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Abstract—Cooperative Adaptive Cruise Control (CACC) is a
fundamental connected vehicle application that extends Adaptive
Cruise Control by exploiting vehicle-to-vehicle (V2V) communi-
cation. CACC is a crucial ingredient for numerous autonomous
vehicle functionalities including platooning, distributed route
management, etc. Unfortunately, malicious V2V communications
can subvert CACC, leading to string instability and road acci-
dents. In this paper, we develop a novel resiliency infrastruc-
ture, RACCON, for detecting and mitigating V2V attacks on
CACC. RACCON uses machine learning to develop an on-board
prediction model that captures anomalous vehicular responses
and performs mitigation in real time. RACCON-enabled vehicles
can exploit the high efficiency of CACC without compromising
safety, even under potentially adversarial scenarios. We present
extensive experimental evaluation to demonstrate the efficacy of
RACCON.

Index Terms—Connected and autonomous vehicles, V2X com-
munication, anomaly detection, security

I. INTRODUCTION

Recent years have seen proliferation of electronics and
software in automotive systems targeted towards increasing
autonomy. Autonomous features hold the promise of dra-
matically increasing transportation efficiency and road safety
by reducing and eventually eliminating human errors [20].
However, an undesired side-effect is the increased vulner-
ability of Connected and Autonomous Vehicles (CAVs) to
cyber-security threats. Recent research has shown that it is
possible, even straightforward, to mount cyber-attacks that
compromise a vehicle and control its driving functionality
[19], [8], [15]. Increasing dependence of critical vehicular
operations on communication with the external world will
exacerbate this situation by creating larger attack surfaces.
This increases the attacker’s ability to compromise the vehicle
causing catastrophic impact. Consequently, the proliferation
and even adoption of CAVs depends critically on our ability
to mitigate such attacks.

An important feature of autonomous vehicles is the abil-
ity to interact with other vehicles (V2V), the transportation
infrastructure (V2I), and devices connected to the Internet
(V2IoT). Vehicular communications, collectively referred to
as V2X, form a key constituent of several emergent appli-
cations including platooning, cooperative route management,
intersection management, cooperative collision detection, etc.
Unfortunately, V2X also enables a large class of adversar-
ial opportunities: an adversary can easily create disruption
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by manipulating communicated messages through mutation,
misdirection, or jamming. For example, in platooning, the
adversary may cause an accident by simply sending misleading
acceleration directive while braking [9].

In this paper, we develop an infrastructure for systematically
integrating resiliency against communication attacks on V2V
applications. Our focus is a fundamental application of ve-
hicular communications: Cooperative Adaptive Cruise Control
(CACC). CACC is an extension of Adaptive Cruise Control
(ACC); Adaptive Cruise Control (ACC) uses RADAR/LIDAR
measurements to derive relative velocity and headway from
the vehicle in front. Additionally, CACC also accounts for the
preceding vehicle’s (intended) acceleration. The acceleration is
communicated through V2V messages, typically as Dedicated
Short Range Communication (DSRC) [30]. CACC is a key
component of several connected car applications such as
vehicle platooning, cooperative on-ramp merging, etc. Attacks
on CACC can disrupt traffic movement, cause catastrophic
accidents, and bring down the transportation infrastructure.

Our framework, RACCON (for “Resilient Cooperative
Adaptive Cruise Control”), is a real-time anomaly detection
and mitigation system for communication attacks on CACC.
The key idea is to use machine learning (ML) to develop
an on-board prediction model for estimating the response of
the following vehicle given normal (benign) patterns of V2V
input messages. This enables the detection of anomalies in
the vehicle’s responses resulting from potentially malicious
communications. RACCON involves two cooperative com-
ponents: (1) an on-board architecture installed in vehicles
participating in CACC that enables the follower vehicle (also
called ego vehicle) to perform real-time anomaly detection and
mitigation; and (2) an offline cloud-based infrastructure for
construction of prediction models.

The paper makes several important contributions. First,
unlike related approaches that focus on detection of CACC
attacks (see Section XII), RACCON represents the first
framework that also enables real-time resiliency. Second, our
framework provides high flexibility through attack-agnostic
defense against an elaborate set of adversaries in the con-
nected car ecosystem, including man-in-the-middle (MITM)
attack, wormhole attack, Sybil, Denial-of-Service (DoS), etc.
RACCON also accounts for the natural differences in commu-
nication patterns among a variety of driving scenarios, road
conditions, etc. Finally, our work represents the most compre-
hensive experimental evaluation to date on vulnerabilities in
CACC, impact of attacks on target vehicles, and the quality
of resiliency provided by the security architecture. In addition
to showcasing confidence in our approach, we believe the
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experimental framework will serve as a roadmap for evaluation
of resiliency in other CAV applications.

The remainder of the paper is organized as follows. Sec-
tion II provides relevant background in V2X, cooperative
vehicular applications, and CACC. We introduce RACCON
in Section III and explain the design constraints induced
by the requirements for real-time detection and mitigation.
Section IV presents details of the RACCON architecture and
implementation. A unique contribution of the paper is the
extensive evaluation performed to demonstrate the efficacy of
RACCON. Sections V through XI explain our experimental
results. We discuss related work in Section XII and conclude
in Section XIII.

II. BACKGROUND

A. Connected Vehicle Applications and V2X Communications

Connected autonomous vehicle (CAV) applications exploit
Internet connectivity to enhance driving efficiency, safety, mo-
bility, and sustainability [11]. With the increasing proliferation
and speed of Internet connectivity, several such applications
have emerged in the past decade. Today, connected vehicle
applications constitute some of the core components of R&D
around autonomous driving. Some applications currently de-
signed include platooning, dynamic cooperative route man-
agement (DCRM), automated collision detection, cooperative
automated on-ramp merging, etc.

V2X is an essential centerpiece of all CAV applications.
DSRC is a popular communication scheme that enables V2X.
It is a modified version of the IEEE 802.11p Wide Local
Area Network (WLAN) protocol, designed for vehicular ad-
hoc networks comprising high mobility nodes. US Federal
Communications Commission (FCC) has allocated a dedicated
bandwidth of 75MHz in the 5.850-5.925GHz band to DSRC.
In an effort to expedite the deployment of connected vehicle
technologies, United States Department of Transportation put
forth a proposal in 2016 mandating integration of DSRC
devices on all new light-duty vehicles produced in USA.

B. ACC and CACC Overview

Adaptive Cruise Control (ACC) enables a vehicle E to auto-
matically adjust acceleration and closely follow its preceding
vehicle P , while maintaining a safe space gap gsafe. Most
ACC implementations target a constant time headway; the goal
is to compute aE such that E takes at least time Tgap to reach
the same position as P , where Tgap is a design constant. The
safe space gap gsafe is a function of Tgap, the maximum de-
celeration capability Dmax

E of E , and the velocities vE and vP .
Vehicle E computes its desired acceleration aE using (1) the
inter-vehicle distance g and velocity vP of the preceding
vehicle P measured by RADAR/LIDAR; and (2) the velocity
vE and acceleration aE of E measured by on-board sensors.
Cooperative Adaptive Cruise Control (CACC) extends ACC
by using the intended acceleration aP of P in the computation
of aE . Vehicle P communicates aP through V2V messages
(Fig. 1). Both ACC and CACC operate in two modes. If
g > gsafe, they operate in gap control mode, where E follows
P as closely as possible; if g ≤ gsafe, they switch to collision

Fig. 1: CACC Overview. Acceleration provided by V2V. Instanta-
neous g and vP provided by LIDAR or RADAR.

Fig. 2: CACC On-board Architecture. Acceleration Computation
Module (COMP) computes desired acceleration. Actuarial control
module (ACM) computes braking pressure and motor torque.

avoidance mode and uses maximum deceleration Dmax
E . The

use of the preceding vehicle’s acceleration enables CACC to
maintain a shorter time headway (THW) than ACC, resulting
in a more efficient roadway utilization: in a representative
implementation [5], CACC uses Tgap of 0.55s while ACC
needs to use 1.2s.

C. CACC Architecture and A Representative Implementation
Fig. 2 shows the key components of an on-board CACC

architecture. While low-level details vary, all implementations
to our knowledge constitute two key components: Acceleration
Computation Module (COMP) computes the desired accelera-
tion aE of the host vehicle E ; Actuarial Control Module (ACM)
manipulates motor output torque or braking pressure to enforce
the desired acceleration.

Although RACCON is oblivious to the underlying CACC
implementation, for our evaluation we use representative
CACC (and ACC) implementations by Amoozadeh et al. [5]
shown below. In the equations, aE(A) and aE(C) are the
desired accelerations for ACC and CACC respectively, Gmin
is a constant defining a lower bound on space gap, TA

gap
and TC

max are constant time headway for ACC and CACC
respectively, and Ka, Kv , and Kg are acceleration, velocity,
and position constants. Amoozadeh et al. specify the values
Ka = 0.66, Kv = 0.99s−1, Kg = 4.08s−2, Gmin = 1m,
TA

gap = 1.2s, and TC
gap = 0.55s.

gsafe = 0.1vE +
v2E

2Dmax
E

− v2P
2Dmax

P
+Gmin

aE(A) = −KaD
max
p +Kv(vP − vE) +Kg(g − vET

A
gap −Gmin)

aE(C) = KaaP +Kv(vP − vE) +Kg(g − vET
C
gap −Gmin)

III. INTRODUCTION TO RACCON
A. RACCON as a Service

At the user level, RACCON is a vehicular service that is
enabled with the help of additional on-board hardware (see
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Section IV). We refer to the subscribing vehicle as the ego
vehicle,“E”; all our evaluations are done from the perspective
of an ego vehicle. When enabled, RACCON collects normal
behavior data during E’s operation. Data from all vehicles with
RACCON installed is periodically uploaded to a trusted cloud
server for progressively refining ML models used by the on-
board hardware; E periodically updates the on-board system by
downloading the latest ML models. The communication with
cloud is performed when E is connected to Internet through a
trusted network, e.g., when stationary at the owner’s residence;
on-road connectivity with cloud is not necessary. During driv-
ing operation, if CACC is engaged in E , the on-board hardware
automatically detects anomalies in V2V communication from
the preceding vehicle, and performs mitigation.

B. Design Considerations

A unique feature that distinguishes RACCON from related
ML approaches for anomaly detection in CACC is real-time
resiliency. For our solution to be viable, a number of design
constraints must be satisfied.
• Basic safety: ML-based solutions can only provide a

“high probability” guarantee on prediction accuracy. Con-
sequently, it is critical that the RACCON mitigation
generates decisions that are safe (under the assumed
threat model), i.e., do not increase the risk of accident
in response to a detected anomaly.

• Flexibility: The solution should work without modifica-
tion, for the entire adversarial spectrum. Hence, control-
theoretic solutions that require detailed customized mod-
els of adversarial functionalities are infeasible.

• Limited Computation and Real-time Requirements: The
security system should operate within the computational
constraints of an automotive platform and meet real time
requirements of CACC application.

• Small Data Problem and Machine Learning Attacks: Any
ML-based prediction system requires a significant amount
of training data. Obviously, significant attack data does
not exist in real life, a phenomenon we refer to as the
small data problem. It is critical for the prediction system
to be accurate in the presence of limited anomaly data.
Furthermore, the system must be robust against detector
subversion, i.e., attacks targeted specifically to fool the
prediction system (see Section XI).

RACCON addresses the resource constraints and real-time
requirements by separating the training of ML models from
on-road prediction. A key observation is that the computation-
intensive component of machine learning is training predictor
models; once a model is created, detection can be performed
within the limited resources of automotive ECUs. Our system
includes a cloud-based methodology for training prediction
models, while the on-board architecture is responsible for
collecting data and performing real-time prediction. We en-
sure basic safety by introducing a plausibility checker which
guarantees that RACCON’s mitigation cannot compromise
safety due to V2V anomalies. To address the small data
problem, we observe that while labelled anomalous/malicious
data is limited, data on normal behavior is typically plentiful.

Consequently, we train prediction algorithms to learn normal
behavior model (NBM), i.e., the response of E to normal (be-
nign) pattern of V2V communications rather than anomalous
behavior. The on-board anomaly detector then calculates the
degree of deviation from NBM as a measure of the anomaly.
Finally, for ensuring resiliency under detection subversion
attacks, we systematically fine-tune the detection threshold to
capture minute anomalies that have a perceptible effect on the
safety or efficiency of the target vehicle. As a result, stealthy
attacks that indeed subvert the detection system fail to cause
any adverse impact on the vehicle.

C. Threat Model

Given our focus on V2V, our threat model assumes that
the attacker can tamper with arbitrary V2V messages. This
includes mutation, denial of delivery, masquerading as a
different vehicular or infrastructure entity, message fabrication,
etc. Our framework is oblivious to the source of the attack:
it can be a rogue preceding vehicle, a compromised ego
vehicle infrastructure component, or an intermediate network-
ing component, e.g., denial of message delivery is possible
by compromising the software/hardware component of the
ego vehicle or interfering with the communication protocol.
We assume that the RACCON on-board system in the ego
vehicle, as well as the actuarial components it controls, are
not compromised. We also assume that the sensory inputs to
the ego vehicle are not corrupted.1

IV. RACCON IMPLEMENTATION

Fig. 3 shows the RACCON on-board architecture, and Algo-
rithm 1 provides a top-level description. A key insight is that
since on-board architecture of most CACC implementations
follows the “template” from Fig. 2, it is possible to develop a
streamlined resiliency architecture by systematically augment-
ing the template with resiliency components. RACCON adds
three such components: (1) Anomaly Detector; (2) Mitigator;
and (3) Data Collector.

A. Anomaly Detector

Anomaly detector checks at each instant t whether the
response aE(t) of the COMP module of CACC deviates from
the expected normal behavior; any such deviation is captured
as an anomaly to be passed on to Mitigator. The detection
comprises the following two modules.

1) Predictor is a machine learning model that is trained
offline. It estimates predicted acceleration value apredE (t)
in real time, taking the same input parameters as COMP.
Predictor can capture contextual/conditional anomalies,
in addition to point anomalies.

2) Comparator computes the deviation between the pre-
dicted value apredE (t) and aE(t); if the deviation is
beyond a pre-defined threshold, it is detected as an

1There has been significant research showing how vehicular sensors can
be compromised [22], [4], [10], [3]. Nevertheless, since the modalities of
compromising sensors and V2V are different, it is reasonable in the context
of detecting V2V anomalies to assume that the sensory inputs are trusted.
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Algorithm 1 RACCON

1: procedure RACCON(aV 2V

P , vP , vE , gap)

2: aP ← aV 2V

P

3: if V2V communication is lost then
4: no comm← TRUE

5: apred

E ← Predictor() predictor invoked

6: aC

E ← AccelComp(aP , vP , vE , gap)

7: anmly flag ← Comparator(aC

E , a
pred

E )

8: aE ← Mitigator(anmly flag, no comm)

9: throttle, braking ← ActuarialControl(aE)

10: DataCollector()

11: return throttle, braking

Fig. 3: RACCON Architecture. Blocks with dotted line boundaries
are components introduced for resiliency.

anomaly. The detection threshold is a function of driving
conditions and typical velocities of vehicles in a driving
environment (See Section IX).

B. Mitigator

For each anomaly captured by the detector, Mitigator com-
putes an alternate response overriding the CACC controller
response aE , to neutralize any potential adversarial impact.
Mitigator comprises the following components.

1) Response Estimator is a pre-trained machine learning
model analogous to Predictor, that generates an esti-
mated acceleration aest

E . However, unlike Predictor (and
indeed, COMP), it uses only trusted sensory inputs, e.g.,
relative velocity and position of E and P .

2) Plausibility Checker ensures that Response Estimator’s
output does not compromise the safety of E , even under
attack.

Algorithm 2 describes the Mitigator functionality. In the
absence of anomaly, sensory inputs are typically sampled at a
lower rate Fnormal. When Mitigator is invoked to handle an
anomaly (lines 7 through 10), the sensor sampling frequency
is switched to a higher value Fmax to generate more accurate
sensory data. The aP received as anomalous message, and
aE computed using that value, are discarded. Instead, aE
is calculated approximately using the rate of change in the
velocity of the P from the previous time step. Lines 14
through 21 describe the plausibility checker functionality; it
accounts for the worst case for safety, e.g., sudden halt of P .
The resultant tgap is computed for the scenario where aest

E

Algorithm 2 Mitigation

1: procedure MITIGATOR(anmly flag, no comm)
2: if (anmly flag and no comm are FALSE) then
3: operate in normal mode
4: aE ← aC

E
5: else
6: mitigation mode
7: sensor sampling frequency ← Fmax

8: vP , gap← vFmax

P , gapFmax

9: aP ← (vP(t)− vP(t− 1))/δT

10: aC

E ← AccelComp(aP , vP , vE , gap)
11: aest

E ← RespEst(vP , vE , gap)
12: aE ← Plausibility(aest

E , a
C

E , vP , gap,D
max
P )

13: return aE

14: procedure PLAUSIBILITY(aest

E , a
C

E , vP , gap,D
max
P )

15: test
gap
, tC

gap
← GetTGap(aest

E , a
C

E , vP , gap,D
max
P )

16: if tC
gap
> T C

gap
& tC

gap
< test

gap
& tC

gap
< T A

gap
then

17: aE ← aC

E corrected CACC output applied
18: else if test

gap
> T C

gap
& test

gap
< T A

gap
then

19: aE ← aest

E Response Estimator output applied
20: else
21: aE ← aA

E degrade to ACC
22: return aE

and corrected aE were applied. The plausibility checker then
determines the optimal choice out of aest

E and the corrected aE
that is both safe and efficient. If it fails to find such a value, the
system falls back to conservative ACC. Consequently, THW
never reaches value less than minimum safe threshold Tgap.

C. Data Collector

The Data Collector collects on-road driving data, which is
aggregated and periodically communicated to the cloud for
improving the ML models (see below). The collected data
includes (1) inputs to the CACC controller, e.g., preceding
vehicle acceleration, inter-vehicle space headway, and the
velocities of the two vehicles; (2) the acceleration value
computed by the COMP module of CACC in response to
these inputs; and (3) an “anomaly flag” to indicate whether
the response is classified as an anomaly by RACCON.

D. Off-line Cloud Infrastructure

The ML components of RACCON (Predictor and Response
Estimator) are trained offline on trusted cloud servers and
updated periodically, as new on-road CACC data is made
available from the Data Collector modules of different ve-
hicles subscribing to the RACCON service. We assume that
these communications cannot be corrupted. This is viable in
practice since we do not require real-time communication with
the cloud. Data can be transferred from the vehicles when
a trusted connection to the cloud is available. RACCON-
enabled vehicles securely download the latest instances of
trained Predictor and Response Estimators along with a list of
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anomaly thresholds for different driving environments, prior
to CACC engagement in untrusted operating conditions.

V. RACCON EVALUATION, SETUP, AND ATTACK
ORCHESTRATION METHODOLOGY

A unique aspect of our work is the extensive experimental
evaluation of RACCON. In addition to showing the viability
of RACCON itself, we believe our experiments provide a
roadmap for evaluation of resiliency in other connected ve-
hicular applications as well.

A. Data Generation

A key challenge with evaluating ML-based solutions is the
need for realistic data. As discussed in Section III-B, we
avoid the need for real vulnerability data by training the ML
components to learn NBM (for which there is plentiful data on
deployment). However, our experimental evaluation obviously
needs to be done before deployment, when in-field data is
not yet available. Consequently, we generate normal driving
data using a state-of-the-art physical automotive research
simulator, RDS1000® [24] and a software system replicating
a representative CACC controller functionality (described in
II). Data collected from the simulator is fed to the CACC
software system to generate vehicular trajectories. RACCON
detection and mitigation components are integrated with the
CACC system. Attacks are orchestrated by manipulating the
inputs to the RACCON-integrated CACC system. The impacts
of the attack (and our mitigation) are computed by modifying
vehicular parameters (e.g., acceleration of the ego vehicle,
THW between vehicles, etc.).

We curated a dataset corresponding to vehicles engaged in
CACC, operating in 24 different driving environments. These
environments were programmed as a cross-product of the
following parameters: (i) Road terrain (highway, suburban and
urban); (ii) Weather (clear, windy, snowy, rainy); and (iii) Time
of day (day, night). The set of parameters (terrain, weather,
and time of day) are typically used to analyze driving patterns
[20]. We also added ambient traffic to obtain realistic vehicular
trajectory data. Each of the 24 datasets corresponds to about 15
minutes of driving time and constitutes approximately 90, 000
samples collected at a frequency of 100Hz. The data collected
provides the preceding vehicle trajectory; ego vehicle response
is computed using the COMP controller from Section II-B.
The global dataset is generated by aggregating data from all
environments, and is split 80-20 into training and test data.

B. Attack Taxonomy

Since the security paradigm of V2V communications is
continuously increasing in complexity, it is challenging to
develop an evaluation strategy to comprehensively cover the
attack space. All previous works on V2X attack detection
only focused on specific attack instances, e.g., Biron et al.
[3] only target jamming and flooding attacks, and Jagielski et
al. [13] focus on specific mutation attacks. Such evaluation
does not provide adequate evidence of resiliency against other
potentially unknown attacks.

Fig. 4: Taxonomy of Communication Attacks on CACC

We address this problem by developing a comprehensive
taxonomy of V2V attacks on CACC (Fig. 4) that is used
to systematically navigate the attack space. The taxonomy
is inspired by threat modeling approaches in hardware and
system security [23], but adapted for V2V adversaries. The
idea is to represent a V2V attack through three features, viz.,
stealth, operation, and impact. This feature combination forms
a holistic characterization of any attack under the RACCON
adversary model. In particular, since the adversary is confined
to V2V communications, the only choices for the adversary are
to (1) mutate an existing message, (2) fabricate a new message,
and (3) prevent the delivery of a message. Correspondingly,
since the message payload constitutes the preceding vehicle’s
acceleration, the impact of an attack can be to (1) increase
the probability of collision (by reporting a lower than actual
acceleration value), (2) reduce efficiency through an increased
headway (by reporting a higher than actual acceleration value),
or (3) creating instability (e.g., through random mutation of
the actual value). We refer to deviations by a positive bias as
collision attacks and deviations by a negative bias as efficiency
degradation attacks. Note that the taxonomy is oblivious to
the mechanics of the attack (e.g., man-in-the-middle, rogue
vehicle, hardware-software modules of the ego vehicle, etc.),
but only considers the effect on V2V messages. For instance,
delivery prevention operation accounts for jamming, flooding,
channel subversion, etc., each of which can be carried out
through a variety of ways. Table I shows how the taxonomy
accounts for different well-known attacks. The focus on attack
characteristics rather than the mechanics enables the taxon-
omy to provide a comprehensive classification of V2V attacks.

C. Attack Orchestration Methodology

We used the taxonomy above to develop a systematic attack
orchestration framework. Attacks are represented as 3-tuples,
representing the three features identified in the taxonomy.
Delivery prevention attacks are realized through intermittent
or absent communication. Mutation and fabrication attacks are
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TABLE I: Representative N-day Attack Instances. All relevant combinations of the operation, frequency and impact features for each attack
mechanism indicated by “3”

Attack
Mechanism

Attack Origin Operation Frequency Impact

Preceding Vehicle MITM Mutation Fabrication Delivery Prevention Discrete Cluster Continuous Collision Efficiency degradation String Instability

Message falsification 3 3 3 3 3 3 3 3 3
DoS (Jamming) 3 3 3 3 3 3
DoS (Flooding) 3 3 3 3 3 3 3 3 3 3

Masquerade 3 3 3 3 3 3 3 3 3
Replay 3 3 3 3 3 3 3

Misdirection 3 3 3 3 3 3

realized through fake acceleration messages that deviate from
ground truth. We consider four different ways for generating
fake accelerations:

afakeP = atrueP ± b (1)

afakeP = atrueP ± bt (2)

afakeP = atrueP ± bsin(ft) (3)

afakeP = atrueP ± random (4)

Equation (1) represents a constant bias added to the ground
truth. Equations (2) and (3) represent linear and sinusoidal
time-varying biases, respectively. Given a specific combination
of attack features (e.g., discrete mutation attack with collision
as targeted impact), the framework permits attack impact sim-
ulation. We use THW (tgap) as a natural measure to quantify
the risk of collision or the extent of efficiency degradation.
An erratic change in tgap can also potentially indicate string
instability in the traffic.

D. Summary of Experiments

Evaluation of CAV application resiliency must address a va-
riety of orthogonal facets. Note that within the broad umbrella
of ML-based resiliency, the number of architectural parameters
available for a security designer to tweak is dauntingly large.
This includes the choice of ML model, anomaly threshold, ad-
versary classifications, etc. In addition to evaluating the quality
of infrastructure, the methodology must enable systematic
estimation of these parameters. Following is an overview of the
experiments performed to evaluate RACCON. We elaborate on
the experiments in Sections VI through XI.

1) Data Validation: For our conclusions to be meaningful,
it is critical that the data we use is realistic. We validate
that the vehicular driving patterns reflected in our simu-
lation data conform to real-world patterns from a public
dataset. (Section VI)

2) Identification of Appropriate ML Model: Implement-
ing Predictor and Response Estimator functionalities re-
quires selecting and tuning the appropriate ML architec-
ture. We develop a systematic evaluation methodology
to address this problem. (Section VII)

3) Attack Impact Analysis: The viability of attack orches-
tration framework for RACCON evaluation depends on
the quality of the orchestrated attacks themselves. We
develop a methodology to analyze attacks, in terms of
stealth and impact. (Section VIII)

4) Anomaly Detection Threshold: A key factor in the ef-
fectiveness of RACCON is the identification of anomaly
threshold, i.e., the extent of deviation from normal
behavior pattern that would be classified as a potential
threat. Selecting an appropriate threshold involves bal-
ancing the trade-off between maximizing attack detec-
tion accuracy and minimizing false alarms. We present
a series of experiments to achieve this balance. (Section
IX)

5) V2V Attack Resilience: The central component of our
evaluation shows the robustness of RACCON against
various V2V attacks. (Section X)

6) Resilience Against Detector Subversion: Since RAC-
CON depends on ML-based predictions, it is exposed
to adversaries that aim to subvert the ML component.
We call such adversaries Detection Subversion Adver-
saries, and evaluate the resiliency of RACCON against
them. We also present an interesting connection between
anomaly threshold and detection subversion. (Section
XI)

VI. DATA VALIDATION

A key challenge with using simulator data is to ensure that
it is realistic. Unfortunately, there is no available repository
of sufficient real-world driving data across different driving
scenarios. Indeed, the lack of available real-world data is the
reason why we rely on simulated data in the first place. To
address this problem, we observe that while sustained data
over a period of time is unavailable, there are datasets that
provide short-duration driving patterns. These snippets can
then be used to corroborate data obtained from the simulator
under similar driving conditions.

We carried out this experiment with HighD dataset [16]
that provides trajectory data corresponding to real vehicles
driving in German highways. The length of individual ve-
hicle trajectories is approximately 15 seconds. We compare
acceleration patterns of similar length trajectories collected
from the simulator. Fig. 5 shows sample comparisons for four
vehicles from HighD data. The results clearly indicate that the
acceleration patterns from the simulator correlate closely with
HighD data.

VII. FIDELITY OF ML MODELS

Viability of RACCON critically depends on the presumption
that ML Models involved (Predictor and Response Estimator)
have high accuracy. We can formulate the ML regression
problem in two ways: (i)stateless prediction and (ii)time-series
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Fig. 5: Correlation Between Simulated Data and HighD. Each
plot indicates correlation between the acceleration trajectory of an
arbitrary vehicle in HighD and the simulated vehicle.

prediction. Cumulatively, these result in a prohibitively large
space ML architecture choices. It is important to navigate this
space systematically and converge to an optimal architecture.
The ML model must address two orthogonal requirements:
(1) avoid false alarms for benign messages and (2) accurately
classify malicious messages as anomalous. Furthermore, it
must be possible to perform real-time prediction under the
computation and storage constraints of automotive systems.
Finally, since driving patterns vary according to driving con-
ditions, we must determine whether each driving environment
requires a customized ML model.

A. Identifying ML Architecture

Since detecting malicious activity essentially involves iden-
tifying anomalous behavior, it is imperative that the model
learns NBM (i.e., estimating the normal behavior of CACC
controller) accurately for effective performance in adversarial
settings. Furthermore, efficiency of a resiliency solution de-
pends primarily on the prediction accuracy under benign sce-
narios, since most of the messages encountered by vehicles in
field are likely benign. Our methodology entails the following
steps to determine the appropriate ML architecture.

1) Find a set of candidate architectures that can satisfy
automotive resource constraints.

2) Discard candidates that do not provide acceptable pre-
diction accuracy under benign conditions.

3) Of the remaining candidates, select the architecture with
highest accuracy under malicious conditions.

In our evaluations, we started with five architectures: Ran-
dom Forest Regressor (RF), Support Vector Machine (SVM),
and Feed-forward Neural Network (FNN) are examined for
stateless prediction; Univariate Time Delayed Neural Network
(TDNN) and Multivariate Long Short-Term Memory (LSTM)
network are examined for time-series prediction. Architectures
more sophisticated than LSTM were estimated to be too
complex, given the constraints of automotive systems. For
these candidates, we apply a two-step triage process based on
prediction accuracy in benign environment. In the first step, we
compute the Mean Absolute Error (MAE) in prediction, under
six different driving environments, for each ML architecture.
This provides a “coarse” evaluation of accuracy and facilitates

TABLE II: Mean Absolute Error in the prediction of ego vehicle
acceleration under six different test driving environments

Test
Environment

ML Model

RF FNN LSTM TDNN SVM

Env 1 0.040 0.021 0.155 0.007 0.440
Env 2 0.149 0.177 1.640 0.027 1.057
Env 3 0.101 0.116 0.985 0.021 0.787
Env 4 0.075 0.089 1.166 0.010 0.510
Env 5 0.199 0.310 1.130 0.035 0.364
Env 6 0.062 0.073 0.201 0.010 0.987

identification of a small subset of candidates (Table II ).
Clearly RF, TDNN, and FNN show much better accuracy
than SVM and LSTM. In the next step, we examine them
more closely to identify any local “kinks”. Fig. 6 plots the
accuracy of Predictor in two different environments. Note that
RF is ineffective in capturing minute variations in acceleration
(indicated by several flat lines in prediction). This behavior can
be attributed to the fact that the RF regressor ignores minute
variations in the data as noise. Since tracking such variations
is critical for accurate anomaly detection, RF is discarded as
a viable candidate.

FNN and TDNN are further examined under simulated
attacks to determine anomaly detection and mitigation efficacy.
In each attack, malicious acceleration values are generated by
adding a bias (constant or sinusoidal) to the ground truth.
Clearly, FNN performs significantly better than TDNN in
mitigating attacks, as indicated by the resultant THW values
in Table III 2 Based on these results, FNN is determined as
the appropriate ML architecture for the RACCON detection
system..

B. Environment Specific Models vs Global Model

We investigate whether one global Predictor model can
provide sufficient resiliency or a unique model is necessary
for each driving scenario. Firstly, we train a unique Predictor
model for each driving scenario as well as a cumulative
global model. We then compare the global model against all
unique models in normal operating conditions to determine
the optimal approach. Table IV shows the mean absolute error
for using a global predictor model vis-a-vis unique models.
The error corresponding to the global model is generally less
than (but typically close to) unique models. Even when the
error is greater, e.g., for 〈suburban, night, snow〉, the difference
is insignificant. Consequently, using a global predictor to
estimate apredE is sufficient, obviating the need for unique
models for different driving scenarios.3

2We believe the better performance of FNN over TDNN is due to the
stateless design of the CACC controller. The stateless FNN model captures the
context well and approximates the controller behavior while time-dependant
regression models learn spurious temporal dependencies making them inef-
fective in detecting anomalous inputs.

3The conclusion that the global model performs better than unique tailor-
made models for some driving conditions is somewhat surprising. One reason
is that it usually has more training data, incorporating driving patterns from
many individual scenarios, resulting in a better accuracy. This holds true for
practical deployments as well as our experimental setup.
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(a) (b)

Fig. 6: Prediction of TDNN, FNN and Random Forest in Benign Environments. (a) Highway-Day-Windy. (b) City-Night-Snow.

TABLE III: Resultant THW for TDNN and FNN predictors under four different attacks

Time
Headway

Cluster Attack (Bias:1.5) Cluster Attack (Bias:-0.8) Continuous Attack (Bias:0.1) Continuous Attack (Bias:sin(0.05t))

FNN TDNN Naive CACC FNN TDNN Naive CACC FNN TDNN Naive CACC FNN TDNN Naive CACC

THW < 0.55s 0% 30.85% 80.64% 0% 0% 0% 0% 63.22% 63.22% 0% 20.47% 21.14%
THW: {0.55− 0.75s} 100% 65.81% 19.36% 100% 55.89% 34.24% 100% 36.78% 36.78% 100% 77.97% 78.86%

THW >0.75s 0% 3.34% 0% 0% 44.11% 65.76% 0% 0% 0% 0% 1.56% 0%

TABLE IV: Mean absolute error in 24 different driving environments for Global and Environment-specific Predictors

Road
Infrastructure

Day Night

Rain Snow Clear Windy Rain Snow Clear Windy

Unique Global Unique Global Unique Global Unique Global Unique Global Unique Global Unique Global Unique Global

Highway 0.070 0.051 0.130 0.131 0.045 0.044 0.059 0.058 0.082 0.073 0.087 0.084 0.071 0.068 0.098 0.091
Suburban 0.125 0.119 0.038 0.141 0.193 0.178 0.103 0.121 0.101 0.140 0.074 0.096 0.133 0.119 0.110 0.212

City 0.081 0.056 0.084 0.051 0.212 0.050 0.005 0.016 0.051 0.140 0.059 0.038 0.053 0.052 0.034 0.042

VIII. ATTACK IMPACT ANALYSIS

Our attack orchestration framework (Section V-C) enables
systematic exploration of V2V attack space. However, to
evaluate a resiliency solution we must also comprehend the
impact of these attacks. Note that the impact depends not
only on the magnitude of the bias (deviation from normal) but
also the frequency: an attack with a small bias, but performed
for a long duration, can cause a significant impact on the
victim vehicle. Based on the taxonomy, we perform extensive
experiments across the attack space to comprehend the impact
of different categories of attacks.

Figs. 7, 8, 9, and 10 show the results of impact analysis
for 12 attack instances. These are specifically chosen attack
scenarios that result in a perceptible impact on the target
vehicle, while remaining stealthy. The attacks either involve
smaller deviations from ground truth or infrequent malicious
activity, making them hard to detect. In addition to the impact

of the individual attack instances, we can make several cumu-
lative conclusions. In particular, discrete attacks generally have
lesser impact on the vehicle compared to cluster or continuous
attacks. Furthermore, attacks that involve systematic mutation
of ground truth (linear or sinusoidal) have significantly more
impact on the target vehicle than attacks involving random
mutation. In Section X, we will demonstrate the efficacy of
RACCON under a similar set of attack instances.

IX. ANOMALY DETECTION THRESHOLD

RACCON resiliency depends on the choice of the anomaly
threshold: a threshold higher than optimal may lead to re-
duced detection accuracy, while a lower threshold may lead
to increased false alarms in detection. High degree of false
alarms results in inefficient invocation of RACCON’s Plausi-
bility checker. Although plausibility checking computation is
lightweight, the cumulative overhead can become significant
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Fig. 7: Impact of Continuous Attacks. (a) Constant Bias 0.15. (b) Linear Bias -0.005t. (c) Sinusoidal Bias 0.2sin(0.005t).

Fig. 8: Impact of Cluster Attacks. (a) Constant Bias 0.3; (b) Linear Bias -0.02t. (c) Sinusoidal Bias 0.5sin(0.05t).
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Fig. 9: Impact of Discrete Attacks. (a) Constant Bias 0.5. (b) Linear Bias -0.005t. (c) Sinusoidal Bias 5sin(0.005t).

Fig. 10: Impact of Random Bias and Delivery Prevention Attacks. (a) Random continuous bias {-0.2, 0.2}. (b) Random clustered bias {-0.8,
0.8 }. (c) Intermittent communication.
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since on-road vehicles operate mostly under benign condi-
tions. An optimal threshold would enable safety as well as
efficiency under adversarial scenarios while incurring minimal
performance overhead in benign conditions. Our threshold
estimation methodology works in three stages:

1) Identify an acceptable threshold range for adversarial
scenarios.

2) Compute an approximate threshold value within the
range by accounting for performance overhead under
benign conditions.

3) Fine-tune the value to optimize for detection subversion
attacks. (See Section XI.)

Computing Acceptable Threshold Range. We use three
detection metrics: recall, precision, and f1-score, to estimate
the quality of resiliency under attacks. A high precision value
reflects smaller percentage of false alarms while a high recall
reflects smaller percentage of undetected anomalies. A high f1-
score (computed as the harmonic mean of recall and precision)
indicates a combination of high precision as well as recall.
We prioritize recall over precision since it is important to
capture any anomaly that can possibly cause an undesired
impact. Fig. 11(a), (b), and (c) show the distribution box-plots
of the three detection metrics over all 24 environments. The
evaluation is carried out under a clustered sinusoidal attack
corrupting about 25% of the V2V messages. This attack is
representative since it includes characteristics of both discrete
and continuous attacks, and incorporates both positive and
negative biases within the same attack instance. Note that
recall degrades as the anomaly threshold increases from 0.1
to 0.5. The best recall values (close to 1) are observed for
thresholds in the range 0.1-0.2; however, the corresponding
precision values are only 0.25-0.35, indicating higher number
of false alarms. Consequently, f1-scores reach an optimal value
(∼ 0.4) for smaller values of the threshold (0.05-0.25) but
decrease as the threshold increases.

Remark. Observe from Fig. 11 that the f1-score boxes are
not tightly packed around the mean, implying that the opti-
mal anomaly threshold (based on f1-score) can vary across
environments. Consequently, RACCON supports on-the-fly ad-
justment of threshold based on the current environment, using
parameters from maps (e.g., location, terrain, etc.), ambient
weather, and clocks.

Performance Overhead in Benign Conditions. Fig. 11(d)
illustrates the distribution of false positives under benign
conditions for thresholds ranging 0.1-0.5. Since larger thresh-
olds result in low recall (see above), values larger than 0.5
are disregarded. As with f1-score, thresholds in the range
0.05-0.25 have a high variance, indicating fluctuation with
changing driving environment. The optimal anomaly threshold
is selected by balancing the trade-off between better coverage
under attack conditions and minimal overhead in benign
conditions.

As an example, we obtain the optimal threshold for the envi-
ronment Highway-Day-Windy as follows. First, we determine
the ballpark range 0.1-0.25 that gives the best f1-score (recall

close to 1 and precision close to 0.4). We eliminate thresholds
less than 0.1 to keep the false positives below 30%, refining
the range to 0.13-0.25. This is fine-tuned after evaluation under
detection subversion to obtain the optimal choice 0.15 (Section
XI).

X. RACCON RESILIENCY EVALUATION

We performed extensive evaluation of RACCON resiliency
using our flexible attack orchestration framework. Note that
related work on detecting V2V compromises (see Section
XII) does not include real-time mitigation; the only implied
mitigation entails degrading to ACC (conservative controller
action relying only on the trusted sensor systems). To provide
a fair evaluation of RACCON, we compare it with (1) Naive
CACC with no resiliency; and (2) CACC that degrades to
ACC as mitigation. One way to view this evaluation is as a
comparison between two extremes for safety-compromising
attacks: the naive CACC controller is efficient but at the cost
of safety, while degradation to ACC provides safety guarantee
but at a significant efficiency cost (since ACC headway is
much larger than CACC). The goal of RACCON is to enable
optimal efficiency while guaranteeing safety, by maintaining
THW in the range 0.55-0.75s.

A. Collision and Efficiency Degradation Attacks

Tables V and VI show the numerical results for evaluation
under six representative collision and efficiency attack sce-
narios. Figs. 12, 13 and Fig. 14 provide visual representation
of RACCON mitigation. As with Section VIII, we showcase
attacks that are impactful yet hard to detect due to small biases
or infrequent malicious activities. In each table, we present a
comparison between RACCON, mitigation degrading to ACC,
and naive CACC with no resiliency. Tabular entries indicate
the amount of time (as percentages of total driving time)
during which the vehicle experiences THW values falling
within a certain range. Based on these results we make the
following observations.
• Collision Attacks: RACCON successfully mitigates the

collision attacks, maintaining THW within the optimal
range of 0.55-0.75s at all times. CACC without any
resilience results in unsafe headway of less than 0.55s,
and eventually, collision in some cases. Degrading to
ACC prevents collisions, but THW is above 0.75s for
over 40% of the attack duration.

• Efficiency Degradation Attacks: With RACCON, the
maximum THW is around 0.65s. Without resilience,
THW reaches 1.8s. Degrading to ACC also results in
THW as high as 1.5s.

B. Random Communication and Delivery Prevention attacks

We also studied effects of random message mutation and
delivery prevention (Table VII and Fig. 15). The results show
the importance of the thorough attack impact analysis we
carried out. Recall from Section VIII that these attacks have
much less impact than Collision and Efficiency Degradation
attacks. A critical aspect of resiliency evaluation is to ensure it
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(a) (b) (c) (d)

Fig. 11: Distribution Box-plots of Detection metrics vs Anomaly Threshold for 24 Driving Environments. Plots (a) through (c) show the
distribution of recall, precision and f1-score under a sinusoidal attack. Plot (d) shows the distribution of false positive percentage in benign
conditions.

TABLE V: Resiliency Evaluation under Collision Attacks

Spurious communication: Linear function of ground truth

Continuous Attack (linear bias= 0.3t) Cluster Attack (constant bias= +0.8) Discrete Attack (constant bias= +2.0)

RACCON Degrade ACC Naive CACC RACCON Degrade ACC Naive CACC RACCON Degrade ACC Naive CACC

THW < 0.55s 0% 0% 84.54% 0% 0% 73.83% 0% 0% 0%
THW: {0.55− 0.75s} 100% 54.01% 15.46% 100% 51.13% 26.17% 100% 55.28% 100%

THW >0.75s 0% 45.99% 0% 0% 48.86% 0% 0% 44.72% 0%
Collision No No Yes No No Yes No No No

Spurious Communication: Sinusoidal function of ground truth

Continuous Attack (bias= 0.5sin(0.02t)) Cluster Attack (bias= 0.8sin(0.03t)) Cluster Attack (bias= sin(0.05t))

RACCON Degrade ACC Naive CACC RACCON Degrade ACC Naive CACC RACCON Degrade ACC Naive CACC

THW < 0.55s 0% 0% 33.03% 0% 0% 12.60% 0% 0% 3.81%
THW: {0.55− 0.75s} 100% 54.64% 66.97% 100% 54.81% 87.40% 100% 53.94% 96.19%

THW >0.75s 0% 45.36% 0% 0% 45.19% 0% 0% 46.06% 0%
Collision No No Yes No No No No No No

TABLE VI: Resiliency Evaluation under Efficiency Degradation Attacks

Spurious communication: Linear function of ground truth

Continuous (linear bias= -0.3t) Cluster (constant bias= -0.8) Discrete (constant bias= -2.0)

RACCON Degrade ACC Naive CACC RACCON Degrade ACC Naive CACC RACCON Degrade ACC Naive CACC

THW < 0.55s 0% 0% 0% 0% 0% 0% 0% 0% 0%
THW: {0.55− 0.75s} 100% 55.42% 21.55% 100% 55.25% 18.85% 100% 54.83% 100%

THW >0.75s 0% 44.58% 78.45% 0% 44.75% 81.15% 0% 45.17% 0%
Maximum THW 0.65s 1.56s 1.79s 0.65s 1.55s 1.54s 0.65s 1.54s 0.70s

Spurious Communication: Sinusoidal function of ground truth

Continuous Attack (bias= -0.5sin(0.02t)) Cluster Attack (bias= -0.8sin(0.03t)) Cluster Attack (bias= -sin(0.05t))

RACCON Degrade ACC Naive CACC RACCON Degrade ACC Naive CACC RACCON Degrade ACC Naive CACC

THW < 0.55s 0% 0% 0% 0% 0% 0% 0% 0% 0%
THW: {0.55− 0.75s} 100% 54.67% 79.97% 100% 54.14% 94.01% 100% 54.49% 98.35%

THW >0.75s 0% 45.33% 20.03% 0% 45.86% 5.99% 0% 45.51% 1.65%
Maximum THW 0.65s 1.56s 0.83s 0.65s 1.55s 0.79s 0.65s 1.54s 0.75s

does not incur high mitigation overhead. Both RACCON and
naive CACC maintain tgap within the ideal range at all times;
however, degrading to ACC incurs significant efficiency loss.

C. N-Day Attacks

Attacks orchestrated in Sections X-A and X-B systemati-
cally cover the taxonomy discussed in Section V-B. Since our
taxonomy comprehensively represents the whole V2V attack
spectrum, it is established from our evaluation results that
RACCON is robust against any arbitrary V2V attack under the

threat model, including both known (N -day) and unknown (0-
day) attacks. Nevertheless, it is illustrative to directly evaluate
RACCON against some known attacks. In this section, we
consider three well-known attacks, e.g., Man-in-the-Middle
(MITM), Denial-of-Service (DoS) through Jamming, and DoS
through Flooding.

• MITM Attack: We instantiate an MITM adversary that
mutates the preceding vehicle acceleration values by
adding a continuous sinusoidal bias, using the function
0.8 sin 0.05t.
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Fig. 12: RACCON Resiliency under Sample Collision Attacks. (a) Continuous Attack constant bias +0.25. (b) Cluster Attack with linear
bias +0.1t. (c) Discrete Attack with constant bias +2.5.

TABLE VII: Resiliency Evaluation under Random Mutation and Delivery Prevention Attacks

Random Mutation Attacks

Continuous (random bias=-2.0,2.0) Cluster (random bias=-2.0,2.0) Discrete (random bias=-2.0,2.0)

RACCON Degrade ACC Naive CACC RACCON Degrade ACC Naive CACC RACCON Degrade ACC Naive CACC

THW < 0.55s 0% 0% 0% 0% 0% 0% 0% 0% 0%
THW: {0.55− 0.75s} 100% 54.07% 100% 100% 55.69% 100% 100% 55.20% 100%

THW >0.75s 0% 45.93% 0% 0% 44.31% 0% 0% 44.80% 0%
Max THW 0.65 1.54 0.73 0.65 1.55 0.65 0.65 1.54 0.65

Delivery Prevention Attacks

Intermittent (frequency= 0.2Hz, duration=1.5s) Intermittent (frequency= 0.1Hz, duration=2s) Intermittent (frequency= 0.2Hz, duration=5s)

RACCON Degrade ACC Naive CACC RACCON Degrade ACC Naive CACC RACCON Degrade ACC Naive CACC

THW < 0.55s 0% 0% 0% 0% 0% 0% 0% 0% 3.29%
THW: {0.55− 0.75s} 100% 54.86% 100% 100% 54.88% 100% 100% 54.92% 96.71%

THW >0.75s 0% 45.14% 0% 0% 45.12% 0% 0% 45.08% 0%
Max THW 0.65 1.54 0.65 0.65 1.54 0.65 0.65 1.54 0.66
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Fig. 13: RACCON Resiliency under Sample Efficiency Degradation Attacks. (a) Continuous Attack (constant bias -0.1). (b) Cluster Attack
(linear bias -0.06t). (c) Discrete Attack (constant bias -2.5).

• DoS through Jamming: We implement a DoS attack
in which the adversary jams the communication channel,
preventing delivery of (legitimate) V2V messages. The
channel is jammed for 2 seconds once every 20 seconds.

• DoS through Flooding:. The adversary floods the com-
munication channel with fabricated packets that interfere
with delivery of legitimate communication. We add fab-
ricated packets in bursts, once every 10 seconds, for a
duration of 2 seconds.

Fig. 16 illustrates RACCON mitigation efficacy under these
attacks. It maintains tgap close to ideal at all times, while
CACC without resiliency results in tgap of less than 0.55s
for MITM. Mitigation based on fallback to ACC results in
significant efficiency degradation for the jamming attack.

XI. DETECTOR SUBVERSION

The fact that RACCON is an ML-based framework can
make it vulnerable to adversaries subverting the learning and
prediction systems themselves. Such adversaries can create
anomalous data that is nevertheless accepted as normal by the
detector, thereby bypassing any mitigation against the attack.
We call these attacks detector subversion.

Obviously, a very low selection of anomaly threshold can
ensure high robustness against detector subversion. However,
recall from Section IX that a low anomaly threshold can result
in high false alarms. Consequently, we fine-tune the threshold
value within the ballpark range obtained from Section IX,
balancing the trade-off. We use the following parameters in
our analysis.
• Tolerable Bias: This is the maximum bias added to the

ground truth, beyond which there is a perceptible impact
on the target vehicle’s safety or efficiency.
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Fig. 14: RACCON Resiliency under Sample Sinusoidal Attacks. (a) Continuous Attack (bias sin(0.1t)). (b) Cluster Attack (bias -2sin(0.3t)).
(c) Continuous Attack (bias 2.5sin(0.2t)).

• Subversion Detectability Index: This is the minimum bias
added to ground truth, that can be successfully captured
by the detection system.

• False Positives in Benign Conditions: This is the per-
centage of normal communication messages, incorrectly
tagged as anomalies by RACCON in benign operating
conditions.

The goal is to determine the optimal anomaly threshold which
enables the detection of every attack beyond the tolerable bias,
while keeping the the number of false positives small.

Table VIII presents results for threshold choices for a rep-
resentative driving environment, Highway-Day-Windy. Recall
from Section IX that we determined the approximate optimal
threshold range for this environment to be 0.12-0.25. To fine-
tune for resiliency under detector subversion, we determine the
tolerable bias for attacks of varying stealth factor; note that it
is much smaller for a continuous attack (0.04) than a discrete

attack (5.0). For optimal threshold, the subversion detectability
index should be less than the tolerable bias for each class of
attack. The highlighted row shows the optimal choice of the
anomaly threshold (0.15), since it has the minimum fraction
of false positives out of all the choices providing acceptable
subversion detectability.

XII. RELATED WORK AND DISCUSSION

Automotive security research has been traditionally focused
on in-vehicle vulnerabilities or adversaries exploiting the lack
of secure communication [8], [15], [19]. Machine learning has
primarily been used for computer vision modules to improve
on-board perception [28], [26] or for securing in-vehicle
networks, e.g., CAN bus [25], [31]. With the emergence of
CAV systems, recent research has focused on security of
cooperative and safety applications such as platooning [9],
intersection management [7], collision avoidance, emergency
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Fig. 15: RACCON Resiliency under Random Mutation and Delivery Prevention Attacks: Comparison between RACCON and naive CACC
with no resiliency, in terms of resultant THW; (a) Continuous Attack (random bias -1.5, 1.5); (b) Cluster Attack (random bias -2.0, 2.0); (c)
Intermittent communication.

TABLE VIII: Anomaly Threshold and Subversion Detectability under Attacks of Varying Stealth Factor.

Anomaly
Threshold

False Positives
Benign Condition

Subversion Detectability Index

Continuous (Tolerable bias: 0.04) Cluster (Tolerable bias: 0.1) Discrete (Tolerable bias: 5.0)

Min. constant bias Min. sinusoidal bias Min. constant bias Min. sinusoidal bias Min. constant bias Min. sinusoidal bias

0.25 0% 0.35 0.25sinft 0.4 0.35sinft 0.5 3sinft
0.2 2.96% 0.3 0.2sinft 0.3 0.3sinft 0.35 1sinft

0.18 10.74% 0.3 0.2sinft 0.3 0.3sinft 0.35 0.35sinft
0.15 11.91% 0.01 0.01sinft 0.03 0.02sinft 0.25 0.25sinft
0.13 21.2% 0 0 0.0001 0.0001sinft 0.01 0.01sinft
0.12 58.1% 0 0 0 0 0 0
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Fig. 16: RACCON Resiliency under Representative N-day Attacks. (a) MITM Attack with continuous sinusoidal bias. (b) Flooding Attack
with cluster random bias. (c) DoS Attack with intermittent communication.

vehicle warning, lane merge and turn conflict warning, etc.
[6],[14]

Since CACC serves as a foundation of a variety of CAV
applications, significant attention has been given towards de-
tection of attacks on CACC. This research primarily involves
application of control theory or machine learning solutions.
Abdo et al. [2] present a survey on application level com-
munication attacks on CACC and their adverse impacts on
the target vehicles. Liu et al. [18], Parkinson et al. [21]
and AbdAllah et al. [1] discuss the challenges in CACC
security and provide research directions. Biron et al. [3] and
Dutta et al. [10] use approaches based on control theory
to detect and correct adversarial sensor-based attacks on
CACC. Heijden et al. [29] propose a misbehavior detection
mechanism based on subjective logic, to validate the position
information exchanged between vehicles. Nunen et al. [30]
propose a control-theoretic model-predictive approach to deal

with short communication failures and packet dropouts in
CACC. Among machine learning approaches, Alotibi et al.
[4] propose a real-time detection mechanism for platoons,
in the context of a compromised leader reporting falsified
acceleration values to the following vehicles. Iorio et al. [12]
propose a misbehavior detection approach for injection attacks
on CACC, based on correlation between various vehicular
motion parameters. Jagielski et al. [13] discuss detection of
attacks that compromise communication or manipulate the
on-board sensor readings, through physics-based constraints
and machine learning. Levi et al. [17] present an event-based
anomaly detection technique for connected vehicles using
Hidden Markov Models. Tiwari et al. [27] describe attack
features that are undetectable at individual time instances but
can be detected from sequential data.

In spite of this extensive research, we are not aware of
any previous solution addressing detection of the spectrum of
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attacks explored for RACCON. Control-theoretic approaches
require a detailed functional model of the adversarial action.
Each attack type (e.g., flooding, jamming, etc.) requires a
different detailed adversary model. In contrast, RACCON is an
ML-based anomaly detection approach that only depends upon
benign V2V communication data. RACCON’s attack-agnostic
defense is effective against the entire spectrum of V2V adver-
saries. On the other hand, related ML-based approaches have
only been evaluated under a specific subset of attacks, e.g.,
linear or sinusoidal mutation attacks on acceleration values
[4], [13].

A unique aspect of RACCON is real-time resiliency, provid-
ing optimal efficiency while guaranteeing safety under adver-
sarial conditions. This vision has guided several components
of RACCON’s design and evaluation. For instance, while
all related ML-based anomaly detection approaches focus on
identifying discrepancies in controller inputs, RACCON is
designed to monitor the controller’s response. This permits
RACCON to correct the erroneous response appropriately and
minimize the impact of anomalous (and potentially malicious)
inputs on the ego vehicle. The need for resiliency also requires
us to determine the severity and impact of the attack itself, i.e.,
an attack is impactful and needs mitigation if it results in the
ego vehicle performing an unsafe or inefficient action. This
requirement has also led to the understanding of the trade-
offs between stealth and impact, e.g., clustered and continuous
attacks are more impactful than discrete attacks, and are
correspondingly less stealthy. The need for real-time responses
has motivated our design goals for viable ML models that
satisfy automotive resource constraints. Finally, the complex
trade-off between robustness and performance has guided our
methodology for optimal anomaly threshold computation.

XIII. CONCLUSION AND FUTURE WORK

We have presented what we believe is the first compre-
hensive resiliency framework for CACC against V2V attacks.
Our work uses machine learning to predict the ego vehicle’s
responses, and capture communication anomalies in real-time,
based on deviation between the predicted and actual responses.
We also developed a robust real-time mitigation technique
that can effectively nullify the adverse effects of anomalous
communication. A unique feature of this mitigation is to
guarantee safety while preserving efficiency. Unlike systems
that degrade to ACC in response to an anomaly, our solution
enables the target vehicle to safely engage in CACC even
under attack. We have also developed one of the most com-
prehensive experimental frameworks for resiliency evaluation,
based on a taxonomy of adversaries capturing the entirety of
the V2V attack spectrum. Our experiments clearly demonstrate
the viability of RACCON as a means for providing resiliency
in CACC under V2V attacks.

In our future work, we will explore extension of this
resiliency architecture to other connected car applications.
We will also augment RACCON with existing techniques for
additionally detecting sensor attacks, resulting in more robust
CACC.
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