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Abstract—Federated Learning (FL) is expected to play a
prominent role for privacy-preserving machine learning (ML) in
autonomous vehicles. FL involves the collaborative training of a
single ML model among edge devices on their distributed datasets
while keeping data locally. While FL requires less communication
compared to classical distributed learning, it remains hard to
scale for large models. In vehicular networks, FL must be adapted
to the limited communication resources, the mobility of the edge
nodes, and the statistical heterogeneity of data distributions.
Indeed, a judicious utilization of the communication resources
alongside new perceptive learning-oriented methods are vital. To
this end, we propose a new architecture for vehicular FL and
corresponding learning and scheduling processes. The architec-
ture utilizes vehicular-to-vehicular(V2V) resources to bypass the
communication bottleneck where clusters of vehicles train models
simultaneously and only the aggregate of each cluster is sent
to the multi-access edge (MEC) server. The cluster formation is
adapted for single and multi-task learning, and takes into account
both communication and learning aspects. We show through
simulations that the proposed process is capable of improving
the learning accuracy in several non-independent and-identically-
distributed (non-i.i.d) and unbalanced datasets distributions,
under mobility constraints, in comparison to standard FL.

Keywords—Autonomous Driving; Clustering; Federated
Learning; Privacy; Vehicular Communication.

I. INTRODUCTION

Autonomous driving (AD) requires little-to-no human in-
teractions to build an intelligent transportation system (ITS).
Consequently, AD helps in reducing accidents caused by
human driving errors. Artificial intelligence (AI) plays an
essential role in AD by empowering several applications such
as object detection and tracking through machine learning
(ML) techniques [1, 2].

With the raise of AI research and deployment over the last
decade, the development of autonomous vehicles has seen sig-
nificant advancements. Indeed, vehicle manufacturers put a lot
of effort to deploy AI schemes aiming to achieve human-level
situational awareness. However, owing to technical difficulties
and several ethical and legal challenges, it is still challenging
for vehicles to achieve full autonomy. In fact, autonomous
vehicles need to fulfill strict requirements of reliability and
efficiency, and achieve high levels of situational awareness.
Vehicle manufacturers are deploying efforts to achieve these
goals. Autonomous vehicles will be capable of sensing their
network environment using embedded sensors and share in-
formation with other vehicles and equipment through wireless
communication. Autonomous vehicles can be equipped with
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LiDAR sensors, camera sensors, and radar sensors that collect
important amounts of data to share with the vehicular network.

With the prevalence of connected vehicles and the transition
toward autonomy, it is expected that vehicles will no longer
rely only on locally collected data for localization and opera-
tion. Instead, enhanced situational awareness can be attained
through exchanging raw and processed sensor data among
large networks of interconnected vehicles [3]. In contrast to
status data sharing, sensor data sharing becomes a pivotal
operation for different safety applications, such as HD map
building [4] and extended perception [5]. These data are also
necessary to produce or enhance ML models that will be
capable of performing AD tasks, such as dynamically adjusting
the vehicle’s speed, braking, and steering, by observing their
surrounding environment.

Nonetheless, extensive sensor data sharing raises alarming
privacy issues since vehicle sensor sharing involves sharing
raw and processed data among vehicles. These data expose
sensitive information about the vehicle, the driver, and the
passengers, and could be used in a harmful way by a ma-
licious entity. While privacy in vehicle status sharing has
been already been extensively addressed and regulated by
vehicle manufacturers—through a dynamic change of media
access control (MAC) address and data anonymization, these
regulations have not been extended to sensor data sharing.
Moreover, to attain fully AD and enhance the overall ML
models’ performance, the deployed ML/AI models in the
vehicle need to be updated and improved periodically by
original equipment manufacturers (OEM). This requires the
vehicles to upload the collected data to the OEMs, which
further violates data privacy. Indeed, when data is uploaded
to multi-access edge computing (MEC) [6, 7] servers, or to
the cloud, it may be subject to be malicious interception and
misuse.

Federated learning (FL)[8] has emerged as an attractive
solution for privacy-preserving ML. FL consists of the collab-
orative training of ML models among edge devices without
data-sharing, which makes it a promising solution for the
continuous improvement of ML models in AD. Indeed, with
FL, edge devices share their models parameters instead of
their private data and then the models are aggregated at MEC
servers to obtain a global accurate model.

When FL is used in a vehicular network context, a cen-
tralized entity (e.g., a MEC server) initializes a model and
distributes it among participant vehicles. Each vehicle then
trains the model using local data and sends the resulting model
parameters to the central entity for aggregation.

The predominant FL training scheme is a synchronous ag-
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gregation. Accordingly, the MEC server waits for all vehicles
to send their updates before aggregating them.

The assumption of FL is that the goal for participating end
devices (also called end users throughout the article) is to
approximate the same global function. Nevertheless, this is not
the case for non-i.i.d data, particularly in the case of competing
objectives, where a single joint model cannot be optimal for all
end devices simultaneously. Consequently, clustering [9, 10]
was proposed to group users with similar objectives and build
multiple versions of the trained model. However, these works
suppose the availability of all the end users and require their
participation in the training for cluster-formation. Therefore,
even if vehicle clustering for FL is interesting for the above
mentioned reasons, due to the high-speed mobility, Doppler
effect, and frequent handover (short inter-connection times),
not all vehicle updates can be collected at the MEC servers.
Further, due to the different mobility patterns, not all vehicles
can have strong signal quality with the MEC servers. As a
result, participating vehicles should be carefully selected and
communication must be efficiently scheduled.

Vehicle-to-vehicle (V2V) communication offers a new op-
portunity for FL deployment that bypasses the communication
bottleneck with the MEC server[11]. A cluster of vehicles
can collaboratively train models and a chosen cluster-head
can aggregate their updates so as only one model is sent to
the MEC server. To achieve this, two main questions need
to be addressed: how to adequately form FL clusters under
mobility constraints; and how to select the cluster-heads in
such settings.

In this article, we propose a cluster-based scheme for FL
in vehicular networks. The clustering scheme consists of
grouping vehicles with common characteristics, not only in
terms of direction and velocity, but also from a learning
perspective through the evaluation of the updates’ similarity.
Thus, the proposed scheme allows to accelerate the models’
training through ensuring (i) a larger number of participants
(ii) possibility to train several models to adapt to non-i.i.d and
unbalanced data distributions.

The main contributions of this article can be summarized
as follows:

1) we design an architecture and corresponding FL process
for clustered FL in vehicular environments;

2) we formulate a joint cluster-head selection and resource
block allocation problem taking into account mobility and
data properties;

3) we formulate a matching problem for cluster formation
taking into account mobility and model preferences;

4) we prove that the cluster-head problem is NP-hard and
we propose a greedy algorithm to solve it;

6) we evaluate the proposed scheme through extensive sim-
ulations.

The remainder of this article is organized as follows: In
Section II, we present the background for FL and related work.
In Section III, we present the design of the learning process
and considered system model components. In Section IV, we
formulate the cluster-head selection and vehicle association
problems, and we present the proposed solution. Simulation

TABLE I: List of Notations.

Notations Description
𝑇𝑘 Rate of stay of vehicle k
𝑇 𝑜𝑡𝑎𝑙𝑅𝐵 Total available resource blocks
𝑠 Model size
𝜖 Number or local epochs
𝑔 Global model
\𝑘 Model update of vehicle k
𝑡 𝑡𝑟𝑎𝑖𝑛
𝑘

Training time for vehicle k
𝑟𝑘 Achievable data rate of vehicle 𝑘
𝑡
𝑢𝑝

𝑘
Upload time for vehicle k

𝑃𝑘 Transmit power of vehicle 𝑘
𝑁0 Power spectral density of the Gaussian

noise
|𝐷𝑘 | vehicle 𝑘’s dataset size
𝐼𝑘 Data-diversity of vehicle k
𝑅𝑘,ℎ Relationship of vehicles k and h

results are presented in Section V. At last, conclusions and
future work are presented in Section VI.

II. BACKGROUND

In this section, we first present a background on FL and
challenges tackled in this paper, then we present related work
that enables and motivates our work.

A. Federated Learning

FL is a privacy-preserving distributed training framework,
which consists of the collaborative training of a single ML
model among different participants (e.g.,IoT devices) on their
local datasets. The training is an iterative process that starts
with the global model initialization by a centralized entity
(e.g., a server). In every communication round i , a selected
subset of N participants receive the latest global model \𝑡 .
Then, every participant k trains the model by performing
multiple iterations of stochastic gradient descent (SGD) on
minibatches from its local dataset 𝐷𝑘 . The local training
results in a several weight-update vectors Δ\𝑡+1

𝑘
, which are

sent to the server. The last step is the model aggregation at the
server, which is typically achieved using weighted aggregation
[8] following Eq.1. The process is then repeated until the
model converges.

\𝑡+1 = \𝑡 +
𝑁∑︁
𝑘=1

|𝐷𝑘 |
|𝐷 | Δ\

𝑡+1
𝑘 (1)

While this aggregation method takes into account the un-
balanced aspect of datasets’ size, it is not always suitable for
non-i.i.d distributions. Furthermore, FL in wireless networks
in general, and in vehicular networks in particular, is subject
to the following challenges:
Statistical heterogeneity: One of the underlying challenges
for training a single joint model in FL settings is the presence
of non-i.i.d data. For instance, some nodes only have access
to data from a subset of all possible labels for a given task,
while other nodes may have access to different input features.
Furthermore, varying preferences for instance can lead to
concept shift (i.e., nodes classify same features under different
labels, or vice-versa). In practice, these non-i.i.d settings are
highly likely to be present in a given massively distributed
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dataset. Thus, training models under these settings requires
new sets of considerations.

Partial Participation: Given the scarcity of the communi-
cation resources, the number of participating nodes is limited.
In fact, the generated traffic grows linearly with the number
of participating nodes and the model size. Moreover, the het-
erogeneity of the nodes in terms of computational capabilities
and mobility (i.e., velocity and direction) introduces stringent
constraints on the communication. Hence, enabling FL on the
road in a communication-efficient way is far from an easy
task.

B. Related Work

Several works consider FL as a key enabler for vehicular
networks in general, and AD in particular [12], such as secure
data sharing [3], Autonomous Controllers [13], caching [14],
and travel mode identification from non-i.i.d GPS trajecto-
ries [15]. Nonetheless, deploying FL on the road remains a
challenging task due to uncertainties related to mobility and
communication overhead. To overcome the communication
bottleneck, works [16, 17, 18] have proposed judicious node
selection and resource allocation for efficient training. How-
ever, these schemes are specifically designed for the topology
and dynamics of standard wireless/cellular networks with high
node density but relatively low mobility. In contrast, vehicular
networks have rather low node density and very high node
mobility [19]. As a result, new schemes are required for FL
on the road. Meanwhile, V2V communication offers a new
possibility for FL deployment that bypasses the bottleneck
of communication with the MEC server[20, 21]. In vehicular
networks, some vehicles serve as edge nodes to which neigh-
boring nodes offload computation and data analysis tasks [22].
Edge vehicles are also used to provide a gateway functionality
by ensuring continuous availability of diversified services such
as multimedia content sharing [23]. A common practice among
such works is creating clusters of vehicles where the edge
vehicle acts as a cluster head. The clusters are formed based on
several metrics such as the distance between the vehicles, their
velocity and direction. Yet, these clustering schemes cannot
be directly exploited in the context of FL. Recent VANET
clustering works principally design algorithms based on their
primary application [24, 25, 26, 27]. This is a logical approach
since the design of a clustering algorithm highly influences
the performance of the application for which it is used. A
popular approach for cluster head selection widely used in
the literature [25, 28, 29] requires each vehicle to calculate
an index quantifying its fitness to act as a cluster head for
its neighbours. Vehicles wishing to affiliate with a cluster
head rank all neighbours in their neighbour table and request
association with the most highly-ranked candidate node. The
index is calculated as a weighted sum of several metrics, such
as the degree of connectivity and link stability, with weights
chosen depending on the importance of the considered metrics.
However, due to the nature of FL applications, metrics related
to learning/data should also be considered.

Furthermore, clustering is already used in FL as a means
to accelerate the training by grouping nodes with similar

optimization goals, which train different versions of the model
instead of one global model [9, 30, 10, 31]. In fact, one of
the fundamental challenges in FL is the presence of non-i.i.d
and unbalanced data distributions [32, 33]. These challenges
go against the premise of FL which aims to train one global
model. Such settings require new mechanisms to be put in
place in order to ensure models’ convergence. Clustered FL
has attracted several research efforts, as it has generalization
[34] and convergence [31] guarantees under non-i.i.d settings.
By creating different models to adapt to different end users’
distributions, clustered FL allows better model performance
in the case of concept-shift. Concept-shift [10] occurs when
different inputs do not have the same label across users as
preferences vary. Moreover, in clustered FL, training becomes
resilient to poisoning attacks [35] such as label flipping [36]
(i.e., nodes misclassify some inputs under erroneous labels).

For instance, authors in [9], develop a clustered FL proce-
dure. Their work allows to find an optimal bipartitioning of the
users based on cosine similarity for the purpose of producing
personalized models for each cluster. The bipartitioning is
repeated whenever FL has converged to a stationary point.
In [10], a single clustering step, in a predetermined commu-
nication round, is introduced. In this step, all the users are
required to participate and the similarity of the updates is used
to form clusters using hierarchical clustering. Nonetheless,
the proposed approach requires knowing a distance threshold
on the similarity values between the updates to form the
clusters. Furthermore, cluster-based approaches assume that
all the users participate, which is unfeasible under dynamic
and uncertain vehicular networks.

To the best of our knowledge, our work is the first to address
the problem of clustered FL in hierarchical mobile architec-
tures, while considering the users’ data distributions, wireless
communication characteristics, and resource allocation con-
straints. Specifically, unlike other studies, we consider the
learning aspect (i.e., nodes dataset characteristics and model
dissimilarities), in addition to communication constraints (i.e.,
wireless channel quality, mobility, and communication la-
tency). Henceforth, we propose a practical way to deploy FL
in vehicular environments.

III. SYSTEM MODEL

We consider a vehicular network composed of a set 𝑉 of 𝐾
vehicles and a set 𝑈 of 𝑁 gNodeBs. Both the communication
among vehicles and with the gNodeBs are through wireless
links. Additionally, gNodeBs are connected to the Internet via
a reliable backhaul link. The vehicles have enough computing
and storage resources for the training, and the gNodeBs are
equipped with MEC servers. MEC servers are used to schedule
the vehicles nearby, aggregate the updates and manage the
clusters. In the following, we explain the proposed cluster-
based training process and the different components of the
considered system model (i.e., communication and computa-
tion) in a vehicular environment.

A. Process Overview
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Fig. 1: Illustration of the different steps in clustered vehicular federated learning

FL in vehicular networks is subject to several challenges
related to data, mobility, and communication and computation
resources. In this paper, we consider these aspects in the design
and optimization of the FL process in vehicular networks.

The first set of challenges are related to data, where the
learning process should be adapted to take into account data
heterogeneity in order to accelerate the model convergence.
Data generated across different applications in vehicular net-
works depend on the specific vehicle sensors and these sen-
sors’ data acquisition activities which often leads to heteroge-
neous data distributions among FL participants (i.e., different
dataset sizes and different data distributions). Furthermore, the
dependence on data acquisition activities from vehicles with
similar sensing capabilities makes the collected data highly
redundant. As a result, local datasets cannot be regarded the
same in terms of information richness, as some datasets may
have more diverse and larger datasets than other participants.
Furthermore, communication resources in this context are
limited. In fact, in addition to the bandwidth’s scarcity, the
possible time for communication with the MEC server is
limited by the time where a vehicle is in the area covered by
the base station. For all these reasons, the participant selection
and the bandwidth allocation mechanisms should be carefully
designed for FL in vehicular networks. Hence, in this article,
we use the data properties to guide the participants’ selection
in the training and communication process.

Furthermore, the model convergence speed is highly depen-
dent on the number of collected updates. Vehicle-to-vehicle
(V2V) communication offers a great alternative to bypass the
communication bottleneck in vehicular networks by allowing

some select vehicles to act as mediators between other vehicles
and the MEC server. We propose to use V2V in order to
maximize the collected updates under the communication
uncertainty.

In these perspectives, we propose to prioritize the vehicles
with the most informative datasets and use them as cluster
heads, while the remainder of the vehicles are associated
with them. In this setting, each cluster-head aggregates the
models of the vehicles in its cluster and uploads the resulting
model. In fact, instead of sending all the collected updates,
the cluster-head will aggregate the updates and send one
aggregated model which is more communication-efficient. In
this case, hierarchical FL is used as a means to optimize the
communication in vehicular networks, where the MEC server
will do a second round of aggregation.

Another aspect that needs to be considered is mobility and
how it affects the communication among vehicles and with
the MEC server. In order for the cluster-heads to successfully
upload their models to the MEC server, the upload should
be completed before the vehicles leave the coverage area of
the BS. Furthermore, for the vehicles to be able to send their
models to the cluster-head, their link lifetime (LLT) should be
longer than the required time for training and uploading the
models.

In order to adapt this approach to the case where multiple
models need to be trained, other considerations need to be
taken into account in this approach. In fact, in the case
where data distributions are subject to concept-shift, a single
model is not enough. Concept-shift is another kind of data
heterogeneity that arises in cases where data is subjective and
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depends on the preferences of end users, or in the presence
of adversaries. In classification problems for instance, concept
shift is when similar inputs have different labels depending on
the end user. In the case of vehicles, the latter could simply
not share the same model if they are not from the same
OEM. The presence of different perspectives from different
vehicles makes one model hard to fit all. In our paper, we use
hierarchical clustering through evaluating the model updates
and their cosine similarity. The clustering can be executed on
a predetermined communication round or when the model’s
convergence slows down. The newly created models will be
used to associate each vehicle to the most adequate cluster-
head. The same model can be trained among several clusters
as such redundancy is worthwhile when it comes to system
robustness in the case of user dropout, and it also helps the
model’s convergence through collecting more updates.

All in all, to address the challenges linked to mobility
and data heterogeneity, we design a mobility-aware scheme
for clustered FL, that takes into account the data and model
heterogeneity. The data heterogeneity is mainly considered in
the selection of cluster-heads, while the model heterogeneity is
used to create new models and in matching vehicles to cluster-
heads. In the following subsections, we start with detailing
the overall learning model, then we present the mathematical
formulation of its different aspects. We detail the steps of the
clustered vehicular FL training procedure, then we give the
formulations of the different metrics used in the procedure.

B. Learning Model

A summary of the process is given in Algorithm 1, and
more details of the scheme are given as follows:
• Step 1 (Publish FL model and requirements, and receive

feedback ) : A global model is published by the MEC
server, alongside its data and computation resource re-
quirements (e.g., data types, data sizes, and CPU cycles).
Each vehicle k satisfying the requirements sends positive
feedback, in addition to other information such as its data
diversity index 𝐼𝑘 (see Eq. 2) and current velocity 𝑣𝑘 .

• Step 2 (Select and schedule cluster-heads H): The MEC
server chooses the cluster-heads according to the received
information. The selection is based on the dataset char-
acteristics (i.e., quality of the dataset and the quantity of
the samples), defined in subsection III-B1, in addition
to the state of the wireless channel and the projected
duration of the communication reflected by the rate of
stay (See Eq. 5). In fact, the quality of local dataset
directly determines the quality and the importance of
model updates, while the velocity and the state of the
wireless channels determine whether the model update
can be received during the communication round. The
details about the data evaluation are given in subsection
III-B1 , and the algorithm (Algorithm 2) is explained in
Section IV-A.

• Step 3 (Clusters formation): After cluster-head selection,
the set of the remaining vehicles NH are matched to
cluster-heads (set H). The matching requires that the sum
of training and upload time of vehicle k is less than

the Link Lifetime (LLT) (defined in Eq. 8) between k
and h ∈ H if they are to be matched. Furthermore, the
matching aims to maximize the weighted sum of 𝑅𝑘,ℎ .
𝑅𝑘,ℎ symbolizes the relationship between k and h, and
its definition changes depending on whether there is only
one global model or several versions (See Eq.4). In the
simple case of a single joint model, the clustering depends
only on the mobility and accordingly for all the pairs
𝑘 ∈ 𝑁𝐻, ℎ ∈ 𝐻 the value of 𝑅𝑘,ℎ = 1. Otherwise, each
vehicle should train its preferred model. The preference
is defined as the accuracy of the model trained by h on
the local data of k. This definition is due to the fact that
not all vehicles can participate in the updates clustering
step (See Step 5).

• Step 4 (Model broadcast and training) : The model is
broadcasted to the participants, where each vehicle trains
on its local data for 𝜖 local epochs, before sending the
update to the corresponding cluster-head. Each cluster-
head then aggregates the received models and sends the
update to the MEC server, which in its turn aggregates
the global updates of the clusters. Such hierarchical FL
aggregation is widely adopted in the literature of FL
[37, 38] and allows for more participation. Aggregating
the updates at the MEC server level is required because
each model version can be trained within several clusters,
resulting in several global models. Such redundancy is
necessary in the case of vehicular networks, as it allows
more robustness to client drop-out.

• Step 5 (Updates Clustering and Preference Evaluation): If
the global model does not converge after several commu-
nication rounds, or the goal accuracy is not attained, we
perform a communication round (or several communica-
tion rounds) involving a large fraction of the vehicles on
the global joint model. This step requires the collection of
the updates at the MEC server without prior aggregation
by cluster-heads as the aggregated models would mask
the divergence of the different models. The updates are
used to judge the similarity (defined in Eq.3) between
participants using the hierarchical clustering algorithm. It
is employed to iteratively merge the most similar clusters
of participants up to a maximum number of clusters
defined by the OEM. Fixing the maximum number of
clusters allows to create clusters without prior knowledge
of the possible distances between updates, while con-
trolling the number of models in circulation. Once the
clusters are created, new models are generated through
aggregation. The models are broadcasted to the available
vehicles. Each vehicle evaluates the models on its local
data and send them back to the MEC server. These
values are later used to evaluate 𝑅𝑘,ℎ for each vehicle k.
The resulting models are then trained independently but
simultaneously using the same process. This preferences’
evaluation makes the difference between our work and
previous work in clustered FL, as these works necessitate
the participation of all the nodes, while in our work we
tolerate partial participation.

The iterations and the steps’ order are illustrated in Fig.1.



6

Algorithm 1 Clustered Vehicular Training procedure
1: for i ∈ [1 . . . imax] do
2: if 𝑖 = 1 then
3: Step 1:
4: initialize or download the newest model’s param-

eters at the MEC server
5: initialize the number of models with 1
6: Publish model and training requirements
7: end if
8: Step 2: Receive vehicles information (transmit power,

available data size, dataset diversity, CSI, velocity, pre-
ferred model)

9: Schedule cluster-heads 𝐻 using Algorithm 1
10: Step 3: Assign the remainder of vehicles (i.e., 𝑁𝐻)

to clusters using Algorithm 2
11: Step 4:
12: for vehicle 𝑘 ∈ 𝑁𝐻 do
13: k receives model \t
14: k trains on local data 𝐷𝑘 for 𝜖 epochs
15: k sends updated model \𝑡+1

𝑘
to MEC server

16: end for
17: for cluster head ℎ ∈ 𝐻 do
18: h trains on local data 𝐷ℎ for 𝜖 epochs
19: h receives model updates from vehicles in its

cluster
20: h aggregates the model and sends new global

model to MEC server
21: end for
22: Step 5:
23: if 𝑖 = 𝑡𝑐 then
24: At step 𝑖 = 𝑡𝑐 MEC server evaluates the similarities

of the received models
25: MEC server creates clusters based on the simi-

larities and computes new global models using weighted
average

26: nodes receive new global models and evaluate their
preferences

27: end if
28: aggregate updates
29: start next round i← i + 1
30: end for

Next, we present the formulations of the different elements
in the system model, starting with the learning aspects (i.e.,
dataset charasteristics and models similarity), to the different
mobility and communication aspects considered throughout
the proposed approach.

1) Dataset characteristics: Considering the fact that
datasets are non-i.i.d and unbalanced, a judicious cluster-head
selection (Step 2) is necessary. In fact, each dataset can be
characterized by how diverse its elements are, its size and how
many times the model was trained on it (i.e., age of update). In
this paper, we focus on the non-i.i.d and unbalanced aspect,
however, other metrics can be considered depending on the
learned task, including the quality of the datasets and their
reliability. We set the value of each metric as [39]: 𝜑 𝑗𝛾 𝑗 ,
where 𝛾 𝑗 is the adjustable weight for each metric assigned

by the server and 𝜑 𝑗 is the normalized value of the metric j.
Using the aforementioned characteristics, the diversity index
of dataset at node 𝑘 can be defined as:

𝐼𝑘 =
∑︁
𝑗

𝜑 𝑗 ,𝑘𝛾 𝑗 , (2)

with 𝑗 ∈ {elements diversity, dataset size, age}. The metric
can be easily adjusted to include other task-specific consid-
erations.

2) Updates similarity: In order to handle the non-i.i.d
aspect, the updates’ similarity is evaluated using cosine sim-
ilarity [9, 10] in Step 5 of the algorithm, and new models
are created by aggregating the most similar models. Given
two model updates Δ\𝑘 and Δ\𝑙 , the similarity is calculated
according to:

𝑠𝑖𝑚(𝑘, 𝑙) = 〈Δ\𝑘 ,Δ\𝑙〉‖\𝑘 ‖ ‖\𝑙 ‖
(3)

where 〈., .〉 is the dot product of two vectors. The dot product
is divided by the product of the two vectors’ lengths (or
magnitudes). The values of 𝑠𝑖𝑚(.) are between 0 and 1, and the
dissimilarity (i.e., cosine distance metric) 1− 𝑠𝑖𝑚(.) is used to
cluster the updates. The cosine distance metric is invariant to
scaling effects and therefore indicates how closely two vectors
(and in our case updates) point in the same direction. The
models’ similarity is then used to created clusters using the
hierarchical clustering algorithm [10], and the most similar
models are aggregated to create new models.

3) Vehicles Relationships: During the cluster formation in
Step 3, each cluster is created based on the relationship be-
tween the vehicles. The definition of this relationship depends
on whether only one global model is trained, or there are
several versions of the model that are created. In the case
of multiple models, we define the preference of a model
through its accuracy on the 𝑘th vehicle’s dataset. We define
the relationship between two vehicles 𝑅𝑘,ℎ as follows:

𝑅𝑘,ℎ =

{
accuracy of ℎ if more than 1 model

1 otherwise (4)

C. Communication Model

In Step 2, due to mobility and communication constraints,
the RB allocation is jointly executed with the cluster-head se-
lection. In fact, the mobility imposes a deadline for the upload
based on the standing time of the vehicle. Additionally, in Step
3, the cluster formation must also consider the relationship
between the vehicles in terms of mobility, which is modelled
through the link lifetime (LLT). The different aspects of the
communication model are formulated as follows:

1) Standing time: While typically in FL, the duration of
a communication round is fixed by the centralized entity
(e.g., MEC server), the latency in FL in vehicular networks
is dictated by the standing time of participating nodes. Let
the diameter of coverage area of a gNodeB be denoted as D.
For each vehicle k, the standing time in the coverage area of
current gNodeB is defined by Eq. 5 [14]:

𝑇𝑘 =
𝐷 − 𝑥𝑘
𝑣𝑘

(5)
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To ensure the communication with the gNodeB, the rate of
standing time of a vehicle k selected as cluster-head should
respect (𝑡𝑡𝑟𝑎𝑖𝑛

𝑘
+ 𝑡𝑢𝑝

𝑘
+ 𝑇𝑎𝑔𝑔 + 𝛿) ≤ 𝑇𝑘 . Where 𝑡𝑡𝑟𝑎𝑖𝑛

𝑘
and 𝑡𝑢𝑝

𝑘

are the estimated training time and upload time of vehicled 𝑘
respectively, 𝑇𝑎𝑔𝑔 is the time required for aggregation and 𝛿 is
a waiting time for the updates’ collection. We can notice that
what varies the most among the vehicles are 𝑡𝑡𝑟𝑎𝑖𝑛

𝑘
and 𝑡

𝑢𝑝

𝑘
,

as 𝑡𝑡𝑟𝑎𝑖𝑛
𝑘

depends on the size of the dataset, and 𝑡𝑢𝑝
𝑘

depends
on the channel gain and the resource block allocation.

2) Resource Blocks: For each vehicle k, we can infer the
maximum 𝑡

𝑢𝑝

𝑘
by setting (𝑡𝑡𝑟𝑎𝑖𝑛

𝑘
+ 𝑡𝑢𝑝

𝑘
+ 𝑇𝑎𝑔𝑔 + 𝛿) = 𝑇𝑘 . As

a result, we can determine the minimum required data rate
𝑟𝑘,𝑚𝑖𝑛 to send an update of size s within a transmission time
of 𝑡𝑢𝑝

𝑘
as follows:

𝑡
𝑢𝑝

𝑘
=

𝑠

𝑟𝑘,𝑚𝑖𝑛
. (6)

The achievable data rate of a node k over the RB q is defined
as follows:

𝑟
𝑞

𝑘
= 𝐵 log2 (1 +

𝑃𝑘𝐺𝑘,𝑞

𝑁0
) (7)

where B is the bandwidth of a RB, 𝑃𝑘 is the transmit power of
node k, and 𝑁0 is the power spectral density of the Gaussian
noise. The data rate of a vehicle is the sum of the datarates
on all the RBs assigned to it.

3) Link Lifetime: In Step 3, in order to associate a vehicle
𝑘 ∈ 𝑁𝐻 to a cluster-head ℎ ∈ 𝐻, it is necessary to evaluate
the sustainability of the communication link, so as to ensure
that the update of the node k will be successfully sent to h.
Link Lifetime (LLT) [40] defines the link sustainability as the
duration of time where two vehicles remain connected. LLT
is defined in [40, 41, 42] by Eq. 8, for two vehicles k and
h moving in the same or opposite directions. Assuming that
the trajectory of all vehicular nodes to be a straight line, as
the lane width is small, the y-coordinate can be ignored. We
denote the positions of k and h by 𝑥𝑘 and 𝑥ℎ , respectively.

𝐿𝐿𝑇𝑘,ℎ =
−Δ𝑣𝑘ℎ × 𝐷𝑘ℎ + |Δ𝑣𝑘ℎ | × 𝑇𝑅

(Δ𝑣𝑘ℎ)2
(8)

with Δ𝑣𝑘ℎ = 𝑣𝑘 − 𝑣ℎ and 𝐷𝑘ℎ = 𝑥𝑘 − 𝑥ℎ and TR denotes the
transmission range. Accordingly, the training time of k and
upload time from k to h must be less or equal to 𝐿𝐿𝑇𝑘ℎ (i.e.,
(𝑡𝑡𝑟𝑎𝑖𝑛
𝑘

+ 𝑡𝑢𝑝,ℎ
𝑘
) ≤ 𝐿𝐿𝑇𝑘ℎ .

IV. PROBLEM FORMULATION & PROPOSED SOLUTION

A. Problem Formulation

Considering the collaborative aspect of FL and the com-
munication bottleneck, we define the following goals for the
cluster-head selection and cluster association:

• From the perspective of accelerating learning and max-
imizing the representation, the scheduled cluster-heads
must have diverse and large datasets, as a result the goal
of cluster-head selection is:

max
ℎ,𝛼

𝐾∑︁
𝑘=1

ℎ𝑘 𝐼𝑘 . (9)

• In order to guarantee that each vehicle trains its preferred
model, the cluster assignment can be defined as a match-
ing problem where we aim to maximize the relationship
𝑅𝑘,ℎ .

max
𝑚

∑︁
ℎ∈𝐻

∑︁
𝑣∈𝑁𝐻

𝑅𝑣,ℎ𝑚𝑣,ℎ (10)

Several constraints related to communication are imposed
by the vehicular environment. Consequently, the first problem
considered is a joint cluster-head selection and RB allocation.
For each vehicle k and RB q we define 𝛼𝑘,𝑞 as:

𝛼𝑘,𝑞 =

{
1 if 𝑞 is assigned to k
0 otherwise (11)

The cluster-head selection and RB allocation problem is
formulated as follows:

maximize
ℎ, 𝛼

𝐾∑︁
𝑘=1

ℎ𝑘 𝐼𝑘 (12a)

subject to
(𝑡𝑡𝑟𝑎𝑖𝑛𝑘 + 𝛿 + 𝑡𝑢𝑝

𝑘
+ 𝑇𝑎𝑔𝑔)ℎ𝑘 ≤ 𝑇𝑘 , ∀𝑘 ∈ [1, 𝐾],

(12b)
𝐾∑︁
𝑘=1

𝛼𝑘 ≤ 𝑇𝑜𝑡𝑎𝑙𝑅𝐵, ∀𝑘 ∈ [1, 𝐾], (12c)

ℎ𝑘 ∈ {0, 1}, ∀𝑘 ∈ [1, 𝐾] . (12d)

Taking into account the results from the previous problem,
we define 𝐻 = {𝑘, ℎ𝑘 = 1} (i.e., the cluster-heads) and 𝑁𝐻 =

{𝑘, ℎ𝑘 = 0} (i.e., the remainder of the vehicles). The next step
is matching the set of vehicles 𝑁𝐻 to selected cluster-heads 𝐻.
We consider that a maximum capacity 𝑁𝑚𝑎𝑥 is fixed for each
cluster in order to reasonably allocate the V2V communication
resources. Additionally, if a vehicle v is to be matched with
a cluster-head, it needs to respect the time constraints, where
it should be able to finish training and uploading before a
deadline 𝑇ℎ = 𝑡𝑡𝑟𝑎𝑖𝑛

ℎ
+𝛿, and the 𝐿𝐿𝑇𝑣, ℎ should at least outlast

the training and upload. We define 𝑚𝑣,ℎ as a binary variable
equal to 1 if 𝑣 is matched with ℎ and 0 otherwise. Accordingly,
we define the second problem as follows:

maximize
𝑚

∑︁
ℎ∈𝐻

∑︁
𝑣∈𝑁𝐻

𝑅𝑣,ℎ𝑚𝑣,ℎ (13a)

subject to∑︁
ℎ∈𝐻

𝑚𝑣,ℎ ≤ 1, ∀𝑣 ∈ 𝑁𝑆, (13b)∑︁
𝑣∈𝑁𝐻

𝑚𝑣,ℎ ≤ 𝑁𝑚𝑎𝑥 , ∀𝑣 ∈ 𝑁𝑆, (13c)

(𝑡𝑡𝑟𝑎𝑖𝑛𝑣 + 𝑡𝑢𝑝𝑣 )𝑚𝑣 , ℎ ≤ 𝐿𝐿𝑇𝑣,ℎ , ∀𝑣 ∈ 𝑁𝐻, (13d)

(𝑡𝑡𝑟𝑎𝑖𝑛𝑣 + 𝑡𝑢𝑝𝑣 )𝑚𝑣 , ℎ ≤ 𝑇ℎ , ∀𝑣 ∈ 𝑁𝐻, (13e)
𝑚𝑣,ℎ ∈ {0, 1}, ∀𝑣 ∈ 𝑁𝐻. (13f)

B. Proposed Algorithm

In this section, we present our proposed solution for cluster-
head selection and RB allocation alongside the matching
algorithm to solve (12) and (13). The challenging aspect of the
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problem (12) is that it requires maximizing the weighted sum
of the selected vehicles and jointly allocating the bandwidth.
A restricted version of problem (12) can be shown to be
equivalent to a knapsack problem and thus it is NP-hard [43].
In fact, the problem aims to select vehicles that maximize
the weighted sum

∑
𝑘 𝐼𝑘ℎ𝑘 subject to a knapsack capacity

given by
∑
𝑘 𝛼𝑘 ≤ 𝑇𝑜𝑡𝑎𝑙𝑅𝐵 in constraint (12c), which can

be transformed to
∑
𝑘 𝛼𝑘ℎ𝑘 ≤ 𝑇𝑜𝑡𝑎𝑙𝑅𝐵 where 𝛼𝑘 represent

the weight of item 𝑘 (fixed for this restricted version) and
𝑇𝑜𝑡𝑎𝑙𝑅𝐵 represents the knapsack capacity. Thus, the problem
is equivalent to a knapsack problem and since the latter is
NP-hard, so is problem (12). Constraint (12b) can be verified
for each vehicle to filter out the ones that cannot upload the
updates in time.

We chose to follow a greedy knapsack algorithm to solve the
problem. In fact, we chose the greedy approach because it will
allow us to select the best candidates with an optimal RB cost,
unlike the ranked list solution, which would have optimized
the sum of 𝐼𝑘 only [44]. Furthermore, the greedy knapsack
algorithm has low complexity and will allow fast and efficient
scheduling under the rapidly changing vehicular environment.
We calculate the minimum required RBs for each vehicle k
to be able to send the update by the deadline 𝑇𝑘 , which we
consider the cost of the scheduling 𝑐𝑘 =

∑
𝑞∈𝑅𝐵𝑠 𝛼𝑘,𝑞 . The

main time consuming step is the sorting of all vehicles in
a decreasing order based on their diversity value / cost in
RBs ratio. After the vehicles are arranged as an ordered list,
the following loop takes 𝑂 (𝑛) time. Taking into account that
the worst-case time complexity of sorting can is 𝑂 (𝑛 log 𝑛),
the total time complexity of the proposed greedy algorithm is
𝑂 (𝑛 log 𝑛).

The second formulated problem (13) is a maximum
weighted bipartite matching problem [45, 46], where each
ℎ ∈ 𝐻 has a maximum capacity 𝑁𝑚𝑎𝑥 and each 𝑣 ∈ 𝑁𝐻

has a capacity of 1.
In order to include the remainder of the constraints, we

define Z𝑣,ℎ as a binary value, where Z𝑣,ℎ = 0 if constraint (13d)
cannot be satisfied if 𝑚𝑣,ℎ = 1, and Z𝑣,ℎ = 1 otherwise. The
goal is redefined so as to maximize a weighted sum of 𝑅𝑣,ℎ ×
Z𝑣,ℎ . The problem becomes an integer linear program (ILP)
and solved using an off-the-shelf ILP solver (e.g., Python’s
PulP [47]).

To illustrate the problem, we consider the example in Fig.2.
The vehicles and their relationships can be considered as
a graph, where the vehicles represent the edges and their
relationship is represented through the vertices, which are
weighted with 𝑅𝑣,ℎ×Z𝑣,ℎ . The goal is to find a subgraph where
the selected vertices have an optimal (in our case maximum)
sum. The remaining constraints are the maximum capacities of
the vehicles (in red). The cluster-heads (in yellow, on the right)
have a maximum capacity 𝑁𝑚𝑎𝑥 = 3 each (Constraint 13c),
and the other vehicles have capacity of 1 (Constraint 13b). In
the illustrated problem, the pairs 𝑣2, ℎ2 and 𝑣3, ℎ1 cannot be
matched since the edges ( in dashes lines ) have null values,
which can be either due to possible disconnection or of poor
model performance. The choice of the optimal matching is
then left among the remaining pairs. The optimal solution for
the illustrated problem in yellow lines has a sum of 3.0.

Fig. 2: Illustration of the Matching problem

We define our Algorithm 2, Clustered Vehicular FL (CVFL)
that iteratively selects nodes with best ratio 𝐼𝑘

𝑐𝑘
to be cluster

heads, and then matches the rest of the vehicles to them
after verifying the time constraints by creating clusters that
maximize

∑
ℎ∈𝐻

∑
𝑣∈𝑁𝐻 𝑅𝑣,ℎ × Z𝑣,ℎ .

V. PERFORMANCE EVALUATION

A. Simulation Environment and Parameters

The simulations were conducted on a desktop computer
with a 2,6 GHz Intel i7 processor and 16 GB of memory
and NVIDIA GeForce RTX 2070 Super graphic card. We used
Pytorch [48] for the machine learning library. In the following
numerical results, each presented value is the average of
multiple independent runs.

Datasets: We used benchmark image classification datasets
MNIST [49],a handwritten digit images, and Fashion-
MNIST [50], grayscale fashion products dataset, which we
distribute randomly among the simulated devices. MNIST
and FashionMNIST constitute simple yet flexible tasks to test
various clustered settings and data partitions. Each dataset
contains 60,000 training examples and 10,000 test examples.
The data partition is designed specifically to illustrate various
ways in which data distributions might differ between
vehicles. The data partition we adopted is as follows: We
first sort the data by digit label, then we form 1200 shards
composed of 50 images each. Each shard is composed of
images from one class, i.e. images of the same digit. In the
beginning of every simulation run, we randomly allocate a
minimum of 1 shard and a maximum of 30 shards to each of
the K vehicles. This method of allocation allows us to create
an unbalanced and non-i.i.d distribution of the dataset, which
is varied in each independent run.
Furthermore, in order to evaluate the updates’ clustering and
how adequate is the preferences’ evaluation, we partition the
vehicles’ indexes into 𝑁𝑠ℎ𝑖 𝑓 𝑡𝑠 groups. For each group two
digit labels are swapped. For instance, one group might swap
all digits labelled as 1 to 7 and vice versa. The swapped
tuples are: {(1, 7), (3, 5)} for MNIST and {(1, 3), (6, 0)} for
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Algorithm 2 Clustered Vehicular Federated Learning (CVFL)
Input A queue of K vehicles total available resource

blocks 𝑇𝑜𝑡𝑎𝑙𝑅𝐵;
Output 𝛼, ℎ = [ℎ1, . . . , ℎ𝐾 ];

1: // Cost Evaluation
2: for 𝑘 = 1, . . . , 𝐾 do
3: 𝑟𝑘 = 0, 𝑐 = 1;
4: order the RBs using 𝑟𝑘 , 𝑞;
5: while 𝑟𝑘 ≤ 𝑟𝑘,𝑚𝑖𝑛 and 𝑐 ≤ 𝑇𝑜𝑡𝑎𝑙𝑅𝐵 do
6: 𝑞∗ ← arg max𝑞∈𝑍 𝐺𝑘,𝑞;
7: 𝑟𝑘 ← 𝑟𝑘 + 𝑟𝑘,𝑞;
8: 𝑐 ← 𝑐 + 1;
9: 𝑐𝑘 ← 𝑐;

10: end while
11: end for
12: return 𝐶 = [𝑐1, . . . , 𝑐𝐾 ]
13: // RB Allocation
14: order vehicles according to their ratio (𝐿 = [ 𝐼𝑘

𝑐𝑘
∀𝑘])

decreasingly;
15: for 𝑘 = 1 . . . 𝐾 do ℎ𝑘 ← 0;
16: end for
17: 𝐴← 𝑍;
18: 𝑘 ← arg max(𝐿);
19: while 𝐴 ≠ ø do
20: order the RBs using 𝑟𝑘 , 𝑞;
21: while 𝑟𝑘 ≤ 𝑟𝑘,𝑚𝑖𝑛 and 𝑐 ≤ 𝑇𝑜𝑡𝑎𝑙𝑅𝐵 do
22: 𝑞∗ ← arg max𝑞∈𝐴𝐺𝑘,𝑞;
23: 𝑟𝑘 ← 𝑟𝑘 + 𝑟𝑘,𝑞;
24: 𝛼𝑘,𝑞 ← 1;
25: 𝐴← 𝐴 \ {𝑞};
26: end while
27: ℎ𝑘 ← 1;
28: end while
29: return ℎ and 𝛼
30: // Matching
31: Use ℎ to form 𝐻 and 𝑁𝐻 sets;
32: Infer values of 𝑅𝑘,ℎ∀𝑘 ∈ 𝑁𝐻, ℎ ∈ 𝐻;
33: Estimate 𝐿𝐿𝑇𝑘,ℎ∀𝑘 ∈ 𝑁𝐻, ℎ ∈ 𝐻;
34: verify time constraints and calculate Z ;
35: Solve matching problem using Maximum weight bi-partite

matching algorithm [45] using off the shelf solver such as
Python’s PulP [47].

36: Uniformly allocate the RBs of V2V links to the associated
vehicles.

FashionMNIST [51]. Each group is then evenly distributed
to 𝐾

𝑁𝑠ℎ𝑖 𝑓 𝑡𝑠
. This partition allows us to test the proposed

algorithm’s ability to train models in the presence of concept
shift and unbalanced data. The test set is divided into 𝑁𝑠ℎ𝑖 𝑓 𝑡𝑠
datasets and the average accuracy is then reported.

FL Parameters:
We consider 𝐾 = 30 vehicles collaboratively training multi-
layer perceptron (MLP) model with two hidden layers (64
neurons in each), and a convolutional neural network (CNN)
model with two 5x5 convolution layers (the first with 10

channels, the second with 20, each followed with 2x2 max
pooling), two fully connected layers with 50 units and ReLu
activation, and a final softmax output layer. We use lightweight
models as they can be realistically trained on end-devices in
rapidly changing environments. For each participant, due to the
mobility of the vehicles and in order to collect a maximum
number of updates, it is more practical to choose a small num-
ber of local epochs, as a result, in the following simulations,
the number of local epochs is set to 𝜖 = 1. In the preliminary
evaluations, the maximum number of communication rounds
is 𝑖𝑚𝑎𝑥 = 30. The clustering is set in round 25. 𝑡𝑘,𝑡𝑟𝑎𝑖𝑛 for
each vehicle is calculated locally using our configuration.

B. Preliminary evaluations: Parking Lot Scenario

In this part of the evaluations, we focus on the learning
aspect by studying the proposed algorithm in less constrained
environment.

1) Simple unbalanced and non-i.i.d distribution: In this
part of the simulation, we ignore the constraint of LLT in
problem (13) as the velocities are set to 0. The results in Fig.3
show that a significant improvement is reached through the
use of V2V communication. With more participation, we also
noticed that the training tends to be more stable with the loss
function steadily declining in comparison to standard FL. Fur-
thermore, higher accuracy scores are achieved by our proposed
method.While the average local accuracy after the end of the
training the MLP on MNIST is 80% ± 10%for vanilla FL, it
reaches and average of 82%± 9% for our proposed approach.
Similarly, on FashionMNIST the results 66.79% ± 10% with
vanilla FL and 68.74%± 9%. Owing to its high suitability for
image processing tasks, the CNN model yielded higher results
as the vanilla FL reached 94.58% ± 7% and our proposed
method achieved 95.5%± 5%. Such results can be considered
as a baseline values in perfect conditions for the subsequent
experiments as we can reflect on the robustness of CVFL under
mobility and concept-shift. Based on these preliminary results,
we expect to see more differences and variance in the results
for the MLP model compared to the CNN model. We also
can expect a better performance for the MLP model on the
MNIST dataset compared to FashionMNIST.

2) Unbalanced and non-i.i.d distribution with concept shift:
The presence of concept-shift requires the clustering phase
in order to improve the final results. In these simulations,
we fixed the number of maximum clusters to 2, and studied
the effect of partial participation on the clustering. Given the
presence of concept shift for 4 out of 10 digits, we expect the
accuracy to be around 60%.

To study the effect of the fraction of participants in the
partial clustering phase , we run multiple independent runs for
each fraction in {20%, 60%, 100%}. The results are shown in
Fig.4. For both vanilla FL and the proposed partial clustering
approach, the number of participants in each round is 6. For the
standard FL, the average accuracy is 65%, while For 20% the
average 68% (+3%) and for 60% the average is 69% (+5%). It
should be noted that the dissimilarity of the updates is harder
to detect as only 2 out of 10 digits are swapped for each group.
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Fig. 3: Preliminary results on non-i.i.d and unbalanced data without concept-
shift

TABLE II: Generated Values

Vehicle Antenna height 1.5m
Vehicle antenna again 3dBi
Shadowing distribution Log-normal

Shadowing standard deviation 3 db
Noise power 𝑁0 -114 dBm

Fast fading Rayleigh fading
Transmit Power 0.1 Watt

Vehicles generation model Spatial Poisson Process
Velocities generation model Truncated Gaussian

Model Size 160 kbits
Bandwidth/ RB 180 Khz

𝑁𝑚𝑎𝑥 2
Total RBs 4

𝛿 2s

C. Freeway scenario

We consider that the 𝐾 = 30 vehicles are randomly
distributed on 6 lanes on a radius 𝐷 = 2𝑘𝑚. The vehicular
communication model parameters and mobility are based on
parameters in [52] and are summarized in Table II. The
velocities of vehicles are assumed to be i.i.d, and they are
generated by a truncated Gaussian distribution. In contrast
to the normal Gaussian distribution or constant values, the
truncated Gaussian distribution is more realistic for modelling
vehicles’ speed as it can generate different values in a certain
limited range. This assumption is widely adopted in many
state-of-the-art works of vehicular networks [14]. The lower
and upper bounds for the velocity values on the 3 lanes going
in the same direction are (60, 80), (80, 100), (100, 120)𝑘𝑚/ℎ.

1) Key Performance results: In this part of the evaluation,
we vary the model size and the number of RBs in order to
evaluate how the CVFL algorithms adapts to different training
and upload requirements. We evaluated how the number of
selected cluster-heads and how the total number of participants
change in each scenario. We also evaluated how the average
running time of the matching algorithm when the number of
participants varies.

Table-III shows the average number of cluster-heads se-
lected in each communication round and Table-IV shows

the average number of participants in each communication
round. It is clear from the results that the number of RBs
is the defining factor of the number of cluster-heads and
consequently the number of participants. The results also show
that the proposed algorithm can safely scale up to handle large
models or more local epochs in the case of small models.

TABLE III: Average Number of cluster heads in each communication round

Model Size in Kbits
Number of RBs 160 320 640

2 2.43 ± 0.26 2.39 ± 0.30 2.39 ± 0.24
3 4.13 ± 0.57 4.056 ± 0.51 4.216 ± 0.48
4 5.565 ± 0.69 5.504 ± 0.71 5.568 ± 0.54

TABLE IV: Average Number of participants in each run

Model Size in Kbits
Number of RBs 160 320 640

2 7.28 ± 0.80 7.16 ± 0.91 7.168 ± 0.74
3 12.26 ± 12.05 1.36 ± 0.51 12.44 ± 1.39
4 16.00 ± 1.46 15.81 ± 1.47 16.04 ± 1.24

TABLE V: Average Running time of the matching algorithm

Number of vehicles Average CPU time (s)
25 0.02
50 0.03
75 0.03

100 0.03
125 0.04

Calculating the analytical expression of time complexity of
the ILP-based algorithm used for the matching is not obvious
since the low-level implementation details of the solver are
not available to us. However, we evaluated the running time
in different settings with varying the number of nodes to
see how it scales with large number of participants. The
average running time values in seconds on our machine are
summarized in Table-V. In general, the matching algorithm
can easily handle large pools of participants without high
impact on the execution time.

2) Effect on the accuracy: To study the proposed approach
in a mobility scenario, we first studied a simple case of
unbalanced and non-i.i.d distribution, then we stress tested
CVFL under concept-shift. The number of available RBs in
each communication round is limited to 4, and the simulations
were conducted for 𝑖𝑚𝑎𝑥 = 50 communication rounds.

Fig. 5 shows the results for unbalanced and non-i.i.d distri-
bution in the mobility scenario.

Owing to larger numbers of participants (see Table IV),
higher accuracy values are obtained across the experimnents.
CVFL achieves accuracy of 87%±4% in contrast to 85%±5%
for the standard FL under the same settings training MLP
model on MNIST, and the CNN model achieves similar results
for both CVFL (95%±5%) and vanilla FL (94%±7.5%). The
average accuracy values on FashionMNIST is 69.66% ± 9%
for CVFL and 66.46%±10% for vanilla FL. The larger values
of the standard deviation of the results in vanilla FL across the
experiments in this case is possibly due to the smaller number
of participants in each round compared to CVFL where almost
half of the vehicles train their models which provides more
consistency throughout the experiments.
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Fig. 4: The importance of the fraction of the participants in the clustering step under concept-shift

Fig. 5: Evaluation of CVFL when the relationship is defined through mobility only

Fig. 6: Evaluation of CVFL under concept shift

The second set of simulation runs are on unbalanced and
non-i.i.d distribution with concept shift. Fig.6 shows how the
models performed under these conditions in a freeway setting.
Overall, accuracy values are significantly less than the obtained
values in datasets where there is not concept shift. More
specifically, the average accuracy of the MLP model achieved
in the 50th round on MNIST dataset is 68%±9% in contrast to
65% ± 7% for vanilla FL. The CNN model yielded identical
results for CVFL (80% ± 9%) and vanilla FL (80% ± 5%).
The larger values of the standard deviations in CVFL are
due to the fact that resulting models after clustering often
perform differently on the test sets. The concept-shift appears
to affect the accuracy on FashionMNIST in a higher level, as

the accuracy drops to around 55% for both CVFL and vanilla
FL. In contrast to the previous experiments, the difference
is low in later rounds because only a small fraction of
users participate in the clustering step. This can be overcome
though the introduction of more communication rounds on the
same version of the model in order to collect more updates.
Additionally, the gaps in accuracy values are high in the earlier
rounds of communication before the clustering round. The
reason for the gap’s narrowing is that new models are created
and a smaller number of clients train the same model. As the
number of clients training the models in each round constitutes
a key factor for the convergence speed, we suspect that it might
be the reason.
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VI. LIMITATIONS AND FUTURE WORK

Through this work, we have identified several potential
future research directions and open issues that are worthwhile
being explored.
• Large-scale collaboration: Extending the proposed

model to take into account handover between base sta-
tions etc in order to enable continuous training throughout
vehicles’ trips and reduce lost updates. Furthermore, fully
decentralized training can be implemented for areas with
low coverage, while also taking into consideration model
convergence.

• Adversarial attacks and outliers: The updates’ clus-
tering is useful to detect local models that diverge from
the majority of the received updates. This step can be
furthered exploited to eliminate outliers and adversaries.
Additionally, due to the collaborative and hierarchical
nature of the proposed approach, trust among vehicles and
reliability of their models can be further enhanced through
traceability and incentive/punishment mechanisms [53].

• Experimental values: Set thresholds concerning LLT
and rate of stay through experimental/ real data traces.
Other values related to training can also be adjusted
dynamically, such as the number of local epochs and the
batch size.

• Enhance Privacy: While FL can provide some privacy
concerning the raw data of each user, the model updates
can be reverse-engineered to reveal sensitive information
about the users. Several techniques such as Differential
privacy can be used to enhance the privacy-preservation
in FL in vehicular environments.

VII. CONCLUSION

In this paper, we have investigated the problem of clustered
FL in vehicular networks. We aimed to fill the gap between
clustering in vehicular networks and clustering in FL by de-
signing a mobility-aware learning process for clustered FL. In
the proposed architecture, we consider the v2v communication
as an asset to overcome the communication bottleneck of FL
in vehicular networks. Accordingly, in each communication
round, a subset of vehicles are selected to act as cluster-heads,
and the remainder of vehicles are matched the them. The
selection favors vehicles with diverse datasets and good wire-
less communication channels with the gNodeB. Furthermore,
clustering based on the similarity of the updates is introduced
to subdue the slow convergence of single joint FL model in
non-i.i.d settings, especially in the presence of concept-shift.
This step leads to the creation of new models which are sent
to the non-participants and newly joint vehicles, who will
evaluate them and score their preferences of these models.
The resulting preference values are used to match each vehicle
to their preferred model (cluster-head). Both the cluster-head
selection and cluster matching are formulated as optimization
problems with learning goals and mobility constraints. We
have proposed a greedy algorithm for the selection and RB
allocation of cluster-heads, and a maximum weighted bipartite
matching algorithm for the cluster formation. Simulations
show the efficacy of using V2V communication to accelerate

the learning as well as the importance of clustering based
on updates to control concept shift. In the future, we aim to
make the proposed approach resilient to outliers and malicious
attacks such as false data injection.
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