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Abstract—At the heart of all automated driving systems is
the ability to sense the surroundings, e.g., through semantic
segmentation of LiDAR sequences, which experienced a re-
markable progress due to the release of large datasets such
as SemanticKITTI and nuScenes-LidarSeg. While most previous
works focus on sparse segmentation of the LiDAR input, dense
output masks provide self-driving cars with almost complete
environment information. In this paper, we introduce MASS -
a Multi-Attentional Semantic Segmentation model specifically
built for dense top-view understanding of the driving scenes. OQur
framework operates on pillar- and occupancy features and com-
prises three attention-based building blocks: (1) a keypoint-driven
graph attention, (2) an LSTM-based attention computed from a
vector embedding of the spatial input, and (3) a pillar-based
attention, resulting in a dense 360° segmentation mask. With
extensive experiments on both, SemanticKITTI and nuScenes-
LidarSeg, we quantitatively demonstrate the effectiveness of
our model, outperforming the state of the art by 19.0% on
SemanticKITTI and reaching 30.4% in mIoU on nuScenes-
LidarSeg, where MASS is the first work addressing the dense
segmentation task. Furthermore, our multi-attention model is
shown to be very effective for 3D object detection validated on
the KITTI-3D dataset, showcasing its high generalizability to
other tasks related to 3D vision.

Index Terms—Semantic segmentation, attention mechanism,
LiDAR data, automated driving, intelligent vehicles.

I. INTRODUCTION

reliable semantic understanding of the surroundings is
A crucial for automated driving. To this end, multi-modal
input captured, e.g., by cameras, LiDARs, and radars is
frequently leveraged in automated vehicles [1]-[3]. Seman-
tic segmentation is one of the most essential tasks in au-
tomated driving systems since it predicts pixel- or point-
level labels for the surrounding environment according to
different input modalities. Over the past few years, semantic
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Fig. 1. An overview of the dense top-view semantic segmentation based
on the proposed MASS framework, where LiDAR data is painted by its
semantic label on the top left. In the model structure, MA denotes our multi-
attention mechanism, PFN denotes the pillar feature net, and M-UNet denotes
the modified UNet. The network is supervised by the labeled grid cell and
evaluated by the visible region shown by the occupancy map.

segmentation employing 2D Convolutional Neural Networks
(CNNs) has evolved to a well developed field, where FCN [4],
DeepLab [5], and ERFNet [6], [7] represent prominent archi-
tectures. Recent emergence of large-scale datasets for semantic
segmentation of 3D data, such as SemanticKITTI [8] and
nuScenes-LidarSeg [9] has allowed the community to go be-
yond the conventional 2D semantic segmentation and develop
novel methods operating on 3D LiDAR point clouds [10].
3D point cloud data generated through LiDAR sensors has
multiple advantages over 2D data [11]. Such point cloud
data complements traditional 2D image projection techniques
and has direct access to the depth information, leading to a
richer spatial information about the surrounding environment.
Furthermore, 3D LiDAR point clouds directly incorporate
distance and direction information, while camera-based sys-
tems can only infer through generated images to reconstruct
distance- and orientation-related information. Of course, Li-
DAR data also brings certain challenges. Since 3D point
cloud data is sparse, unordered, and irregular in terms of
its spatial shape, it is not straightforward to transfer mature
2D CNN-based approaches to LiDAR data. To solve this
problem, PointNet [12] extracts point-level features, whereas
PointPillars [13] forms a top-view pseudo image based on
high-dimensional pillar-level features in order to utilize a 2D
backbone for 3D object detection. The pillar feature net is
also leveraged in our PillarSegNet architecture, which is put
forward as the backbone in our framework. Some works focus



on predicting point-level semantic class for each LiDAR point
given a 3D point cloud such as the approaches proposed
by [14]-[17], which realize sparse segmentation. In contrast to
these approaches, our PillarSegNet generates dense top-view
semantic segmentation given a sparse 3D point cloud as the
input, which can even accurately yield predictions on those
locations without any LiDAR measurements (see Fig. 1). This
dense interpretation is clearly beneficial to essential upper-
level operating functions such as the top view based navigation
for automated driving [18].

In this paper, we introduce a Multi-Attentional Semantic
Segmentation (MASS) framework, which aggregates local-
and global features, and thereby boosts the performance of
dense top-view semantic segmentation. Top-view semantic
segmentation map generation is challenging and often re-
quires multi-stage processing, as such frameworks need to
implicitly solve a multitude of sub-tasks, such as ground
plane estimation, 3D object detection, route planning, road
segmentation (see [19] for further details). Compared with
sparse 3D LiDAR point semantic segmentation [20], our 2D
dense top-view semantic segmentation harvests richer environ-
ment information which may offer more useful cues to these
related tasks as aforementioned. Precisely, MASS is composed
of Multi-Attention (MA) mechanisms, a pillar feature net
(PFN), and a modified UNet (M-UNet) utilized for dense top-
view semantic segmentation, as depicted in Fig. 1. Our MA
mechanisms comprise three attention-based building blocks:
(1) a keypoint-driven graph attention, (2) an LSTM-based
attention computed from a vector embedding of the spatial
input, and (3) a pillar-based attention. The proposed MASS
model is first evaluated on the SemanticKITTI dataset [8]
to verify its performance compared with the state-of-the-art
surround-view prediction work [21] and then validated on the
nuScenes-LidarSeg dataset [9], where our framework is the
first addressing the dense semantic segmentation task. Finally,
we validate the effectiveness of PointPillars enhancement with
our MA mechanism in terms of cross-task generalization.

This work is an extension of our conference paper [22],
which has been extended with the novel MA mechanism
design, a detailed description of the proposed PillarSegNet
backbone model, along with an extended set of experiments
on multiple datasets. In summary, the main contributions are:

« We introduce MASS, a Multi-Attentional Semantic Seg-
mentation framework for dense top-view surrounding un-
derstanding. We present an end-to-end method PillarSeg-
Net to approach dense semantic grid map estimation as
the backbone of our MASS framework, by using only
sparse single-sweep LiDAR data.

o We propose Multi-Attention (MA) mechanisms com-
posed of two novel attentions and pillar attention to
better aggregate features from different perspectives and
to boost the performance of dense top-view semantic
segmentation given 3D point cloud input.

o Experiments and qualitative comparisons are conducted
firstly on SemanticKITTI [8], nuScenes-LidarSeg [9], and
then on the KITTI-3D dataset [23], to verify the effec-
tiveness of MA separately for dense top-view semantic
segmentation and 3D object detection.

« A comprehensive analysis is presented on dense top-view
semantic surrounding understanding with different atten-
tion setups individually on SemanticKITTI, nuScenes-
LidarSeg, and KITTI-3D datasets.

II. RELATED WORKS
A. Image Semantic Segmentation and Attention Mechanism

Dense pixel-wise semantic segmentation has been largely
driven by the development of natural datasets [23], [24] and ar-
chitectural advances since the pioneering Fully Convolutional
Networks (FCNs) [4] and early encoder-decoder models [25],
[26]. Extensive efforts have been made to enrich and enlarge
receptive fields with context aggregation sub-module designs
like dilated convolutions [27] and pyramid pooling [5], [28].
In the Intelligent Transportation Systems (ITS) field, real-
time segmentation architectures [6], [29] and surrounding-view
perception platforms [30], [31] are constructed for efficient and
complete semantic scene understanding.

Another cluster of works takes advantage of the recent
self-attention mechanism in transformers [32] to harvest long-
range contextual information by adaptively weighing features
either in the temporal [32] or in the spatial [29], [33] domain.
With focus set on scene segmentation, DANet [33] integrates
channel- and position attention modules to model associations
between any pair of channels or pixels. In ViT [34] and
SETR [35], transformer is directly applied to sequences of
image patches for recognition and segmentation tasks. In
Attention Guided LSTM [36], a visual attention model is
used to dynamically pool the convolutional features to capture
the most important locations, both spatially and temporally.
In Graph Attention Convolution [37], the kernels are carved
into specific shapes for structured feature learning, selectively
focusing on the relevant neighboring nodes. FeaStNet [38],
sharing a similar spirit, learns to establish correlations between
filter weights and graph neighborhoods with arbitrary con-
nectivity. Concurrent attention design has also been exploited
to learn more discriminative features [29], [33], [39]. For
example, TANet [39] collectively considers channel-, point-,
and voxel-wise attention by stacking them to aggregate multi-
level highlighted features.

While self-attention mechanism has been widely applied
in image-based scene parsing, it is underresearched in the
field of semantic segmentation of LiDAR input. We leverage
such attention operations to better aggregate features from
different points of view and propose a generic multi-attentional
framework for dense semantic segmentation with improved
discriminative representations.

B. LiDAR Point Cloud Semantic Segmentation

Unlike image-based scene parsing, the interest in LiDAR
point cloud semantic segmentation has been rapidly blos-
soming until very recently with the appearance of large-
scale datasets [8], [9], [40], [41], which provide rich data
for supervised training and open up the application in 360°
point-wise surrounding understanding. Since the introduction
of PointNet [12], many learning-based methods have emerged.
The SqueezeSeg family [42], [43] projects the 3D point
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Fig. 2. Overview of the proposed MASS framework. Given a 3D point cloud obtained from LiDAR, MASS first executes pillar-level feature encoding and
computes optional 2D occupancy features in two parallel streams. The point cloud is first rasterized into several pillars and MA generates attention values for
these pillars. The attended pillar-level features are extracted through the PointNet [12] architecture, whereas the observability features are encoded from a 2D
occupancy map generated through ray casting. Both features will be combined through the concatenation operation. Then, we leverage a modified UNet to
predict a dense top-view semantic grid map from the aggregated features. The final depicted prediction result is filtered by the 2D occupancy map to exclude

the occluded areas.

cloud into 2D pseudo images for processing, and plenty
of subsequent methods follow this trend by mapping the
3D LiDAR data under a forward-facing view or a bird’s
eye view, and thereby inherit the advancements in image
semantic segmentation using 2D fully convolutional networks.
RangeNet++ [14] exploits a transformation to obtain spherical
images and employs 2D convolutions for semantic segmenta-
tion. The SalsaNet family [44], [45] presents fast architectures,
which have been validated either in the top-down bird’s eye
view [44] or in the spherical range view (i.e., panoramic
view) [45]. Triess et al. [15] leverage a scan unfolding and a
cyclic padding mechanism to recover the context information
at the horizontal panorama borders, which helps to eliminate
point occlusions during the spherical projection in [14]. Such
unfolding and ring padding are similar to those in panoramic
scene parsing [46], and thus we consider that this line of
research can benefit from the latest progress in omnidirectional
image segmentation like attention mechanisms [29].

Instead of using range images, some methods utilize a grid-
based representation to perform top-view semantic segmenta-
tion [20], [21], [47]-[49]. GndNet [20] uses PointNet [12] to
extract point-wise features and semantically segment ground
sparse data. PolarNet [S0] quantizes the points into grids using
their polar bird’s eye view coordinates. In a recent work,
Bieder et al. [21] transform 3D LiDAR data into a multi-layer
grid map representation to enable an efficient dense top-view
semantic segmentation of LiDAR data. However, it comes
with information loss when generating the grid maps and thus
performs unsatisfactorily on small-scale objects. To address
these issues, we put forward a novel end-to-end method termed
PillarSegNet, first appeared in our conference work [22],
which directly learns features from the point cloud and thereby
mitigates the potential information loss. PillarSegNet divides
the single-sweep LiDAR point cloud into a set of pillars, and
generates a dense semantic grid map using such sparse LiDAR
data. Further, the proposed MASS framework intertwines
PillarSegNet and multiple attention mechanisms to boost the
segmentation performance.

There are additional methods that directly operate on 3D
LiDAR data to infer per-point semantics using 3D learning

schemes [51]-[53] and various point cloud segmentation-based
ITS applications [54]-[57]. Moreover, LiDAR data segmenta-
tion is promising to be fused with image-based panoramic
scene parsing towards a complete geometric and semantic
surrounding understanding [1], [31], [58].

III. MASS: PROPOSED FRAMEWORK

In this section, we introduce MASS - a new framework for
Multi-Attentional Semantic Segmentation given LiDAR point
cloud data as input. First, we put forward a backbone model
for dense top-view semantic segmentation given single sweep
LiDAR data as input. Then, we utilize Multi-Attention (MA)
mechanisms to aggregate local- and global features, and guide
the network to specifically focus on feature map regions which
are decisive for our task.

Conceptually, MASS comprises two building blocks: Pil-
larSegNet — a novel dense top-view semantic segmentation ar-
chitecture, which extracts pillar-level features in an end-to-end
fashion, and an MA mechanism, with an overview provided
in Fig. 2. The proposed MA mechanism itself covers three
attention-based techniques: a key-node based graph attention,
an LSTM attention with dimensionality reduction of the spatial
embedding, and a pillar attention derived from the voxel
attention in TANet [39]. In the following, key principles of
PillarSegNet and the proposed MA mechanisms are detailed.

A. PillarSegNet Model

A central component of our framework is PillarSegNet —
a novel model for dense top-view semantic segmentation of
sparse single LiDAR sweep input. In contrast to the previously
proposed grid-map based method [21], PillarSegNet directly
constructs pillar-level features in an end-to-end fashion and
then predicts dense top-view semantic segmentation. In ad-
dition to the pillar-level feature, occupancy feature is also
utilized in the PillarSegNet model as aforementioned to ag-
gregate additional free-space information generated through
an optional feature branch, which is verified to be critical for
improving dense top-view semantic segmentation performance
compared with the model only utilizing pillar feature.



PillarSegNet comprises a pillar feature net derived from
PointPillars [13], an optional occupancy feature encoding
branch, a modified UNet architecture as the 2D backbone, and
a dense semantic segmentation head realized by a logits layer.
In later sections, the extensive experiments will verify that
leveraging pillar feature net from [13] generates better repre-
sentation than the grid-map-based state-of-the-art method [21].

Pillar Feature Encoding. Since 3D point cloud does not
have regular shapes compared with 2D images, mature 2D
CNN-based approaches cannot directly aggregate point cloud
features. In order to utilize well-established approaches based
on 2D convolutions, we first rasterize the 3D point cloud into
a set of pillars on the top view, then pillar-level feature is
extracted through the pillar feature net and, finally, a pseudo
image is formed on the top view.

In the following, C' marks the dimensionality of the point
encoding before being fed into the pillar feature net, P denotes
the maximum number of pillars, and the maximum number
of augmented LiDAR points inside a pillar is N. We note
that only non-empty pillars are considered. If the generated
pillars or the augmented LiDAR points have not reached the
aforementioned maximum numbers, zero padding is leveraged
to generate a fixed-size pseudo image. If the numbers are
higher than the desired numbers, random sampling is em-
ployed to assure the needed dimensionality. Consequently,
the size of the tensor passed to PointNet in the next step
is therefore (P, N,C'). The point feature is encoded through
PointNet [12] composed of fully connected layers sharing
weights among points together with BatchNorm and ReLU
layers to extract a high-level representation. Then, pillar-level
feature is generated through the max operation among all the
points inside a pillar and the tensor representation is changed
to (P,C). Finally, these pillars are scattered back according
to their coordinates on the xy plane to generate a top-view
pseudo image for the input of the modified UNet backbone
for semantic segmentation.

Occupancy Feature. Occupancy feature encodes observ-
ability through ray casting simulating the physical generation
process of each LiDAR point. This feature is highly important
for dense top-view semantic segmentation as it encodes the
critical free-space information.

There are two kinds of occupancy encoding approaches:
visibility-based and observability-based. According to the ex-
isting work proposed by [59], visibility feature is leveraged
to encode 3D sparse occupancy generated based on the 3D
point cloud. The procedure of ray casting approach to generate
visibility feature is depicted in Fig. 3. The point cloud is firstly
rasterized as 3D grids and has the same spatial resolution on
the top-view with the pseudo image for a better fusion. The
initial states of all grid cells are set as unknown. For each
LiDAR point, a laser ray is generated from the LiDAR sensor
center to this point. All the grid cells intersected with this
ray are visited and this ray will end by the first grid cell
containing at least one LiDAR point. This grid cell is then
marked as occupied. The other visited empty grid cells are
marked as free. Finally, this 3D grid is marked by three states,
unknown, free, and occupied, forming a sparse representation
of occupancy feature in 3D grid cells.
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Fig. 3. A generation procedure comparison between visibility feature (left)
and observability feature (right), where the red line on left figure denotes the
end of the laser ray.

Fig. 4. Two samples under noise condition SNR (Signal Noise Ratio) =
10 with random generated noise points, where (a) indicates the observability
without generated noise points, (b) indicates the observability with generated
noise points, and (c) indicates the absolute difference between (a) and (b).

The encoding method of occupancy feature in MASS is
a slightly modified version based on the aforementioned
visibility feature. The occupancy feature utilized in MASS is
called as observability feature encoded in the dense 2D top-
view form. The observability is slightly different compared
with the aforementioned visibility. First, it leverages pillars to
take the place of the voxel representation. Second, the three
states in visibility feature are discarded and the accumulated
ray passing number is used to encode occupancy. Finally,
we obtain a densely encoded occupancy feature map on
the top view. The key differences between the observability
and visibility features are illustrated in Fig. 3. While the
observability depicts the number of the laser rays intersected
with its corresponding pillar for each grid cell, the visibility
feature encodes each individual voxel, marking it as unknown,
free, or occupied. The observability feature is therefore a dense
encoding of the environment.

We further investigate the tolerance of the observability
feature against random noise. We set the Signal Noise Ratio
(SNR) condition to SNR = 10 and compare the observability
feature without noise disturbance in Fig. 4(a), to its counterpart
with noise disturbance under the control condition in Fig. 4(b).
The impact of noise is further highlighted in Fig. 4(c), which
depicts the absolute difference between the corrupted and
noise-free variants. The observability has been increased on
unknown region where there is no LiDAR point under the
attack of the additional noise. Due to the unbalanced ratio
between objects such as building, which occupies a significant
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Fig. 5. Multi-attention (MA) mechanisms proposed in our work, where (a) depicts the general workflow of MA, (b) depicts the dimension reduction (DR)
based LSTM attention, (c) depicts the attention generation workflow of key-node based graph attention, and (d) introduces pillar attention according to [39].

portion of the top-view scene and is not observable, additional
random noise will add more points for that part according to
the category-wise points ratio and thereby increase the number
of laser rays passing through the grid cell that belongs to the
road-related region, which makes the difference reasonable.

B. LSTM Attention with Dimension Reduction Index Embed-
ding (DR LSTM)

PointNet [12] is mainly built by fully connected layers
which cannot preserve locality compared with convolutional
layers from 2D CNN, which becomes a challenge for feature
extraction of 3D point cloud. To alleviate this issue, we
leverage an LSTM-based model, since a 3D LiDAR point
cloud can be viewed as a sequence and LSTM aggregates
the locality features according to the distance. We therefore
propose to leverage LSTM attention with spatial embedding
on 3D point cloud data. We use a bidirectional LSTM to har-
vest locality-preserving features in a high-dimensional feature
space according to distance encoded by spatial embedding to
generate a local-preserved attention map, which we now ex-
plain. In order to implement the sequence processing method,
position embedding is required for the pillar-level node to
generate the input for the bidirectional LSTM. First, we reduce
the dimensionality of our data by using principle component
analysis (PCA) for dense top-view semantic segmentation and
local preserve projection (LPP) for 3D object detection due to
different memory consumption of different tasks, leading to a
1D spatial embedding. In this way, we are able to generate
1D ordered sequence for the input of the bidirectional LSTM
attention. After obtaining this position embedding, pillar-level
nodes are sorted according to the position embedding to form
an ordered sequence. The resulting sequence represents the
whole input pillar set in the high-level feature space. This
ordered sequence is then fed into the bidirectional LSTM
module to generate the attention map.

C. Key-node based Graph Attention

Since 3D point cloud is relatively noisy [60], only few
points contain significant clues for dense top-view semantic

segmentation. Thereby, we propose a novel key-node based
graph attention mechanism which propagates relevant cues
from key-nodes to the other nodes. The representative node
for each pillar is generated through a max operation among
all points inside a non-empty pillar. Farthest Point Selection
(FPS) is leveraged to generate the key-node set in a high-
level representation whose information is used to enrich the
information of other pillar-level nodes utilizing graph convolu-
tion according to the distance in the high-level representation
space. A fully connected graph between the key-node set and
the original input set is built for the graph attention generation.

Feature-Steered Graph Convolution. To generate better
attention maps, we further leverage feature-steered graph con-
volution (FeaStConv) [38] to form a graph attention model in
an encoder-decoder structure. Our motivation behind this step
is the translation invariance facilitated by FeaStConv, which
works particularly well in 3D shape encoding. Graph convolu-
tion enables long-chain communication and information flow
between the nodes. We now describe the basic workflow of
FeaStConv adopted to our dense semantic segmentation task.

First, neighbourhood information is encoded in a fully
connected graph composed of nodes and edges, which are
pillar-level nodes and the neighbourhood distance, while the
neighbourhood weights of each node are learned in an end-
to-end fashion. This procedure is designed to simulate the
workflow of convolutional layer, which has the capability to
aggregate features inside a specific field of view defined by a
neighbourhood distance. Second, an additional soft alignment
vector proposed in FeaStConv [38] is leveraged in order to
introduce robustness against variations in degree of nodes. The
soft alignment parameters are also learned end-to-end. Finally,
the desired feature is aggregated through a sum operation over
the soft aligned, weighted neighbourhood nodes inside the
defined neighbourhood.

In FeaStConv, soft-alignment vector p,,(z;, ;) for node
1 scales m-th weight matrix W,, for feature aggregation as
depicted in the following:
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where u,,,, U, and ¢, are parameters of linear transformation
that can be directlJy learned during the training process with
the condition ZAm:1 Pm(zi,z;) = 1. x; indicates the node
feature of point ¢. IV; indicates the neighbourhood of point @
leveraged to aggregate features.

Attention Generation Model Structure. Owing to the
sparsity of 3D point cloud, only a small portion of the points
is vital to our task. In the proposed graph attention generation
mechanism, the key nodes are selected by utilizing FPS. A
bidirectional graph is constructed between the key-node set
and the original input set in a fully connected style. In contrast
to graph generated through the K-nearest neighbour method
that only considers several nearby nodes, the fully connected
graph constructed in our work is able to link key nodes to
all other nodes and thereby captures long-range multi-step
dependencies. An encoder-decoder structure constructed based
on FeaStConv is utilized to generate graph attention. This
attention generation procedure is illustrated in Fig. 5(a).

D. Pillar Attention

Pillar attention aggregates features among points inside
a pillar and also among channels aiming at the high-level
representation to form the attention maps, as done in [39]
for 3D object detection. Our MA leverages this attention to
aggregate cues among points and channels to improve the
performance of dense top-view semantic segmentation. The
procedure of generating such attention maps is now detailed.

After the extraction of the pillar center coordinates, the orig-
inal pillar feature is concatenated with these extracted center
coordinates. Then a channel-wise fully connected layer with
ReLU activation is utilized, which has a decreasing channel
number in order to aggregate features along the channel axis.

Then, output features from the first fully connected layer
are permuted and fed into another fully connected layer to
aggregate features among all the points inside a pillar. The
desired pillar attention map is generated based on the output
of the second fully connected layer utilizing the Sigmoid func-
tion. Channel-wise feature aggregation and point-wise feature
aggregation are realized through this procedure. Assuming N
is the total number of points inside a pillar, C is the input
channel number, and P is the total number of pillars, the first
fully connected layer reduces the channel number of pillar
features to 1 and changes the size of the feature map as
(P, N, 1), whereas the second fully connected layer reduces
the point number inside a pillar to 1 and changes the size to
(P, 1, 1). Finally, this attention map can be multiplied with
the input pillar-level feature as depicted in Fig. 5(c).

E. Multi-Attention Model

Our complete frameworks overs three types of attention
mechanisms described previously. In this section, we describe
the interplay of the three techniques, with the complete fusion
model structure provided in Fig. 5(d). As it comes to the
attention order, we first execute the LSTM attention, followed
by the graph attention, and, finally, the pillar attention. The

weighted pillar level feature after the LSTM attention is
concatenated with the input of the pillar attention module and
then passed through several fully connected layers.

A note on attention order. The order of these three
attention blocks is determined by the range of the feature
aggregation. As aforementioned, the LSTM attention is able
to conserve locality since the pillars with different distances
contribute differently. Graph attention is a global attention
which propagates important cues from key node to the other
nodes. Pillar attention is also a local attention generating self-
attention, which is more local than LSTM attention. MASS
follows a local-global-local order to encourage incremental
feature enhancement among different attentions. For example,
if the global attention is not in the middle, then the first
two local attentions will be redundant. The pillar attention is
placed at the end following [39]. The illustration of ablation
experimental results in Sec. V-A also verifies the analysis.

F. Loss Function.

We use weighted cross entropy loss to optimize our model
on the dense top-view semantic segmentation task. The
weights for different classes are set according to their sta-
tistical distribution. The loss function is therefore formulated
as:

1 M
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where y; and ¢; indicates the ground truth and Softmax
probability estimated for ¢-th grid cell on the top view, For
sparse supervision, y; indicates the sparse top-view label,
while for dense supervision, ¥; is the dense top-view label.
A is the class-specific weight, and M denotes the number of
labeled grid cell on the top view. The weight coefficient is
chosen as 2 for vehicle, and 8 for pedestrian, two-wheel, and
rider in the Dense Train mode. For the Sparse Train mode,
the weight coefficient of vehicle is changed to 5. For other
classes, the weight coefficient is set as 1 to calibrate a good
balance among different classes. We remove the channel to
predict unlabeled location to force the model make a decision
among all the known classes for the unlabeled part marked as
white region indicated by the first column of Fig. 9. The white
region on the output is not the unlabeled category. It indicates
the unobserved region after filtering by the observation mask
as shown in the last column of Fig. 9. In this way, a dense
top-view semantic segmentation result can be achieved. Note
that the final prediction result of our proposed approach is a
dense semantic segmentation map on the top view.

For the cross-task efficacy verification of our model on 3D
object detection, we introduce the loss function as the depicted
in the following. According to the output of SSD [61], the loss
to train 3D object detection model is composed of localization
regression loss and object classification loss. Bounding box
localization loss is defined in the following:

>

be(z,y,z,w,l,h,0)

Lioe = SmoothL1(Ab), 4
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where z, y, and z denotes three coordinates of bounding box
center in 3D space. w, h, and [ denote width, height, and
length of the 3D bounding box. € indicates the orientation
angle of the 3D bounding box. 29 and xz® denote the ground
truth of coordinate x and predicted coordinate x with d* =
V/(w®)2 + (12)2. Cross entropy loss is leveraged to regress
bounding box angle on several discretized directions repre-
sented by Lg;,. Focal loss is used for the object classification
loss as depicted in the following:

Lgs = 70/1(1 7pa)’y10g(pa)’ (6)

where p® is the anchor class probability and the setting of «
and ~ are chosen as 0.25 and 2 separately, which are the same
as the setting in PointPillars [13]. The total loss is depicted in
the following, where Ny is the total number of the positive
anchors and the weights for each loss Sioc, Bcls, and Sqir are
chosen as 2, 1, and 0.2, individually.

1
L= T(ﬂlocLloc + ﬂclchls + BdirLdir)~ (7)
pos

IV. EXPERIMENTAL SETUPS AND DATASETS

Using prominent datasets, we validate our approach for (1)
our primary task of dense top-view semantic segmentation and
(2) 3D object detection, in order to test the generalization of
our approach to other 3D vision tasks. The datasets utilized
in our experiments, the label generation approach, evaluation
metrics, and setups are now presented in detail. For semantic
segmentation, MASS is compared with the method also focus-
ing on dense top-view understanding, since other methods such
as GndNet [20] aiming at predicting semantic segmentation
label for each sparse LiDAR point, have a different ground
truth modality compared with our work.

A. Datasets

SemanticKITTI. Our MASS model is first trained and eval-
uated on the SemanticKITTI dataset [8] providing semantic
annotations for a subset of the KITTI odometry dataset [23]
together with pose annotations. We follow the setting of [8],
using sequences 00-07 and sequences 09-10 as the training set
containing 19130 LiDAR scans, while the sequence 08 is used
as the evaluation set containing 4071 LiDAR scans. As in [21],
our class setup merges 19 classes into 12 classes (see Table I)
to facilitate fair comparisons. The class mapping is defined
in the following. Car, truck, and other-vehicle are mapped
to vehicle, meanwhile the classes motorcyclist and bicyclist
are mapped to rider. The classes bicycle and motorcycle are
mapped to two-wheel, whereas the classes traffic-sign, pole,
and fence are mapped to object. The classes other-ground and
parking are mapped to other-ground, while unlabeled pixels
are not considered during the loss calculation which means the

supervision is only executed on labeled grid cells to achieve
dense top-view semantic segmentation prediction.

nuScenes-LidarSeg. The novel nuScenes-LidarSeg
dataset [9] covers semantic annotation for each LiDAR point
for each key frame with 32 possible classes. Overall, 1.4
billion points with annotations across 1000 scenes and 40, 000
point clouds are contained in this dataset. The detailed class
mapping is defined as follows. Adult, child, construction
worker, and police officer are mapped as pedestrian. Bendy
bus and rigid bus are mapped as bus. The class mapping for
barrier, car, construction vehicle, motorcycle, traffic cone,
trailer, truck, drivable surface, other flat, sidewalk, terrain,
manmade, and vegetation are identical. The other classes
are all mapped to unlabeled. Thereby, we study with 12
classes (see Table II) for dense semantic understanding on
nuScenes-LidarSeg. The supervision mode is the same as that
on SemanticKITTI as aforementioned.

KITTI 3D object detection dataset. To verify the cross-
task generalization of our MA model, we use the KITTI 3D
object detection dataset [23]. It includes 7481 training frames
and 7518 test frames with 80256 annotated objects. Data for
this benchmark contains color images from left and right cam-
eras, 3D point clouds generated through a Velodyne LiDAR
sensor, calibration information, and training annotations.

B. Sparse Label Generation

The point cloud is first rasterized into grid cells represen-
tation on the top view in order to obtain cell-wise semantic
segmentation annotations through a weighted statistic analysis
for the occurrence frequency of each class inside each grid
cell. The number of points inside each grid cell for each class
is counted at first. The semantic annotation k; for grid cell i is
then calculated through a weighted argmax operation depicted
in the following:

ki = argmax (wgn; k) , (8)
kell,K]
where K is the total class number, n;j denotes the number
of points for class k in grid cell 4, and wy, is the weight for
class k.

For traffic participant classes including vehicle, person,
rider, and two-wheel, the weight is chosen as 5 according
to the class distribution mentioned in [21]. Since the afore-
mentioned unlabeled class is discarded during training and
evaluation, in order to achieve fully dense top-view semantic
segmentation, the weight for this label is then set to O.
The weight for the other classes is set as 1 to alleviate the
heavy class-distribution imbalance according to the statistic
distribution of point numbers of different classes detailed
in [21]. Grid cells without any assigned points are finally
annotated as unlabeled and loss is not calculated on them.

C. Dense Label Generation

Dense top-view semantic segmentation ground truth is gen-
erated to achieve a more accurate evaluation and can be also
utilized to train the MASS network to facilitate compara-
bility. The multi-frame point cloud concatenation procedure



TABLE I
QUANTITATIVE RESULTS ON THE SEMANTICKITTI DATASET [8], WHERE Occ INDICATES OCCUPANCY FEATURE, P INDICATES PILLAR ATTENTION, L
INDICATES DR LSTM ATTENTION, AND G INDICATES GRAPH ATTENTION.
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Mode Method £ [ | [ | [ | [ | [ | [ | [ | [ |
Bieder et al. [21] 39.8 | 69.7 0.0 0.0 0.0 858 603 259 728 15.1  68.9 9.9 69.3
Sparse Train  Pillar [22] 55.1 | 79.5 158 258 51.8 895 700 389 806 255 728 38.1 727
Sparse Eval Pillar + Occ [22] 553 | 827 203 245 513 900 712 365 81.3 283 704 385 69.0
Pillar + Occ + P 57.5 | 85.1 247 169  60.1 90.7 729 383 829 30.1 804 354 728
Pillar + Occ + LP 57.8 859 242 183 576 913 742 392 824 290 80.6 38.0 729
Pillar + Occ + LGP | 588 | 858 342 268 585 913 740 381 822 287 795 357 1713
Bieder et al. [21] 32.8 | 433 0.0 0.0 0.0 843 514 229 547 10.8 51.0 6.3 68.6
Sparse Train  Pillar [22] 375 | 45.1 0.0 0.1 3.3 827 575 297 646 140 585 255 689
Dense Eval Pillar + Occ [22] 384 | 525 0.0 0.2 3.0 85.6 60.1 29.8 65.7 16.1 56.7 262 645
Pillar + Occ + P 409 | 533 11.3 13.1 7.0 83.6 603 302 634 157 614 246 672
Pillar + Occ + LP 415 | 573 11.3 9.5 104 855 60.1 312 646 169 595 253 66.8
Pillar + Occ + LGP | 40.4 | 55.8 10.8 14.1 9.3 845 58.6 268 624 152 592 263 623
Dense Train Pillar [22] 42.8 | 70.3 5.4 6.0 8.0 89.8 657 340 659 163 612 235 679
Dense Eval Pillar + Occ [22] 4.1 | 72.8 7.4 4.7 102  90.1 662 324 678 174 63.1 276 69.2
Pillar + Occ + P 449 | 72.1 6.8 6.2 9.9 90.1 65.8 378 67.1 18.8  68.1 247 714
Pillar + Occ + LP 44.8 | 73.0 7.8 6.1 10.6 90.6 66.5 337 67.6 177 676 255 704
Pillar + Occ + LGP | 44.5 | 73.2 6.5 6.5 9.5 90.8 66.5 349 68.0 188 67.0 228 70.0
TABLE II

QUANTITATIVE RESULTS ON THE NUSCENES DATASET [9]. THE ORDER OF THE THREE KINDS OF ATTENTION IS INDICATED IN THE BRACKETS. FOR
EXAMPLE, LGP INDICATES THE ORDER OF FIRST DR LSTM ATTENTION, SECOND GRAPH ATTENTION, AND FINALLY PILLAR ATTENTION.
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Mode Method £ HE B HE B BN | | | | |
Dense Train Pillar 227|108 00 53 16 60 00 00 08 1959 08 834 355 450 523 485 543
Dense Eval MASS 304 | 253 00 207 252 144 00 33 14 268 149 868 460 504 557 559 610
Noise Ablation Pillar 15926 00 09 02 08 00 00 00 61 00 725 101 299 407 450 451
MASS 298 | 221 00 230 267 159 05 25 12 249 164 845 429 479 531 563 582
MASS (GLP) | 263 | 226 00 196 223 116 00 14 02 239 91 834 349 424 400 513 573
Order Ablation | MASS (LPG) | 289 | 229 00 215 234 114 01 20 08 226 117 859 433 486 539 547 599
MASS (PLG) | 30.2 | 245 00 207 280 131 00 35 21 251 154 863 458 493 545 552 604
MASS (LGP) | 304 | 253 0.0 207 252 144 00 33 14 268 149 868 460 504 557 559 610

leveraged for label generation only considers LiDAR point
clouds belonging to the same scene. The generation procedure
of dense top-view semantic segmentation ground truth is
described in detail in the following.

First, a threshold of ego-pose difference is defined as twice
of the farthest LIDAR point distance d to select nearby frames
for each frame in the dataset. When the ego pose distance
between the current frame and a nearby frame, |Ap,]|, is
smaller than the threshold d, this nearby frame is selected into
the candidate set to densify the semantic segmentation ground
truth. The densification process is achieved through unification
of coordinates based on the pose annotation for each nearby
frame. Only static objects of the nearby frames are considered,
since dynamic objects can cause aliasing in this process.

D. Evaluation Metrics

The evaluation metrics for dense top-view semantic segmen-
tation is Intersection over Union (IoU) and mean of Intersec-

tion over Union (mloU) defined in the following equation:

AiﬂBi

loU;, = 212
© A, UB;

1 K
;mloU = — ; ToU;, )

where A; denotes pixel number with the ground truth for
class ¢, B; denotes the pixel number with predicted semantic
segmentation labels for class i, and K indicates the total
class number. For dense top-view semantic segmentation, only
visible region is selected for the evaluation procedure.

The evaluation metrics for 3D object detection are Average
Precision (AP) and mean Average Precision (mAP) which are
defined by the following:

AP = zn: Pk)Ar(k), (10)

k=1

where P(k) indicates the precision of current prediction and
Ar(k) indicates the change of recall.



E. Implementation Details

In the following, the model setup of the pillar feature net,
2D backbone, data augmentation, and the training loss are
described in detail.

Pillar Extraction Network Setup. First, we introduce
the model setup for our primary task of dense top-view
semantic segmentation. The given 3D point cloud is cropped
on the z, y, z axes using the ranges [—50.0, 50.0]m,
[—25.0, 25.0]m, and [—2.5, 1.5]m accordingly, and the pillar
size along x, y, z directions is defined as [0.1, 0.1, 4.0]m. We
set a maximum point number inside each pillar to 20 in order
to receive a fair comparison with the dense top-view semantic
segmentation results from [21] on SemanicKITTI [8].

For the experiments on nuScenes-LidarSeg [9], the range
for x, y, z is set to [—-51.2, 51.2]m, [—51.2, 51.2]m, and
[-5, 3]m, while the pillar size is [0.2, 0.2, 8.0]m. The input
feature comprises 10 channels, while the output of the pillar
feature net is 64 channels for both datasets, which is lifted
through PonitNet [12]. Our model is based on OpenPCDet.!

Second, we showcase the model setup for verification of
the cross-task generalization. The backbone codebase we use
is second.pytorch.” The resolution for the xy plane is set as
0.16m, the maximum number of pillars is 12000, and the
maximum number of points inside each pillar is 100. The point
cloud ranges of x, y, z axes for pedestrian are cropped in
range [0, 47.36]m, [—19.48, 19.84]m, [-2, 5, 0.5]m, whereas
the ones for car are set as [0, 69.12]m, [—39.68, 39.68]m,
and [—3, 1]m. The resolution on z axis is 3m for pedestrian
and is 4m for car. The input channel number of pillar feature
net is 9 and the output channel number is set as 64.

MA Setup. For graph attention, FPS rate is selected as
0.05. The encoder-decoder model to generate attention map
is composed of 2 FeaStConv layers in the encoder part and
2 FeaStConv layers in the decoder part. For LSTM attention,
Principle Component Analysis (PCA) is selected for dimen-
sion reduction towards dense top-view semantic segmentation
and Local Preserving Projection (LPP) is selected for the
cross-task efficacy verification of MA due to different memory
consumption requirements for different tasks.

2D Backbone. The first 2D backbone introduced here is a
Modified UNet (M-UNet) for dense top-view semantic seg-
mentation on SemanticKITTI [8] and nuScenes-LidarSeg [9]
datasets. Since our model leverages MA and PonitNet [12] to
encode pillar features and lifts features in high-level represen-
tations, the first convolutional block of UNet is discarded due
to redundancy, which maps a 3-channel input to a 64-channel
output, to form the M-UNet leveraged in our approach. M-
UNet thereby helps to maintain an efficient model.

The second 2D backbone is for the cross-task efficacy
verification of our MA model on 3D object detection on
the KITTI 3D detection dataset. This backbone is differ-
ent from that for dense top-view semantic segmentation. It
is composed of a top-down network producing features in
increasingly smaller spatial resolutions and an upsampling
network that also concatenates top-down features, which is

Uhttps://github.com/open-mmlab/OpenPCDet
Zhttps://github.com/traveller59/second.pytorch.git.

TABLE III
MODEL PARAMETERS AND ACCURACY UNDER DENSE TRAIN DENSE EVAL
SCENARIO.
Method #Mparams mloU  Bacbone
Bieder et al. [21] 35.480M 39.8 Xception 65 [63]
Pillar 7.414M 55.1 PillarSegNet
Pillar+Occ 7.415M 55.3 PillarSegNet
Pillar+Occ+P 7.416M 57.5 PillarSegNet
Pillar+Occ+LP 7.417TM 57.8 PillarSegNet
Pillar+Occ+LGP 7.418M 58.8 PillarSegNet

the same as [13]. First, the pillar scatter from PointPillars [13]
generates a pseudo image on the top view for 2D Backbone’s
input from aggregated pillars. A 64-channel pseudo image is
input into the 2D backbone. The stride for the top-down 2D
backbone network is defined as [2, 2, 2] with filter numbers
[64, 128, 256] and the upsample stride is defined as [1, 2, 4]
with filter numbers [128, 128, 128].

Training Setup. Weighted cross entropy is leveraged to
solve the heavy class imbalance problem. According to the
distribution of points for different classes described by [21],
weights for rider, pedestrian, and two-wheel are set as 8
for loss calculation. The weight for vehicle is set as 2. For
other classes, the weight is set as 1. Adam optimizer [62]
is leveraged in our proposed approach with batch size 2 and
learning rate 0.001 for 30 epochs training. The weight decay
is set as 0.01 together with momentum 0.9. Step scheduler
is used with step list [5,10,15,20,25,30] for learning rate
decay. The parameter amount of each variant of our approach
compared with Bieder et al. [21] is shown in Table III.
Through comparison, it can be found that MA only slightly
increases the parameter number of the whole architecture
while significantly improving the top-view semantic segmen-
tation performance. Compared to the work from Bieder et
al. [21], our pillar-based approach has a lighter model structure
while showing strong efficacy on the dense top-view semantic
segmentation task.

Data Augmentation. Data augmentation for input feature
is defined in the following. Let (x, y, z, r) denotes a single
point of the LiDAR point cloud, where x, y, z indicate the
3D coordinates and r represents the reflectance. Before being
passed to the PointNet, each LiDAR point is augmented with
the offsets from the pillar coordinates center (Az., Ay., Az.)
and the offsets (Axzp, Ay,, Az,) between the point and the
pillar center.

Then, data augmentation for our main task, dense top-
view semantic segmentation, is detailed in the following.
Four data augmentation methods are leveraged in order to
introduce more robustness to our model for dense top-view
semantic segmentation. First, random world flip along = and
y axis is leveraged. Then, random world rotation with rotation
angle range [—0.785, 0.785] is used to introduce rotation
invariance to our model. Third, random world scaling with
range [0.95, 1.05] is used for introducing scale invariance and
the last one is random world translation. The world translation
standard error, which is generated through normal distribution,
is set as [5, 5, 0.05], and the maximum range is set as three
times of standard error in two directions.
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Fig. 6. Qualitative results on the SemanticKITTI dataset [8]. From top to bottom in each rows, we depict the 2D occupancy map, the ground truth, the
prediction from [21], the prediction from our approach without MA and the prediction of our approach with MA. The unobservable regions in prediction map
were filtered out using the observability map. In comparison with [21], our approach without MA and with MA shows more accurate predictions on vehicles

and small objects.

Finally, data augmentations for cross-task verification of
MA on the KITTI 3D dataset [23] are described. In the training
process, every frame of input is enriched with a random se-
lection of point cloud for corresponding classification classes.
The enrichment numbers are different for different classes.
For example for car, 15 targets are selected, whereas for
pedestrian the enrichment number is 0. Bounding box rotation
and translation are also utilized. Additionally to these, global
augmentation such as random mirroring along x axis, global
rotating and scaling are also involved. Localization noise is
created through a normal distribution N(0, 0.2) for z, y, z
axis. The bounding box rotation for each class is limited inside
range [0, 1.57] in meter.

V. RESULTS AND ANALYSIS

A. Analysis of MASS for Dense Top-View Semantic Segmen-
tation

Following the setup of [21], we consider two training
modes and two evaluation modes for dense top-view semantic
segmentation: Sparse Train and Dense Train for training and
Sparse Eval, and Dense Eval for testing. Sparse Train and
Sparse Eval take into consideration sparse top-view ground
truth obtained through single LiDAR sweep, whereas Dense
Train and Dense Eval utilize the generated dense top-view
ground truth to achieve better supervision. The evaluation is
only considered on visible region on the top-view indicated by
the occupancy map and the supervision is only considered on
labeled grid cells on the top view to achieve dense predictions.
The Dense Train experiments are only evaluated by Dense
Eval approaches, as it has stronger supervision compared with



Fig. 7. A prediction comparison between (b) MASS without MA and (c) MASS with MA, where the ground truth is depicted in (a). Pedestrians in ground
truth and true positive predictions are indicated by sky-blue circles, whereas false positive predictions are indicated by red circles.

the sparse top-view semantic segmentation ground truth, so
that it is not meaningful to evaluate in the Sparse Eval mode.

Table I summarizes our key findings, indicating, that the
proposed pillar-based model surpasses the state-of-the-art grid-
map-based method [21] by 15.3% mloU in the Sparse Eval
mode and 5.7% mloU in the Dense Eval mode. Our framework
is especially effective for classes with small spatial size such
as person, two-wheel, and rider. Qualitative results provided
in Fig. 6 also verify the effectiveness of our pillar-based model
compared with the previous grid-map-based model.

We further analyze the significance of the occupancy feature
generated through the aforementioned ray casting process and
multi-attention (MA) mechanism. Compared with the model
utilizing only pillar features, the added occupancy feature
encodes free-space information and brings a performance
improvement of 0.9% mloU in the Sparse Train Dense Eval
mode and 1.3% in the Dense Train Dense Eval mode, indi-
cating that occupancy features can be successfully leveraged
for improving dense top-view semantic segmentation.

Enhancing our framework with the proposed MA mech-
anism further improves the semantic segmentation results,
especially for objects with small spatial size. For example,
the model with pillar-, DR LSTM- and graph attention gives
a 13.9% performance increase for the category person in
the Sparse Train Sparse Eval mode. Pillar attention firstly
brings a 2.2% mloU boost, the introduction of DR LSTM
attention brings a further 0.3% mloU performance improve-
ment, and finally the graph attention brings a further 1.0%
mloU performance boost compared against the model with
occupancy yet without MA. Overall, our proposed MASS
system achieves high performances in all modes. In particular,
MASS outperforms the previous state-of-the-art by 19.0% in
the Sparse Train Sparse Eval mode and 7.6% in the Sparse
Train Dense Eval mode.

The qualitative results shown in Fig. 7 also verify the
capability of MA for detail-preserved fine-grained top-view
semantic segmentation. The model with MA shows strong
superiority for the prediction of class person indicated by sky-
blue circles for ground truth and true positive prediction. The
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Fig. 8. Visualization of a failure prediction case. The image on the top
left shows the dense top-view semantic segmentation prediction result and
the image on the top right shows the dense top-view semantic segmentation
ground truth. The image on the bottom left indicates the difference between
dense ground truth and prediction, painted according to no-empty grid cell of
the ground truth. The sub-figure on the bottom right indicates the analysis of
false prediction ratio of this selected frame.

false positive prediction is indicated by red circles. MASS
with MA has more true positive predictions and less false
positive predictions compared against MASS without MA,
demonstrating the effectiveness of MA for dense top-view
semantic segmentation.

A failure case visualization is also provided by our work as
depicted in Fig. 8. The difference of dense top-view ground
truth and prediction result is indicated by the figure on the
bottom left for each non-empty grid cell, represented by non-
white pixel in the top-view images and painted with color
of the correct label for each false prediction on the canvas
initialized as white at beginning. Through comparison, moving
car is found to have a great possibility to be wrongly-predicted
due to the unbalanced grid cells number between moving
car and stopping car, since in the dense top-view annotation
generation procedure, only static objects are considered to be
densified to avoid aliasing. Since in the two datasets leveraged
in our work, the movement of each frame is annotated as
ego pose change of the data collection car where the LiDAR
sensor was mounted on. This issue is possible to be solved if
the direction and velocity of moving objects can be obtained
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Fig. 9. Visualization results for dense top-view semantic segmentation prediction on the nuScenes dataset [9]. Sparse top-view semantic segmentation ground
truth is in column (a), 2D occupancy map is in column (b), dense top-view semantic segmentation ground truth is in column (c) and dense top-view semantic

segmentation prediction of MASS is in column (d).

relative to the ego pose for a balanced annotation distribution
between moving and static objects. Besides, the prediction of
edge structure also suffers from low accuracy such as the edge
shape object, building, in this frame.

In addition to the experiments on SemanticKITTI, we also
validate MASS on nuScenes-LidarSeg in order to obtain dense
top-view semantic segmentation predictions, which is the first
work focusing on this task on nuScenes-LidarSeg based on
pure LiDAR data. The visualization results for the dense
top-view semantic segmentation prediction, learned on the
nuScenes-LidarSeg dataset, are shown in Fig. 9, where sparse
top-view semantic segmentation ground truth, 2D occupancy
map, dense top-view semantic segmentation ground truth, and
dense top-view semantic segmentation prediction of MASS
are illustrated column-wise. The qualitative results are listed
in Table II, where the baseline indicated as Pillar achieves
22.7% in mloU. Our proposed MASS system with MA and
occupancy feature indicated by MASS overall significantly
boosts the performance, reaching a 7.7% mlIoU improvement
on nuScenes-LidarSeg, which further verifies the effectiveness
of the proposed MA and occupancy feature for dense top-view
semantic segmentation. The visualization result of the dense
top-view semantic segmentation on the nuScenes-LidarSeg

dataset is indicated by Fig. 9, which shows better understand-
ing of the surrounding environment for the automated vehicle
compared with the sparse point-wise semantic segmentation
ground truth.

Comparing the experimental results shown in Table II, under
Noise Ablation mode and Dense Train Dense Eval mode,
through addition of the noise under the control condition
SNR=10, the performance of the model leveraging only pillar
feature has a decrease of 6.8%, while the performance of
MASS has a decrease of 0.6%, demonstrating the efficacy
of MA against noise. The visualization of the loss changes
during training and testing are depicted in Fig. 10 where the
upper row denotes the pillar model, while the bottom row
denotes the MASS model. The second column denotes training
and testing under noise disturbance. According to Fig. 10, it
indicates that the overfitting problem didn’t occur in MASS.
Comparing the performance of the MASS model and the
pillar model under the noise disturbance, MASS shows better
performance than the pillar model, and the pillar model shows
large fluctuations in testing. The ablation result of the order of
these three attentions is shown in Table II (see Order Ablation
mode). First, through the comparison among the attention
orders PLG, LPG, and LGP, placing pillar attention at the
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Fig. 10. A visualization of the loss changing during training and testing on
the nuScenes dataset [9]. The upper left figure indicates the pillar model and
the upper right figure indicates the pillar model under noise disturbance. The

bottom left figure indicates our MASS model and the bottom right figure
indicates MASS under noise disturbance.

end indicates a better performance. Comparing GLP and LGP,
the performance of the model which places Graph attention
at the middle shows better performance. This result shows
that if we follow the local-global-local order and place the
pillar attention at the end, the performance of MASS is better
following the aforementioned analyses regarding the whole
model structure.

B. Cross-Task Analysis of MA for 3D Object Detection

Our next area of investigation is the cross-task gener-
alization of the proposed MA mechanism. The prediction
results of pedestrian and car, the most important classes of
urban scene, are illustrated. The first experiment is based
on PointPillars [13], which is selected as the baseline for
numerical comparison. Through the comparison results shown
in Table 1V, the pillar attention has introduced a performance
improvement for pedestrian detection in 3D@mAP on the
moderate difficulty level. The results in all the evaluation
metrics of car have been improved by this attention. Evidently,
pedestrian is more difficult to detect due to its small spatial
size and also pillar-based method generates pseudo image
in the top view, which makes this problem even harder to
solve, since pedestrian only takes up several pixels on the top-
view image. Therefore, to achieve performance improvement
of pedestrian detection is more difficult than that of car. 3D
object detection scores on the moderate level can be leveraged
to determine the model efficacy, since the sample number is
enough while remaining a certain difficulty.

We observe that the improvement performance by the
pillar attention mechanism of 0.80% for pedestrian on the
moderate level for 3D@mAP, when compared to the raw
PointPillars [13] indicated by Pillar. Besides, there is also a
gain of 2.63% on moderate 3D@mAP for car, indicating that
the attention generated through point-wise and channel-wise

TABLE IV
QUANTITATIVE RESULTS ON THE KITTI 3D DETECTION EVALUATION
DATASET [23], WHERE P INDICATES PILLAR ATTENTION, L INDICATES DR
LSTM ATTENTION, AND G INDICATES GRAPH ATTENTION.

Method 3D@mAP BEV@mAP
Easy  Mod. Hard  Easy Mod. Hard
Pedestrian
Pillar 69.26 6240 58.06 7407 69.83 64.37
Pillar + P 68.00 6320 5738 73.11 6834 62.68
Pillar + LP 70.03 6476 59.81 7452 69.89 64.92
Pillar + LGP 71.39 65.80 60.11 7748 7123 65.39
Car

Pillar 86.09 74.10 69.12 89.78 86.34  82.08
Pillar + P 86.36  76.73  70.20 90.09 87.22  85.57
Pillar + LP 86.59 76.13 7040 89.90 87.03 84.94
Pillar + LGP  87.47 77.03 7325 89.94 87.09 84.80

aggregations inside a pillar is effective for high-level discrim-
inative feature representations. Next, we validate PointPillars
equipped with the pillar attention and DR LSTM attention.
All evaluation metrics both for 3D@mAP and BEV@mAP
of these two classes are consistently improved through this
enhancement. It turns out that DR LSTM attention is efficient
for producing attention values guiding the model to focus on
the significant pillars for 3D object detection, as it takes in
consideration of aggregated local information. The 3D@mAP
score has a 2.36% improvement on pedestrian and a 2.03%
improvement on car on the moderate difficulty level.

Finally, the last experiment concerns combining PointPillars
with MA, meaning that all the attention-based building blocks
are leveraged: the pillar attention, DR LSTM attention, and
key-node based feature-steered graph attention. MA leads to
a 3.40% performance gain for pedestrian on the moderate
level 3D@mAP and a 2.93% performance improvement for
car, which is the best model during experiments. Since DR
LSTM attention preserves locality, global attention generation
mechanism such as the graph attention proposed by our
work is able to aggregate more important cues from key
nodes generated through FPS on the high-level feature space
and propagate these information to the others. Overall, the
experiment results demonstrate the effectiveness of our MA
model for generalizing to 3D detection.

C. Cross-Task Approaches Analyses and Comparisons

In the following, we compare our MASS approach with
GndNet [20], RangeNet++ [14] and PolarNet [50] which are
focusing on different domain outputs for semantic segmen-
tation while using the same dataset SemanticKITTI [8] and
sparse LiDAR data as input. We conduct the analyses accord-
ing to Table V. First, we conduct the comparison between
different approaches based on the output results. For our top-
view based approach, it contains less distortions and conserves
affine invariance compared with the panoramic-view based
approach, RangeNet++ [14], which indicates that MASS has
great potentiality to make the sub-tasks of automated vehicles
such as route planning easier. At the same time, compared
with PolarNet [12] which outputs sparse top-view semantic
segmentation, our proposed approach gives more information
on the unknown grid cell region which can give more reference



TABLE V
A COMPARISON BETWEEN MASS AND SEVERAL CROSS-FIELD 3D POINT
CLOUD BASED SEMANTIC SEGMENTATION APPROACHES, WHERE
O.Perspective INDICATES THE POINT OF VIEW OF OUTPUT RESULTS.

Approach ‘ MASS GndNet [20]  RangeNet++ [14]  PolarNet [50]
O.Perspective TopView 3D Space PanoramicView TopView
Dense/Sparse Dense Sparse Dense Sparse
Inference time | 74ms 18ms 83ms 62ms
Optimizer Adam SGD SGD Adam

Score (mloU) 58.80 84.01 522 543

information for the automated vehicle to make decisions for
the blind zone of LiDAR. Compared with GndNet [20] which
predicts point-wise semantic segmentation category for each
3D LiDAR point, the top-view dense semantic segmentation
map encodes higher-level semantic meanings especially on
the region where laser ray doesn’t travel than sparse 3D
point-wise semantic segmentation since the predicted top-
view map can be used in several automated vehicle’s sub-task
applications such as decision making and it has indicated the
boundary of each class, while sparse point-wise semantic seg-
mentation prediction needs more postprocessing procedures.
Second, considering the performance and inference time, our
approach has a relatively higher performance than the other
approaches which predict 2D semantic segmentation map
while has a relatively decent inference speed. GndNet [20]
has a better score and smaller inference time, but the task
difference is huge between GndNet predicting 3D point-wise
sparse semantic segmentation and other approaches predicting
2D semantic segmentation including our proposed method.
Overall, MASS has great competitiveness even compared with
cross-task approaches.

D. Inference Time

The inference time of our model without MA and occupancy
feature is measured on an NVIDIA GTX2080Ti GPU proces-
sor, achieving a total runtime of 58ms per input for dense top-
view semantic segmentation on SemanticKITTI. MA doubles
the inference runtime compared with the model without MA
and occupancy feature. For the model with occupancy feature
and without MA, additional 16m.s are required for the prepro-
cessing and model inference. Thereby, MASS has achieved a
near real-time speed suitable for transportation applications.

E. Ablation Study on Data Augmentation

The diversity of training data is crucial for yielding a
robust segmentation model in real traffic scenes [46]. We
therefore benchmark different data augmentation approaches
in our system that are studied and verified through ablation
experiments. According to the results shown in Table VI, the
model only with pillar feature and without any data augmenta-
tion is chosen as the baseline since it has the fastest inference
speed in the Sparse Eval mode. Through observation, random
scale brings a 0.6% mloU improvement, while random flip and
random rotation significantly improve mIoU by 4.6%, which
helps to yield robust models for dense top-view semantic seg-
mentation. The random translation does not contribute to any
performance improvement since it moves the position of ego

TABLE VI
ABLATION STUDY FOR DATA AUGMENTATION TECHNIQUES ON THE
SEMANTICKITTI DATASET [8].

Baseline Flip Rotate  Scale Translate  mloU [%]
v 50.4
v v 53.0
v v v 55.0
v v v v 55.6
v v v v v 55.1

car of each LiDAR frame, and therefore it is not recommended.
Overall, with these data augmentation operations, we have
further improved the generalization capacity of the proposed
model for real-world 360° surrounding understanding.

VI. CONCLUSION

In this work, we established a novel Multi-Attentional Se-
mantic Segmentation (MASS) framework for dense surround-
ing understanding of road-driving scenes. A pillar-based end-
to-end approach enhanced with Multi-Attention (MA) mech-
anism is presented for dense top-view semantic segmentation
based on sparse LiDAR data. Pillar-based representations are
learned end-to-end therefore avoiding information bottlenecks
compared with handcrafted features leveraged in grid maps
based approach [21]. Extensive model ablations consistently
demonstrate the effectiveness of MA on dense top-view se-
mantic segmentation and 3D object detection. Our quantitative
experiments highlight the quality of our model predictions,
surpassing existing state-of-the-art methods.

In the future, we aim to build on the top-view semantic
segmentation approach and investigate cross-dimensional se-
mantic mapping for various automated transportation applica-
tions. From the algorithmic perspective, we intend to extend
and study our framework with unsupervised domain adaptation
and dense contrastive learning strategies for uncertainty-aware
driver behavior and holistic scene understanding. We also
intend to reformulate the work procedure of PFN and densify
the annotation for moving objects to reduce information loss
generated through pillarization.
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