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Adaptive Robust Control for Pointing Tracking of
Marching Turret-Barrel Systems: Coupling,

Nonlinearity and Uncertainty
Qinqin Sun , Xiuye Wang , Guolai Yang, Ye-Hwa Chen , and Fai Ma

Abstract— Pointing tracking control of marching turret-barrel
system is one of the important topics in exploration of intelligent
ground combat platform. This paper focuses on an adaptive
robust control scheme for pointing tracking of marching turret-
barrel system driven by a motor and an electric cylinder. Three
types of possibly fast time-varying but bounded uncertainty are
considered: system modeling error, external disturbance and
road excitation. The uncertainty bounds are not necessary to
be known. First, the pointing tracking system is constructed
as a coupled, nonlinear and uncertain dynamical system with
two interconnected (horizontal and vertical) subsystems. Second,
a tracking error e is defined as a gauge of control objective, and
then the dynamical equation of the pointing tracking system
is built in state-space form. Third, for uncertainty control,
a comprehensive uncertainty bound α is derived to measure
the most conservative influence of the uncertainty, and then an
adaptive law is proposed to evaluate it in real time. Finally, for
pointing tracking control, an adaptive robust control is proposed
to render the pointing tracking system to be practically stable;
thereout, the objective of pointing tracking is achieved. This work
should be among the first ever endeavours to cast all the coupling,
nonlinearity and bound-unknown uncertainty into the pointing
tracking framework of marching turret-barrel system.

Index Terms— Intelligent ground combat platform, turret-
barrel system, intelligent control, pointing tracking, uncertainty,
adaptive robust control.
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I. INTRODUCTION

DRIVEN by intelligent technology, the intelligent devel-
opment of ground combat platform has attracted much

attention, while intelligent control for pointing tracking of
marching turret-barrel system is one of the important topics.
Pointing tracking system of turret-barrel system involves a
linkage control of the concatenated turret and barrel on a
vehicle platform. In the past, the turret and the barrel are
driven respectively by a set of motor servo system and a set
of electrohydraulic servo system to rotate around the rotating
shafts of the turret and the trunnion [1], [2]. However, with the
development of intelligent and pure electric weapons, in recent
years, the barrel tends to be driven by electric cylinder instead
of electrohydraulic servo system. It is frankly to say that,
future pointing tracking system may be a coupled system
of mechanical, motor, electric cylinder and control system.
Meanwhile, nonlinearity (such as change of fluid direction,
friction, et al.) and uncertainty (such as modeling error, dis-
turbance, et al.) are inevitable in the pointing tracking sys-
tem [3]. By this, for pointing tracking control, the pointing
tracking system should be taken as a coupled, nonlinear and
uncertain dynamic system.

The pointing tracking problem usually can be cast into a
position adjustment control problem of keeping the barrel at
a desired position, or a trajectory tracking control problem of
driving the barrel to follow a desired fire control command.
At present, the existing pointing tracking strategies are mainly
designed based on a simple linear time-invariant system model
and relatively classical control theory (such as the well-known
PID control) [4]–[6], such that cannot effectively handle the
coupling, non-linearity and uncertainty of the pointing tracking
system. Although some efforts [1], [2], [7]–[10] on uncertainty
management in pointing tracking control design have been
done, they mainly refer to simple constant uncertainty. By this,
more explorations on coupling dynamics modeling and control
as well as uncertainty control in pointing tracking problem are
expected. In this sense, exploring an effective way to handle
all the coupling, nonlinearity and uncertainty in the process of
pointing tracking control for marching turret-barrel system is
the critical motivation of this work.

In recent years, some modern control theories such as adap-
tive control, sliding mode control, and fuzzy control have been
applied on pointing tracking of turret-barrel system [7]–[10].
However, they usually simplify the dynamics model of the
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pointing tracking system as a linear transfer function, and
ignore the coupling relationships between the mechanical
structure, the power-driven system and the control system;
thereout, the resulted control strategies are usually not opti-
mal. Although some current works gradually concern on
the coupling characteristic of the pointing tracking system
[11]–[14], they are limited to dynamical analysis and mod-
eling, and have not been developed in control design. As a
pioneer work, this paper formulates the pointing tracking sys-
tem as a coupled nonlinear dynamic system with possibly fast
time-varying but bounded uncertainty. By this, constructing
the dynamic model of the pointing tracking system under the
consideration of all the coupling, nonlinearity and uncertainty
is the first branch of the motivation of this work.

Many approaches [15]–[24] have been proposed in the field
of uncertainty control. Li et al. [25] proposed a finite-time
controller for a class of uncertain nonlinear systems by apply-
ing the method of adaptive neural networks control, mean-
while, they [26] also proposed another type of control method
of observer-based fuzzy adaptive inverse optimal output feed-
back control for uncertain nonlinear systems. Liu et al. [27]
developed an adaptive control method for a class of uncertain
strict-feedback switched nonlinear systems. All the above
studies have given effective methods for uncertainty control,
and each method has its own characteristics. However, in the
field of pointing tracking, the existing control approaches
usually can only deal with uncertainty with known bound.
However, in practical problem such as pointing tracking, the
uncertainty bound may be difficult to be determined. In recent
years, Chen et al. [28]–[31] have done some innovative works
on control of uncertainty with unknown bound. It is expected
to handle such kind of bound-unknown uncertainty in pointing
tracking. Along this way, this paper constructs a comprehen-
sive uncertainty bound α to measure the most conservative
influence of the uncertainty, and then proposes an adaptive
law to evaluate it in real time, based on which an adaptive
robust control is then proposed to render the pointing tracking
system to be practically stable. By this, proposing a novel
control scheme to handle uncertainty with unknown bound in
pointing tracking control for marching turret-barrel system is
the second branch of the motivation of this work.

The main contributions of this paper are threefold. First,
a coupled nonlinear dynamic model for the pointing tracking
system of marching turret-barrel system with bound-unknown
uncertainty is constructed. Second, an adaptive law is proposed
for uncertainty control to evaluate a comprehensive uncertainty
bound α, such that the most conservative influence of the
uncertainty is overcame. It is worth emphasizing that the
uncertainty may be nonlinear (possibly fast) time varying but
bounded and the bound is unknown. Third, an adaptive robust
control is proposed to render the pointing tracking system to be
practically stable; thereout, the pointing tracking is achieved
under the consideration of all the coupling, nonlinearity and
uncertainty.

Meanwhile, the originality of this paper can be summarized
as the follows. First, it does the first effort that gives out a cou-
pled dynamic model of the controlled object (i.e., the marching
turret-barrel system) and the control actuator (i.e., the motor

Fig. 1. A marking turret-barrel system.

servo system and the electric cylinder system) in pointing
tracking. Second, it can specially handle rather complex uncer-
tainty in pointing tracking control, which may be nonlinear
(possibly fast) time varying but bounded and the bound is
unknown. Third, it gives out a comprehensive way to handle
the coupling, nonlinearity and uncertainty in pointing tracking
of marching turret-barrel system.

II. DYNAMICAL MODEL OF POINTING TRACKING SYSTEM

We now formulate the dynamical model of pointing tracking
system in turret-barrel system. It is composed of a horizontal
mechanical system driven by motor (i.e., the turret-motor
subsystem) and a vertical mechanical system driven by electric
cylinder (i.e., the barrel-electric-cylinder subsystem).

A. Marching Turret-Barrel System

First, we focus on a marching turret-barrel system that is
abstracted from the marching tank gun. Shown as Fig. 1,
it consists of a rotating base (turret) with a tilting arm (barrel)
attached to the base, where θ̂1,2 = θ1,2 + θ̄1,2 are the angular
positions of the turret load and the barrel load respect to the
base space, θ1,2 are the angular positions of the turret load
and the barrel load (i.e., the horizontal and vertical pointing
angles) respect to the joint space, and θ̄1,2 are the horizontal
and vertical angular position fluctuation resulted from the road
excitation. The dynamical model of the turret-barrel system
can be described as [32]

(
1

2
m1 R2

1 + m2 R2
1 + m2 R1 R2 cos θ2(t)

+ 1

3
m2 R2

2 cos2 θ2(t))θ̈1(t)-(m2 R1 R2 sin θ2(t)

+ 1

3
m2 R2

2 sin (2θ2(t)))θ̇1(t)θ̇2(t)+ d1(t) = τ1(t), (1a)
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1

3
m2 R2

2 θ̈2(t)+ 1

2
m2 R1 R2 sin θ2(t)θ̇

2
1 (t)

+ 1

6
m2 R2

2 sin (2θ2(t)) θ̇
2
1 (t)+ 1

2
m2 g̃ R2 cos θ2(t)

+ d2(t) = τ2(t), (1b)

where t ∈ R is the time, τ1,2(t) ∈ R are the torque inputs,
d1,2(t) ∈ R are the external disturbances, m1 is the mass of
turret, m2 is the mass of barrel, R1 is the radius of turret, R2 is
the length of barrel, and g̃ is the gravitational constant.

Remark: The state of the turret-barrel system is coupled
with a horizontal state θ1 and a vertical state θ2.

B. Horizontal Pointing Tracking System

The horizontal pointing tracking system can be seen as a
mechanical system driven by motor that includes the turret
and the motor. Considering the fact that the armature current
dynamics can be neglected resulting from the small value of
armature inductance, the dynamical model of the motor can
be expressed as [33]:

J υ̇m(t) = Ta(t)− Bmυm(t)− Tm(t), (2)

Ta(t) = ktum(t)− keυm(t), (3)

where υm(t) ∈ R is the angular velocity of the motor,
Ta(t) ∈ R is the motor torque, Tm(t) ∈ R is the gear input
torque, um(t) ∈ R is the control input voltage, J is the moment
of inertia of the motor, Bm is viscous damping coefficient of
the motor, kt and ke are the constants of the motor torque and
the electromotive force.

Due to the fact that gears exist to transfer the torque from
the motor to the turret, the backlash nonlinearity between gears
is generally given as

τ1(t) = NTm (t)+ dt (t), (4)

where τ1 is the gear output torque (i.e., actually the torque
input on the turret described as (1a)), N is the gear ratio, and
dt (t) ∈ R is the transmission error. Taking Ta as (3), Tm as (4),
υm = N θ̇1 and υ̇m = N θ̈1 into (2), yields

J N2θ̈1 = kt Num − ke N2 θ̇1 − Bm N2 θ̇1 − τ1 + dt . (5)

Focusing on τ1, and taking it into (1a), a lengthy but straight-
forward algebra shows that the dynamic equation of the
horizontal pointing tracking system can be expressed as

θ̈1(t)

= (
1

2
m1 R2

1 + m2 R2
1 + m2 R1 R2 cos θ2(t)

+ 1

3
m2 R2

2 cos2 θ2(t)+ J N2)−1(m2 R1 R2 sin θ2(t)

+ 1

3
m2 R2

2 sin (2θ2(t)))θ̇1(t)θ̇2(t)-(
1

2
m1 R2

1 + m2 R2
1

+ m2 R1 R2 cos θ2(t)+ 1

3
m2 R2

2 cos2 θ2(t)+ J N2)−1

× (ke N2 + Bm N2)θ̇1(t)+ kt N(
1

2
m1 R2

1 + m2 R2
1

+ m2 R1 R2 cos θ2(t)+ 1

3
m2 R2

2 cos2 θ2(t)+ J N2)−1um(t)

Fig. 2. Transmission schematic diagram and installation location of the
electric cylinder.

− (1

2
m1 R2

1 + m2 R2
1 + m2 R1 R2 cos θ2(t)

+ 1

3
m2 R2

2 cos2 θ2(t)+ J N2)−1(d1(t)− dt (t)). (6)

Remark: The dynamic equation of the horizontal pointing
tracking system is derived from the horizontal dynamics (1a)
of the turret-barrel system and the dynamics of motor (2). It is
nonlinear and contains the information of both the turret-barrel
system and the motor; hence, a nonlinear coupled system.

C. Vertical Pointing Tracking System

The vertical pointing Tracking system can be seen as a
mechanical system driven by electric cylinder that includes
the barrel and the electric cylinder system. The transmission
schematic diagram and installation location of the electric
cylinder are shown as Fig. 2 The dynamics of the electric
cylinder can be described as [34]:

T̃a(t)− Tb(t) = Ja θ̈a(t)+ Ba θ̇a(t) (7)

T̃a(t) = Kmuc(t) (8)

Tb(t)− T̃m(t) = Jbθ̈a(t)+ Bbθ̇a(t) (9)

T̃m(t) = Ph Ft (t)

2πηÑ
(10)

y(t) = Phθa(t)

2π Ñ
, (11)

where T̃a(t) ∈ R is the motor torque, Tb(t) ∈ R is the output
moment of motor, Ja is the moment of inertia of motor, Ba is
the viscous friction coefficient of motor, θa(t) ∈ R is the
output rotation angle of motor, Km is the electromagnetic
torque coefficient, uc(t) ∈ R is the input voltage, T̃m(t) ∈ R
is the output moment of electric cylinder, Jb is the moment of
inertia of drive system, Bb is the viscous friction coefficient of
drive system, Ft (t) ∈ R is the load force, Ph is screw lead, η is
the mechanical transmission efficiency, Ñ is the transmission
ratio, and y(t) ∈ R is the stretching length of piston rod.
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Shown as Fig. 2, a is the corresponding vertex angle of
the electric cylinder, a0 is the initial vertex angle of the
electric cylinder, l0 is the initial length of electric cylinder,
la is the distance between the center of the trunnion and the
installation position of the electric cylinder on the turret, ldt is
the distance between the center of the trunnion and the driving
point location of electric cylinder on the cradle. It shows that
a = θ2 + a0, and then the displacement of piston rod can be
expressed by

y = (l2
a + l2

dt − 2laldt cos(a))
1
2 − l0

= (l2
a + l2

dt − 2laldt cos(θ2 + a0))
1
2 − l0. (12)

Taking it into (11), we have

θa = 2π Ñ

Ph

�
(l2

a + l2
dt − 2laldt cos(θ2 + a0))

1
2 − l0

�
. (13)

By differentiation, we have

θ̇a = 2π Ñlaldt

Ph

�
(l2

a + l2
dt − 2laldt cos(θ2 + a0))

− 1
2

× sin(θ2 + a0)θ̇2
�
, (14)

and

θ̈a = 2π Ñlaldt

Ph

�
−laldt (l

2
a + l2

dt − 2laldt cos(θ2 + a0))
− 3

2

× sin2(θ2 + a0)θ̇
2
2 + (l2

a + l2
dt − 2laldt cos(θ2 + a0))

− 1
2

× cos(θ2 + a0)θ̇
2
2 + (l2

a + l2
dt − 2laldt

× cos(θ2 + a0))
− 1

2 sin(θ2 + a0)θ̈2

�
. (15)

With (7) to (9), we have

T̃m = Kmuc − (Ja + Jb) θ̈a − (Ba + Bb) θ̇a. (16)

Fig. 2 further shows that the torque input on the barrel
described as (1b) is τ2 = Ftldt . With (10) and (16), we have

τ2 = 2πηÑldt Km

Ph
uc − 2πηÑldt (Ja + Jb)

Ph
θ̈a

− 2πηÑ ldt (Ba + Bb)

Ph
θ̇a. (17)

Using (14) and (15) in it, we have

τ2 = 2πηÑ ldt Km

Ph
uc − 4π2ηÑ2lal2

dt (Ja + Jb)

P2
h

×
�
−laldt (l

2
a + l2

dt − 2laldt cos(θ2 + a0))
− 3

2

× sin2(θ2 + a0)θ̇
2
2 + (l2

a + l2
dt − 2laldt cos(θ2 + a0))

− 1
2

× cos(θ2 + a0)θ̇
2
2 + (l2

a + l2
dt − 2laldt

× cos(θ2 + a0))
− 1

2 sin(θ2 + a0)θ̈2

�
− 4π2ηÑ2lal2

dt (Ba + Bb)

P2
h

×
�
(l2

a + l2
dt − 2laldt cos(θ2 + a0))

− 1
2 sin(θ2 + a0)θ̇2

�
.

(18)

Let

s1 := 2πηÑldt Km

Ph
, s2 := 4π2ηÑ2lal2

dt (Ja + Jb)

P2
h

,

s3 := 4π2ηÑ2lal2
dt

P2
h

, (19)

we then have

τ2 = s1uc + s2laldt (l
2
a + l2

dt − 2laldt cos(θ2 + a0))
− 3

2

× sin2(θ2+a0)θ̇
2
2 −s2(l

2
a +l2

dt −2laldt cos(θ2 + a0))
− 1

2

× cos(θ2 + a0)θ̇
2
2 − s2(l

2
a + l2

dt − 2laldt

× cos(θ2 + a0))
− 1

2 sin(θ2 + a0)θ̈2 − s3 (Ba + Bb)

× (l2
a + l2

dt − 2laldt cos(θ2 + a0))
− 1

2 sin(θ2 + a0)θ̇2.

(20)

Taking (20) into (1b), a lengthy but straightforward algebra
shows that the dynamic equation of the vertical pointing
tracking system can be expressed as

θ̈2(t)

=
�

1

3
m2 R2

2 + s2(l
2
a + l2

dt − 2laldt cos(θ2(t)+ a0))
− 1

2

× sin(θ2(t)+ a0)]−1
�

s2laldt (l
2
a + l2

dt

− 2laldt cos(θ2(t)+ a0))
− 3

2 sin2(θ2(t)+ a0)θ̇
2
2 (t)

− s2(l
2
a + l2

dt − 2laldt cos(θ2(t)+ a0))
− 1

2

× cos(θ2(t)+ a0)θ̇
2
2 (t)− s3 (Ba + Bb) (l

2
a + l2

dt

− 2laldt cos(θ2(t)+ a0))
− 1

2 sin(θ2(t)+ a0)θ̇2(t)

− 1

2
m2 R1 R2 sin θ2(t)θ̇

2
1 (t)− 1

6
m2 R2

2 sin (2θ2(t)) θ̇
2
1 (t)

− 1

2
m2g̃ R2 cos θ2(t)− d2(t)+ s1uc(t)

�
. (21)

Remark: The dynamic equation of the vertical pointing track-
ing system is derived from the vertical dynamics (1b) of the
turret-barrel system and the dynamics of electric cylinder (7)
to (11). It is nonlinear and contains the information of both
the turret-barrel system and the electric cylinder; hence, also
a nonlinear coupled system.

III. PROBLEM STATEMENT: POINTING TRACKING OF

MARCHING TURRET-BARREL SYSTEMS

The problem of pointing tracking for marching turret-
barrel systems can be formulated as a control problem of
driving the turret angular position θ̂1(t) and the barrel angular
position θ̂2(t) to track a desired reference command signal
θd

1 (t) and θd
2 (t) with a satisfactory performance, regardless

of the uncertainty. Assume that θd
1 (·) : [t0, ∞] → R and

θd
2 (·) : [t0, ∞] → R are of class C2. Denote the tracking

errors as

e1(t) := θ̂1(t)− θd
1 (t) = θ1(t)+ θ̄1(t)− θd

1 (t), (22)

e2(t) := θ̂2(t)− θd
2 (t) = θ2(t)+ θ̄2(t)− θd

2 (t), (23)

and then we have,

θ1(t) = e1(t)− θ̄1(t)+ θd
1 (t),
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θ̇1(t) = ė1(t)− ˙̄θ1(t)+ θ̇d
1 (t),

θ̈1(t) = ë1(t)− ¨̄θ1(t)+ θ̈d
1 (t),

θ2(t) = e2(t)− θ̄2(t)+ θd
2 (t),

θ̇2(t) = ė2(t)− ˙̄θ2(t)+ θ̇d
2 (t),

θ̈2(t) = ë2(t)− ¨̄θ2(t)+ θ̈d
2 (t). (24)

Let x1 := [x11 x12]T = [e1 ė1]T and x2 := [x21 x22]T =
[e2 ė2]T . Using them in (24), yields

θ1(t) = x11(t)− θ̄1(t)+ θd
1 (t),

θ̇1(t) = x12(t)− ˙̄θ1(t)+ θ̇d
1 (t),

θ̈1(t) = ẋ12(t)− ¨̄θ1(t)+ θ̈d
1 (t),

θ2(t) = x21(t)− θ̄2(t)+ θd
2 (t),

θ̇2(t) = x22(t)− ˙̄θ2(t)+ θ̇d
2 (t),

θ̈2(t) = ẋ21(t)− ¨̄θ2(t)+ θ̈d
2 (t). (25)

Introducing the resulted θ2, θ̇1,2, θ̈1 in (25) into (6) and
focusing on ẋ12, we have

ẋ12 =
�

M1 + J N2
	−1

G1 H1(x12 − ˙̄θ1 + θ̇d
1 )

−
�

M1 + J N2
	−1

(ke N2 + Bm N2)(x12 − ˙̄θ1 + θ̇d
1 )

+ kt N
�

M1 + J N2
	−1

um

+ ¨̄θ1 − θ̈d
1 −

�
M1 + J N2

	−1
(d1 − dt), (26)

with the definitions

M1(x21) := 1

2
m1 R2

1 + m2 R2
1 + m2 R1 R2 cos(x21 − θ̄2 + θd

2 )

+ 1

3
m2 R2

2 cos2(x21 − θ̄2 + θd
2 ), (27)

G1(x21) := m2 R1 R2 sin(x21 − θ̄2 + θd
2 )

+ 1

3
m2 R2

2 sin(2x21 − 2θ̄2 + 2θd
2 ), (28)

H1(x22) := x22 − ˙̄θ2 + θ̇d
2 , (29)

Furthermore, introducing the resulted θ2, θ̇1,2, θ̈2 in (25)
into (21) and focusing on ẋ22, we have

ẋ22 = M2G2

�
x22 − ˙̄θ2 + θ̇d

2

	2 + M2 H2 (Ba + Bb)

×
�

x22 − ˙̄θ2 + θ̇d
2

	
+ M2Y2

�
x12 − ˙̄θ1 + θ̇d

1

	2

− 1

2
M2m2g̃ R2 cos(x21 − θ̄2 + θd

2 )

+ M2s1uc + ¨̄θ2 − θ̈d
2 − M2d2. (30)

with the definitions

M2(x21) :=
�

1

3
m2 R2

2 + s2(l
2
a + l2

dt

− 2laldt cos(x21 − θ̄2 + θd
2 + a0))

− 1
2

× sin(x21 − θ̄2 + θd
2 + a0)

�−1
, (31)

G2(x21) := s2laldt (l
2
a + l2

dt

− 2laldt cos(x21 − θ̄2 + θd
2 + a0))

− 3
2

× sin2(x21 − θ̄2 + θd
2 + a0)− s2(l

2
a + l2

dt

− 2laldt cos(x21 − θ̄2 + θd
2 + a0))

− 1
2

× cos(x21 − θ̄2 + θd
2 + a0), (32)

H2(x21) := −s3(l
2
a + l2

dt

− 2laldt cos(x21 − θ̄2 + θd
2 + a0))

− 1
2

× sin(x21 − θ̄2 + θd
2 + a0), (33)

Y2(x21) := −1

2
m2 R1 R2 sin(x21 − θ̄2 + θd

2 )

− 1

6
m2 R2

2 sin(2(x21 − θ̄2 + θd
2 )). (34)

For the horizontal pointing tracking system (26), consider
the moment of inertia of the motor J , the viscous damping
coefficient of the motor Bm , the external disturbance d1, and
the transmission error dt as the uncertainty, and decompose
them into nominal and uncertain portions as: J = J̄ +
�J , Bm = B̄m + �Bm , d1 = d̄1 + �d1, dt = d̄t +
�dt , where J̄ , B̄m, d̄1, d̄t are the nominal portions, and
�J, �Bm, �d1, �dt are the uncertain portions, which are
possibly fast time-varying but bounded, and the bounds are
|�J | ≤ Ĵ , |�Bm | ≤ B̂m , |�d1| ≤ d̂1, and |�dt | ≤ d̂t . Let
D := (M1 + J N2)−1. With the decomposition of J , we then
have

D(x21,�J )

= 1

M1(x21)+ N2 J̄

− N2�J

(M1(x21)+ N2 J̄)(M1(x21)+ N2 J̄ + N2�J )
=: D̄(x21)+�D(x21,�J ). (35)

As |�J | ≤ Ĵ , �D has a bound |�D| ≤ D̂. Let σ1 :=
[�J �Bm �d1 �dt ]T . By introducing the decompositions
of J, Bm, d1, dt , D into (26), and classifying the “nominal”
and “uncertain” portions, it can be rewritten as

ẋ12 = f̄12 +� f12 + (B12 +�B12) (um −
m) , (36)

with the definition of f̄12(·) ∈ R as a function of x11, x12, x21,
x22 and t , and

� f12(x11, x12, x21, x22, σ1, t)

:=
��

G1(x21)H1(x22)− ke N2 − N2 B̄m

	
�D(x21,�J )

− N2 D̄(x21)�Bm − N2�D(x21,�J )�Bm

�
× (x12 − ˙̄θ1 + θ̇d

1 )

− (d̄1 − d̄t )�D(x21,�J )− D̄(x21)(�d1 −�dt)

−�D(x21,�J )(�d1 −�dt )+ υ(x21, x22)

+ f12(x12, x21, x22)

+ D̄−1(x21)�D(x21,�J ) f̄12(x11, x12, t)
 �� 
=�B12 B−1

12 f̄12

, (37)

B12(x21) := kt N D̄(x21), (38)

�B12(x21, σ1) := kt N�D(x21,�J ), (39)


m(x11, x12, x21, x22, t)

:= B−1
12 (x21) f̄12(x11, x12, x21, x22, t), (40)

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 16,2022 at 02:29:59 UTC from IEEE Xplore.  Restrictions apply. 



16402 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2022

where

f12(x12, x21, x22)

:=
�

G1(x21)H1(x22)D̄(x21)− ke N2 D̄(x21)

− N2 D̄(x21)B̄m

	
x12, (41)

υ(x21, x22)

= �
G1(x21)H1(x22)D̄(x21)

− ke N2 D̄(x21)− N2 D̄(x21)B̄m

	
(− ˙̄θ1 + θ̇d

1 )

+ ¨̄θ1 − θ̈d
1 − D̄(x21)(d̄1 − d̄t ). (42)

As a result, the horizontal pointing tracking system (6) can be
written in state-space form as

ẋ1(t) =
�

x12(t)
f̄12(x11(t), x12(t), x21(t), x22(t), t)

�

+
�

0
� f12(x11(t), x12(t), x21(t), x22(t), σ1(t), t)

�

+
��

0
B12(x21)

�
+
�

0
�B12(x21(t), σ1(t))

��
× (um(t)−
m(x11(t), x12(t), x21(t), x22(t), t)) .

(43)

For the vertical pointing tracking system (30), consider
the viscous friction coefficient of the motor Ba , the viscous
friction coefficient of the drive system Bb, and the external
disturbances d2 as the uncertainty, and decompose them into
nominal and uncertain portions as: Ba = B̄a + �Ba , Bb =
B̄b + �Bb, and d2 = d̄2 + �d2, where B̄a, B̄b, d̄2 are the
nominal portions, and �Ba, �Bb, �d2 are the uncertain
portions, which are possibly fast time-varying but bounded,
and the bounds are |�Ba| ≤ �B̂a , |�Bb| ≤ �B̂b, and
|�d2| ≤ �d̂2. Let σ2 := [�Ba �Bb �d2]T . By introducing
the decompositions of Ba, Bb, d2 into (30), and classifying
the “nominal” and “uncertain” portions, it can be rewritten as

ẋ22 = f̄22 +� f22 + B22 (uc −
c) , (44a)

with the definition of f̄22(·) ∈ R as a function of x11, x12, x21,
x22 and t , and

� f22(x12, x21, x22, σ2, t)

:= M2(x21)H2(x21) (�Ba +�Bb)
�

x22 − ˙̄θ2 + θ̇d
2

	
− M2(x21)�d2 + f22(x12, x21, x22), (45)

B22(x21) := M2(x21)s1, (46)


c(x11, x12, x21, x22, t) := B−1
22 (x21) f̄22(x11, x12, x21, x22, t),

(47)

where

f22(x12, x21, x22)

:= M2(x21)G2(x21)
�

x22 − ˙̄θ2 + θ̇d
2

	2

+ M2(x21)Y2(x21)
�

x12 − ˙̄θ1 + θ̇d
1

	2

− 1

2
M2(x21)m2 g̃R2 cos(x21 − θ̄2 + θd

2 )

+ M2(x21)H2(x21)
�
B̄a + B̄b

� �
x22 − ˙̄θ2 + θ̇d

2

	
+ ¨̄θ2 − θ̈d

2 − M2(x21)d̄2. (48)

As a result, the vertical pointing tracking system can be written
in state-space form as

ẋ2(t) =
�

x22(t)
f̄22(x11(t), x12(t), x21(t), x22(t), t)

�

+
�

0
� f22(x12(t), x21(t), x22(t), σ2(t), t)

�

+
�

0
B22(x21(t))

�
× (uc(t)−
c(x11(t), x12(t), x21(t), x22(t), t)) .

(49)

Let x := �
xT

1 x T
2

�T
, u1 := [um uc]T , u2 := [
m 
c]T ,

u := u1 − u2, and σ := �
σ T

1 σ T
2

�T
. With (43) and (49), the

whole pointing tracking system can be written in state-space
form as

ẋ(t) =

⎡
⎢⎢⎣

x12(t)
f̄12(x11(t), x12(t), x21(t), x22(t), t)

x22(t)
f̄22(x11(t), x12(t), x21(t), x22(t), t)

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0
� f12(x11(t), x12(t), x21(t), x22(t), σ1(t), t)

0
� f22(x12(t), x21(t), x22(t), σ2(t), t)

⎤
⎥⎥⎦

+

⎛
⎜⎜⎝
⎡
⎢⎢⎣

0 0
B12(x21(t)) 0

0 0
0 B22(x21(t))

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0 0
�B12(x21(t), σ1(t)) 0

0 0
0 0

⎤
⎥⎥⎦
⎞
⎟⎟⎠

×
�

um(t)−
m(x11(t), x12(t), x21(t), x22(t), t)
uc(t)−
c(x11(t), x12(t), x21(t), x22(t), t)

�
=: f (x(t), t)+� f (x(t), σ (t), t)

+ (B(x(t))+�B(x(t), σ (t))) u(t), (50)

where t ∈ R is the time, x(t) ∈ R4 is the state, and
u(t) ∈ R2 is the control, and σ(t) ∈ � ⊂ R7 is the
uncertain parameter. � ⊂ R7 is compact and unknown,
and stands for the possible bounding of σ . what is more,
f (x, t), � f (x, σ, t), B(x),�B(x, σ ) and
(x, t) are matrices
of appropriate dimensions, the functions f (·), � f (·), B(·),
�B(·) and 
(·) are continuous, and can be generalized to be
Lebesgue measurable in t . Note that, u1(t) = u(t) + u2(t) is
the actual control input of the control actuator (i.e., the motor
servo system and the electric cylinder system).

Remark: The later proposed control is designed under the
guidance of the boundedness control theory that was proposed
by Corless and Leitmann in 1981 [35]. According to such
theory, the functions f̄12(·) and f̄22(·) should be chosen to
let the uncontrolled nominal systems ẋ(t) = f (x(t), t) to be
uniformly asymptotically stable at the origins x = 0.
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Fig. 3. Structure of pointing tracking system.

Fig. 4. Block diagram of the control procedure and signals.

Remark: Shown as Fig. 3, the problem of pointing tracking
for turret-barrel system can be solved by designing appropriate
control u to drive the pointing tracking system (50) to ren-
der satisfactory performance (i.e., uniform boundedness and
uniform ultimate boundedness). Meanwhile, the corresponding
control procedure and signals are shown as Fig. 4.

IV. ADAPTIVE ROBUST CONTROL FOR

POINTING TRACKING

An adaptive robust control scheme is proposed for pointing
tracking of turret-barrel system in this Section. First, the
bounding and structural conditions of the concerned sys-
tem (50) is discussed. Choose functions f̄12(·) and f̄22(·) to
let f (0, t) = 0 for all t ∈ R and the uncontrolled nominal
system ẋ(t) = f (x(t), t) to be uniformly asymptotically stable
at the origin x = 0, and then there are a C1 function V1(·) :
R4 × R → R+ and continuous, strictly increasing functions
γi (·) : R+ → R+, i = 1, 2, 3, which satisfy (see [36], [37])

γi (0) = 0, i = 1, 2, 3 (51)

lim
r→∞ γi (r) = ∞, i = 1, 2 (52)

such that for all (x1, t) ∈ R2 × R

γ1(�x�) � V1(x, t) � γ2(�x�), (53)

L0(x, t) := ∂V1(x, t)

∂ t
+ ∇T

x V1(x, t) f (x, t) � −γ3(�x�).
(54)

We then discuss the bounding condition for the uncertain
portions� f and �B of system (50). First, focus on � f . It can
be decomposed as

� f (x, σ, t) = B(x)h(x, σ, t), (55)

�B(x, σ ) = B(x)E(x, σ ). (56)

with

h(x, σ, t) =
�

B−1
12 (x21)� f12(x11, x12, x21, x22, σ1, t)
B−1

22 (x21)� f22(x12, x21, x22, σ2, t)

�

=:
�

h12(x11, x12, x21, x22, σ1, t)
h22(x12, x21, x22, σ2, t)

�
, (57)

E(x, σ ) =
�

B−1
12 (x21)�B12(x21, σ1) 0

0 0

�

=:
�

E12(x21, σ1) 0
0 0

�
. (58)

Focus on E12, with B12 as (38), �B12 as (39), and D̄, �D
as in (35), we have

E12 = B−1
12 �B12

= (kt N D̄)−1kt N�D

= −N2�J

M1 + N2 J̄ + N2�J
. (59)

Recalling M1 as in (27), and then we have

M1 ≤ M1 ≤ M1, (60)

with

M1 = 1

2
m1 R2

1 + m2 R2
1 − m2 R1 R2,

M1 = 1

2
m1 R2

1 + m2 R2
1 + m2 R1 R2 + 1

3
m2 R2

2 . (61)

Define a function

η(�J ) := −N2�J

M1 + N2 J̄ + N2�J
, (62)

and then take its first order derivative respect to �J to yield

∂η

∂�J
= − N2 M1 + N4 J̄�

M1 + N2 J̄ + N2�J
�2 < 0, (63)

with M1, N, J̄ > 0; hence, η(·) is strictly decreasing in �J ,
and we have

η ≥ −N2�J

M1 + N2 J̄ + N2�J
. (64)

By this, as usually �J ≥ 0, we have

−N2�J

M1 + N2 J̄ + N2�J
>

−N2�J

M1 + N2 J̄ + N2�J
> −1; (65)

hence, E12 > −1. It can be seen that there exists a constant
ρE > −1, such that 1

2λmin(E + ET ) ≥ ρE , λmin denotes the
minimum eigenvalue.

As a preliminary for control design, we now do some
analysis specially on the bound of h. Recalling � f12 as (37),
B12 as (38), � f22 as (45), and B22 as (46), we have

h12 = B−1
12 � f12

= B−1
12

���
G1 H1 − ke N2 − N2 B̄m

	
�D − N2 D̄�Bm

− N2�D�Bm

�
(x12 − ˙̄θ1 + θ̇d

1 )-(d̄1 − d̄t )�D

− D̄(�d1 −�dt )−�D(�d1 −�dt)+ υ + f12

+ D̄−1 f̄12�D
 
, (66)
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h22 = B−1
22 � f22

= B−1
22

�
M2 H2 (�Ba +�Bb)

�
x22 − ˙̄θ2 + θ̇d

2

	
− M2�d2 + f22} . (67)

Aiming at �h�, we have

�h� ≤ �h12� + �h22�
≤ B−1

12

�!!!�G1 H1 − ke N2 − N2 B̄m

	
×

�
x12 − ˙̄θ1 + θ̇d

1

	!!! +
!!!d̄1 − d̄t − D̄−1 f̄12

!!!	 D̂

+ B−1
12 N2 D̄

!!!x12 − ˙̄θ1 + θ̇d
1

!!! B̂m

+ B−1
12 N2

!!!x12 − ˙̄θ1 + θ̇d
1

!!! D̂ B̂m

+ B−1
12 D̄

�
d̂1 + d̂t

	
+ B−1

12 D̂
�

d̂1 + d̂t

	
+ B−1

12 �υ + f12�
+

!!!B−1
22 M2 H2

�
x22 − ˙̄θ2 + θ̇d

2

	!!! �B̂a + B̂b

	
+

!!!B−1
22 M2

!!! d̂2 +
!!!B−1

22 f22

!!! . (68)

Let

ρ1 := B−1
12

�!!!�G1 H1 − ke N2 − N2 B̄m

	
×

�
x12 − ˙̄θ1 + θ̇d

1

	!!! +
!!!d̄1 − d̄t − D̄−1 f̄12

!!!	 ,(69)

ρ2 := B−1
12 N2 D̄

!!!x12 − ˙̄θ1 + θ̇d
1

!!! , (70)

ρ3 := B−1
12 N2

!!!x12 − ˙̄θ1 + θ̇d
1

!!! , (71)

ρ4 := B−1
12 D̄, (72)

ρ5 := B−1
12 , (73)

ρ6 :=
!!!B−1

22 M2 H2

�
x22 − ˙̄θ2 + θ̇d

2

	!!! , (74)

ρ7 :=
!!!B−1

22 M2

!!! , (75)

ρ8 := B−1
12 �υ + f12� +

!!!B−1
22 f22

!!! . (76)

We then can rewrite (68) as

�h� ≤ ρ1 D̂ + ρ2 B̂m + ρ3 D̂ B̂m

+ ρ4

�
d̂1 + d̂t

	
+ ρ5 D̂

�
d̂1 + d̂t

	
+ ρ6

�
B̂a + B̂b

	
+ ρ7d̂2 + ρ8

≤
�

D̂2 + B̂2
m + D̂2 B̂2

m + (d̂1 + d̂t )
2

+ D̂2
�

d̂1 + d̂t

	2 + (B̂a + B̂b)
2 + d̂2

2

+ 1]
1
2

�
ρ2

1 + ρ2
2 + ρ2

3 + ρ2
4 + ρ2

5 + ρ2
6 + ρ2

7 + ρ2
8

	 1
2

=: α�̂(x, t)

=: �(α, x, t), (77)

where

α :=
�

D̂2 + B̂2
m + D̂2 B̂2

m + (d̂1 + d̂t )
2

+ D̂2
�

d̂1 + d̂t

	2 + (B̂a + B̂b)
2 + d̂2

2 + 1

� 1
2

, (78)

�̂ :=
�
ρ2

1 + ρ2
2 + ρ2

3 + ρ2
4 + ρ2

5 + ρ2
6 + ρ2

7 + ρ2
8

	 1
2
. (79)

Note that, α ∈ R+ reflects a combined effect of uncertainty
bound. When we take α as a comprehensive influence measure,
we actually take the bounds of the uncertainty to measure
their influences. However, in fact, the actual influences of
the uncertainty should not exceed their bounds, so when
we take the bounds as the influence measure, we actually
consider the maximum (most conservative) influence of the
uncertainty. By this, this paper considers a rather conservative
condition for the uncertainty that it is nonlinear and possibly
fast time varying but bounded, and the bound is unknown;
hence, α is unknown here. We design the following leakage
type of adaptive law to evaluate α:

˙̂α(t) = 1

2
k1�̂(x(t), t)

!!!∇T
x V1(x(t), t)B(x(t), t)

!!! − k2α̂(t),

(80)

where k1,2 > 0 are scalar constants. Based on this adaptive
law, we then propose the following adaptive robust control for
the system (50)

u(t) = −γ BT (x(t), t)∇x V1(x(t), t)�2(α̂(t), x(t), t), (81)

with a constant γ > 0.
Remark: Three kinds of uncertainty, including system mod-

eling error, external disturbance and road excitation, are con-
sidered in the control design. For uncertainty handling, we first
find a parameter α to measure the combined effect of the
uncertainty in a rather conservative condition by taking the
uncertainty bounds as influence measure. As α is unknown,
an adaptive law described as (80) is designed to evaluate the
unknown parameter online. By this, for control design, except
that the uncertainty is bounded, no more information about
the uncertainty is needed.

Theorem 1: Let ς(t) :=
�
xT (t)

�
α̂(t)− α

�T
�T ∈ R5.

Suppose that the control (81) is applied to the system (50).
The solution of the controlled system renders the following
performance of practically stable:

(i) Uniform boundedness: For any r > 0, there is a d (r) <
∞ such that if �ς (t0)� ≤ r , then �ς (t)� ≤ d (r) for all t ≥ t0;

(ii) Uniform ultimate boundedness: For any r > 0 with
�ς (t0)� ≤ r , there exists a d > 0 such that �ς (t)� ≤ d for
any d > d as t ≥ t0 + T

�
d, r

�
, where T

�
d, r

�
< ∞.

(iii) Uniform Stability: For any d > d , there is a constant
ψ(d̄) > 0 such that �ς (t0)� ≤ ψ(d̄) implies that �ς(t)� ≤ d̄
for all t ≥ t0.

Proof: Choose V
�
x, α̂ − α, t

� = V1(x, t) + V2(α̂ − α)
as a legitimate Lyapunov function candidate, where V1(x, t)
subjects to (53) -(54) and V2(α̂ − α) = k−1

1 (α̂ − α)T (α̂ − α).
The Lyapunov derivative for the system (50) is given by

L := L0 + ∇T
x V1 [� f (x, σ, t)+ (B +�B(x, σ ))u]

+ 2k−1
1

�
α̂ − α

�T ˙̂α. (82)

Recalling � f = Bh, �B = B E and with (54), we have

L ≤ −γ3(�x�)+ ∇T
x V1 [Bh(x, σ, t)+ Bu

+ B Eu] + 2k−1
1

�
α̂ − α

�T ˙̂α
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= −γ3(�x�)+ ∇T
x V1 Bh(x, σ, t)+ ∇T

x V1 Bu

+ ∇T
x V1 B Eu + 2k−1

1

�
α̂ − α

�T ˙̂α. (83)

With (80) and (81), we have

L ≤ −γ3(�x�)+ ∇T
x V1 Bh(x, σ, t)

− γ∇T
x V1 B BT ∇x V1�

2(α̂, x, t)

− γ∇T
x V1 B E BT ∇x V1�

2(α̂, x, t)

+ �
α̂ − α

�T
�̂(x, t)

!!!∇T
x V1 B

!!!− 2k−1
1 k2

�
α̂ − α

�T
α̂,

(84)

Let φ := ∇T
x V1 B , and then (84) can be rewritten as

L ≤ −γ3(�x�)+ �φ� �h(x, σ, t)�
− γ �φ�2�2(α̂, x, t) − γφE(x, σ, t)φT�2(α̂, x, t)

+ �
α̂ − α

�T
�̂(x, t) �φ� − 2k−1

1 k2
�
α̂ − α

�T
α̂, (85)

Recalling �h� ≤ �(α, x, t) and (77), we have

L ≤ −γ3(�x�)− 2k−1
1 k2

�
α̂ − α

�T
α̂

+ �φ��(α̂, x, t)− γ �φ�2�2(α̂, x, t)

− γφEφT�2(α̂, x, t). (86)

Recalling 1
2λmin (E + ET ) ≥ ρE > −1 and

λmin(E + ET ) �φ�2 ≤ φ
�

E + ET
	
φT , (87)

we have

−γφEφT�2(α̂, x, t) = −1

2
γφ

�
E + ET

	
φT�2(α̂, x, t)

≤ −1

2
γ λmin(E + ET ) �φ�2�2(α̂, x, t)

= −γρE �φ�2�2(α̂, x, t). (88)

We then have

L ≤ −γ3(�x�)− 2k−1
1 k2

�
α̂ − α

�T
α̂

+ �φ��(α̂, x, t)− γ (1 + ρE ) �φ�2�2(α̂, x, t)

≤ −γ3(�x�)− k−1
1 k2

!!α̂ − α
!!2

+ k−1
1 k2 �α�2 + 1

4γ (1 + ρE )
. (89)

Recalling ς = �
x T , (α̂ − α)T

�T
, there exits a function

γ̂3(�ς�) ≤ γ3(�x�)+ k−1
1 k2

!!α̂ − α
!!2
, (90)

with which we have

L ≤ −γ̂3(�ς�)+ k−1
1 k2 �α�2 + 1

4γ (1 + ρE )

=: −γ̂3(�ς�)+ δ, (91)

where

δ = k−1
1 k2 �α�2 + 1

4γ (1 + ρE )
. (92)

Upon invoking the standard arguments as in ( [35], [38]),
the performance described as Theorem 1 is guaranteed. First,
the uniform boundedness follows. That is, given any r > 0

with �ς (t0)� ≤ r , where t0 is the initial time, there is a d(r)
given by

d(r) =
"
(γ−1

1 ◦ γ2)(r), i f r > R,

(γ−1
1 ◦ γ2)(R), i f r ≤ R,

(93)

with

R = γ−1
3 (δ) , (94)

such that �ς(t)� ≤ d(r) for all t ≥ t0. Second, the uniform
ultimate boundedness follows. That is, given any d with

d > (γ−1
1 ◦ γ2)(R), (95)

we have �ς(t)� ≤ d, ∀t ≥ t0 + T (d, r), with

T (d, r) =

⎧⎪⎨
⎪⎩

0, i f r ≤ R,

γ2(r)− γ1(R)

γ̂3(R)− δ
, otherwi se,

(96)

R = (γ−1
2 ◦ γ1)(d). (97)

Finally, the uniform stability follows by letting ψ(d̄) = R. �
Remark: With the proposed adaptive robust control u

as (81), the turret angular position θ̂1 and the barrel angular
position θ̂2 can be driven to respectively track a desired
reference command signal θd

1 and θd
2 with the performance

of practically stable described as Theorem 1, regardless of
the uncertainty σ ; thereout, the control objective of pointing
tracking is achieved.

Remark: It is worth emphasizing that, this paper addresses
the pointing tracking system as a horizontal state x1 and
vertical state x2 coupled dynamical system as (50). This is very
different from the past works [7]–[10] that deal with pointing
tracking in (horizontal and vertical) separate channel.

V. DESIGN PROCEDURE

This paper proposes an adaptive robust control for pointing
tracking of marking turret-barrel system. The design procedure
(shown as Fig. 5) can be summarized as:

(i) Obtain the dynamic equations of the horizontal and
vertical pointing tracking systems as (6) and (21).

(ii) Recalling the definition of pointing tracking, define the
tracking errors e1,2 as (22), and rewrite the dynamic equations
of the pointing tracking system in state-space form as (50).

(iii) Determine f̄12(·), f̄22(·) to let the uncontrolled nominal
systems ẋ = f (x, t) to be uniformly asymptotically stable
at the origins x = 0, and choose γ1,2,3(·), V1(·) according
to (51)-(54);

(iv) Discuss the bounding condition of the uncertain por-
tions � f in system (50) to yield �(·) as (77) and �̂(·) as (79).
Choosing k1,2 > 0 and with V1 and �̂, design the adaptive
law α̂(·) as (80).

(v) Choosing γ > 0 and with V1, � and the adaptive law α̂,
design the adaptive robust control u(·) as (81).

Remark: The main rule for determining the functions f̄12(·)
and f̄22(·) is to let the uncontrolled nominal systems ẋ(t) =
f (x(t), t) to be uniformly asymptotically stable at the origin
x = 0. Specifically, for the sake of simplicity, we can
choose linear functions f̄12(·) and f̄22(·) to let the uncontrolled
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Fig. 5. Control design procedure.

nominal system to be a linear system ẋ(t) = Ax(t) with A as
a Hurwitz matrix.

Remark: There are three major advantages of the proposed
control method. First, it has considered all the coupling,
nonlinearity and uncertainty in tracking control. Second, it can
handle rather complex time-varying uncertainty with unknown
bound. Third, it can realize the pointing tracking of marching
turret-barrel system in one horizontal-vertical coupled channel.

VI. SIMULATIONS

A. Parameter Selections

In the simulation, we desire the marking turret-barrel sys-
tem to adjust its horizontal and vertical angular positions
respectively from θ̂1,2(0) = 10rad to θ̂1,2 = 5rad . For this,
we choose the desired signals θd

1,2 = 5rad , the initial tracking
errors e1,2(0) = 5rad (i.e., x11(0) = x21(0) = 5), and other
initial states x12(0) = x22(0) = α̂(0) = 0.

Three types of uncertainty of system modeling error, exter-
nal disturbance and road excitation are considered. For system
modeling error, choose J = 0.021 + 0.0021 sin(10t)kg·m2,
Bm = 0.0088 + 0.00088 sin(10t)N ·m·s/rad , dt =
10 sin(10t)N ·m, Ba = 0.0153 + 0.00153 sin(10t)N ·m·s/rad ,
Bb = 0.0063 + 0.00063 sin(10t)N ·m·s/rad . For external dis-
turbance, choose d1 = 10 sin(10t)N ·m, d2 = 10 sin(10t)N ·m
and ft = 10 sin(10t)N ·m. For road excitation, choose

Fig. 6. Comparison of the tracking error e1.

θ̄1,2 = 0.1 sin(t)rad , ˙̄θ1,2 = 0.1 cos(t)rad/s and ¨̄θ1,2 =
−0.1 sin(t)rad/s2.

To let the uncontrolled nominal system ẋ = f (x, t) to be
uniformly asymptotically stable at the origin x = 0, we choose
the functions

f̄12 = −a1x11 − b1x12, (98)

f̄22 = −a2x21 − b2x22. (99)

According to (51)-(54), we choose V1 = x T
1 P1x1 + x T

2 P2x2.
By choosing a1 = 0, a2 = 1, b1 = −1, b2 = 2, the matrix
P1,2 can be determined as P1,2 = [3 1; 1 1] with the equation
AT

1,2 P1,2 + P1,2 A1,2 + Q1,2 = 0 and Q1,2 = [2 0; 0 2].
As LQR control is a well studied robust control scheme

in both theory and practice. Simulations are carried out
along with a comparison between the proposed control u =
[um, uc]T and a standard LQR control. For the LQR control,
the dynamic equation of the pointing tracking system (50) can
be linearized as

ẋ = Ãx + B̃u, (100)

for which we consider the following Riccati equation

ÃT P̃ + P̃ Ã − 2P̃ B̃ R̃−1 B̃T P̃ + Q̃ = 0, (101)

where Q̃, R̃ > 0. The LQR control is

u = −R̃−1 B̃T P̃x . (102)

For simulation, we choose Q̃ = I, R̃ = I .
Finally, for simulation, we choose the parameters of

the turret-barrel system as m1 = 5200kg, m2 =
2088.15kg, R1 = 4.12m, R2 = 8.5m, G = 9.8m/s2, the
parameters of the motor as N = 20, kt = 1.85N ·m/A, ke =
23.7725V ·m/A, the parameters of the electric cylinder system
as Ja = 0.0495kg·m2, Jb = 0.012kg·m2, Ñ = 12, Ph =
0.2m, Km = 2.7 × 10−3 N ·m/A, η = 0.8, the parame-
ters of the installation location of electric cylinder as l0 =
0.3m, ldt = 0.4m, la = 0.5m, a0 = arcsin(0.6), and the
control parameters as γ = 100, k1 = 0.01, k2 = 1.
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Fig. 7. Comparison of the tracking error e2.

Fig. 8. Comparison of the angular position θ̂1.

Fig. 9. Comparison of the angular position θ̂2.

B. Simulation Results

The simulation results are shown as Figs. 6-13.
Figs. 6 and 7 present the comparison of the history of
the tracking errors e1,2. It can be seen that, with the proposed
control, the horizontal tracking error e1 approaches to a
neighborhood close to 0 before t = 4s, meanwhile, the
vertical tracking error e2 approaches to a neighborhood close
to 0 before t = 3.8s. By contrast, with the LQR control, the

Fig. 10. Comparison of the control input um of the motor.

Fig. 11. Comparison of the control input uc of the electric cylinder.

Fig. 12. History of the adaptive parameter α̂.

horizontal tracking error e1 becomes divergent, meanwhile,
the vertical tracking error e2 approaches to a neighborhood
far away from the equilibrium point (actually close to 7.5)
after t = 10s. By this, we can see that the LQR control
does not result in any finite time settling, while the proposed
control can drive the controlled system to be practically
stable; thereout, Theorem 1 is further verified by the way of
simulation.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 16,2022 at 02:29:59 UTC from IEEE Xplore.  Restrictions apply. 



16408 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2022

Fig. 13. Comparison of the accumulative tracking error Se = [Se1 Se2]T .

Figs. 8 and 9 present the comparison of the history of
the horizontal angular position θ̂1 and the vertical angular
position θ̂2. It can be seen that, with the proposed control,
the horizontal angular position θ̂1 reaches to a neighborhood
close to the desired angle θd

1 = 5 before t = 4s, while, the
vertical angular position θ̂2 reaches to a neighborhood close
to the desired angle θd

2 = 5 before t = 3.8s. By contrast,
with the LQR control, the horizontal angular position θ̂1
becomes divergent, meanwhile, the vertical angular position
θ̂2 approaches to a neighborhood far away from the desired
angle θd

2 = 5 (actually close to 14) after t = 10s. By this,
we can see that the LQR control is ineffective in pointing
tracking, while the proposed control shows an almost perfect
control effect and realizes the pointing tracking well.

Figs. 10-12 present the comparison of the corresponding
control input and the history of adaptive parameter α̂. It can be
seen that, with the proposed control, the control input um, uc

and the adaptive parameter α̂ stabilize around 0 after the
tracking error e1,2 being around 0. By contrast, with the LQR
control, the fluctuation of the control input um of the motor
is frequent and the peak value is very large, while the control
input uc of the electric cylinder stays around 0. We can see
that the motor and the electric cylinder can not coordinate well
under the LQR control drive. Fig. 13 shows that the proposed
control renders much smaller accumulative tracking error Se

(i.e., the area between the tracking errors e1,2 and 0) than the
LQR control.

VII. CONCLUSION

To improve the performance of pointing tracking for mark-
ing turret-barrel system, this paper proposes a novel adaptive
robust control scheme with deep explorations on dynamics
modeling, control design and uncertainty handling. The uncer-
tainty may be (fast) time varying but bounded, and the bound is
unknown. The pointing tracking system is firstly constructed as
a coupled, nonlinear and uncertain dynamical system with two
interconnected subsystems of a horizontal turret-motor system
and a vertical barrel-electric-cylinder system. For uncertainty
handling, an adaptive law is proposed to evaluate a comprehen-
sive uncertainty bound α. For pointing tracking, an adaptive
robust control is proposed to render the pointing tracking
system to be practically stable, such that the objective of
pointing tracking is achieved. This paper realizes the pointing
tracking for marching turret-barrel system in one horizontal
and vertical coupled channel rather than two separate ones;

thereout, brings to a new technical support for intelligent
development of ground combat platform.
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