2201.08017v1 [cs.Al] 20 Jan 2022

arxXiv

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fine-Grained Trajectory-based Travel Time
Estimation for Multi-city Scenarios Based on
Deep Meta-Learning

Chenxing Wang, Member, IEEE, Fang Zhao, Haichao Zhang, Haiyong Luo, Member, IEEE,
Yanjun Qin, and Yuchen Fang

Abstract—Travel Time Estimation (TTE) is indispensable in
intelligent transportation system (ITS). It is significant to achieve
the fine-grained Trajectory-based Travel Time Estimation
(TTTE) for multi-city scenarios, namely to accurately estimate
travel time of the given trajectory for multiple city scenarios.
However, it faces great challenges due to complex factors in-
cluding dynamic temporal dependencies and fine-grained spatial
dependencies. To tackle these challenges, we propose a meta
learning based framework, MetaTTE, to continuously provide
accurate travel time estimation over time by leveraging well-
designed deep neural network model called DED, which consists
of Data preprocessing module and Encoder-Decoder network
module. By introducing meta learning techniques, the gener-
alization ability of MetaTTE is enhanced using small amount
of examples, which opens up new opportunities to increase the
potential of achieving consistent performance on TTTE when
traffic conditions and road networks change over time in the
future. The DED model adopts an encoder-decoder network to
capture fine-grained spatial and temporal representations. Ex-
tensive experiments on two real-world datasets are conducted to
confirm that our MetaTTE outperforms six state-of-art baselines,
and improve 29.35% and 25.93% accuracy than the best baseline
on Chengdu and Porto datasets, respectively.

Index Terms—spatial-temporal data mining, travel time esti-
mation, meta learning, deep learning.

I. INTRODUCTION

RAVEL time estimation (TTE) plays a vital role in

mobile navigation [1f], route planning [2]] and ride-hailing
services [3], [4]]. It is reported that, Baidu Maps, which is one
of the largest mobile map applications, has over 340 million
monthly active users worldwide by the end of December 2016
[5]. In order to estimate travel time for users who desires to
know the traffic condition in advance and wisely plan their
upcoming trips, it is significant to develop a TTE model which
is able to provide accurate travel time estimation over time in
real applications.

In this paper, we focus on the fine-grained end-to-end
Trajectory-based Travel Time Estimation (TTTE) for multi-
city scenarios. Given historical trajectory data in multiple
cities, our objective is to train single model and provide
accurate travel time estimation over time for all city scenarios.

This manuscript has been accepted in IEEE Transactions on Intelligent
Transportation Systems for future publication.

© 2022 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Please note that it is different from other end-to-end trajectory-
based methods, which either heavily rely on road networks
of specific cities [3]-[9]] or require careful preprocessing for
historical trajectories of specific cities [[LO]—[12]].

However, it faces great challenges to provide accurate travel
time estimation in real applications over time, as the TTTE is
affected by many complex factors:

o Dynamic temporal dependencies. Travel time estima-
tion is influenced by complex temporal factors, including
the time varying traffic conditions and evolving road
networks. On one hand, traffic conditions which implic-
itly influence travel time estimation change over time
(i.e. peak and off-peak hours in a day, different days
in a week etc.). On the other hand, road networks that
impacts the travel time are varying when roadworks
are undertaken, or streets are temporarily closed due to
emergencies or regional restrictions etc., which frequently
happens in large cities. Some TTTE studies [3]-[9]
utilize road network and traffic condition information in
different cities and provide travel time estimations with
different models, which performs well on their datasets.
However, since the traffic conditions and road networks
dynamically change over time, travel time estimation
model is required to quickly fit latest traffic data to
achieve satisfied performance consistently. The aforemen-
tioned methods heavily rely on large amount of historical
traffic data which limits these models to continuously
provide accurate estimation in a fast learning scheme.

o Fine-grained spatial dependencies. Some TTTE studies
[LO]-[12]] carefully preprocess trajectories when provid-
ing travel time estimation using raw trajectory data.
DeepTTE [10], for instance, resamples each trajectory
data such that the distance gap between two consecutive
points are relatively within the same range (i.e. 200 to 400
meters). However, the fine-grained spatial dependencies
in daily scenarios whose distance gap ranges are less
than 200 meters or more than 400 meters are ignored. As
illustrated in Figure|l} we assume that there are two users
using route planning applications to navigate themselves
to the destination, with the route A — B and route
C — D, respectively. For route A — B, there are many
crossings in the whole trajectory which may contains
several key GPS points (at the crossing) with 50 to
100-meter distance gap between neighboring points. The

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

area masked with smaller red circle contains short-term
features (i.e. the travel speed of the vehicles is slower
and the traffic condition is relatively bad) of the road
segments with less than 200-meter distance gaps which
cannot be captured by DeepTTE For route C' — D, the
whole trajectory may contain some key GPS points (at the
crossing) with long distance gaps on express way which
may exceeds 2 kilometers. The area masked with larger
grey circle contains long-distance features (i.e. the travel
speed of the vehicles is faster and the traffic condition is
relatively good) corresponding to the road segments with
more than 400-meter distance gaps, which cannot also be
captured by DeepTTE either.

Fig. 1. Two types of common scenarios in route planning applications. Route
A — B contains relatively short distance gaps between adjacent key GPS
points, while route C' — D contains long distance gaps between adjacent key
GPS points.

Therefore, it’s necessary to design a novel fine-grained
model to simultaneously capture the dynamic temporal depen-
dencies and fine-grained spatial dependencies, which is able
to continuously provide accurate travel time estimation over
time. Most existing works which utilizing conventional deep
learning techniques ignore the fine-grained spatial dependen-
cies and is limited to provide accurate travel time estimation
in specific city at current time period as mentioned before.

To the best of our knowledge, this is the first work that
investigates the potential of the fine-grained TTTE to contin-
uously provide accurate travel time estimations for multi-city
scenarios over time in a fast learning manner based on meta
learning. To address the above challenges, we mainly make
the following contributions:

e We construct two TTE-Tasks from two real-world
datasets for training, corresponding to Chengdu, China
and Porto, Portugal and divide the whole dataset into
different sub-datasets which contains regional trajectories.
Since every trajectory data is restricted to one unique
region, MetaTTE is capable of quickly fitting latest
trajectory data by simply adding a task using single
model instead of training multiple models for multi-city
scenarios which limits the ability of fast learning.

e We propose a novel deep neural network model called
DED in the meta learning based framework (MetaTTE),
which consists of two modules: (i) Data preprocess-
ing module to remove the biases of outliers in real-
world datasets and transform data into proper forms; (ii)
Encoder-Decoder network module to firstly embed the
spatial and temporal attributes into spatial, short-term
and long-term embeddings, capture fine-grained spatial
dependencies using recurrent neural network (RNN), fuse
high level features using attention mechanism and finally
estimate the travel time for multi-city scenarios.

e Moreover, to tackle the dynamic temporal dependencies,
we introduce meta learning techniques into travel time
estimation, which opens up new opportunities to contin-
uously provide accurate travel time estimations over time,
especially to increase the potential of achieving consistent
performance when traffic conditions and road networks
change over time in the future.

« By introducing meta-learning techniques, we enhance the
generalization ability of MetaTTE using small amount of
data from different TTE-Tasks. This enables our model to
learn to learn, which increases the potential of accurate
estimation in the future and decreases the time consump-
tion to achieve the goal of fast learning.

« We conduct extensive experiments on two real-world
large scale datasets collected in Chengdu, China and
Porto, Portugal. The evaluation results show that our
MetaTTE outperforms other state-of-art baselines. The
source codes of MetaTTE are publicly available at
Githut{T]

The remaining of this paper is organized as follows: Sec-
tion [l introduces the preliminary. Section [ITl] presents the data
description and analysis. Section |[[V|investigates our proposed
MetaTTE and technical details of TTTE. Section |V| presents
empirical studies. Then related works are discussed in Section
[VIl Finally, Section [VII] concludes the paper.

II. PRELIMINARY

In this section, we firstly introduce meta learning to provide
a comprehensive motivations for utilizing meta-learning tech-
niques in TTTE and then present notations and the objective
of our proposed MetaTTE.

Meta Learning. Learning quickly is a hallmark of human
intelligence, whether it involves recognizing objects from a
few examples or quickly learning new skills after just minutes
of experience [13]. Naturally, we want our artificial agents
to perform like this. However, it is challenging to complete
many tasks utilizing deep learning methods, which generally
needs far more data to reach the same level of performance as
humans do. Under such circumstances, meta-learning has been
recently suggested as one strategy to overcome this challenge
[14]. The key idea for meta-learning agents is to improve their
learning ability time to time, or equivalently, learn to learn.
Existing works can be categorized into: metric-based methods,
model-based methods and optimization-based methods [15].

Unttps://github.com/morningstarwang/MetaTTE

https://github.com/morningstarwang/MetaTTE

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE I
THE OVERVIEW OF THREE META-LEARNING CATEGORIES, I.E., METRIC-BASED, MODEL-BASED AND OPTIMIZATION-BASED TECHNIQUES AND THEIR
MAIN PROS AND CONS. IN THIS FIGURE, kg (x,xi) IS A KERNEL FUNCTION WHICH RETURNS THE SIMILARITY BETWEEN THE TWO INPUTS X AND x;, y;
ARE GROUND-TRUTHS FOR KNOWN INPUTS X;, ARE BASE-LEARNER PARAMETERS, AND g¢ IS A LEARNT OPTIMIZER WITH PARAMETERS .

| Metric

| Model

| Optimization

Key idea
train
Py(Ylx, DTj)

Input similarity
E(xi yi) EDT;T‘ain kg (x’ Xi)y7«

Pros
Cons

+Simple and effective
-Limited to supervised learning

Internal task representation
i

folx, Dizeim)

+Flexible

-Weak generalization

Optimize for fast adaptation
fos (6, D) (*)

+Generalization ability
-Computationally expensive

Algorithm 1: Reptile for supervised regression prob-
lem.

Input : p(7): distribution over tasks

Input : «, §: step size of the optimizers

Output: A partition of the bitmap

1: randomly initialize 6;

2: while not done do

3: Sample task 7;, corresponding to loss L£7; on
parameters 07; ;

4 Compute 07, = U¥ (0), denoting to k steps of
SGD or Adam ;

5 Update 6 < 0 + (61, — 0)

6: end

The overview of these methods is shown in Table [l Metric-
based methods learn feature space that can be used to compute
predictions based on input similarity scores. The concept of
this type of methods is simple and they can be fast at test phase
when tasks are small. However, when tasks become larger (e.g.
amount of trajectory data), the pair-wise comparisons may be-
come computationally expensive. Model-based methods may
not perform well when presented with larger datasets [[16]] and
generalize less well than optimization-based methods [17].
Hence, we choose the optimization-based methods because
most of them are model-agnostic meta-learning algorithms and
their generalization ability and the scalability are reasonable.
There are two state-of-art optimization-based methods called
MAML [13]] and Reptile [18]]. The limitations of the former
for travel time estimation lie in two aspects. On one hand,
it’s too cumbersome that relies on higher-order gradients. The
inner gradient step has to be implemented manually (e.g.
TensorFlow 2.x), which is inconvenient for problems which
requires a large number of gradient steps. On the other hand,
MAML requires a train-test split for each task which is com-
mon for few-shot learning tasks, whereas the problem settings
in our travel time estimation are more likely to conventional
regression or classification problems, which requires either
the training data or test data in each task. To tackle these
problems, we choose Reptile in this paper, which can better
meet our requirements. Reptile works by repeatedly sampling
a task, training on it and moving the initialization towards the
trained parameters on that task and has achieved fair results
on some well-established benchmarks for classification. The
optimization algorithm of Reptile is shown in Algorithm (1| In
this algorithm, U#(()) is the function which updates parameters

0 k times using k new batches of data sampled from task 7~
and e is the learning rate for parameters’ update. Notice that
in the last step,we treat § — 07, as the gradient and adopt
an adaptive algorithm for the update. Since Reptile can obtain
fair results on most of the benchmarks compared with MAML
and it simplifies both the implementation and the experimental
settings which are key factors in real applications, we utilize
Reptile to be our base training algorithm to train MetaTTE
and the implementation details of our optimization algorithm
is presented in Section [[V-C|

MetaTTE Trajectory. We define a MetaTTE Trajectory G
from its starting GPS coordinates (p},p3) to its destination
(pT,p%) as a series of n data points described by their
GPS coordinate difference attributes (Apy, Aps), timestamp ¢,
temporal attributes in long-term w (the day of week), and those
in short-term h (the hour of day). Then MetaTTE trajectory
G is formulated as:

Apl Apl wt At #
2 2 .2 p2 42

el 0
Apt Aph, w! Bt #

where [= n — 1 represents the number of data points in the
MetaTTE trajectory G, Apj and Ap) (5 = 1,2,...,n — 1)
represent the difference of latitudes and longitudes between
P, pl and pitt, pl, respectively. We regard the first point
(Apl, Apt,wt bt t!) as the origin of this trajectory and the
last point (Ap}, Aph,w', h!, ') as the destination. Hence we
calculate the time difference using |#! —¢!| as the label in our
regression problem.

Travel Time Estimation Task (TTE-Task). We define
two tasks corresponding to Chengdu and Porto, which are
formulate as: 7; = (D", DU D) where T; is the i*"
task, DL, DYl and Dtest are the train dataset for task 7;,
validate dataset and test dataset for all TTE-Tasks, respectively.

Objective. Given n TTE-Tasks, we train single deep learn-
ing model using meta-learning techniques to learn the feature
representations for each task as well as the implicit depen-
dencies between all TTE-Tasks. Therefore, the objective is to
estimate the total travel time for the query path belonging to
any task using the MetaTTE.

In real application scenarios, the route planning software or
platform may provide the key GPS locations along the query
path, and MetaTTE is qualified to estimate the total travel time
continuously.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE II
THE DESCRIPTION AND STATISTICS OF DATASETS.

Dataset | Chengdu | Porto

Travel Time Standard Deviation | 731.97sec | 347.48sec
Travel Time Mean 877.98sec | 691.29sec
The Number of Trajectories 1,540,438 | 1,674,152

III. DATA DESCRIPTION AND PRELIMINARY ANALYSIS

A. Description

Following two real-world datasets collected from two dif-
ferent regions in the world are utilized to evaluate the perfor-
mance of MetaTTE and the descriptions and statistics of two
datasets are shown in Table [

o Chengdu [19]: the Chengdu dataset is collected from
real-world taxis in Chengdu, China dated from Aug 3rd,
2014 to Aug 29th, 2014. Over 1.4 billion GPS records are
collected and over 14,000 taxis are involved. We do not
re-sample the GPS trajectory to a relatively fixed pattern
(e.g. 60-second time gap between two GPS points [7]])
but to keep the original pattern (long time gap or short
time gap) for each trajectory data in the dataset.

o Porto [20]: the Porto dataset describes a complete year
(from Jul 1st, 2013 to Jun 30th, 2014) of the trajectories
for all the 442 taxis running in Porto, Portugal. All the
taxis are operated through a taxi dispatch central using
terminals installed in the vehicles. We remove all the
incomplete trajectories and calculate the total travel time
for each trajectory.

B. Analysis

1) Data Preprocessing: We first sample all the available
trajectories in these datasets and convert all timestamps to
seconds. We then divide each dataset into three parts, including
training data (70%), validation data (10%) and test data
(20%). Notice that we choose different date ranges of the
historical trajectory data for the training, validation and test
part, respectively. More specifically, we select trajectory data
from August 3rd, 2014 to August 16th, 2014 to be the training
data for Chengdu dataset, from August 21st, 2014 to August
22nd, 2014 to be the validation data, and from August 24th,
2014 to August 29th, 2014 to be the test data for Chengdu
dataset. Meanwhile, we select trajectory data from July 1st,
2013 to February 28th, 2014 to be the training data for Porto
dataset, from March 1Ist, 2014 to April Ist, 2014 to be the
validation data and from May 1st, 2014 to July Ist, 2014 to
be the test data for Porto dataset. The mentioned procedures
are reproduced on all the baselines in this paper.

2) Data Analysis: We show the distribution of travel time of
Chengdu and Porto datasets in Figure [2} Travel time on most
trajectories (Cumulative Distribution Function (CDF) from
10% to 80%) in Chengdu dataset is between 315 seconds
and 1174 seconds and that in Porto is between 315 seconds
and 945 seconds. Meanwhile, as illustrated in Figure EL travel

the distribution of travel time the distribution of travel time
1005 100%
% o
0% 0% ™
i ™

— or " — oF

CDF

o 2 B 100 o B 3

P & I
travel time(min) travel time(min)

(a) Distribution of travel time of (b) Distribution of travel time of
Chengdu dataset. Porto dataset.

Fig. 2. Distribution of travel time.

the distribution of travel distance the distribution of travel distance

POF » POF %

] 2 1 2

3) s B 10 15
travel distance(km) travel distance(km)

(a) Distribution of travel distance of (b) Distribution of travel distance of
Chengdu dataset. Porto dataset.

Fig. 3. Distribution of travel distance.

(a) Chengdu dataset.

(b) Porto dataset.

Fig. 4. Frequency of time and distance on Chengdu and Porto datasets (CDF
from 10% to 80%).

(a) Chengdu dataset.

(b) Porto dataset.

Fig. 5. Frequency of day of week and hour on Chengdu and Porto datasets
(CDF from 10% to 80%).

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

distances on most trajectories (CDF from 10% to 80%)
in Chengdu dataset are between 1.84 Kkilometers and 8.14
kilometers and that in Porto are between 1.76 kilometers
and 7.32 kilometers. We thereby obtain available trajectories
which fall into this range for our training phase and by this
approach the dirty data or the abnormal data are removed.
Furthermore, we also make more analysis on the Chengdu
and Porto dataset to observe their data frequencies in different
temporal and spatial domains. As illustrated in Figure [} the
distributions of data frequency of travel time and distance in
Chengdu and Porto have some similarities which indicates that
people are more likely to take taxi trips in the combination of
travel time from 5 to 10 minutes and travel distance from 2
kilometers to 4 kilometers. However, Figure E] shows that the
distributions of data frequency of the combination of the day of
week and hour in Chengdu and Porto are relatively different.
People in Chengdu seems to take more taxi trips from the
afternoon to evening on Friday, while people in Porto seems
to take more taxi trips after 12:00 from Monday to Friday or
from morning to nightfall on Sunday. These different patterns
of taking taxi trips in multi-city scenarios may add difficulty
to providing accurate travel time estimations.

IV. FINE-GRAINED TRAJECTORY-BASED TRAVEL TIME
ESTIMATION BASED ON DEEP META LEARNING

». k steps
X Loss DED
random select a TTE-Task
fast learning
Chengdu
k steps
Loss | DED
fast Iearning@ Boiic
TTE-Tasks

. ksteps
X Loss ’ .

N
= BP Update = Forward Pass F> Meta Update

Fig. 6. The framework of the proposed MetaTTE. The DED consists of data
preprocessing module and encoder-decoder network module, which is marked
with color pink, light red and dark red indicating the three continuous states
of parameter initialization.

A. Overview

Figure [6] shows the framework of our proposed MetaTTE.
For each iteration in the meta learning based training phase, a
TTE-Task representing a unique region is randomly selected
at first and then is fed into the DED for k£ times steps of
regular optimization. At the end of each iteration, an adaptive
algorithm is adopted to change the initialization of parameters
in DED in a fast learning manner.

TABLE III
SATISFIED REQUIREMENTS OF RULE 1 FOR OUR DATASETS

Requirements

Chengdu
| g

| Porto

Travel Time No Less Than
Travel Time No More Than
Travel Distance No Less Than
Travel Distance No More Than

315 seconds
1174 seconds
1.84 kilometers
8.14 kilometers

315 seconds
945 seconds
1.74 kilometers
7.32 kilometers

B. DED

As illustrated in Figure [/, DED is composed of two com-
ponents: the Data Preprocessing Module and the Encoder-
Decoder Network Module. The Data Preprocessing Module
is fed with the MetaTTE trajectory firstly, to remove the biases
of outliers in real-world datasets and transform data into proper
forms. Then the Encoder-Decoder Network Module is fed
with the preprocessed DED trajectory data, to learn, encode
the spatial-temporal representations and then decode the travel
time estimations.

1) Data Preprocessing Module: The input pipelines are
preprocessed in the Task Data Transformer and the pre-
processed data are fed into the Encoder-Decoder Network
Module.

Task Data Transformer. Meta learning only uses small
amount of examples to train models for each iteration. To
remove the biases of outliers in the real-world datasets and
quickly adapt to new possible tasks, we set up several rules
in the Data Preprocessing Module to dynamically control the
input pipelines for DED.

o Rule 1: Keep the most frequent trajectory data only.
After the deep insight into the analysis of our datasets,
we decide only to keep trajectories which satisfied all
the requirements listed in Table to ignore the rarely
appeared samples to avoid possible biases when we train
DED model using small amount of examples.

o Rule 2: Keep the trajectory if and only if it contains
at least two different GPS points only. We regard that
the isolated GPS point may be caused by occasional
positioning errors and it is also nonsense to navigate users
for the trajectory containing only one isolated GPS point.

« Rule 3: Keep the trajectory if and only if the total travel
time is positive.

2) Encoder-Decoder Network Module: The encoder-
decoder network module mainly consists of three parts: the
Embedding Layer, the Encoder Layer and the Decoder
Layer. The preprocessed input data are firstly embedded
into low dimensional feature vectors in the Embedding layer
and then different embeddings are encoded separately in the
Encoder layer through RNN. After that, the separate spatial
and temporal encoded feature representations are fused using
Attention Mechanism and then decoded using residual fully
connected layers (Residual FCs) in the Decoder Layer. And
finally travel time estimations are made based on the decoded
feature representations.

Embedding Layer. In the embedding layer, we embed
the the day of week and hour which are represented with
categorical values into low dimensional real vectors, which

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Ourives
DJewe\s
Sadd

1]

Residual-FCNs

Encoder-Decoder
Network Module

- -
Decoder Layer

!
% ' .
’"‘\
Location Week Hour
A A

Encoder Layer

Spatial Block Long-term Block Short-term Block

Embed

i Layer \ ne-hot \
encoding
A ten-
rs t—2
‘,_,HHH LI T

Differ

tzn-1
o2
t=1

Fig. 7. The architecture of DED.

allows neural network to conduct feature learning on our
real-world datasets. To better represent the temporal patterns
for travel time estimation, we choose a word embedding
method mentioned in which maps each categorical value
¢ € [C] in one-hot encoding to the embedding space (i.e. a
real space) R”*! by multiplying a trainable parameter matrix
W € RE*E with the initial values of all zeroes and then the
parameter matrix is optimized using the meta-learning based
gradient descent algorithm [22].

In order to enhance the scalability of our model, all factors
including the day of week, hour are separately embedded to
different channels, and the output for each factor is formulated
as:

e = p(x)WT (2)

where ¢(-) represents the mapping function for one-hot encod-
ing, x is the factor vector (i.e. the day of week and hour) and
W is the parameter matrix for feature learning. In this paper,
the differences of the GPS coordinates (i.e. (Ap1, Aps)), the
embedding of the the day of week and the embedding of the
hour are adopted to represent the spatial embedding (e,), the
long-term embedding (e,,) and the short-term embedding (ey,)
respectively and are fed into the encoder layer for fine-grained
feature learning.

.l.

Long-term Embedding | | Short-term Embedding

Spatial
Embedding

Encoder Layer. As mentioned in Section [l it is significant
to capture fine-grained spatial dependencies in daily scenarios
for achieving satisfied travel time estimation. Some studies
firstly apply convolutional layers to learn local-path
features and then feeds local-path features into recurrent layer
to further learn the entire-path features. However, since the size
of kernels in the convolutional layer are fixed, the receptive
field of local-path features learnt in this layer are also limited
to fixed range. This prevents the model to learn fine-grained
spatial features smaller than the size of kernels or larger than
the size of kernels. To address this issue, we design fully
RNN based blocks to encode the spatial embeddings, long-
term embeddings, and short-term embeddings. Notice that
DED supports user-specific blocks for better scalability. It’s
simple to add or remove several blocks when needed since
we employ feature learning in separate channels and this will
not influence the other parts of DED. Since state-of-the-art
RNNs have been widely investigated, we conduct extensive
experiments on several common RNNs, including LSTM ,
GRU and BiLSTM [25]. The update rule of each RNN
is formulated as:

(Ct,yt) _ RNN(et’thlvytfl) (3)

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

where C! is the updated hidden state and) is the updated
output. Notice that there is no memory cell C in GRU and we
regard the) as the hidden state instead.

In this paper, we utilize the hidden states C},C},C}
when ¢ = [as the learnt spatial-temporal features of spatial
embedding, long-term embedding and short-term embedding
to transform variable length embeddings into encoded fixed-
length representations.

Decoder Layer. In the Decoder Layer, we first fuse the en-
coded spatial-temporal features using Attention Mechanism
and then decode the fused spatial-temporal representations in
Residual FCs.

o Attention mechanism. To aggregate the encoded spatial-
temporal features containing fine-grained spatial depen-
dencies, a self-attention mechanism [26] is adopted to
learn the importance of different dimensions in each type
of feature and aggregate them to obtain fused spatial
and temporal representations. We first concatenate all the
spatial-temporal features (i.e. Cp, C,, Cy) and then design
a score function to automatically assign importance to
different dimensions which is formulated as:

S =max(0, ((Cp||Cw||Ch)W + b)) “4)

where Cp,Cy,Cr € RY*P (D is a hyper-parameter
which indicates the output dimension of the embedding
layer), || represents the concatenation operation, S rep-
resents the contribution score for different dimensions in
each feature, W € RN*FXF (F = 3) and b are train-
able parameters. Once obtaining the scores for different
dimensions, we normalize the score S? for it" feature
using the softmax function to obtain the attention values
which can be formulated as:

a; = Softmax(S;) = exp(Si)

 Biexp(Si))

where a; is the attention value for the i*" feature of each
dimension. We calculate the fused spatial and temporal
features for travel time estimation formulated as:

Cr= Zf:lai © (CpHCwHCh)i (6)

to obtain the fused spatial-temporal representation Cy €
RN xD .

¢ Residual FCs. In practice, FCs are commonly used
to decode the spatial-temporal representations in higher
level. Since the residual technique can accelerate the
training process [27]], we build residual blocks with four
FCs to decode the spatial-temporal representations and
enhance the performance without consuming much time.
We formulate this process as:

yestimation = FCestimation (FCS(Cf) + Cf) (7)

where FC;(Y) = YWI +b, W is the trainable parameter
matrix for the i fully connected layer and

C. Meta Learning based Optimization Algorithm

Inspired by Reptile 18], which works by repeatedly sam-
pling a task, training on it and moving the initialization
towards the trained parameters on that task and has achieved
good results on some well-established benchmarks, we intro-
duce the Reptile algorithm to optimize MetaTTE, which is
shown schematically in Figure [§] and the pseudocode of the
detailed algorithm is shown in Algorithm [2]

The inputs of Algorithm 2] are TTE-tasks ps, model M
which contain the hyperparameters A and the trainable param-
eters # and the loss function for task 7;: L£7;. We first set
a proper value for the maximum iteration 7 to declare the
stopping criteria of the training phase. From experiments, our
MetaTTE can converge to the satisfied MAE (Mean Absolute
Error) metrics within 7000 iterations (i.e. n = 7000). For each
iteration in the training phase, we firstly prepare datasets for
training (Line 3). In the training phase, we first save the current
model parameters to 6, (Line 4) and then sample % batches of
training data and conduct forward-backward propagation using
gradient descent based algorithm, Adam [28]], to minimize the
loss L; for optimization (Line 5~9). The model parameters
after k£ times of optimizations are saved in 6 (Line 10).
Then we conduct the meta update on MetaTTE and calculate
f¢ (Line 11). Similar to Reptile, we develop the adaptive
algorithm as a linear learning rate scheduler [29] formulated
as: ,

0y =B(1 - 5)(92—91) ©))
where [is the step size for learning rate scheduling, 7 is the
maximum iteration times, 7 is the current training iteration, 6,
and 65 are the parameters before and after k£ times of training
steps, respectively. At last, the model parameters are reset to
0 (Line 12) to accomplish optimization in this iteration.

Select a TTE-Task m O DED

e \gg”
./ &m ¢2

Select a TTE-Task n én

Fig. 8. The schematic of the optimization algorithm for MetaTTE. Three
circles marked with pink, red and dark red represent the continuous states
of the initializations for trainable parameters in DED. Assume we firstly
select TTE-Task m and conduct 10 times gradient calculations to derive the
parameters 6" (marked with green). Instead of arbitrarily updating the model
using 6" at once, we conduct once meta-update which utilizes an adaptive
algorithm to update the model parameters ¢° to ¢' based on §™. Then we
select TTE-Task n and conduct the same operations (marked with yellow) to
update model parameters to ¢2. This deferred update pattern helps MetaTTE
pay more attention to the potential of providing accurate estimation further
in the future.

V. EXPERIMENTS

In this section, we evaluate our proposed MetaTTE and
compare it with six baseline approaches based on Chengdu
and Porto datasets.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Algorithm 2: Optimization algorithm for MetaTTE.

Input : TTE-Tasks pr = {71, 72}, model M, loss
function for task 7;: Lr;.
Output: A partition of the bitmap

1: randomly initialize 6,
2 for r in [1,n) do

3: /I multi-city task selection ;

4 Randomly select a TTE-Task 7; from pr;

5 Save current model parameters to 6, ;

6: for j in [1,%] do

7 Xirain, Yerain < Sample data from DY ;

8 j) — M(Xtrain) >

9 Update model parameters using Adam on L7;;

10: end

11: Save current model parameters to 65 ;

12: Calculate model final parameters 6 using 61, ;
13: Reset model parameters to 6 ;

14: end

A. Baselines

AVG. [12] This method calculates the average speed with
the travel time and the taxicab geometry in the training
phase. During the test phase, the estimation is calculated by
averaging the historical speeds of those with the same origin
and destination.

LR [12]. This method trains the relation between the taxicab
geometry and travel time based on the locations of origin and
destination.

GBM [12]. This method utilizes the departure time, the day of
week, GPS coordinates and taxicab geometry to provide travel
time estimation using gradient boosting decision tree models.
TEMP [30]. This method estimates the travel time based on
the average travel time using neighboring trips from large-scale
historical data.

WDR [3]. This deep learning based method extracts hand-
crafted features from raw trajectory data and utilizes infor-
mation extracted from road segments to provide travel time
estimations.

DeepTTE [10]. This method learns spatial and temporal
feature representations from raw GPS trajectories and several
external factors using 1-D convolutional and LSTM networks.
STNN [31]. This method firstly predicts the travel distance
between an origin and a destination GPS coordinate, and then
combines this prediction with the time of the day to predict
travel time using fully connected neural networks.

MURAT [32]. This method utilizes multi-task representation
learning to jointly learn the main task (i.e. travel time esti-
mation) and other auxiliary tasks (i.e. travel distance etc.) and
enhances the performance for travel time estimation.
Nei-TTE [11]. This method divides the entire trajectory into
multiple segments and captures features from road network
topology and speed interact using GRU for travel time esti-
mation.

MetaTTE-WA. The variant of MetaTTE, which utilizes
LSTM as the RNN layer without attention based fusion.

MetaTTE-WT. The variant of MetaTTE, which utilizes
LSTM as the RNN layer without short-term and long-term
embeddings.

MetaTTE-LSTM. The variant of MetaTTE, which utilizes
LSTM as the RNN layer.

MetaTTE-BiLSTM. The variant of MetaTTE, which utilizes
BiLSTM as the RNN layer.

MetaTTE-GRU. The variant of MetaTTE, which utilizes
GRU as the RNN layer.

B. Experimental Settings

In this part, we first introduce the configurations of our
evaluation environment briefly and then describe the hyper-
parameters in our MetaTTE.

1) Configurations: We utilize the TensorFlow framework to
implement, train, validate and test our proposed MetaTTE. We
conduct our evaluations on a node of the Dawn supercomputer
with the CPU (Intel E5-2680 2.4GHz x 28), RAM (64GB),
GPU (Tesla V100S 32GB), Operating System (Centos 7.4)
and deep learning framework (TensorFlow 2.3). During the test
phase, we train 100 epochs for each baseline using fine-tuned
hyperparameters on Chengdu and Porto datasets respectively
and compare the results with our MetaTTE. Notice that
conventional deep learning methods optimize parameters on all
batches of data for each epoch, while our MetaTTE optimize
parameters on small amount of data for each iteration, which
is much faster than the former.

2) Hyperparameters: The hyperparameters for MetaTTE
can be categorized into two parts: (i) training hyperparameters
which includes batch size (32), step size 5(0.1), k (10) batches
of training data, maximum iteration 7 (7000); (ii) model
hyperparameters which include the dimension of embedding
D (64), the number of units in RNN n,. (64), and the number
of units in residual FCs (1024, 512, 256, 64 respectively).
Additionally, all the trainable parameters in the model are
initialized using Xavier initialization method.

3) Experimental Results: In this part, we first compare the
results among variants of MetaTTE and all of six baselines. We
firstly introduce the evaluation results using all the baselines
on overall datasets. Then in order to investigate the impacts
of different travel time and travel distances to estimation
performance, we conduct extensive experiments of baselines
on two datasets. We then show our fine-tuning results when
investigating the impact of the hyperparameters. Lastly, we
conduct ablation studies on our MetaTTE.

Comparing to all the baselines on Chengdu and Porto
dataset. Table [IV] compares the performance of different
baselines on two datasets. We can observe that: (1) deep learn-
ing based methods outperform other traditional time series
methods in MAPE metric, which indicates the superior of its
ability to learn dynamic temporal features and fine-grained
spatial features for travel time estimation; (2) MetaTTE-GRU
outperforms other baselines in MAE and MAPE metrics on
two datasets. The reason for the increase in RMSE metric
on Porto dataset compared with DeepTTE may lie in: (i)
instead of training two separate models for Chengdu and
Porto like DeepTTE does, MetaTTE-GRU trains only single

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT BASELINES FOR TRAVEL TIME ESTIMATION ON CHENGDU AND PORTO DATASETS. NOTICE THAT ALL
METRICS ARE CALCULATED BASED ON TRAVEL TIME IN SECONDS.

Baselines Chengdu Porto

MAE | MAPE (%) | RMSE | MAE | MAPE (%) | RMSE
AVG 442.20 39.71 8443.60 | 182.64 26.66 1128.21
LR 516.23 49.09 1204.99 | 194.40 33.90 279.20
GBM 454.50 41.67 1121.32 | 148.53 24.59 209.07
TEMP 334.60 39.70 761.05 174.44 28.73 260.81
WDR 433.99 29.74 1024.92 | 164.04 22.84 244 .41
DeepTTE 413.09 24.22 926.04 84.29 14.79 90.29
STNN 427.33 30.08 1011.88 | 226.30 35.44 331.75
MURAT 396.01 29.29 994.95 16591 27.10 177.83
Nei-TTE 414.16 30.04 1038.71 | 106.30 15.23 183.03
MetaTTE-WT 264.55 33.12 792.39 69.87 9.98 203.29
MetaTTE-WA 258.10 27.16 774.87 68.16 9.84 204.64
MetaTTE-LSTM 249.47 24.97 757.87 65.88 9.35 200.15
MetaTTE-BIiLSTM | 254.47 25.55 766.45 67.20 9.59 202.42
MetaTTE-GRU 236.38 23.69 745.11 62.43 8.83 196.78

model for both datasets of Chengdu and Porto which may be
slightly influenced by the volatile datasets; (ii) some outliers
in datasets (rarely appeared samples with CDF below 10%
or above 80%) influence the RMSE metric since MetaTTE-
GRU is fed with the raw trajectory data, while DeepTTE is fed
with the resampled trajectory data which reduces the influence
of outliers. Since the MAPE metric is more important in
real-applications for the fact that the user tolerance of the
estimation gap varies according to total travel time [3] and
the objective of the applications is to satisfy users in majority,
MetaTTE-GRU still outperforms other baselines; (3) The
variants of MetaTTE significantly outperforms other baselines
on Porto dataset, which indicates the strong generalization
ability of MetaTTE to continuously provide accurate travel
time estimation further in the future.

Impact of different travel time. In order to investigate
the impact of different travel time on MetaTTE comparing
to selected baselines, we conduct extensive experiments on
different parts of the test datasets of both Chengdu and
Porto. Specially, we utilize MetaTTE-GRU which can out-
perform other baselines using overall datasets in this study.
As illustrated in Figure [9] MetaTTE-GRU achieves the best
performance in MAE and RMSE metrics in different travel
time except for the MAPE metric of the travel time which is
more than 14 minutes. According to the analysis of the data
in Section [[II} it is reasonable to regard these trajectory data
as the occasional events or the dirty data having be removed
with the constraints of Rule 1 in the data preprocessing
module when training our model and this has made this part
of trajectory data the unseen dataset to our MetaTTE-GRU
model. Therefore, under such circumstances, MetaTTE-GRU
can provide relatively better estimation results in MAE and
RMSE metrics which demonstrates the good generalization
ability for fault tolerance of MetaTTE-GRU to some extent.
In a similar way, as shown in Figure [I0] the performance of
MetaTTE-GRU on Porto dataset is better than other baselines
in MAE and MAPE metrics.

Impact of different travel distances. We further investigate
the impact of different travel distances on MetaTTE-GRU and

selected baselines. Similar with the discussions made when
investigating the impact of different travel distances, Figure
and Figure [I2] show that MetaTTE-GRU achieves best
performance in most of the metrics (i.e. MAE and RMSE
metrics) except for the MAPE metric on occasional events
which is higher than other baselines. Moreover, if we look into
the estimation results of TEMP, which is path-based methods,
the MAPE metric varies a lot when being tested on the most
frequent travel distance data and the rarest travel distance data
which may indicate the poor fault tolerance ability TEMP has.
In a similar way, MURAT and DeepTTE may face the same
pitfalls while MetaTTE-GRU may not vary a lot in MAPE
and RMSE metric when being tested on those types of data
and, especially, MetaTTE-GRU is trained on two datasets with
only single model which may be more likely biased than other
baselines which are trained as two individual models for two
datasets.

4) Impact of different hyperparameters.: In order to investi-
gate the impact of different hyperparameters and finetune our
proposed MetaTTE, we conduct experiments using different
training and model hyperparameters. Specially, we conduct
experiments based on MetaTTE-LSTM which is also the
baseline we adopted in ablation studies. We then describe the
results.

o Training hyperparameters. The most important hy-
perparameter in our settings is the step size S which
schedules the learning rate for our meta-learning based
optimization algorithm and thus we further investigate
training hyperparameter and show the results in Table [V]
We can observe that the MAE, MAPE and RMSE metrics
are decreasing from 5 = 0.05 to 8 = 0.1 while those are
increasing from 8 = 0.1 to § = 0.3 which demonstrates
that the best training hyperparameters are 5 = 0.1 in
general.

e Model hyperparameters. There are two key hyperpa-
rameters in our proposed MetaTTE, i.e., the dimension of
embedding (D) and the number of units in RNN (n,.) and
thus we finetune these two hyperparameters and present
the experiment results in Table We can observe that

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

MAE

06
800 h
—e— DeepTTE —e— DeepTTE
700 +— TEMP 05 - TEMP
—&— MURAT —&— MURAT]
600 #- MetaTTE-GRU #- MetaTTE-GRU
04
500] .
2 03
400
=
300
02
200
100 01
0
0-8 9-10 11-12 13-14 >14 0-8 9-10 11-12 13-14 >14

travel time(min) travel time(min)

(a) MAE metric. (b) MAPE metric.

Fig. 9. MAE, MAPE and RMSE metric results on Chengdu datasets of different travel time.

MAE

Fig. 10.

MAE

Fig. 11.

MAE

Fig. 12.

the MAE, MAPE and RMSE metrics are decreasing from
D
increasing from D = 64,n, = 64 to D = 256, n,. = 256
which demonstrates that the best model hyperparameters

* P
250 —e— DeepTTE 0.35 ~e— DeepTTE
— TEMP - TEMP
—4— MURAT 030 —4— MURAT
200 #- MetaTTE-GRU #- MetaTTE-GRU
025
150 &
% 020
=
100 o1
010
50
005
o] = s - o 000 ® - = o
0-8 9-10 11-12 13-14 >14 0-8 9-10 11-12 13-14 >14

travel time(min) travel time(min)

(a) MAE metric. (b) MAPE metric.
MAE, MAPE and RMSE metric results on Porto datasets of different travel time.

R —e— DeepTTE
800 — TEMP
—e— DeepTTE 06 MURAT
200 +— TEMP #- MetaTTE-GRU
—&— MURAT

#- MetaTTE-GRU 05

MAPE

= o
-

0-2 3-4 5-6 >7 02 34 56 >7

travel distance(km) travel distance(km)

(a) MAE metric. (b) MAPE metric.

MAE, MAPE and RMSE metric results on Chengdu datasets of different travel distances.

—e— DeepTTE . ~e— DeepTTE
o TEMP - TEMP
200 —#— MURAT 035 —4— MURAT

#- MetaTTE-GRU

#- MetaTTE-GRU /‘

0.30
150 . 0.25
]

&
< 020
100 =
015
010
50
o 005 .
- - = -
02 34 56 >7 02 34 56 >7

travel distance(km) travel distance(km)

(a) MAE metric. (b) MAPE metric.
MAE, MAPE and RMSE metric results on Porto datasets of different travel distances.

= 32,n, = 32 to D = 64,n,, = 64 while those are

1600

1400

1200

1000

800

RMSE

10

—e— DeepTTE
- TEMP
—&— MURAT
- MetaTTE-GRU

9-10 11-12 13-14 >14
travel time(min)

(c) RMSE metric.

350

300

250

200

RMSE

150

100

~e— DeepTTE >
- TEMP
—4— MURAT
- MetaTTE-GRU

- 4 “

1600

1400

1200

1000

800

RMSE

600

0-8

9-10 11-12 13-14 >14
travel time(min)

(c) RMSE metric.

—e— DeepTTE

- TEMP

—&— MURAT

- MetaTTE-GRU R

34 56 >7
travel distance(km)

(¢) RMSE metric.

RMSE

—e— DeepTTE '
e TEMP

—&— MURAT

#- MetaTTE-GRU

34 56 >7
travel distance(km)

(c) RMSE metric.

are D = 64,n, = 64 in general.

Ablation Studies. In order to investigate the impact of com-
ponents in our proposed MetaTTE, we design several base-
lines, including MetaTTE-WT, MetaTTE-WA and MetaTTE-

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE V
EVALUATION RESULTS ON DIFFERENT TRAINING HYPERPARAMETERS.

Hyperparameters Chengdu Porto
yperp ® | MAE | MAPE (%) | RMSE | MAE | MAPE (%) | RMSE
B =0.05 32662 | 3588 | 81520 | 86.26 1276 | 21529
B =01 24947 | 2497 | 757.87 | 65.88 9.35 200.15
B=03 26937 | 3034 | 79749 | 71.14 10.55 | 210.62
TABLE VI

EVALUATION RESULTS ON DIFFERENT MODEL HYPERPARAMETERS.

Porto

MAE | MAPE (%) | RMSE | MAE | MAPE (%) | RMSE

Hyperparameters ‘ Chengdu
D =32,n, =32 302.07 32.68
D =64,n, =64 249.47 24.97
D =128,n, =128 | 295.84 33.08
D = 256,n, =256 | 303.72 33.74

785.07 | 79.78 11.50 207.34
757.87 | 65.88 9.35 200.15
790.32 | 78.13 11.41 208.72
795.29 | 80.21 11.74 210.04

TABLE VII
PERFORMANCE COMPARISON OF DIFFERENT BASELINES FOR TRAVEL
TIME ESTIMATION ON DIDI GAIA DATASET. NOTICE THAT ALL METRICS
ARE CALCULATED BASED ON TRAVEL TIME IN SECONDS.

Baseline | MAE | MAPE (%) | RMSE
AVG 13540 | 2197 | 45131
LR 189.98 | 36.11 244.41
GBM 19442 | 3985 | 227.68
TEMP 14230 | 2538 | 22041
WDR 136.66 | 22.14 194.52
DeepTTE 121.64 1955 | 12829
STNN 173.67 | 3090 | 231.08
MURAT 79.93 11.25 138.15
Nei-TTE 130.73 | 20.05 192.26
MetaTTE-GRU | 59.76 | 9.55 | 149.80

LSTM to conduct ablation studies on Chengdu and Porto
datasets.

o Impact of short-term and long-term embeddings. As
illustrated in Table [[V] comparing MetaTTE-WT with
MetaTTE-WA, the MAE, MAPE and RMSE in Chengdu
are decreased by approximately 2.44%, 18.00% and
2.21% and those in Porto are decreased by approximately
2.45%, 14.29% and 0.66%. Since the only difference be-
tween MetaTTE-WA and MetaTTE-WT is that the former
has short-term and long-term embeddings while the latter
doesn’t, the short-term and long-term embeddings do
have positive impact on decreasing the prediction errors
to some extent.

« Impact of attention mechanism based fusion compo-
nent: comparing MetaTTE-WA with MetaTTE-LSTM,
the MAE, MAPE and RMSE in Chengdu are decreased
by approximately 3.34%, 8.06% and 2.19%, and those
in Porto are decreased by approximately 3.35%, 4.98%
and 2.19%. These results show that introducing attention
mechanism to the fusion component in MetaTTE can
assign more fair weights for spatial features, short-term
features and long-term features which can enhance the
accuracy of travel time estimations.

Comparing to baselines on fine-grained trajectory

dataset. To further investigate the ability of baselines and
MetaTTE to capture fine-grained spatial dependencies, we
introduce the Chengdu dataset in Didi Gaia dataset [33]] and
conduct experiments to evaluate the performance for travel
time estimation. The Didi Gaia dataset has a more regular
and high sampling rate for the trajectory data and contains
2,918,946 trips on the map of Chengdu over Novermber,
2016. From Table |VII, we can observe: (1) deep learning
based methods outperform other conventional machine learn-
ing methods in MAPE metric, which indicates the superior of
their abilities to learn dynamic spatial-temporal dependencies
and fine-grained spatial features; (2) our proposed MetaTTE-
GRU outperforms other deep learning based methods in MAE
and MAPE metrics. The reason for the increase in RMSE
metric compared with DeepTTE is similar to that on Chengdu
and Porto datasets which has been discussed in Section

Computation Complexity. We present the training time
of WDR, DeepTTE, STNN, MURAT, Nei-TTE and variants
for MetaTTE on Chengdu dataset in Table The training
time of WDR, DeepTTE, STNN, MURAT, and NeiTTE are
calculated for 100 epochs and that of variants for MetaTTE are
calculated for 7000 iterations. We can observe that the training
speed of variants of MetaTTE are similar except for BILSTM,
which is much faster than DeepTTE. WDR is the most
efficient but shows poor estimation performance. The training
time of STNN is similar to MetaTTE-WT but shows worse
performance. These results have demonstrated that MetaTTE
balances the estimation performance and computation burden,
which is capable of achieving satisfied performance over time.

VI. RELATED WORK

Existing works on travel time estimation generally fall
into two categories: segment based methods and end-to-end
methods.

The segment-based methods [34]-[38]] sum up the estima-
tion results of individual road segments along the whole path
to acquire the travel time. Since most of the prior studies do not
consider the correlations or interactions among road segments,
local errors along the road segments will accumulate and thus
lead to large errors.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE VIII
TIME CONSUMPTION FOR DIFFERENT BASELINES.

Baseline \ Training Time (hrs)
WDR 1.3
DeepTTE 160.7
STNN 2.4
MURAT 5.0
Nei-TTE 1.7
MetaTTE-WT 2.5
MetaTTE-WA 9.0
MetaTTE-LSTM 10.0
MetaTTE-BILSTM | 20.0
MetaTTE-GRU 9.5

The end-to-end methods mainly fall into two categories:
similar paths based methods [30], [39]], [40] and deep learning
based methods [3[], [S[-[12]], [41]]. The former tends to find
the similar paths or neighbors of the query path to estimate
travel time, which cannot obtain good results due to data
sparsity and fluctuation issues. The latter utilizes large amount
of historical traffic data to build their models. DeepTravel [6]]
firstly partitions the whole road network into N x N grids
and then extracts dual-term features to establish a BiLSTM
networks for travel time estimations. WDR [3]] proposes
a generalized model which is composed of multiple fully-
connected layers and a recurrent model, to learn the features in
spatial, temporal, road network and personalized information
for travel time estimation. ConSTGAT |[5] firstly extracts
features from historical traffic conditions and background
information, and then utilizes a graph attention mechanism
to capture the spatial-temporal relations of traffic conditions.
It provides the travel time of both the links in the route and the
whole route using a multi-task mechanism. PathRank [41] is a
context-aware multi-task learning framework which estimates
the ranking scores for candidate routing paths as the main
task, along with auxiliary tasks including travel time estima-
tion. PathInfoMax [42] is an unsupervised path representation
learning based framework with curriculum negative sampling,
which produces path representations based on historical trajec-
tory data and road network information without task-specific
labels. However, the performance of these methods heavily
rely on road network data which required extensive map
matching computation and is influenced by the time-varying
circumstances. To tackle these problems, some studies utilize
traffic data without road networks after careful preprocessing
(resampling to relatively fixed patterns [10] or morphological
layouts with traffic states [12] etc.) to learn the spatial and
temporal features for travel time estimation. However, these
methods rely on careful preprocessing on large amount of
traffic data to achieve satisfied performance and are difficult
to continuously provide accurate travel time estimations over
time.

VII. CONCLUSION

We investigate the fine-grained trajectory-based travel time
estimation problem for multi-city scenarios. We construct two
TTE-Tasks from two real-world datasets for training. We pro-
pose a novel meta learning based framework, MetaTTE, which

opens up new opportunities to continously provide accurate
travel time estimations over time, especially the potential to
achieve consistent performance when traffic conditions and
road network change over time in the future. We propose a
deep neural network model, DED, in MetaTTE which consists
of Data preprocessing module and Encoder-Decoder network
module to embed the spatial and temporal attributes into spa-
tial, short-term, and long-term embeddings using RNN, fuse
high level features using attention mechanism and capture fine-
grained spatial and temporal representations for accurate travel
time estimation. Extensive experiments based on two real-
world datasets verify the superior performance of MetaTTE
over six baselines. We hope our framework could be used
for travel time estimation in real ITS applications. It is also
significant to utilize meta learning techniques in MetaTTE,
to continuously provide accurate travel time estimation over
time.

REFERENCES

[1] P. Amirian, A. Basiri, and J. Morley, “Predictive analytics for enhanc-
ing travel time estimation in navigation apps of apple, google, and
microsoft,” in Proceedings of the 9th ACM SIGSPATIAL International
Workshop on Computational Transportation Science, 2016, pp. 31-36.
H. Bast, D. Delling, A. Goldberg, M. Miiller-Hannemann, T. Pajor,
P. Sanders, D. Wagner, and R. F. Werneck, “Route planning in trans-
portation networks,” in Algorithm engineering. Springer, 2016, pp.
19-80.

Z. Wang, K. Fu, and J. Ye, “Learning to estimate the travel time,” in

Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, 2018, pp. 858-866.

[4] K. Fu, F. Meng, J. Ye, and Z. Wang, “Compacteta: A fast inference

system for travel time prediction,” in Proceedings of the 26th ACM

SIGKDD International Conference on Knowledge Discovery & Data

Mining, 2020, pp. 3337-3345.

X. Fang, J. Huang, F. Wang, L. Zeng, H. Liang, and H. Wang, “Constgat:

Contextual spatial-temporal graph attention network for travel time

estimation at baidu maps,” in Proceedings of the 26th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining,

2020, pp. 2697-2705.

H. Zhang, H. Wu, W. Sun, and B. Zheng, “Deeptravel: a neural network

based travel time estimation model with auxiliary supervision,” arXiv

preprint arXiv:1802.02147, 2018.

[7] T.-y. Fu and W.-C. Lee, “Deepist: Deep image-based spatio-temporal
network for travel time estimation,” in Proceedings of the 28th ACM
International Conference on Information and Knowledge Management,
2019, pp. 69-78.

[8] X. Li, G. Cong, A. Sun, and Y. Cheng, “Learning travel time distribu-

tions with deep generative model,” in The World Wide Web Conference,

2019, pp. 1017-1027.

W. Zhang, Y. Wang, X. Xie, C. Ge, and H. Liu, “Real-time travel time

estimation with sparse reliable surveillance information,” Proceedings of

the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,

vol. 4, no. 1, pp. 1-23, 2020.

D. Wang, J. Zhang, W. Cao, J. Li, and Y. Zheng, “When will you arrive?

estimating travel time based on deep neural networks.” in AAAI vol. 18,

2018, pp. 1-8.

J. Qiu, L. Du, D. Zhang, S. Su, and Z. Tian, “Nei-tte: intelligent traffic

time estimation based on fine-grained time derivation of road segments

for smart city,” IEEE Transactions on Industrial Informatics, vol. 16,

no. 4, pp. 2659-2666, 2019.

W. Lan, X. Yanyan, and B. Zhao, “Travel time estimation without road

networks: An urban morphological layout representation approach,” in

Proceedings of the Twenty-Eighth International Joint Conference on

Artificial Intelligence (IJCAI-2019), 2019.

C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for

fast adaptation of deep networks,” arXiv preprint arXiv:1703.03400,

2017.

D. K. Naik and R. J. Mammone, “Meta-neural networks that learn by

learning,” in [Proceedings 1992] IJCNN International Joint Conference

on Neural Networks, vol. 1. 1EEE, 1992, pp. 437-442.

[2

—

[3

=

[5

=

[6

=

[9

—

[10]

[11]

[12]

[13]

[14]

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

[15]
[16]

(17]

[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

(271

[28]

[29]

(30]

[31]

[32]

(33]

[34]

(351

[36]

[37]

[38]

(391

[40]

M. Huisman, J. N. van Rijn, and A. Plaat, “A survey of deep meta-
learning,” arXiv preprint arXiv:2010.03522, 2020.

T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-learning
in neural networks: A survey,” arXiv preprint arXiv:2004.05439, 2020.
C. Finn and S. Levine, “Meta-learning and universality: Deep represen-
tations and gradient descent can approximate any learning algorithm,”
arXiv preprint arXiv:1710.11622, 2017.

A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning
algorithms,” arXiv preprint arXiv:1803.02999, 2018.

(2016) Taxi travel time prediction challenge. [Online]. Available:
https://www.dcjingsai.com/v2/cmptDetail.html?1d=175

(2015) Taxi trip time prediction (ii) competition. [Online]. Available:
https://www.kaggle.com/crailtap/taxi-trajectory

Y. Gal and Z. Ghahramani, “A theoretically grounded application of
dropout in recurrent neural networks,” in Advances in neural information
processing systems, 2016, pp. 1019-1027.

S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

H. Sak, A. Senior, and F. Beaufays, “Long short-term memory based
recurrent neural network architectures for large vocabulary speech
recognition,” arXiv preprint arXiv:1402.1128, 2014.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

J. P. Chiu and E. Nichols, “Named entity recognition with bidirectional
Istm-cnns,” Transactions of the Association for Computational Linguis-
tics, vol. 4, pp. 357-370, 2016.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

C. Wang, H. Luo, F. Zhao, and Y. Qin, “Combining residual and Istm
recurrent networks for transportation mode detection using multimodal
sensors integrated in smartphones,” IEEE Transactions on Intelligent
Transportation Systems, pp. 1-13, 2020.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

A. Gotmare, N. S. Keskar, C. Xiong, and R. Socher, “A closer look at
deep learning heuristics: Learning rate restarts, warmup and distillation,”
arXiv preprint arXiv:1810.13243, 2018.

H. Wang, X. Tang, Y.-H. Kuo, D. Kifer, and Z. Li, “A simple baseline
for travel time estimation using large-scale trip data,” ACM Transactions
on Intelligent Systems and Technology (TIST), vol. 10, no. 2, pp. 1-22,
2019.

I. Jindal, X. Chen, M. Nokleby, J. Ye et al., “A unified neural network
approach for estimating travel time and distance for a taxi trip,” arXiv
preprint arXiv:1710.04350, 2017.

Y. Li, K. Fu, Z. Wang, C. Shahabi, J. Ye, and Y. Liu, “Multi-task
representation learning for travel time estimation,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 2018, pp. 1695-1704.

(2020) Gaia open dataset. [Online]. Available:
didichuxing.com/research/opendata/en/

E. Jenelius and H. N. Koutsopoulos, “Travel time estimation for urban
road networks using low frequency probe vehicle data,” Transportation
Research Part B: Methodological, vol. 53, pp. 64-81, 2013.

M. T. Asif, J. Dauwels, C. Y. Goh, A. Oran, E. Fathi, M. Xu,
M. M. Dhanya, N. Mitrovic, and P. Jaillet, “Spatiotemporal patterns
in large-scale traffic speed prediction,” IEEE Transactions on Intelligent
Transportation Systems, vol. 15, no. 2, pp. 794-804, 2013.

B. Yang, C. Guo, and C. S. Jensen, “Travel cost inference from
sparse, spatio temporally correlated time series using markov models,”
Proceedings of the VLDB Endowment, vol. 6, no. 9, pp. 769-780, 2013.
Y. Lv, Y. Duan, W. Kang, Z. Li, and F-Y. Wang, “Traffic flow
prediction with big data: a deep learning approach,” IEEE Transactions
on Intelligent Transportation Systems, vol. 16, no. 2, pp. 865-873, 2014.
X. Ma, Z. Tao, Y. Wang, H. Yu, and Y. Wang, “Long short-term memory
neural network for traffic speed prediction using remote microwave
sensor data,” Transportation Research Part C: Emerging Technologies,
vol. 54, pp. 187-197, 2015.

W. Luo, H. Tan, L. Chen, and L. M. Ni, “Finding time period-based
most frequent path in big trajectory data,” in Proceedings of the 2013
ACM SIGMOD international conference on management of data, 2013,
pp. 713-724.

M. Rahmani, E. Jenelius, and H. N. Koutsopoulos, “Route travel time
estimation using low-frequency floating car data,” in /6th International
IEEE Conference on Intelligent Transportation Systems (ITSC 2013).
IEEE, 2013, pp. 2292-2297.

https://outreach.

[41] S. B. Yang, C. Guo, and B. Yang, “Context-aware path ranking in road

networks,” IEEE Transactions on Knowledge and Data Engineering, pp.
1-1, 2020.

[42] S. B. Yang, C. Guo, J. Hu, J. Tang, and B. Yang, “Unsupervised

path representation learning with curriculum negative sampling,” arXiv
preprint arXiv:2106.09373, 2021.

Chenxing Wang is currently pursuing the Ph.D. de-
gree with the School of Computer Science (National
Pilot Software Engineering School), Beijing Uni-
versity of Posts and Telecommunications, Beijing,
China. His current main interests include spatial-
temporal data mining, travel time estimation, traffic
flow prediction and transportation mode detection
using deep learning techniques.

Fang Zhao received the B.S degree in the School of
Computer Science and Technology from Huazhong
University of Science and Technology, Wuhan,
China in 1990, M.S and Ph.D. degrees in Computer
Science and Technology from Beijing University of
Posts and Telecommunication Beijing China in 2004
and 2009, respectively. She is currently Professor
in School of Software Engineering Beijing Univer-
sity of Posts and Telecommunication. Her research
interests include mobile computing, location-based
services and computer networks.

Haichao Zhang received the B.E degree in the De-
partment of Software Engineering from Beijing Uni-
versity of Posts and Telecommunications, Beijing,
China. He is currently pursuing the M.S with the
School of Software Engineering, Beijing University
of Posts and Telecommunications, Beijing, China.
His current main interests include spatial-temporal
data mining, travel time estimation methods using
deep learning techniques.

Ll (=
Haiyong Luo received the B.S degree in the De-
partment of Electronics and Information Engineering
from Huazhong University of Science and Technol-
—_— ogy, Wuhan, China in 1989, M..S degree in School of
¢ "‘ . Information and Communication Engineering from
o4 the Beijing University of Posts and Telecommunica-
-~) tion China in 2002, and Ph.D. degree in Computer
.\ - Science from the University of Chines Academy

of Sciences, Beijing China in 2008. Currently he
is Associate Professor at the Institute of Computer
Technology, Chinese Academy of Science (ICT-

CAS) China. His main research interests are Location-based Services, Per-
vasive Computing, Mobile Computing, and Internet of Things.

https://www.dcjingsai.com/v2/cmptDetail.html?id=175
https://www.kaggle.com/crailtap/taxi-trajectory
https://outreach.didichuxing.com/research/opendata/en/
https://outreach.didichuxing.com/research/opendata/en/

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Yanjun Qin is currently pursuing the Ph.D. degree
with the School of Computer Science (National Pilot
Software Engineering School), Beijing University of
Posts and Telecommunications, China. Her current
main interests include location-based services, per-
vasive computing, convolution neural networks and
machine learning. And mainly engaged in traffic
pattern recognition related project research and im-
plementation.

Yuchen Fang received the B.S degree in the De-
partment of Computer Science and Technology from
Beijing Forestry University, Beijing, China. He is
currently pursuing the M.S with the School of Com-
puter Science (National Pilot Software Engineering
School), Beijing University of Posts and Telecom-
munications, Beijing, China. His current main in-
terests include traffic Forecasting based on spatial-
temporal data and graph neural network.

14

	I Introduction
	II Preliminary
	III Data Description and Preliminary Analysis
	III-A Description
	III-B Analysis
	III-B1 Data Preprocessing
	III-B2 Data Analysis

	IV Fine-grained Trajectory-based Travel Time Estimation Based on Deep Meta Learning
	IV-A Overview
	IV-B DED
	IV-B1 Data Preprocessing Module
	IV-B2 Encoder-Decoder Network Module

	IV-C Meta Learning based Optimization Algorithm

	V Experiments
	V-A Baselines
	V-B Experimental Settings
	V-B1 Configurations
	V-B2 Hyperparameters
	V-B3 Experimental Results
	V-B4 Impact of different hyperparameters.

	VI Related work
	VII Conclusion
	References
	Biographies
	Chenxing Wang
	Fang Zhao
	Haichao Zhang
	Haiyong Luo
	Yanjun Qin
	Yuchen Fang

