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Abstract— Platoon-based vehicular cyber-physical systems
have gained increasing attention due to their potentials in
improving traffic efficiency, capacity, and saving energy. How-
ever, external uncertain disturbances arising from mismatched
model errors, sensor noises, communication delays and unknown
environments can impose a great challenge on the constrained
control of vehicle platooning. In this paper, we propose a
closed-loop min-max model predictive control (MPC) with causal
disturbance feedback for vehicle platooning. Specifically, we first
develop a compact form of a centralized vehicle platooning model
subject to external disturbances, which also incorporates the
lower-level vehicle dynamics. We then formulate the uncertain
optimal control of the vehicle platoon as a worst-case constrained
optimization problem and derive its robust counterpart by
semidefinite relaxation. Thus, we design a causal disturbance
feedback structure with the robust counterpart, which leads
to a closed-loop min-max MPC platoon control solution. Even
though the min-max MPC follows a centralized paradigm, its
robust counterpart can keep the convexity and enable the efficient
and practical implementation of current convex optimization
techniques. We also derive a linear matrix inequality (LMI)
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condition for guaranteeing the recursive feasibility and input-
to-state practical stability (ISpS) of the platoon system. Finally,
simulation results are provided to verify the effectiveness and
advantage of the proposed MPC in terms of constraint satisfac-
tion, platoon stability and robustness against different external
disturbances.

Index Terms— Connected and automated vehicles (CAVs),
vehicle platooning, model predictive control (MPC), robust opti-
mization, closed-loop control.

I. INTRODUCTION

RECENT advances in vehicular networking, communi-
cation, and computing technologies have facilitated the

practical deployment of connected vehicles [1]–[3]. By joining
these advances with modern control technologies, the vehic-
ular system is promising to shift from the individual driving
automation to a novel paradigm, i.e., a platoon-based vehicular
cyber-physical system (VCPS) [4]–[6]. It is envisioned that
the VCPS can improve road traffic safety and efficiency
and also bring favorable and environmentally-friendly driving
experience. Specifically, the vehicle platooning control of
connected and autonomous vehicles (CAVs) has attracted
increasing attention in recent years [7]–[10]. In general, the
goal of vehicle platooning control is to maintain a desired
space headway or a desired time headway between any
two successive platooning vehicles meanwhile stabilizing the
whole platoon moving at a desired velocity with guaranteed
safety. Over the past several decades, considerable research
efforts from both academia and industry have been dedicated
to the design and analysis of adaptive cruise control (ACC)
and cooperative adaptive cruise control (CACC) solutions
based on classical linear control theory [11]–[21]. In control
theory, the platoon control problem can also be regarded as
the consensus control problem of a networked multi-agent
system, thus many researchers have been engaged in devel-
oping novel consensus-based control approaches for vehicle
platooning [10], [22]–[24].

Although vehicle platoon control has been extensively
investigated using classical control theory, there exist some
challenges to be addressed for the design of a platoon
controller, such as the uncertain disturbances resulting from
mismatched model errors, sensor measurement errors, wire-
less communication delays. These challenges can significantly



2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

affect the control stability and robustness. More importantly,
the uncertain disturbances may incur a failure of a platoon
controller in satisfying the safety constraint and thus lead to
chain collisions. At this point, it is of paramount importance
to develop novel approaches that can not only stabilize the
vehicle platoon with a desired inter-vehicle spacing and a
desired velocity, but also satisfy physical constraints in the
presence of external uncertain disturbances.

A. Literature Review

Early research efforts on vehicle platoon control have been
based on the optimal linear-feedback control theory [25],
[26]. Besides, many technical efforts have also been dedi-
cated to prototyping and field-testing a vehicle platoon con-
trol system, among which the PATH program proposed in
1980s is one of the famous and early practices [27]. Since
then, extensive studies on this topic have been conducted
and considerable linear state feedback control approaches for
enabling ACC/CACC or platooning vehicle consensus have
been developed in the literature [11]–[24]. For example, [11]
has combined a Takagi-Sugeno fuzzy model with a car-
following controller, in which the fuzzy logic model is used
as a predictor for estimating the state sequence of the preced-
ing vehicle. In [12], the impacts of various communication
factors such as the actuation lag, vehicular communication
period and delay on the CACC of a high-density vehicle
platoon have been investigated. In [13], a lane-change strategy
is integrated with a ACC system via a model predictive
control (MPC)-based coordination algorithm to enable lane
changing. In [14], the authors take into account the charac-
teristics of wireless communication links, such as the sam-
pling delays, and present a network-aware CACC approach.
In other works [15]–[24], researchers have designed a variety
of ACC/CACC control solutions by combining different mech-
anisms, such as multi-modeling [15], driving style recogni-
tion [16], direct yaw moment control [17], acceleration/control
feedforward [18], linear quadratic regulator (LQR) [19], and
information-delay compensation mechanisms [20]–[24]. Addi-
tionally, some researchers incorporate parametric uncertainties
into the vehicle dynamics and aim to design robust linear
feedback controllers for vehicle platooning by leveraging the
classical Kharitonov theorem and the Hurwitz criterion [28].
From the above literature [11]–[24], [28], linear feedback or
feedforward-based ACC/CACC approaches have an appealing
advantage that they have simple formulations for practical
realization and can simplify the analysis of platoon control
feasibility and stability. However, these control approaches
cannot directly incorporate a platoon control objective and
physical constraints such as velocity/acceleration bounds and
chain collision-avoidance constraints.

Some advanced lane keeping (LK) and ACC control meth-
ods have also been proposed by combining sum-of-squares
(SOS) optimization and control barrier functions (CBFs).
As in [29], the authors construct the CBFs via the SOS opti-
mization and use the CBFs to obtain the control solutions. The
advantage of such a method is that the designed control can
guarantee the forward invariance of a set encoding the vehicle

safety specifications. However, [29] treats the desired yaw rate
as a kind of external disturbances, while the effect of ran-
dom uncertain disturbances on the longitudinal multi-vehicle
platooning dynamics remains unexplored. In [30], some ACC
controllers have been designed by using nonlinear functions of
inter-vehicle distance and velocity. A simple second-order lin-
ear model is adopted as the plant model of [30], which has not
allowed for external uncertainties. Since the double-integral
model is used for describing each vehicle node, the lower-level
dynamics, such as the acceleration variation, cannot be fully
considered as well. In [31], the authors propose a distributed
platoon control protocol based on state feedback that does
not require the prior knowledge of model nonlinearities and
disturbances. However, some realistic motion constraints, e.g.,
the velocity and acceleration constraints to guarantee the
mobility smoothness, cannot be taken into account in the
controller of [31]. The selection of their controller gains,
which affects the control convergence rate, requires empirical
tuning techniques. Reference [32] has proposed an efficient
delay-based spacing policy for vehicle platoon in the presence
of external disturbances. Even though chain collisions can be
well avoided in the spacing policy of [32], some real physical
constraints on the lower-level dynamics, such as the bounds
on the velocity, acceleration and acceleration variation, cannot
be incorporated to strictly guarantee dynamics specifications.
Besides, the gains of the feedback control in [32] require
fine tuning to meet the design-specified objectives (e.g., the
fuel-efficiency maximization or the control cost minimization)
in actual application scenarios.

Besides the classical linear control-theoretical approaches,
various sliding mode control approaches have also been
applied to vehicle platooning in the presence of uncertain
external disturbances [9], [33]–[38]. In [33], the authors
propose a distributed sliding mode control framework to
allow for diverse communication topologies in vehicle pla-
toons. Reference [34] designs a robust nonlinear observer
that can be integrated with a sliding mode controller to
deal with the system uncertainties. Differently, [35] handles
communication-topological uncertainties as a set of parametric
uncertainties, for which the authors propose a distributed slid-
ing model control approach. In [9], the authors adopt a sliding
mode controller for coordinating the vehicles approaching an
intersection. In some others [36]–[38], different integral sliding
mode controllers have been designed based on the disturbance
observation technique to achieve a constant space headway
or a constant time headway between platooning vehicles.
It is remarked from the existing studies [9], [33]–[38] that
combining the sliding mode control methodology with a dis-
turbance observer technique is promising to construct a robust
platoon controller, since such a controller can handle both the
system nonlinearity and bounded disturbances. Nevertheless,
classical sliding mode control may experience the so-called
control chattering problem, and they cannot allow for specific
objective functions and physical constraints in the controller
design.

Another representative methodology for the design of a
robust control system is based on the well-developed H-infinity
control theory, i.e., the so-called H∞ control [39]. The
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underlying idea of H∞ control is to seek an appropriate
feedback control law that can minimize the H2 norm or
the H∞ norm of a targeted closed-loop system’s transfer
matrix mapping external disturbances to relevant outputs [40].
At this point, the optimization technique is allowed to come
into play in solving the formulation of the H∞ control.
Thus, this has attracted much attention in the application
domain of vehicle platooning [41]–[44]. In [41], multiple H∞
acceleration-tracking controllers have been designed according
to multiple uncertain vehicle dynamics models, and the authors
further propose a multiple-model switching-based platoon
control solution. In [42], the authors present a distributed
H∞ control approach for a vehicle platoon in the presence
of multiplicative uncertainties. Reference [43] considers the
mixed traffic scenario in which a platoon consists of both
CAVs and human-driven vehicles (HDVs). For the mixed
platoon, a car-following strategy is developed based on H∞
control theory [43]. In [44], the distributed H∞ controller syn-
thesis approach is also adopted and combined with the matrix
spectral decomposition technique to deal with the undirected
topologies of a vehicle platoon. It has been shown from the
current works [41]–[44] above and the therein references that
the H∞ control theory indeed provides a powerful and robust
tool to deal with the system disturbances/uncertainties and also
achieve the worst-case performance. However, the synthesis
of the H∞ controller requires the formulation of the transfer
function or transfer matrix of the platoon system. This also
relies on the matrix decomposition, which may lead to high
computational complexity. Besides, in the synthesis procedure,
multiple physical constraints on different vehicles’ velocities,
accelerations or control inputs cannot be incorporated in the
control law.

To directly and explicitly incorporate the control objective
and constraints of a plant in its control law design, a promising
way is to join constrained optimization theory with modern
control theory [45]. This fundamental idea has spawned one
of the most significant directions in the control domain, i.e.,
optimal control. Optimal control can be further divided into
two categories, model predictive control and rolling horizon
control, according to the time horizon for control implementa-
tion. In fact, many researchers have leveraged model predictive
control (MPC) technique to develop platoon-oriented ACC and
CACC controllers like the aforementioned works [11], [13],
[16], [17]. In [46], the authors propose a distributed MPC
platoon control approach by considering unidirectional topolo-
gies. In [47], a MPC model with only one ahead-prediction
step is presented and a distributed dual-primal constrained
optimization algorithm is applied to solve the designed MPC
with the constraint satisfaction. In [48], [49], the authors
propose a rolling horizon control framework and a numer-
ical algorithm based on the Pontryagin’s principle for the
design of non-linear model predictive ACC controllers for both
homogeneous and heterogeneous platoons. These works [11],
[13], [16], [17], [46]–[49] show that conventional MPC-based
approaches enable the transformation from well-defined design
specifications to a control objective with a set of constraints.
However, their MPC formulations have not taken into con-
sideration exogenous disturbances and thus cannot guarantee

the system robustness, in particular, the worst-case control
performance and constraint satisfaction.

Additionally, to develop robust MPC solutions, some other
studies integrate the point parameter estimation and the tube
construction-based approach to deal with parametric uncertain-
ties and additive disturbances [50], [51]. For example, [52]
presents a tube MPC model for mixed vehicle platooning,
where a tube, formed by a series of sets that contain the
prediction uncertainties of HDVs with a large probability,
is dynamically constructed by using a feedforward controller
and used to restrict the CAVs’ motion trajectories. Different
from tube-based solutions, some works like [53], [54] have
integrated parametric estimation and compensation techniques
with stochastic optimization theory to formulate MPC models.
In [53], the authors have formulated the MPC problem as a
linearly constrained linear quadratic Gaussian (LQG) problem
and thus relied on a Kalman filter to address the control
system’s and sensors’ disturbances that are normally distrib-
uted. In [54], the authors also combine a conditional linear
Gaussian estimator with a MPC model to handle the normally-
distributed disturbances, in which the Gaussian model is used
for the probability distribution estimation of the velocity
prediction of a preceding vehicle. From the above works [53],
[54], it is seen that the integration of parametric estimation
(e.g., Kalman filter) and stochastic optimization with MPC can
improve the robustness of vehicle platooning. But these robust
MPC solutions are limited by the underlying assumption on the
normally-distributed disturbances. Additionally, the tube-based
MPC approaches usually result in conservative design that
cannot sufficiently exploit the potential of feedback control.

To relax the probability distribution-related assumption for
uncertain disturbances, another type of robust MPC para-
digm, so-called min-max MPC, is developed by leveraging
robust optimization theory. The fundamental goal of min-max
MPC is to design a constraint-satisfied control law that can
optimize the worst-case performance criterion. In particular,
robust invariant sets, semidefinite programming relaxation,
linear matrix inequality (LMI) and some other modeling tech-
niques in robust optimization are used to transform uncertain
objective functions and constraints to their robust counterpart
approximations [55]–[58]. Moreover, min-max MPC has also
been combined with time-discrete self-triggered mechanisms
to facilitate their implementation with low-computation and
low-communication burden [59], [60]. Thus, some works
like [61] have applied the min-max MPC approach to the
design of a robust platoon controller in the presence of actuator
lags. In our previous work [62], a robust min-max MPC
controller has been proposed to deal with the communication
delay between any two successive vehicles in a platoon.
However, [62] only considers a second-order model (i.e.,
a double-integral model) to characterize the vehicle behavior,
and thus does not capture the lower-layer vehicle dynamics.
Besides, the min-max MPC models of [61] and [62] have not
coped with the exogenous uncertain disturbances. To address
the issue of control conservatism in open-loop min-max
MPC approaches, a feedback technique is usually combined
with the min-max optimization. However, the introduction of
state feedback may lead to the nonlinearity of a closed-loop
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min-max optimization formulation. It requires much compu-
tation power and efficient algorithms to solve nonlinear MPC
problems [55]–[57].

B. Motivation and Contribution

When compared to other methodologies, MPC approaches
are more appealing because of their flexibility to define
an optimization objective function and a set of constraints.
Nevertheless, it remains a great challenge to design a highly
efficient algorithm to deal with the potential complexity in a
closed-loop MPC formulation. On the other side, a standard
approach to reduce the conservatism in the MPC is to use
the feedback technique, e.g., the state feedback. But the
conventional state feedback can result in the nonlinearity in
the closed-loop MPC, and thus increase the computational
complexity. Few studies have been made on the design and
implementation of a robust min-max MPC-based vehicle
platoon controller that can sufficiently exploit the historical
information contained in the past disturbances and capture the
causal impact of the disturbances into the future control input.

Towards this end, this paper proposes a closed-loop min-
max MPC model to facilitate the robust control of vehicle
platooning in the presence of external uncertain but bounded
disturbances. In the formulation of the proposed closed-loop
min-max MPC, a causal disturbance feedback is introduced to
the control design, i.e., using uncertainties to parameterize the
control input via a causal structure. It is highlighted that even
though the closed-loop min-max MPC needs the centralized
computation implementation, its integration with the causal
disturbance feedback can keep the mathematical convexity and
thus enable legacy convex optimization techniques to come
into play in practice. Specifically, the main contributions of
our paper are summarized as follows:

i) A closed-loop min-max MPC system model is proposed
based on a causal disturbance feedback for robust vehicle
platooning with consideration of external uncertainties. In this
model, the control input of each platooning vehicle is parame-
terized with the disturbances in a causal structure, such that
the impact of the historical disturbances can be captured in the
design of the future control sequence. The proposed model can
not only reduce the control conservatism but also facilitate the
highly-efficient control implementation by leveraging existing
convex optimization techniques.

ii) We also present theoretical analysis on the recursive
feasibility and the input-to-state practical stability (ISpS) of the
proposed min-max MPC platoon control. We derive a linear
matrix inequality (LMI) condition by using the semidefinite
relaxation technique and the Schur complement. The platoon
control approach under the LMI condition is proved to be
recursively feasible and input-to-state practical stable.

iii) We conduct simulations to verify the proposed pla-
toon control method. Additionally, we illustrate the superior
performance achieved by the proposed method over other
conventional methods, i.e., the conventional MPC and the
LQG controllers, in terms of platoon stability and robustness.

The remainder of the paper is organized as follows.
In Section II, we model the longitudinal platooning dynam-

Fig. 1. A system scenario of vehicle platooning and an implementation
framework of the proposed control approach.

ics in the presence of external uncertain disturbances.
In Section III, a min-max MPC platoon model is formulated.
Section IV proposes the closed-loop control design with a
causal disturbance feedback and Section V proves its recursive
feasibility and ISpS, which is followed by the performance
evaluation in Section VI. Finally, Section VII concludes this
paper and also remarks our future work.

II. LONGITUDINAL PLATOONING DYNAMICS WITH

UNCERTAIN DISTURBANCES

We take into account the longitudinal dynamics of vehicles
for platooning control design. To be specific, let pi(t), vi (t),
and ai(t) denote the longitudinal position, velocity, and accel-
eration of vehicle i at time t , respectively. The body length of
vehicle i is defined as li . The desired time headway for ensur-
ing the safe inter-vehicle distance is specified to �t seconds.
For simplicity, the set of the platooning vehicles including a
virtual leader is denoted by IN+1, i.e., IN+1 = {0, 1, . . . , N},
where the virtual leading vehicle of the platoon is indexed
by 0. The set of the platooning vehicles excluding the leader
is denoted by IN , i.e., IN = IN+1 − {0}. As suggested by
current literature, a lower-level vehicle dynamics model can be
approximated by considering the actuation lag and attenuation
of the control, which is modeled as follows [46], [63], [64],

ȧi (t) = −1

τ
ai (t)+ κ

τ
ui (t), i ∈ IN , (1)

where ui (t) denotes the input control signal at time t , τ is the
time lag for actuating a vehicle to realize its required acceler-
ation, and κ is the ratio of the actually achieved acceleration
over the required acceleration. It is noted that the model (1)
allows for incorporating the effects arising from aerodynamic
drag, road friction conditions, gear transmission loss, etc.,
into the vehicle dynamics modeling. Thus, it extends the
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basic second-order model (i.e., the double-integrator model)
considered in many existing works, e.g., [23], [47]–[49].

A typical system scenario of vehicle platooning is shown in
Figure 1, where the first vehicle of the platoon can exchange
information with each other via vehicular wireless commu-
nications. The desired space between any two successive
vehicles i − 1 and i in the equilibrium state can be expressed
as vi (t)�t + li−1. Thus, the longitudinal position and velocity
errors between i − 1 and i are formulated by�

e1,i (t) = pi−1(t)− pi(t)− (vi (t)�t + li−1) ;
e2,i (t) = vi−1(t)− vi (t)

(2)

for all i ∈ IN . It is remarked that, in a practical design, the
constant term li−1 can be flexibly configured to be larger than
the actual body length of vehicle i−1, i.e., set to the vehicle’s
size plus a certain space margin, so as to avoid rear-end
collisions. Combining (1) and (2), we arrive at the following
three-order dynamics model⎧⎪⎪⎨

⎪⎪⎩
ė1,i(t) = e2,i (t)− ai (t)�t;
ė2,i (t) = ai−1(t)− ai (t);
ȧi (t) = −1

τ
ai(t)+ κ

τ
ui (t)

(3)

for all i ∈ IN . In addition, the model (3) can be further
re-arranged as another state-space form by defining a state
variable xi (t) =

�
e1,i(t), e2,i (t), ai (t)

�T

ẋi (t) = Axi (t)+ Bui (t)+ C xi−1(t), (4)

where the coefficient matrices A, B, and C are given by

A =
⎡
⎣0 1 −�t

0 0 − 1
0 0 − 1

τ

⎤
⎦ , B =

⎡
⎣0

0
κ
τ

⎤
⎦ , C =

⎡
⎣0 0 0

0 0 1
0 0 0

⎤
⎦ . (5)

To proceed, we define the state of the entire platoon system by
x(t) = col{xi (t), i ∈ IN }, and the global control by u(t) =
col{ui (t), i ∈ IN }. Let state matrices Q A ∈ R

3N×3N , QB ∈
R

3N×N , and QC ∈ R
3N×3 be

Q A =

⎡
⎢⎢⎢⎣

A 0 0 · · · 0 0
C A 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · C A

⎤
⎥⎥⎥⎦ ,

QB = diag{B, i ∈ IN },
QC = col{C, 03×3, . . . , 03×3}, (6)

respectively. The entire platooning system is then represented
by the following dynamics

ẋ(t) = Q A x(t)+ QB u(t)+ QC x0(t). (7)

Without loss of generality, the dynamics of the leading vehicle
in the platoon can be treated as the reference for all the other
following vehicles. Its state x0(t) can be designed in advance.
For simplicity, we consider that the leading vehicle is moving
at a desired velocity v0. For example, v0 can be designed as
an eco fuel-efficient velocity of the platoon. Therefore, we can
set x0(t) = 03×1 at the equilibrium state.

It is recognized that (7) is a time-continuous model.
By selecting a proper sample time slot τs , it can be discretized
into a time-discrete form as follows

x(k + 1) = M A x(k)+ M B u(k), (8)

where k is the index of a time slot. M A and M B are obtained
by applying the integral approximation method to Q A and
QB , i.e.,

M A = exp
�

Q Aτs
�
,

M B =
� τs

0
exp

�
Q As

�
ds × QB . (9)

In fact, the time-discrete linear model (8) has been widely
adopted in the current literature. However, there inevitably
exist modeling errors due to the mismatched linearized and
discretized dynamics. Additionally, (8) cannot capture the
impacts of various uncertainties and disturbances in actual
environments. Hence, a more realistic model should incorpo-
rate the comprehensive effect arising from the mismatched
model uncertainties, sensor-based measurement errors, and
unknown external disturbances, if any. Let d(k) ∈ R

3N×1 be
a lumped uncertainty of the platooning dynamics. By incor-
porating d(k) into (8), we further derive

x(k + 1) = M A x(k)+ M B u(k)+ M D d(k), (10)

where M D is a known matrix with a compatible dimension.
Moreover, while the disturbance d(t) is uncertain, it is usually
bounded in practice. We denote the uncertainty set, i.e., the set
of possible d(k), by D, and assume that the external unknown
disturbances are box-constrained, i.e., D = {d : �d�∞ ≤ 1}.

To ensure the mobility safety, we also need to take into
consideration actual physical constraints on both the state and
control variables in (10). Let �p−, �p+ and �v−, �v+ be
the lower and upper bounds on the inter-vehicle longitudinal
position and velocity differences, respectively, for guarantee-
ing rear-end collision avoidance, i.e., �p− ≤ e1,i(k) ≤ �p+
and �v− ≤ e2,i (k) ≤ �v+ for all i ∈ IN and all k. a− and a+
denote the minimum and the maximum allowed accelerations
of any vehicle i , respectively, i.e., a− ≤ ai(k) ≤ a+ for all
i ∈ IN and all k. We can construct the lower and upper
bounds on the state of vehicle i as x−i ≤ xi (k) ≤ x+i where

x−i =
�
�p−,�v−, a−

�T and x+i =
�
�p+,�v+, a+

�T. Then,
the bounds on the global state variable x(k) can be represented
as x− = col{x−i , i ∈ IN } and x+ = col{x+i , i ∈ IN },
respectively. Thus, we have

x− ≤ x(k) ≤ x+ (11)

for all k. In addition, to avoid such a situation in which the
velocity of a certain vehicle i is negative, we also bound the
velocity of each vehicle i as vmin ≤ vi (k) ≤ vmax for all i
and k, where vmin and vmax are the minimum and maximum
velocities for each vehicle, respectively. Now, recalling (2),
we can have

�i
l=1(vl−1(k)−vl(k)) =�i

l=1 e2,l(k) = v0(k)−
vi (k) and thus establish the following state mapping

vi (k) = v0(k)−
N�

l=1

zi,l xl(k), i ∈ IN , (12)
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where zi,l is a 1× 3 row vector defined as follows

zi,l =
�
[0, 1, 0], 1 ≤ l ≤ i;
[0, 0, 0], i + 1 ≤ l ≤ N.

(13)

Let zi =
�
zi,1, zi,2, . . . , zi,N

�
. Recalling the definition of the

global state variable x(k), (12) can be reshaped as a linear
function of x(k)

vi (k) = v0(k)− zi x(k), i ∈ IN . (14)

Substituting (14) into the velocity bound inequality can yield

v0(k)− vmax ≤ zi x(k) ≤ v0(k)− vmin, i ∈ IN . (15)

Hence, we are able to further represent the linear equality (15)
into a more compact form

q−x ≤ Zx x(k) ≤ q+x , (16)

where q−x = col{v0(k)− vmax, i ∈ IN } and q+x = col{v0(k)−
vmin, i ∈ IN }. Zx is a N × 3N matrix defined by vertically
stacking the row vector zi , i.e., Zx = col{zi , i ∈ IN }.
Similarly, the lower and the upper bounds on the controls are
also presented by umin = col{umin,i , i ∈ IN } and umax =
col{umax,i , i ∈ IN }, respectively. Thus, the bound constraints
on the control sequence can be

umin ≤ u(k) ≤ umax. (17)

Now, for the simplicity of notation, let X and U be the state
and the control constraint sets, i.e., x(k) ∈ X and u(k) ∈ U
for all k. Based on (11), (16) and (17), the physical constraints
for guaranteeing the platoon safety can be represented by�

X = {x : Ax x ≤ bx } ,
U = {u : Au u ≤ bu} , (18)

where we let Ax = col{I3N×3N ,−I3N×3N , Zx ,−Zx } and
bx = col{x+,−x−, q+x ,−q−x }, respectively. Au and bu

are defined as Au = col{I N×N ,−I N×N } and bu =
col{umax,−umin}, respectively.

III. ROBUST MIN-MAX MPC FORMULATION FOR

VEHICLE PLATOONING

Basically, the control objective of vehicle platooning can
be described based on the system (10) as limk→∞ �x(k)� =
0 under the constraints of x(k) ∈ X , u(k) ∈ U and d(k) ∈
D at all k. To achieve this goal, we resort to the min-max
optimization, which would like to minimize the worst-case
global cost over the constraint sets. Specifically, let H ∈ N≥1
be the prediction horizon for the control implementation of
the platoon system. x(k + j |k), u(k + j |k) and d(k + j |k)
denote the predicted system state, the predicted control, and
the unknown disturbance predicted at k+ j , respectively, under
the condition that the system state information is available at
k, i.e., x(k|k) is known, where j = 1, 2, . . . , H . The global
cost function at k is formulated as

J (k) =
H−1�
j=0

L(x(k + j |k), u(k + j |k))+�(x(k + H |k)),

(19)

where L(x(k + j |k), u(k + j |k)) and �(x(k + H |k)) are the
stage cost function and the terminal cost function, respectively.
These two functions can be usually designed by using a
quadratic form. Namely, by specifying three positive definite
diagonal matrices with the compatible dimension, wx � 0,
wu � 0, and V � 0, we formulate the stage cost and the
terminal cost using the quadratic functions as follows

L(x, u) = xTwx x + uTwu u, �(x) = xTV x. (20)

For the simplicity of notation, we introduce the compact
forms of the predicted system states, controls, and uncertain
disturbances over the prediction horizon as X , U , and D, i.e.,

⎧⎪⎨
⎪⎩

X = col {x(k + j |k), j = 1, 2, . . . , H } ,
U = col {u(k + j |k), j = 0, 1, . . . , H − 1} ,
D = col {d(k + j |k), j = 0, 1, . . . , H − 1} .

(21)

Moreover, we introduce the following block matrices G A ∈
R

3H N×3N , GB ∈ R
3H N×H N , and GD ∈ R

3H N×3H N to
reshape the whole system (10) over the finite prediction
horizon as

X = G A x(k|k)+ GBU + GD D, (22)

where G A, GB , and GD are defined by

G A = col
�

M j
A, j = 1, 2, . . . , H

�
,

GB =

⎡
⎢⎢⎢⎢⎢⎣

M B 03N×N 03N×N · · · 03N×N

M A M B M B 03N×N · · · 03N×N

M2
A M B M A M B M B · · · 03N×N
...

...
...

...
...

M H−1
A M B M H−2

A M B M H−3
A M B · · · M B

⎤
⎥⎥⎥⎥⎥⎦ ,

GD =

⎡
⎢⎢⎢⎢⎢⎣

M D 03N×3N 03N×3N · · · 03N×3N

M A M D M D 03N×3N · · · 03N×3N

M2
A M D M A M D M D · · · 03N×3N
...

...
...

...
...

M H−1
A M D M H−2

A M D M H−3
A M D · · · M D

⎤
⎥⎥⎥⎥⎥⎦ .

(23)

In addition, we can also obtain the constraint sets of X , U ,
and D, respectively, as follows

X ∈ X =

⎧⎪⎨
⎪⎩X

�������
AX X ≤ bX

AX = diag {Ax , j = 1, 2, . . . , H }
bX = col {bx , j = 1, 2, . . . , H }

⎫⎪⎬
⎪⎭ ,

U ∈ U =

⎧⎪⎨
⎪⎩U

�������
AU U ≤ bU

AU = diag {Au, j = 1, 2, . . . , H }
bU = col {bu, j = 1, 2, . . . , H }

⎫⎪⎬
⎪⎭ ,

D ∈ D =
H�

j=1

D. (24)
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Now, by letting⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

W X = diag

⎧⎨
⎩wX , . . . ,wX� �� �

H−1

, V

⎫⎬
⎭ ,

WU = diag

⎧⎨
⎩wU , . . . ,wU� �� �

H

⎫⎬
⎭ ,

(25)

we can rewrite (19) as

J (k) = xT(k|k)wx x(k|k)+ J (X, U) , (26)

where J (X, U) is given by

J (X, U) = XTW X X + UTWU U . (27)

Recalling that the initial state x(k|k) is known at k,
xT(k|k)wx x(k|k) is a constant in (26). The optimization of
the global cost J (k) is equivalent to optimize J (X, U). Thus,
following the robust optimization philosophy, we formulate the
min-max MPC model that aims to minimize the cost function
J (X, U) in the worst-case situation since it contains bounded
uncertainties

min
U

max
D
: J (X, U)

s.t.

⎧⎪⎨
⎪⎩

X = G A x(k|k)+ G BU + GD D,

X ∈ X, ∀D ∈ D,

U ∈ U, ∀D ∈ D.

(28)

From (28), it is clear that it is difficult or even impossible
to solve the min-max optimization problem exactly. Instead,
we further transform (28) into an epigraph formulation by
additionally introducing an auxiliary variable γ as follows,
which can motivate an efficient solution

min
U,γ
: γ

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X = G A x(k|k)+ GB U + GD D,

XTW X X + UTWU U ≤ γ, ∀D ∈ D,

X ∈ X, ∀D ∈ D,

U ∈ U, ∀D ∈ D.

(29)

From the epigraph formulation (29) above, we can find
that the robust control performance can be achieved by ensur-
ing robust satisfaction of the uncertain constraints. That is,
we need to perform the constrained minimization over all the
admissible uncertain disturbances D ∈ D. In the following,
our main results aim to deal with the uncertain constraints and
objective function in (29) based on the theory of Linear Matrix
Inequality (LMI). We will propose a semidefinite relaxation
paradigm of the uncertain optimization model (29), which can
be solved efficiently to result in a robust MPC control scheme.

IV. CLOSED-LOOP ROBUST CONTROL DESIGN WITH

CAUSAL DISTURBANCE FEEDBACK

The basic idea to realize the closed-loop control is to map
the system state to the control sequence. A widely-adopted
paradigm is the linear state feedback, which parametrizes the
future control by linearly combining the predicted system

states like u(k + j |k) = kx(k + j |k) + c(k + j |k) ( j =
0, 1, . . . , H − 1), where the gain matrix k is usually designed
off-line and c(k+ j |k) is a new decision variable with the same
dimension of u(k+ j |k). However, parameterizing u(k+ j |k)
with respect to x(k + j |k) can lead to the nonlinearity in the
formulation of (29), which, thus, may not be solved efficiently
by using convex optimization methods [57], [60]. When
carefully looking into the mathematical structure of (22),
it can be found that the external disturbance term D and the
predicted control U are two peer unknown variables. The past
disturbances can affect the current state, such that the current
control implicitly relies on the effect of the past disturbances.
At this point, an alternative way to maintain the convexity in
the closed-loop min-max MPC formulation is to parameterize
the control signal of each vehicle directly with the disturbances
via a causal structure [55], [56]. That is, we use a causal
structure to realize the disturbance feedback as

U = K D + U K , (30)

where U K is a new decision variable, i.e., a column vector
with the same size of U . The gain matrix K ∈ R

H N×3H N has
a causal structure designed as follows

K =
�
I

H×H
tril ⊗ I

N×3N
full

 
◦ K N H×3N H

full , (31)

where I
H×H
tril is a H × H lower tridiagonal matrix, the partial

elements of which below the main diagonal are set to 1 while
the others (i.e., those elements above as well as including the
main diagonal) are 0. I

N×3N
full is a N × 3N real matrix, all

of whose elements are 1. Besides, K N H×3N H
full is a N H ×

3N H full real gain matrix. ⊗ is the Kronecker tensor product
operator, and ◦ is the Hadamard product operator that gets the
element-wise product of two compatible matrices.

We remark that the introduction of I
H×H
tril ⊗ I

N×3N
full in (31)

can design a specific causal structure, in which each control
sequence u(k+ j |k) at the prediction step j depends on all the
past disturbance effects {d(k+l|k), l = 0, 1, . . . , j−1}. In this
way, the feedback structure (30) parameterizes the platoon
control sequence U directly in the external uncertainty term
D. Substituting the causal disturbance feedback-based control
design (30) into the constraints in the model (29), we can
derive an equivalent epigraph formulation for the closed-loop
min-max MPC as follows

min
K ,U K ,γ

: γ

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X = G A x(k|k)+ G BU K + (GB K + GD)D,

XTW X X

+ (K D + U K )T WU (K D + U K ) ≤ γ, ∀D ∈ D,

X ∈ X, ∀D ∈ D,

K D + U K ∈ U, ∀D ∈ D.

(32)

Now, from both (30) and (32), it can be seen that the
mathematical mapping from the decision variables K and U K

to the control sequence U and the system state X is bi-linear,
respectively. This mathematical property is significant, since
it guarantees the model convexity and thus enables legacy
convex optimization techniques to come into play.
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A. Robust Counterpart of Uncertain Control Constraint

It is noted that the control constraint U ∈ U incorporates
the uncertainty D since we use the disturbance feedback in the
control loop. Thus, to deal with the control bound constraint,
we would like to derive its robust counterpart. Here, a lemma
on the maximum value of a linear function constrained within
the unit cube is first introduced as follows, while its proof is
detailed in Appendix A.

Lemma 1: Given C is a real matrix with a compatible
dimension with a column vector x, we can have

max|x|≤1
{C x} ≤ |C| 1, (33)

where |C| is an element-wise absolute value matrix of C . 1
is a column vector whose elements are all equal to 1, and the
dimension of 1 is as the same as that of x.

Using Lemma 1 and recalling the box-constrained uncer-
tainty set D, the control bound constraint with the uncertainty
D, U ∈ U for all D ∈ D, can be satisfied if the following
inequality holds

|AU K | 1+ AU U K ≤ bU . (34)

To deal with the absolute value of |AU K |, we can introduce
an additional matrix variable βU and let

AU K ≤ βU , −AU K ≤ βU . (35)

Now, combining (35) and (34), we can further derive the
robust counterpart of the uncertain control bound constraint
as follows ⎧⎪⎨

⎪⎩
βU 1+ AU U K ≤ bU ,

AU K ≤ βU ,

−AU K ≤ βU .

(36)

B. Robust Counterpart of Uncertain State Constraint

Using the same logic in Subsection IV-A, we can also derive
the robust counterpart of the uncertain state bound constraint
by introducing a new matrix variable βX . That is, substituting
the disturbance feedback-based control (30) into (22), the
constraint X ∈ X, ∀D ∈ D is satisfied under the following
condition⎧⎪⎨

⎪⎩
βX 1+ AX (G A x(k|k)+ GB U K ) ≤ bX ,

AX (GB K + G D) ≤ β X ,

−AX (G B K + GD) ≤ βX .

(37)

For simplicity, let β = col{βX ,βU }. By integrating both the
robust counterparts of the control and state constraints in (36)
and (37), we can derive the following compact form as the
linear system constraint C1

C1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1+
!

AX (G A x(k|k)+ GB U K )

AU U K

"
≤
!

bX

bU

"
,

!
AX (GB K + G D)

AU K

"
≤ β,

−
!

AX (GB K + GD)

AU K

"
≤ β.

(38)

C. Robust Counterpart of Uncertain Performance Constraint

To proceed, we introduce the well-known S-procedure and
the Schur complement lemmas as follows.

Lemma 2 (The Schur Complement [65]): Given a positive
definite real matrix Q � 0, the following inequality is
equivalent for any positive semidefinite real matrix P � 0,

P − ZT Q−1 Z � 0⇔
#

P ZT

Z Q

$
� 0 (39)

where Z is any real matrix of an appropriate dimension.
Lemma 3 (The S-Procedure [66]): Let Fl = FT

l ∈ R
m×m ,

l = 0, 1, . . . , n, be a sequence of symmetric real matrices, and
Tl(x) = xT Fl x the corresponding quadratic functions with
respect to x ∈ R

m×1. A sufficient condition for the following
implication to hold

∀x∈R
m×1, Tl(x) ≥ 0, l=1, 2, . . . , n ⇒ T0(x) ≥ 0 (40)

is that there exist λ = col{λl ≥ 0, l = 1, 2, . . . , n} such that

F0 −
n�

l=1

λl Fl ≥ 0. (41)

Based on the Schur complement, we derive another equiv-
alent form of the performance constraint in (29), XTW X X +
UTWU U ≤ γ, ∀D ∈ D, as follows.

Theorem 1: Let g (U K , γ ) ∈ R
(1+3H N+H N)×(1+3H N+H N)

denote the following matrix associated with γ and U K

g(U K , γ ) =
⎡
⎣ γ Y T UT

K
Y W−1

X 03H N×H N

U K 0H N×3H N W−1
U

⎤
⎦ , (42)

where Y = G A x(k|k) + G BU K . Besides, let L ∈
R

(1+3H N+H N)×3H N and R ∈ R
3H N×(1+3H N+H N) denote the

following two matrices, respectively,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L =
⎡
⎢⎣ 1

03H N×1

0H N×1

⎤
⎥⎦ 1T

3H N×1,

R =
%
03H N×1, (GD + GB K )T , K T

&
.

(43)

The uncertain disturbance D can be decomposed as the form

D = �T13H N×1, (44)

where � ∈ R
3H N×3H N is a diagonal matrix whose diagonal

elements are equal to those in D, i.e., � = diag{D}. The
quadratic performance constraint XTW X X + UTWU U ≤
γ, ∀D ∈ D is equivalent to

g(U K , γ )+ L�R + RT�T LT � 0, ∀� ∈W, (45)

where W is similar to D, i.e., W = {� : |�| ≤ 1}.
Following Theorem 1, we further derive another result that

transforms the uncertain performance constraint into a robust
counterpart, i.e., a mathematically-tractable LMI form.

Theorem 2: If there exist a sequence of positive real num-
bers λl ∈ R+, l = 1, 2, . . . , 3H N , such that#

g(U K , γ )− LS(λ)LT RT

R S(λ)

$
� 0 (46)
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holds where λ = col {λl , l = 1, 2, . . . , 3H N} and S(λ) =
diag {λ}, the uncertain LMI in (45) always holds for � ∈W .

The proofs of Theorems 1 and 2 are given in Appendices B
and C, respectively. Besides, notice that we have

LS(λ)LT =
⎡
⎣1T

3H N×1λ 01×3H N 01×H N

03H N×1 03H N×3H N 03H N×H N

0H N×1 0H N×3H N 0H N×H N

⎤
⎦ . (47)

Substituting (47) into the results of Theorems 1 and 2, we can
further present the robust counterpart of the quadratic perfor-
mance constraint in a LMI form C2 as follows

C2 :

⎡
⎢⎢⎣

γ − 1T
3H N×1λ Y T UT

K 01×3H N

Y W−1
X 03H N×H N GK

U K 0H N×3H N W−1
U K

03H N×1 GT
K K T S(λ)

⎤
⎥⎥⎦ � 0.

(48)

D. Closed-Loop Robust Control Design

Using the robust counterparts of the state and control con-
straints and the performance constraint, C1 and C2, we finally
derive a robust counterpart model of (32) for designing the
closed-loop platoon control as follows

min
γ,K,U K ,β,λ

: γ

s.t. C1 and C2. (49)

It is seen from (49) that the semidefinite programming
model is a tractable convex optimization model. It can be
effectively solved by using some convex optimization tech-
niques such as the interior-point method and its various
variants [66]. Based on solving the model (49), we can design
the robust platoon control algorithm as detailed in Algorithm 1.
The implementation of the proposed control is also illus-
trated in Figure 1, which follows a centralized computation
paradigm. In the implementation framework, Vehicle 1, the
first platooning vehicle, is selected as a master node for the
coordination of the vehicle platoon. It takes responsibility for
solving the closed-loop min-max MPC platoon model (49)
and distributing the generated control to the other following
vehicles via vehicular wireless communications.

It is remarked that, since the coverage of one-hop vehicular
communication and the radio resources are usually limited in
reality, the number of vehicles supported by an inter-connected
platoon is not too large. For example, a proper platoon size
ranges from 5 to 10 in a real application scenario. Thus, the
complexity of (49) can be effectively coped with the cen-
tralized computation framework. Nevertheless, a distributed
MPC framework may be more appealing when considering
to deploy the platoon control in a large-scale system. Some
related works can be found in [46], [47], [62], while the
extension of the proposed closed-loop min-max MPC to a
distributed computation scenario is left as our future work.

V. RECURSIVE FEASIBILITY AND ISPS STABILITY

Let kx ∈ R
N×3N be a N × 3N real matrix and K X =

diag{kx , j = 0, 1, . . . , H − 1}. In fact, because a disturbance

Algorithm 1 Robust Control of Vehicle Platooning
Configure: The system parameters G A, GB , G D , W X ,

WU , the constraint sets X, U and D, and the
prediction time horizon H ;

1 Set k = 0; // this is an initial time slot index

/* This is a robust MPC implementation loop */

2 while Platooning control is not stopped do
/* Measure system state */

3 Measure the current system state x(k|k);
/* Obtain optimal gain matrices */

4 Solve (49) to obtain the optimal gain K∗ and U∗K ;
/* Disturbance synthesis */

5 Randomly sample D by following a uniform
distribution over the unit cube D;
/* Generate control signal */

6 Generate the control signal U∗ = K ∗D + U∗K ;
/* Implement control in a next time slot */

7 Implement the first control step u∗(k|k);
/* Update time index */

8 Update k ← k + 1;

feedback control can be equivalent to a state feedback con-
trol, the gain matrix kx always exists and is determined by
enforcing the relationship K X X = K ∗D+U∗K where K∗ and
U∗K are obtained from (49). Due to the positive definiteness
and symmetry of wx and wu , there correspondingly exist two
positive definite symmetric matrices P x and Pu such that wx ,
wu can be re-formulated as wx = PT

x Px and wu = PT
u Pu ,

respectively. Besides, the positive definiteness and symmetry
of V can also guarantee the existence of its inverse, V−1.
Using the above notations, we introduce the following lemma.

Lemma 4: There exists a robust positively invariant (RPI)
set depending on the terminal weight V for the model (10),
E(V ), such that E(V ) ⊆ X and 03N×1 ∈ int (E(V )).

The proof of Lemma 4 is provided in Appendix D. Accord-
ing the property of the RPI set E(V ), we can further have
x(k+ i+1|k) ∈ E(V ) for all i = 0, 1, . . . , H−1, x(k+ i |k) ∈
E(V ) and d(k+i |k) ∈ D. Let M K = M A+M B kx . We obtain
the result on the recursive feasibility and ISpS.

Theorem 3: Algorithm 1 is recursively feasible by enforc-
ing E(V ) as a terminal state constraint set, and the model (10)
in closed-loop with the min-max MPC control (49) is ISpS in
E(V ) if there exists a positive real number α > 0 such that
the following LMI holds⎡
⎢⎢⎢⎢⎣

V 03N×3N MT
K PT

x kT
x PT

u
03N×3N αMT

D M D MT
D 03N×3N 03N×N

M K M D V−1 03N×3N 03N×N

P x 03N×3N 03N×3N I3N×3N 03N×N

Pu kx 0N×3N 0N×3N 0N×3N I N×N

⎤
⎥⎥⎥⎥⎦ � 0. (50)

Appendix E details the proof of Theorem 3 above. From
this theorem, the recursive feasibility and the ISpS of the
perturbed platoon system (10) depend on the configuration
of the proposed min-max MPC model, wx , wu and V , and
the construction of the RPI terminal set E(V ). It is remarked
that these matrices can be determined off-line by empirical
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TABLE I

PARAMETER SETTINGS

analysis based on checking whether they can satisfy the
condition (50) in Theorem 3. E(V ) can also be constructed
by using the homothetic transformation approach [62] or the
outer approximation approach [67]. In our system model, one
simple type of E(V ) can be chosen as an ellipsoid with a
parameter ρx , i.e., letting E(V ) = {x ∈ X : xTV x ≤ ρ2

x }
where ρ2

x must exist and relies on the boundedness of x.

VI. PERFORMANCE EVALUATION

To conduct simulations, we consider a specific platoon
system with 5 actual vehicles (indexed from 1 to 5) and a
virtual vehicle as the leading reference (indexed by 0). In the
simulations, Algorithm 1 is implemented by jointly using the
MATLAB optimization modeling toolbox, YALMIP [68], [69],
and the general optimization solver, MOSEK [70], to solve the
proposed min-max MPC model (49). The system parameters
are given in Table I. Additionally, the simulation time is set
to 30 seconds. The trajectory profile of the virtual leading
vehicle is shown in Figure 2, which is treated as the reference
information for the first actual vehicle in the platoon. The
virtual leader is simulated to uniformly accelerate within the
first 6 seconds and then move at a constant velocity vdesired =
60 km/h after the uniform acceleration stage. The initial lon-
gitudinal positions of all the following vehicles are randomly
generated within [0, 500] (m) with the inter-vehicle spacing
of at least 30 m. The longitudinal velocity and acceleration of
the vehicles are initialized to zero. The velocity bounds are
specified as vmin = 0 m/s and vmax = 120/3.6 m/s for all the
vehicles.

A. Performance Verification

In Figure 3, we show the control inputs generated by our
robust MPC platoon controller. As can be seen, all the control
inputs {ui (t), i = 1, 2, . . . , 5} are strictly bounded within
the specified interval [−5, 5] (m/s3) even though they are
time-varying in response to the external disturbances. Figure 4
illustrates the longitudinal position, velocity, and acceleration

Fig. 2. The longitudinal position, velocity, acceleration, and control profiles
of a virtual leading vehicle (i.e., i = 0), which are treated as the reference
signals for the first actual platooning vehicle, i.e., vehicle i = 1.

Fig. 3. The control inputs of the vehicles with the designed robust MPC
platoon controller based on the causal disturbance feedback.

of the platooning vehicles under the robust MPC. It is seen
that the vehicles can stably form a platoon without any
chain collisions even in the presence of external disturbances.
In particular, the vehicles can stably track the desired velocity
vdesired after about 15 s. Their accelerations can always satisfy
the bounds [−3, 3] (m/s2) even under disturbances.

In Figures 5 and 6, we show the position and velocity
tracking errors between any two successive vehicles in the
platoon. It is found from Figure 5 that all the position tracking
errors can be reduced to near zero after about 6 s. The root
mean squared error (RMSE) of the position tracking errors
{pi−1(t) − pi (t) − (vi (t)�t + li−1), i = 1, 2, . . . , 5} during
the last 15 s is about 0.083692 m. More importantly, the per-
turbed platooning vehicles can always guarantee their position
errors above the allowable lower bound �p− = 0 m. This
indicates that the inter-vehicle spacing is always positive and
thus the chain collisions are strictly avoided. From Figure 6,
we can observe that the designed MPC platoon controller can
also robustly stabilize the platooning vehicles. Their velocity
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Fig. 4. The longitudinal position, velocity, and acceleration profiles of the
vehicles with the designed robust MPC platoon controller based on the causal
disturbance feedback.

Fig. 5. The longitudinal position errors of the vehicles with the designed
robust MPC platoon controller based on the causal disturbance feedback.

tracking errors are reduced to around zero, which have the
RMSE of about 0.13841 m/s during the last 15 s. Even though
they experience a relatively large error within [0, 10] (s), their
velocity tracking errors can be always bounded within the
feasible interval [−5, 5] (m/s) and converge to a sufficiently
small level after about 15 s.

B. Performance Comparison

To show the advantage of the proposed platoon con-
trol method, we further conduct simulations with different
types of external disturbances. Specifically, the disturbance
coefficient matrix M D is set to 0.5I5×5 ⊗ diag{[0, 0, 1]}
(Type I), 0.5I5×5 ⊗ diag{[0, 1, 1]} (Type II), and 0.5I5×5 ⊗
diag{[1, 1, 1]} (Type III), respectively, which can simulate
three types of external disturbances. In the Type I, the external
disturbance term only appears in the dynamics of each vehi-
cle’s acceleration variation, ȧi (t). In the type II, the external

Fig. 6. The longitudinal velocity errors of the vehicles with the designed
robust MPC platoon controller based on the causal disturbance feedback.

disturbance directly affects both of the velocity and accelera-
tion variations, v̇i (t) and ȧi (t). In the type III, the external
disturbance affects the dynamics of the position, velocity
and acceleration variations, ṗi(t), v̇i (t) and ȧi (t). The other
simulation parameters are set as in Table I. We compare our
proposed method with other two conventional approaches, i.e.,
the nominal MPC-based and the Linear Quadratic Gaussian
(LQG)-based platoon controllers. The nominal MPC approach
is implemented without considering the external disturbance
term, while the LQG controller is realized by integrating
a linear quadratic regulator and a Kalman filter based on
the state feedback. In the nominal MPC approach and the
LQG approach, the simulation parameters are configured as in
Table I. Additionally, the white process noise and measurement
covariances of the Kalman filter in the LQG platoon controller
are specified to I15×15 and 10−6 I15×15, respectively. The
simulation results are shown in Figures 7 to 9.

In Figure 7, it is obviously seen that increasing the effect
of the external disturbance can result in a larger perturba-
tion amplitude in the position tracking error e1,i (t). That
is, the perturbation amplitude of the position tracking error
with the disturbance type III is much larger than that with
the disturbance types I and II. However, the perturbation
amplitude of the position tracking error under our proposed
robust MPC platoon control (marked by Robust CDF-MPC)
is much smaller than that by the nominal MPC and the LQG
controllers. In particular, from the sub-figures in Figure 7,
our position tracking errors under different types of external
disturbances are always positive, i.e., ensuring e1,i(t) ≥ �p−
for all i . This indicates that the inter-spacing of the vehicles
can strictly ensure the platoon safety even when the system is
perturbed all the time. By comparison, the position tracking
errors of both the nominal MPC controller and the LQG
controller are fluctuating around �p−, which means that these
two control approaches cannot satisfy the state constraint.

Similarly, from Figure 8, it is observed that the perturbation
amplitude in the velocity tracking error e2,i (t) can also be
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Fig. 7. The longitudinal position errors of the vehicles with different platoon controllers under different disturbances.

enhanced by increasing the disturbance intensity. Nonetheless,
our robust MPC control can achieve the best stabilization
performance under different types of external disturbances.
In particular, even with the disturbance type III, our method
can drive the velocity tracking error e2,i (t) to converge to
almost zero and always guarantee �v− ≤ e2,i(t) ≤ �v+ for
all i . A larger error perturbation is experienced by the nominal
MPC controller during the last 15 s. The LQG controller
cannot ensure the constraint satisfaction during the first 10 s.

From Figure 9, it is also seen that the acceleration profiles
of all the platooning vehicles using the proposed control,
ai (t), can always be bounded within the allowable interval�
�a−,�a+

�
(m/s2). With the proposed MPC platoon control,

the vehicles’ accelerations can converge to a sufficiently small
domain centered at zero. By contrast, the nominal MPC has a

relatively large perturbation amplitude in the acceleration pro-
files during the last 10 s. With the LQG control, the platooning
vehicles have an unreasonable acceleration perturbation during
the first 5 s. Namely, the LQG control cannot satisfy the
acceleration bounds under external uncertain disturbances.

In addition, as the proposed min-max MPC control method
and the nominal MPC method are based on a constrained
optimization technique, we compare their execution efficiency
in terms of the computation time. Both the optimization-based
methods are implemented on a single computer with the
specific hardware conditions: Intel(R) Core(TM) i7-8750H
CPU @ 2.20GHz-2.21GHz and RAM 8.00 GB. Monte Carlo
simulations of both the control methods have been performed
with 100 replications per disturbance situation aforementioned.
The average computation time and the corresponding standard
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Fig. 8. The longitudinal velocity errors of the vehicles with different platoon controllers under different disturbances.

TABLE II

THE MEAN AND STANDARD DEVIATION OF COMPUTATION TIME FOR OUR

PROPOSED ROBUST MPC METHOD AND THE NOMINAL MPC METHOD

deviation under different control methods and disturbance
situations are summarized in Table II. By comparison, the
computation time taken by our robust MPC method per control
execution is about 38 ms on average under different types

of external disturbances, which is higher than that of the
nominal MPC method. This is logical and expected, since the
computational complexity of the robust min-max MPC method
is higher than that of the conventional MPC method. The main
reason is that the robust min-max MPC needs to additionally
solve the LMIs in a semidefinite programming problem in
order to deal with the external uncertain disturbances involved
in the system model. Nevertheless, it is also noticed that
the computation time of the robust min-max MPC method
is lower than the sample time (100 ms) configured for model
discretization. This implies that the execution efficiency of the
robust method is satisfactory and the robust control can be
practically realized for actual real-time computation.

Finally, to further verify the superior performance of our
proposed method in terms of system robustness, we conduct
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Fig. 9. The longitudinal acceleration profiles of the vehicles with different platoon controllers under different disturbances.

additional simulation experiments, in which the platoon is set
to a larger size, i.e., increasing the vehicle number to N = 10.
Moreover, the positions and velocities of the vehicles are
initialized by random perturbations of the equilibrium state.
That is, the initial space headway and initial velocity of each
vehicle in the platoon are non-zero and different from each
other’s. The reference velocity provided by the virtual leading
vehicle is specified to be time-varying, which is shown by the
curve of vdesired in Figure 11. In particular, the virtual leading
vehicle is considered to experience not only a normal driving
stage but also sudden acceleration and sudden deceleration
stages. In this way, both the emergent acceleration and braking
situations are simulated and experienced by the platooning
vehicles in order to sufficiently validate the proposed control
method. Besides, we take into account the impacts of exter-

nal uncertain disturbances on all the position, velocity and
acceleration state equations of each vehicle, and the external
disturbances of the vehicles are randomly time-varying and
heterogeneous. Simulation results are detailed in Figures 10
to 13.

The control inputs of the vehicles are depicted in Figure 10.
It is seen that the control input of each vehicle suddenly
decreases and increases at about t = 40 s and t = 80 s,
respectively. This is because the platooning vehicles need to
response to the emergent braking and acceleration of their
virtual leading vehicle at these two time instants. Due to
the existence of external random disturbances, the control
sequences of all the vehicles are perturbed. Nonetheless, the
control sequences are strictly bounded within the feasible
region [−5, 5] (m/s3). From Figure 11, it is observed that,
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Fig. 10. The control inputs of the vehicles with the designed robust MPC
platoon controller based on the causal disturbance feedback.

Fig. 11. The longitudinal position, velocity, and acceleration profiles of the
vehicles with the designed robust MPC platoon controller based on the causal
disturbance feedback.

by utilizing the proposed robust control method, all the vehi-
cles can track the time-varying desired velocity of the virtual
leading vehicle. The vehicles can asymptotically converge
to around the desired velocity profile even after the virtual
leading vehicle performs either emergent braking or emergent
acceleration. It is also recognized from 11 that, even in
the presence of external uncertain disturbances, the velocity
profiles of all the platooning vehicles can be strictly bounded
within the feasible region [0, 120/3.6] (m/s). At the same
time, the acceleration profiles of the vehicles are also guaran-
teed to be ranging within the allowable interval [−3, 3] (m/s2).

Fig. 12. The longitudinal position errors of the vehicles with the designed
robust MPC platoon controller based on the causal disturbance feedback.

Fig. 13. The longitudinal velocity errors of the vehicles with the designed
robust MPC platoon controller based on the causal disturbance feedback.

Figure 12 demonstrates the inter-vehicle spacing errors of
the vehicles in the platoon. It is seen that, due to the existence
of external random disturbances in all the state equations and
the emergent operations of the virtual leading vehicle, the
vehicles experience some certain overshoots of inter-vehicle
spacing errors within about [40, 90] s. In particular, the RMSE
of the inter-vehicle spacing errors of the whole platoon from
50 s to 80 s is about 33.4267 m on average. Nonetheless,
all the inter-vehicle spaces are maintained above zero, i.e.,
always ensuring the satisfaction of the position constraint
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e1,i (k) ≥ 0 for all i and k, which implies that the chain
collisions can be strictly avoided even under external severe
uncertainties. Besides, from Figure 13, we can see that the
errors in velocity tracking can asymptotically converge to
around zero after the initialization or even after the emergent
deceleration and acceleration of the virtual leading vehicle. For
example, even during the same interval when the platooning
vehicles experience serious overshoots in their inter-vehicle
spacing errors, i.e., [50, 80] (s), the RMSE of the velocity
tracking errors of the platoon is only about 0.068812 m/s on
average. Here, it should be remarked that the errors in both
the inter-vehicle spacing and velocity tracking can never be
zero since external random disturbances always exist in all the
position, velocity and acceleration states of the platoon system.
However, it can be seen that, even under both the effects of
the external disturbances and the emergent operations, these
errors can asymptotically converge and be stabilized near zero.
More importantly, the physical constraints are always satisfied
in this perturbed platoon system. It can be summarized that
the proposed control method can robustly realize vehicle
platooning and guarantee the physical constraint satisfaction.

VII. CONCLUSION AND FUTURE WORK

We have developed a min-max MPC in a closed loop with
the causal disturbance feedback for robust vehicle platoon-
ing subject to external uncertain disturbances. The min-max
MPC model mathematically maintains the convexity of the
semidefinite-relaxation transformation by incorporating the
disturbance feedback in a causal structure, such that it can
be efficiently solved by using current convex optimization
techniques. The proposed MPC method has also been proved
to be recursively feasible and input-to-state practically stable.
Simulations and performance comparisons have been con-
ducted to verify the effectiveness of the proposed method,
meanwhile demonstrating its advantage in robustly realizing
the platooning objective and satisfying the control constraints
against external disturbances. As future work, we will inves-
tigate a mixed vehicle platoon where both human-driven and
autonomous vehicles coexist. We will also extend the proposed
platoon control method to a distributed scenario and explore
novel robust modeling and optimization methods, where both
state and control can be mixed and optimal control sequences
are computed in a distributed manner.

APPENDIX A
PROOF OF LEMMA 1

For the l-th row of C , denoted by [C]l , it is obvi-
ous that max|x|≤1 {[C]l x} = max|x|≤1

'�
∀l� [C]l,l� [x]l�

( =�
∀l� [C]l,l�sign([C]l,l� ) = �[C]l�1, where [C]l,l� denotes the

l �-th element of [C]l and [x]l� is the l �-th element of x.
Applying the result for all the rows in the matrix C , we can
have max|x|≤1 {C x} ≤ col{�[C]l�1,∀l} = |C | 1.

APPENDIX B
PROOF OF THEOREM 1

For the simplicity of notation, let GK = GD+G B K . Apply-
ing the Schur complement in Lemma 2, we can immediately

obtain⎡
⎣ γ Y T + DT GT

K UT
K + DT K T

Y + GK D W−1
X 03H N×H N

U K + K D 0H N×3H N W−1
U

⎤
⎦ � 0, (51)

for all D ∈ D. Now, we separate the deterministic and the
uncertain terms from (51) above to derive⎡

⎣ γ Y T UT
K

Y W−1
X 03H N×H N

U K 0H N×3H N W−1
U

⎤
⎦

+
⎡
⎣01×3H N

GK

K

⎤
⎦ D

�
1 01×3H N 01×H N

�

+
⎡
⎣ 1

03H N×1
0H N×1

⎤
⎦ DT �03H N×1 GT

K K T
� � 0, (52)

for all D ∈ D. Substituting (44) into (52) can result in (45).
At this point, the theorem is proven.

APPENDIX C
PROOF OF THEOREM 2

To prove the theorem here, we first decompose the diagonal
matrix S(λ) into a weighed summation of a series of sub-
matrices Sl ST

l , l = 1, 2, . . . , 3H N , i.e.,

S(λ) =
3H N�
l=1

λl Sl ST
l , (53)

where Sl is a 3H N×1 unit column vector whose l-th element
is equal to 1 while the others are zeros.

According to the positive semi-definiteness, the uncertain
LMI in (45) is equivalent to

yT
1

�
g(U K , γ )+ L�R + RT�T LT

 
y1 ≥ 0 (54)

for all � ∈W , where y1 is any real column vector of a com-
patible dimension, i.e., y1 ∈ R

(1+3H N+H N)×1. In addition,
we let

y2 = �T LT y1 (55)

and thus obtain from (54)

yT
1 g(U, γ )y1 + yT

2 R y1 + yT
1 RT y2 ≥ 0. (56)

The inequality (56) can be further reshaped into the following
more compact form#

y1
y2

$T #
g(U K , γ ) RT

R 0

$ #
y1
y2

$
≥ 0. (57)

From (53), we notice that

ST
l �T = ST

l �T Sl ST
l , l = 1, 2, . . . , 3H N. (58)

Hence, we can combine (58) with the following

ST
l y2 = ST

l �T LT y1 (59)

to get

ST
l y2 = ST

l �T Sl ST
l LT y1, l = 1, 2, . . . , 3H N. (60)
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On the other side, since the uncertainty set W indicates
��Sl�2 ≤ 1 for all l, we can get

�Sl ST
l �T ≤ I3H N×3H N , l = 1, 2, . . . , 3H N. (61)

Notice ST
l Sl = 1 for l = 1, 2, . . . , 3H N . Multiplying (61)

with Sl ST
l LT y1 and applying (60) can further obtain�

Sl ST
l LT y1

 T
�Sl ST

l �T
�

Sl ST
l LT y1

 
=

�
yT

1 LSl ST
l �Sl

 �
ST

l �T Sl ST
l LT y1

 
= yT

2 Sl ST
l y2 ≤

�
Sl ST

l LT y1

 T �
Sl ST

l LT y1

 
= yT

1 LSl ST
l Sl ST

l LT y1 = yT
1 LSl ST

l LT y1 (62)

for l = 1, 2, . . . , 3H N . The inequality (62) is equivalent to#
y1
y2

$T #LSl ST
l LT 0

0 −Sl ST
l

$ #
y1
y2

$
≥ 0 (63)

for all l = 1, 2, . . . , 3H N .
From both (57) and (63), the theorem is equivalent to state

that (63) holds for any compatible y1 and y2 such that (57)
always holds, i.e., (63)⇒ (57). Based on the S-procedure in
Lemma 3, we can obtain a sufficient condition for ensuring
the implication as follows#

g(U K , γ ) RT

R 0

$
≥

3H N�
l=1

λl

#
LSl ST

l LT 0
0 −Sl ST

l

$
, (64)

which is indeed the result in (46) recalling the definition of
S(λ) in (53). Hence, the theorem is proven.

APPENDIX D
PROOF OF LEMMA 4

Recall that the external disturbance term D is considered to
be bounded within a finite set as D ∈ D, and the system state
X and the control sequence U are also bounded as X ∈ X

and U ∈ U, respectively. The boundedness of both the system
and its external disturbance indeed guarantees that the system
trajectory over the finite prediction horizon will be bounded as
well. Based on the boundedness and also as shown in [67], the
existence of a RPI set is held due to M A+M B kx being stable.
Furthermore, the approximation method proposed in [67] can
also be adopted to construct the RPI set E(V ).

APPENDIX E
PROOF OF THEOREM 3

To prove the recursive feasibility and the ISpS of the platoon
system (10) using the robust min-max MPC control (49),
we resort to the definition of ISpS and its theorem developed
in [71]. First, according to Lemma 4, we can have a RPI
set E(V ) for the controlled system and treat E(V ) as the
terminal constraint set for the system. The invariance of E(V )
guarantees the recursive feasibility, i.e., x(k + i + 1|k) ∈ X
since x(k + i |k) ∈ E(V ) ⊆ X for all i . Additionally, since
the quadratic function is used for the stage cost L(x, u) and
the terminal cost �(x), the boundedness of the cost functions
can also be met under the state and control bound constraints.

In the following, we only need to show that the controlled
system satisfies [71]

�(x(k + i + 1|k))−�(x(k + i |k))

≤ −L(x(k + i |k), u(k + i |k))

+ αdT(k + i |k)MT
D M D d(k + i |k)+�� (65)

for all d(k + i |k) ∈ D, where �� denotes a tolerant non-
negative offset, i.e., �� ≥ 0, that may exist in reality.

Applying the Schur complement in Lemma 2 to (50) can
yield the equivalent form#

V 03N×3N

03N×3N αMT
D M D

$
−
!

MT
K

MT
D

"
V
�
M K M D

�
−
#

PT
x

03N×3N

$
I3N×3N

�
Px 03N×3N

�
−
#

kT
x PT

u
03N×N

$
I N×N

�
Pu kx 0N×3N

� � 0. (66)

From (66), we can see that for any x ∈ X and d ∈ D�
xT dT� #V − wx − kT

x wu kx 03N×3N

03N×3N αMT
D M D

$ #
x
d

$

− �xT dT� #MT
K V M K MT

K V M D

MT
D V M K MT

D V M D

$ #
x
d

$
≥ 0. (67)

Substituting x = x(k + i |k) and d = d(k + i |k) into (67) and
recalling x(k + i + 1|k) = M K x(k + i |k) + M D d(k + i |k),
we can immediately get

�(x(k + i + 1|k))−�(x(k + i |k))

≤ −L(x(k + i |k), u(k + i |k))

+ αdT(k + i |k)MT
D M D d(k + i |k) (68)

for all d(k + i |k) ∈ D, which can make (65) held. Based on
Proposition 4.2 of [71], �(x) is indeed a local ISpS Lyapunov
function for the closed-loop system. The theorem is proven.

It is remarked that when �� is strictly zero, i.e., �� = 0,
the asymptotical stability of the system can be guaranteed in
the input-to-state stability (ISS) sense [71]. However, in prac-
tice, the trajectory of the Lyapunov function may not strictly
reach zero even under zero disturbance inputs. That is, �� is
usually not zero in practice. As stated in [71], ISpS is a weaker
property than ISS since it does not require zero disturbance
inputs, which makes it more suitable for practical application
scenarios. Therefore, we focus on the ISpS framework instead
of the ISS to characterize the closed-loop min-max MPC-based
system.
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