fourth, we presented
a new backbone fine-tuning strategy tailored to the unsafe
maneuver classification task that could however potentially be
extended to other similar domains. Our experiments showed
that the proposed approach outperforms the state-of-the-art
on the unsafe maneuvers classification task and empirically
showed the superiority of the STAS module compared to other
attention-based methods in the literature on this particular
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task. Finally, we presented qualitative results on the capability
of the network to select the relevant object, highlighting its
advantages and limitations.
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