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Abstract—Unmanned aerial vehicle (UAV)-assisted multi-
access edge computing (MEC) has become one promising solution
for energy-constrained devices to meet the computation demand
and the stringent delay requirement. In this work, we investigate
a multiple UAVs-assisted two-stage MEC system in which the
computation-intensive and delay-sensitive tasks of mobile devices
(MDs) are cooperatively executed on both MEC-enabled UAVs
and terrestrial base station (TBS) attached with the MEC server.
Specifically, UAVs provide the computing and relaying services
to the mobile devices. In this regard, we formulate a joint task
offloading, communication and computation resource allocation
problem to minimize the energy consumption of MDs and UAVs
by considering the limited communication resources for the
uplink transmission, the computation resources of UAVs and
the tolerable latency of the tasks. The formulated problem is
a mixed-integer non-convex problem which is NP hard. Thus,
we relax the channel assignment variable from the binary to
continuous values. However, the problem is still non-convex due
to the coupling among the variables. To solve the formulated
optimization problem, we apply the Block Successive Upper-
bound Minimization (BSUM) method which guarantees to obtain
the stationary points of the non-convex objective function. In
essence, the non-convex objective function is decomposed into
multiple subproblems which are then solved in a block-by-block
manner. Finally, the extensive evaluation results are conducted
to show the superior performance of our proposed framework.

Index Terms—Multi-access edge computing, unmanned aerial
vehicle, block successive upper-bound minimization.

I. INTRODUCTION
A. Background and Motivation

With the unprecedented growth in the development of
technology, the functionalities of smart devices such as smart-
phones, Internet of Things (IoT) devices, etc., have become
more advanced. Moreover, the applications running on them
for online gaming, augmented reality (AR), virtual reality
(VR), video streaming and infotainment require high traffic
demand and generate more processing data. This, in turn,
leads to the requirement of more communication and com-
puting related resources for such resource-constrained devices.
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Therefore, the cloud computing that provides the computing
resources as well as the storage space has been introduced
as a promising paradigm to lessen the burdens on mobile
devices [1]. However, offloading the tasks of mobile devices
to the central cloud server that is generally distant from them
incurs high latency and degrades the system efficiency. To
address this problem, multi-access edge computing (MEC)
system that brings the computing resources near to the devices
has been further introduced [1]. In particular, by providing
a distributed computing environment, the cloud servers that
are installed at the edge of the network such as the access
points or base stations mitigate the energy consumption and
communication/computation delay experiencing at the mobile
devices [2]]. However, constructing the new terrestrial net-
work infrastructures in the temporary events (such as football
matches or concerts) or in the disaster areas might not be cost-
effective merely to assist the existing terrestrial network.

Recently, the use of unmanned aerial vehicles (UAVs)
such as balloons, airships or drones as the communication
and computing platforms has drawn much attention to the
researchers. Due to the flexibility of on-demand deployment
for the temporary events or emergency situations, UAVs are
generally deployed as the assistance of the existing terrestrial
networks in order to fulfill the unprecedented traffic demand
and to provide the global internet connectivity. It is also
anticipated that they are being used in various applications
to bring fruitful business opportunities in the upcoming years
[3] [4]. Leveraging the good attributes of UAVs such as
on-demand deployment and cost effectiveness, MEC-enabled
UAVs can be deployed as the aerial computing platforms to
offer the computing services to the energy-constrained mobile
devices which are generally unable to completely execute the
computation-intensive and delay-sensitive tasks locally. With
this approach, the devices can prolong their battery life as
well as the overall system efficiency can be enhanced. In
addition, since UAVs can establish the reliable line-of-sight
communication link with the ground terminals, they can relay
the tasks of the mobile devices to the TBS when the MDs
cannot directly offload their tasks to the TBS due to the severe
link blockage or poor channel condition.

B. Challenges and Contributions

When UAVs are considered as the edge computing plat-
forms, it is challenging to determine the amount of tasks to be



offloaded from mobile devices (MDs) to the UAVs and decide
the optimal allocation of communication and computation
resources of UAVs to their associated devices in an energy-
efficient manner. Moreover, as for UAV being an energy-
limited and resource-constrained device, it is hard to accom-
plish all the tasks offloaded from the MDs. To address that
problem, we propose a multi-UAV-assisted two-stage MEC
system in which MEC-enable UAVs and TBS cooperatively
execute the offloaded tasks of the mobile devices. In particular,
UAVs locally compute part of devices’ offloaded tasks and
relay the rest to the terrestrial base station (TBS) which has
rich computing resources. Here, we assume that the devices
cannot directly offload their tasks to the terrestrial base stations
due to severe link blockage or poor channel condition. The
main contributions of this paper are as follows:

o Firstly, we investigate a multi-UAV-assisted two-stage
MEC system in which multiple MEC-enabled UAVs
offer the computing and relaying services to the mobile
devices. Particularly, UAVs execute a partial portion of
the tasks offloaded from the associated mobile devices
according to their computing capacity and relay the rest
of the tasks to TBS for further computing.

o We then propose a joint resource allocation and task
offloading problem in order to minimize the energy
consumption of mobile devices and UAVs. The proposed
problem is a mixed integer non-convex problem which is
NP hard.

o We further relax the channel allocation variable into the
continuous form and then derive the upper bound of our
objective function. To solve the formulated problem, we
apply the block successive upper bound minimization
(BSUM) algorithm which can tackle non-convex and non-
smooth optimization problems.

o Finally, we perform an extensive simulation to verify
that our proposed approach can yield the better solution
compared to the other baseline schemes, namely, equal
offloading, local processing only and offloading all.

The remainder of this paper is as follows. We describe the
recent works in Section In Section we present our
system model in detail. The communication and computation
models for the proposed MEC system are described in Sections
MI-A] and respectively. Then, our formulated optimiza-
tion problem and the proposed solution approach are provided
in Section [Vl The simulation results are illustrated in Section
Finally, we conclude the paper in Section

II. RECENT WORKS
A. UAV-enabled Wireless Network

The authors in [5] analyzed the coverage and rate perfor-
mance of a single UAV network underlying device-to-device
communication links. They derived the average coverage prob-
abilities for downlink users served by UAVs and for D2D
users to show how the altitude of UAV and density of D2D
users impact on the overall system. Exploiting the circle
packing theory, the work in [6] addressed the problem of three-
dimensional deployment of multiple aerial base stations in
order to maximize the downlink coverage performance while

serving ground users. In [[7]-[10], the authors investigated how
UAVs should be assigned to a certain area under the constraint
of high traffic demand. Although UAVs can establish line-of-
sight connections to the ground users promoting the network
throughput, optimal on-demand deployment of multiple UAVs
in an area where users are unevenly distributed is one of the
challenging issues. Hence, the authors in [|11]] proposed two
different deployment algorithms, centralized and distributed
motion control algorithms to determine the minimum number
of UAVs required for providing on-demand coverage with
seamless connectivity.

Since UAVs are energy-constrained devices, the energy-
efficient deployment and resource allocation is another chal-
lenging issue to be addressed. The authors in [[12]] introduced
a multi-UAV assisted IoT network in which the transmit
power of IoT devices is minimized by jointly optimizing the
deployment and mobility of UAVs. In [13], the authors ad-
dressed the transmit power minimization problem in the UAV-
assisted wireless network by jointly optimizing the altitude
and transmit power of UAVs. The work in [14] investigated
the problem of optimal subchannel allocation and UAV speed
control to boost the uplink system sum-rate in a multi-UAV
relays network. Predicting the content request distribution and
mobility patterns of users with the help of the conceptor-based
echo state network, the authors in [15]] conducted the proactive
deployment of cache-enabled UAVs to maximize the quality
of experience of users while reducing UAVS’ transmit power
consumption.

B. Multi-access Edge Computing

Regarding to MEC, there are many existing works that
addressed the two main problems of latency and energy
utilization minimization. The authors in [16] investigated the
latency minimization problem in a cloud computing and MEC
cooperated system for the partial offloading scenario. The
work in [17]] studied the partial offloading scheme in a multi-
user mobile edge computing system in which they minimized
the weighted-sum latency of all users’ devices by considering
the communication and computation resource constraints. In
[18], the authors minimized the long-term time average power
consumption of user equipment by taking into account the
constraints of delay and reliability. The optimal allocation of
computing resources and task offloading policy is determined
by applying the Lyapunov stochastic optimization method.
While considering the task offloading in the MEC system, the
assignment of tasks offloaded from the devices to the edge
server must be properly investigated since it has an impact
on the processing efficiency of the system. Therefore, the
authors in [19] proposed a two-stage computation offloading
framework in which the execution delay of the tasks is min-
imized by formulating the aggregative game among multiple
user equipment.

C. UAV-assisted Multi-access Edge Computing

Employing MEC-enabled UAV brings fruitful advantages
over a typical MEC scenario. The work in [20] studied a
three-dimensional UAV-aided MEC system for computation
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Fig. 1: Multi-UAV-assisted MEC system.

offloading of mobile users. Introducing a proactive deep rein-
forcement learning scheme, in this work, the expected long-
term computation performance of the network is maximized
by modeling the stochastic game among mobile users. With
the aim of minimizing the total energy consumption of UAV
and ground user equipment, the works in [2], [21]-[23] studied
the problem of managing the allocation of communication and
computation resources to the mobile devices and optimizing
the trajectory of UAV. Similarly, the authors in [24] maximized
the energy efficiency of UAV by optimally determining the
offloading strategy and transmission power of ground users
and UAV trajectory. The work in [25]] investigated the response
time minimization problem in an aerial MEC system in which
MEC-enable UAV is deployed to serve a swarm of UAVs with
the communication and computation resources.

Most of the existing works have mainly focused on resource
allocation and UAV trajectory optimization problem in a
single UAV-assisted MEC system for maximizing the energy
efficiency or minimizing the delay. The multiple UAV-aided
or ground-air integrated MEC system has been less explored.
Different from the existing works, in this paper, we propose
a multi-UAV-assisted two-stage MEC system in which UAVs
offer computing and relaying services to MDs to help execute
their tasks.

III. SYSTEM MODEL

In our system model, as shown in Fig. 1, we propose a
multi-UAV assisted two-stage MEC system in which there
are M MEC-enabled UAVs, a number of U mobile devices
and a terrestrial base station. A set M = {1,2,...,M} of
MEC-enabled UAVs are deployed for providing computing
and relaying services to a set of MDs U = {1,2,...,U}
which are distributed in an area of interest. In this work,
we assume that MDs cannot directly offload their tasks to
the terrestrial base station due to the low signal strength or

poor channel condition. Particularly, UAVs provide computing
and relaying services to MDs for the execution of their tasks.
Since UAVs are constrained by power and size, the available
computing and communication resources on board are very
limited. In that case, it is impossible for the UAVs to locally
execute all the tasks offloaded from their associated MDs.
The promising approach is that UAV can relay part of the
MDs’ offloaded tasks to the TBS which provides a high-speed
transmission rate with grid power supply and is empowered
with an ultra-high performance processing server. Leveraging
the inherent attributes such as the ability to establish a line-
of-sight communication links to the ground terminals and
flexibly adjust the altitude, UAVs can provide not only the
reliable communication but also the broader wireless coverage
on the ground. Moreover, UAVs are assumed to be hovering
or circling at the minimum fixed altitude enough to provide
sufficient coverage without suffering severe path loss.

Since the position of UAVs can significantly affect the
network performance, we exploit the k-means clustering al-
gorithm for the deployment of UAVs and assignment of MDs
to them. Specifically, MDs are grouped into different clusters
according to the number of available UAVs which are assumed
to be centroids of the clusters. Here, we assume that there is a
central controller that has prior knowledge about the locations
of MDs and controls the UAVs’ position. Given a set of MDs,
U, the k-means clustering algorithm intends to partition MDs
into M clusters, U;,Ua, ...,Ups, which are mutually exclusive
and collectively exhaustive sets, i.e., U, NU, = 0,a # b
and Uy Ul U ... UUpns = U. Moreover, the path loss and
transmit power between UAVs and MDs can also be reduced
by minimizing the squared deviation of MD’s distance from its
cluster’s centroid. Denoting the two-dimensional coordinates
of MD u and UAV m as s, = (24, Yu) and S = (T, Ym)»
respectively, where v € U and m € M, the association
between MDs and UAVs can be obtained by solving the
problem below:

M
mi 2
1 Sm — Su . 1
{Ur,....Un} Z Z H || ( )

m=1uel,,

After determining the association of MDs to UAVs in @),
we present the mathematical representation of our proposed
system model and problem formulation in the following sub-
sections.

A. Communication Model

In order to manage the communication resources, we con-
sider that the total available system bandwidth is orthogonally
divided into two portions for the MD-to-UAV data transmis-
sion which is used for offloading tasks from MDs to UAVs and
UAV-to-TBS data transmission which is reserved for relaying
tasks from UAVs to TBS, respectively. Then, the total available
bandwidth for MD-to-UAV data transmission is further divided
into N subchannels, denoted by a set N' = {1,2, ..., N}, each
with a bandwidth of w = 180 kHz. The subchannels are shared
by the mobile devices while transmitting their tasks to the
associated UAVs.



TABLE I: Summary of Key Notations

[ Notation | Definition

[[ Notation [ Definition |

M Set of UAVs, |[M| =M tlocal Delay for local computing

u Set of mobile devices, [U| = U Lo m Delay for computing MD u’s offloaded task at associated
UAV m

Um Set of associated mobile devices with UAV m ‘fm’o Delay for relaying portion of MD w’s task to TBS by UAV
m

N Set of subchannels available for MD to UAV data transmis- t?ff;:f Delay of MD w to transmit l‘l’ffmlu,m bits of data to UAV

sion m over subchannel n

Oum Subchannel assignment variable Sfu,m Computing capacity of MD w associated with UAV m

Ry m Channel gain between MD « and UAV m over subchannel n w,m CPU frequency of UAV m allocated to compute portion of
MD wu’s task

hm,0 Channel gain between UAV m and TBS fe Maximum computing capacity of UAV m

ho Channel gain at reference distance of 1 m Elocl Energy consumption of MD u for local computing

du,m Distance between MD u and UAV m EZ{f;ZLL Energy consumption of MD w for task offloading to UAV m

dm,0 Distance between UAV m and TBS ES Energy consumption of UAV m for edge computing

o Path loss exponent E;’flfo Energy consumption of UAV m for relaying tasks to TBS

P}, Transmit power of MD u to UAV m over subchannel n E],‘;jv Hovering energy of UAV m

Pro Transmit power of UAV m to TBS w Bandwidth of subchannel n

Yee,m SINR for MD w associated with UAV 'm on subchannel n Bm,0 Bandwidth allocated to UAV m for UAV to TBS data
transmission

Ym,0 SNR for UAV m - TBS transmission ¢ Thrust that depends on mass of UAV

No Noise power spectral Nm Power efficiency of UAV m

Ry Data rate of MD w associated with UAV m over subchannel || ¢ Number of rotors in each UAV

n

Rm.0 Data rate of the link between UAV m and TBS T Diameter of rotor

Tu,m Total task input data size of MD u associated with UAV m P Air density

Ou,m Required computing resource to execute 1-bit of data P Rounding threshold

Tu,m The maximum tolerable delay for the completion of task A Maximum violation value

l‘jfm Portion of task data size offloaded to UAV m by MD u T Weight parameter

¢u,m,0 | Portion of task data size relayed to TBS by UAV m 5] Penalty parameter

B Total available bandwidth for UAV to TBS communication k, Kk Constants that depend on processor’s chip architecture

1) MD-to-UAV Data Transmission: Each MD offloads its
computation-intensive and delay-sensitive tasks to the asso-
ciated UAV in order to consume less energy on local com-
putation. To model the data transmission link between MDs
and UAVs, we consider that the line-of-sight link is available
and adopt the Rician channel fading model. In this work,
we consider that the orthogonal frequency division multiple
access (OFDMA) system is leveraged among MDs associated
to each UAV to avoid intra-cell interference. We now define
0 m € {0,1} as a subchannel assignment variable, which
indicates whether or not subchannel n is allocated to MD u
associated with UAV m as follows:

1, if subchannel n is assigned to MD u to
Onpm = transmit task data to UAV m,
0, otherwise.

2
Then, adopting the free-space path loss model, the channel
gain between MD u and UAV m over subchannel n is given
in [26] [27]:

_ho
(dum)™’

where hy is the channel gain at a reference distance of
lm and o is the path loss exponent. d, ., is the eu-
clidean distance between MD w« and UAV m, ie., dym =
\/(xm — 2Z4)? + (Ym — Yu)? + (2m — 24)?, wWhere (2, — 2)
means the vertical distance between MD u and UAV m. Then,
the signal to interference plus noise ratio (SINR) for MD u

n —
w,m =

3)

associated with UAV m over subchannel n is expressed as
follow:

n  pn
Pu,mhu,m
n n n )
Zm’GM, Zu’eu, 5u’,m’RL’,m’hu’,m’ + No

m’#m u' #u

4)

n —
Vu,m -

where P, is the transmit power of MD u on subchannel n
and N is the noise power spectral. Here, we take into account
the interference from other mobile devices associated with
UAV m’ € M, m’ # m transmitting on the same subchannel
n. Hence, the achievable data rate for MD wu that is associated
with UAV m on subchannel n is given by

R}, =wlogy (L+71 ), (5)

where w is the bandwidth of subchannel n.

2) UAV-to-TBS Data Transmission: We assume that MDs
cannot directly offload their tasks to the TBS due to the
severe link blockage or poor channel condition. Moreover,
UAVs are constrained by their computing capacity to fulfill
the computation demand from the MDs. Hence, UAVs will
further relay a partial portion of the MDs’ offloaded tasks to
the TBS in addition to local execution. The communication
link between UAVs and TBS is also assumed to be dominated
by the line-of-sight link as in MD-to-UAV data transmission.
The channel gain between UAV m and TBS which is located
at (xo, Yo, 20) is given by

(6)



where dmo = /(@m — 20)2 + (Ym — Y0)2 + (2m — 20)? is
the distance between UAV m and TBS.

For the transmission link between UAVs and TBS, we
consider that the available bandwidth B is proportionally
allocated to M UAVs so that there is no interference among
them when they relay MDs’ offloaded tasks to the TBS.
Therefore, the signal to noise ratio (SNR) of UAV m for
relaying task data to the TBS can be calculated as

P m,0 hm,O
No
where P, o the transmit power of UAV m to the TBS. The

data rate achieved by UAV m for transmission to the TBS is
given by

. (7

Ym,0 =

Rm,O = Bm,O IOgQ (1 + 'Ym,O) ; (8)

where 3,0 = % is the bandwidth allocated to UAV m for
communication with the TBS.

B. Computation Model

Let us suppose the computing task of MD u associated with
UAV m is denoted as a tuple (I, m, Ou,m, Tu,m), where I,
is the data size of the computing task, O,, ,, is the amount of
required computing resources to execute 1-bit of input data and
T.,,m denotes the maximum tolerable delay for the completion
of task. Each mobile device is assumed to be able to perform
local computing and computation offloading simultaneously.

1) Local Computing at MD: Since each MD has very
limited energy and computing resources, it is impossible to
complete the tasks in time if it only relies on the local
computing. Hence, we consider that MD w offloads zg{fmfu,m
(in bits) to UAV m, where I3 € [0,1] and computes the
amount of task (1 — lfffm) I, .m locally. It is assumed that the
task transmission and computing at the mobile device can be
done in a simultaneous manner [2]]. The time taken for MD u
associated with UAV m to compute the task locally is given
by "

tlii)cﬁi _ (1 - lzﬁm) Iu,’mOu,m7 (9)
’ fum
where f, . is the CPU frequency of MD wu associated with
UAV m.

The energy consumption of MD w associated with UAV m

can be expressed as [2],

Eiz‘;j; = (1 — lgt,tm) Iu,mommkfim’

(10)

where k is the constant that depends on the processor’s chip
architecture.

2) Computation offloading to UAV and TBS: When MD u
offloads tasks to its associated UAV m over subchannel n for
remote computing, the delay of MD u is calculated by

loff Iu m
toff,n — u,m=1u, (l 1)

e wlogy (1492 ,)
The energy consumption of MD « when it transmits the
task to its associated UAV m over subchannel n is given by

off n
lu,mI%mP

w,m

wlogy (1+79%m)

Eoff,n _ n off n __

w,m ~ T umu,m

12)

UAV itself is an energy and resource constrained device,
it cannot handle all the tasks offloaded from its associated
MDs. Therefore, UAVs collaborate with the TBS to reduce the
computation burden on them. In essence, each UAV executes
a portion of MD w’s offloaded tasks locally and relays the
rest to the TBS to save its energy consumption as well as
computing resources. Hence, the time taken for UAV m to
compute portion of MD u’s offloaded task is calculated as

e (]- - ¢u,m,0) lzf,fmlu,mOu,m
tu,m = 5 o )
where f7 ,, is the CPU frequency of UAV m allocated to MD
u for the task execution and ¢, ,, o € [0, 1] denotes the portion
of MD u’s offloaded task at UAV m that will be further relayed
to the TBS.

The energy consumed by UAV m to partially compute the

offloaded tasks of its associated MD w is expressed as

Ei,m = (1 - ¢u,m,0) lzf,fmlu,mOu,mk/( S,m)2~

Moreover, we consider that all the associated MDs of
UAV offload their tasks, but the UAV does not have enough
computing resources. Therefore, part of MD’s offloaded task-
input data at the UAV is assumed to be further relayed to
the TBS. The latency incurred by UAV m to relay MD u’s
offloaded tasks to the TBS is calculated by

off
tszm 0= ¢u,m,0lu’m-[u,m . (15)
Y ﬁm,O 1Og2 (1 + ’Y'm,O)

Then, the energy consumption of UAV m when it transmits
part of its associated MD u’s task-input data to the TBS can
be calculated as

13)

(14)

¢u,'rn,0l3ffmlu,'mp'rn,0
off _ 5

w0 B0 logy (14 Ymo)
The total energy consumption of MD u associated with UAV

m for local computing and task offloading can be expressed
as

Eoff

u,m,0 —

P ot (16)

a7)

N
Bt = B+ Y 0L B
n=1
Both MDs and UAVs are assumed to be able to perform
computing and offloading the tasks simultaneously. It should
be noted that UAV needs to hover at a fixed altitude over the
area of interest until all of its associated MDs’ tasks have
finished completely. Therefore, the time taken by UAV m
to hover over the area while providing communication and
computing services to its associated MDs is denoted as

tiiffm,o)} . (18)

The power consumed by UAV m to hover over the area of
interest is given by [28]] [29]:

N
hov __ n off,n e
t! = max E O mbuim + Max (tum,
UEU, 1
n=

V¢
M /0.5mqr2p’

where ( is the thrust that depends on the mass of UAV, n,,
denotes the power efficiency of UAV m, and ¢ is the number
of rotors in each UAV. r and p are the diameter of rotor and air

P = (19)



density, respectively. Hence, the hovering energy consumption
of UAV m is calculated as

Ehov — phovihov, (20)

The total energy consumption of UAV m for remote com-

puting, offloading and hovering is expressed as
|um‘
B =E 4+ (ES,, +E,). 1)
u=1

The total time taken for device w to finish the task can be
expressed as

tlocal
u,m?

fifm,o)

(22)

N
n off,n e
ty,m = max E O mtbomm + max (tu,mﬂ
n=1

IV. PROBLEM FORMULATION AND SOLUTION APPROACH
A. Problem Formulation

In this section, we present our proposed joint task offload-
ing, communication and computation resource allocation prob-
lem. The objective is to minimize the energy consumption of
mobile devices and UAVs in the system and the optimization
problem is formulated as follows:

M |Un| N M
3 local n off,n tot
Py mzzl ; (Eu,m + n; R o ) + mZ:l B
(23)
S.t.
tu,m < Tu,m,vu < L[m,Vm S M7 (233)
0< 1 <1,Yu €Uy, ¥me M, (23b)
‘uml
Z fi,m < fﬁuvm € M, (23C)
u=1
fam = 0,Yu € Uy, Ym € M, (23d)
0 < ¢u,m,0 < 1,‘v’u S unuvm S M, (238)
N
> 0, < 1,Vu € Uy, ¥m € M, (23f)
n=1
Ontm €10,1},Vu € Uy, Vn € N,Vm € M, (239)

where 6 = {63,m}n€/\/,u€um7m€/\/l7 l = {lzf,fm}ueum,me/\/l,
f= {fs,m}ueum,mGM and ¢ = {¢u,m,0}u€um,m€M~ Con-
straint (23a) ensures that the task of MD w has completed
during the tolerable amount of time. Constraint (23b) means
that the offloaded task input data size is less than the total
input data size. Constraints (23c) and (23d) guarantee that the
total allocated computing resources to its associated mobile
devices does not exceed the maximum computing capacity
of each UAV. Constraints (23e) states that the task data size
offloaded to the TBS is less than MD u’s offloaded task at
UAV m. Constraints (23f) and (23g) ensure that an associated
mobile device of each UAV can only be allocated at most one
subchannel.

The formulated optimization problem in is a mixed-
integer non-convex problem which cannot be solved in a
polynomial-time due to its combinatorial complexity [30].

Moreover, the subchannel assignment variable and the exis-
tence of coupling among the variables make it more challeng-
ing to solve. Therefore, we apply the BSUM framework to
solve our problem which is presented in Section [[V-B

B. BSUM-based Joint Resource Allocation and Offloading

In this section, we present our solution approach to the non-
convex problem in (23). The following steps are summarized
to achieve the optimal solution of the proposed problem:

o Firstly, we reformulate problem (23) into (24) by relaxing
the channel assignment variable.

o Then, we propose the upper bound approximation func-
tion of the relaxed problem in (26).

o After that, instead of minimizing problem @ we min-
imize the approximation function in (26).

« Finally, we apply the rounding technique to enforce the
subchannel assignment variable to be binary value.

First, our proposed problem is reformulated by relaxing the
channel assignment variable 4y, ,, in constraint (23g) into a
continuous form as follows:

M |Unm| N M
: Elocal n EOfﬂ n Etot 24
s.t.
(23a) — (23f), (24a)
Ot € 0,1],Vu € Uy, ¥ € N, Vm € M. (24b)

Then, to put our proposed problem into the framework of
BSUM, the objective function in (24)) is rewritten in a simple
form as

£, f,9) (25)

min
dcD,leL,feF,pcd
where
5(63 l7 .fa ¢) é Z%:l sz{:ni‘ (E}f‘ifﬂi + ij:l 6Z,WLE3f7f’;77LL)
+ Z%zl EP! is the objective function with the feasible sets
of 4,1, f, and ¢ given below,

N
D E{5: ty < Tupm, Vu € Up,¥m € M,y 5%

u,m

<1,Vue
n=1

U, Ym € M, 07 . €10,1],YVu € Uy, ¥n € N,¥m €

LM
M},

LE{l:ty < Ty, Yu € Up,¥Ym € M0 <" < 1,Vu e
Uy, Ym € M},

[Unm |
FE{f ity < Tum, Y € Upy, Ym € M, fS 0 <[5, Ym
u=1

€ M7f1im > O,VU S Z/lm,,vm € M},
O E{p:ty < Ty, VU € Up,, Ym € M,0 < ¢y < 1,Yu
€ Uy, Ym € M}.

The problem in (25) is still non-convex due to the existence
of coupling among the variables such as I, f and ¢. Hence,



to address this problem, we exploit the BSUM algorithm, a
general type of block coordinate descent (BCD) algorithm [31]]
[32]. Practically, BCD cannot be directly applied to solve non-
convex problems and is hard to guarantee the convergence to
the set of stationary points of the objective function. One of
the key advantages of the BSUM algorithm over BCD is that
it can provide a good approximate solution of a non-convex
objective function enough for the algorithm keep going under
the practical and theoretical considerations. Literally, it suc-
cessively minimizes the upper-bound approximation function
by updating the blocks of variables in turn and can guarantee
a few descent of the original objective function.

Here, we define the convex surrogate function &(6 A F )
by adding the quadratic penalty term to the objective function
and it can be described as

(6810, 1), 60) = £(6: 5.1 F. ) +

) (26)
Jo.-3)

)

where ¥J; is the positive penalty parameter.

Given the initial feasible points 9, I, f and ¢> instead
of minimizing the intractable problem in (25), we minimize
the surrogate function in (26) by separating into blocks. It is
noted that the problem in (26) is strictly convex because of the
quadratic penalty term [33]]. Let us suppose i € B", where B”
is the set of index blocks at iteration r. The similar approach
can be applied for other variable blocks I, f, and ¢. At each
iteration r + 1, we solve the following optimization problems
to get the optimal solution of @

(r+1) s (r) (r)
J; € glel% & (5 0 l f o) ) 27
1 ¢ lmmg (li;5§7'+1)’l(7")’f(T)’q&(T”)) ’ (28)
JEL
f§r+1 (S min gi (.fz, 6£T+1 l§T+1)> f(r)v ¢(r)) 1) (29)
fieFr
¢ET+1) € gu% (‘57, <¢z7 61T+1 l(TJrl)a f§T+1)7 d)(r)) . (30)

Since the solution of the relaxed problem in (24) cannot
guarantee the subchannel assignment variable, d,;,, to be
binary value, the rounding technique is adopted to enforce
the binary value of (53’,,1 [I34]] [35]. Let suppose the rounding
threshold be ¢ € (0,1). The optimal subchannel assignment

value, 6" is determined as follow:

u,m
. 1, if 6"
53 m — J 1 u,m — w (3])
’ 0, otherwise.

To address the problem of violating the communication re-
source constraint, we solve & + 7A by modifying the com-
munication constraint in (23f) by

N
n
E 5u,m
n=1
where A is the maximum violation of the communication

constraint and 7 is the weight parameter of A. Then, the value
of A is expressed as

A= max{() Z(Sum -

n=1

<14 A,Vu € Uy, Vm € M, (32)

1} Vu € Uy,,Ym e M. (33)

Algorithm 1 BSUM-based Joint Resource Allocation and Task
Offloading
1) Initialization: Set r = 0, ¢ > 0, and find the initial
feasible points, (8, 10, £ 4O,
2) repeat
3)  Choose index set B";
4)  Let 68" € ming,ep &/(6;,6) 1) £
5)  Set 5“’*” = o) vj ¢_ Br
ming, cp £(8:, 87,100 £, 1)
6) Similarly, solve (28), (29), and (30) to obtain
lETJrl), fgr+1) and quTH) by using steps 1 through 5;
7 Update r = r 4 1;

51‘(7-) 7557‘+1)
8) ——ll<e
!

9) Apply rounding technique on
values;

Solve & + A and evaluate s until p; < 1;
Finally, 5 = &Er—i-l),l* _ l§r+1), f* _ fl(r+1)
P = (].’)ETH) are set as the desired solutions.

L 6");

and solve

é ,ETH) to ensure the binary
10)

11) , and

Using the value of A and solving & (8;*, 1", fi*, ™) + TA,
we can obtain the integrality gap to verify that the solution
achieved from the rounding technique is the best one. The
integrality gap can be calculated by [335]

. E(0:°, 1", fi", i)
L = min —
8 & (651" fi" ") +
where &; (6;%,1;%, fi", ;™) is the solution obtained from
the relaxed solution whereas gi((si*7li*,fi*;d)i*) + 7A is
the solution achieved after rounding. The best solution can
be guaranteed when the value of u,; approaches to 1, i.e.,
pi < 1. For every relaxation, given & (8;%, 1", fi*, ¢i")
whose instances form a convex set, the oblivious rounding
scheme defined as & (&-*, A AS ¢) is individually tight
[34].

(34)

V. SIMULATION RESULTS
A. Algorithm Design

In this section, we present the detailed procedures of the
proposed approach shown in Algorithm [I] In the initialization
step of the proposed algorithm, we determine the initial
feasible points, (6(0),l(0),f(0),¢(0) , of problem (26) by
setting 7 = 0 and € as a small positive number. Then, at each
iteration r, the index set B" is selected to begin the iterative
process. The updated solution is obtained at every iteration

r 4+ 1 by solving problems 27), (28), - and 30) until
the convergence condition is met, ie., ||“—H—I| <

To enforce the solution obtained from (27) to be a b1nary
value, we apply rounding technique to it and solve &; + TA.
Finally, 62(-T+1), lETH), f57'+1), and qSETH) are considered as

the desired solutions.

B. Simulation Environment

We consider the area of interest to be 300 m x 300 m
in which there are 5 MEC-enabled UAVs and 30 mobile



300 A

o x * * mobile device
L 2 & UAV
2504 *
* *
200 A x e
* *
% 150 ¢ * * *
N * %k
100 A
*
50
*
* ¢ *
0 *
50 100 150 200 250
X-axis
Fig. 2: Association of MDs with UAVs.
TABLE II: Simulation Parameters
[ Parameter | Value || Parameter [ Value
ho —50 dB « 2
Pim 1 mW P o W
No —170 dBm B 20 MHz
Tom 200, 700] Mb Ouw.rm 1000 cycles
Tum 0.5, 3] MHz e [1.2,2] GHz
k 10—28 w 180 kHz
¢ 30 N 28] T 70% 28]
q 4 28] r 0.254 m [28]
P 1.225 kg/m3 K’ 1028

devices. The location of the TBS is set at (0, 0,0). The mobile
devices are randomly distributed in the considered area and
the association between UAVs and MDs are determined by
using k-means clustering algorithm. UAVs are assumed to be
hovering at the fixed altitude of 150 m during the considered
time interval. Unless stated otherwise, the values of simulation
parameters are listed in Table I}

In Fig. 2] we present the association of mobile devices to
UAVs by exploiting the k-means clustering algorithm. As we
can see from Fig. |2| that the number of associated devices to
UAV 1, UAV 2, UAV 3, UAV 4, and UAV 5 are 8, 6, 5, 6,
and 5, respectively. Since, the association of mobile devices to
UAVs is determined based on the distance, the mobile devices
can experience better line-of-sight link as well as minimize
the transmission energy consumption to offload their tasks.

C. Convergence Analysis

In Fig. | we illustrate the convergence of our proposed
algorithm by applying three coordinate selection rules [31]],
namely, cyclic, Gauss-Southwell and randomized for two
scenarios: ¥ = 0.1 and ¥ = 10. As we can observe from
Fig. 3] the proposed algorithm converges to a coordinate-
wise minimum and stationary point at which the vectors
5 = 657‘4—1)7 I = ll(r+1)’ f* _ fET—H), and ¢* _ ¢§7‘+1)
cannot find the better minimum direction.

17500 —— Cyclic (§=0.1)
—— Gauss-Southwell (9 =0.1)
15000 —— randomized (9 = 0.1)
0y
G 12500
3 —-== Cyclic (9 =10)
€ 10000 === Gauss-Southwell (9 =10)
® --= randomized (9 = 10)
£ 7500
o
©]
5000
2500
0 10 20 30 40

lterations

Fig. 3: Convergence analysis.

» mmm Number of UAVs=5
<>( m=m Number of UAVs=3
S 0.6

fe)

he]

S

2 0.5

ke}

=

(o)

2

< 0.4

S

G

c

S 0.3

b

(o)

o

100
Maximum tolerable task completion time (ms)

200 300 400 500 600

Fig. 4: The impact of task completion deadline on offloaded
data size of MDs to UAVs.

D. Offloaded Data Analysis

The variation of the offloaded data size of mobile devices
depending on the tolerable task completion deadline is illus-
trated in Fig. [d] When the devices are more tolerable to the task
completion time, they will offload less task data to the UAVs
so that the communication resources can be less consumed.
Nevertheless, mobile devices will offload their tasks more
when there are more UAVs in order to save their energy on
the local computation.

The data size of the task relayed to the TBS by the UAVs
versus the task input data size is plotted in Fig. [5] As we can
see from Fig. [5] that the portion of task data relayed to TBS
increases when the task input data size of the mobile devices
increases. The reason is that the UAVs will relay more task
to the TBS due to their limited CPU resources and energy
budget. On the other hand, the offloaded portion to the TBS
will decrease with the increasing number of UAVs. The reason
is that UAVs will locally handle the offloaded tasks from the
mobile devices to meet the task completion deadline constraint
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Fig. 6: Tasks relayed to the TBS by UAVs vs. task completion
deadline.

when they have sufficient resources to serve the associated
mobile devices.

In Fig. [6] we depict the portion of the task relayed to
the TBS versus task completion deadline. When the mobile
devices have a longer task completion deadline, the portion of
task relayed to the TBS will increase. Due to UAVs’ limited
computing resources and energy budget, more task data will
be relayed to the TBS by the UAVs to meet the stringent task
completion deadline and save the energy consumption. When
the more number of UAVs are deployed, the less task data
will be relayed to the TBS. However, when the task completion
deadline are more tolerable, the gap between them will become
narrower.

E. Energy Consumption Analysis

In Fig. |7} we depict how the amount of computing resources
(CPU cycles) of UAVs impacts their energy consumption. We
can observe from Fig. [7] that the energy consumed by the

== Number of devices=10
=@ Number of devices=20

70 4

Energy consumption of UAVs (kJ)

I T T T T T T T
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Maximum CPU capacity of UAVs (GHz)

Fig. 7: Energy consumption of UAVs vs. maximum CPU
capacity of UAVs.

UAVs increases with the amount of CPU resources. This is
because the devices tend to offload more tasks to UAVs which
have rich computing resources and as a result, UAVs consume
more energy on the processing of the tasks. Moreover, the
number of mobile devices associated with the UAVs affects the
energy consumption of the UAVs. To show that, we simulate
by considering a different number of devices. It is obvious
that more energy will consume when there are more number
of devices to be served by the UAVs in the system.

In Fig. [§] we show the impact of task data size on the
energy consumption of mobile devices by comparing with
other benchmark schemes such as equal offloading, local
processing only and offloading all. As observed in Fig. [§] our
proposed scheme achieves mobile devices’ minimum energy
consumption as in offloading all when the amount of data
size increases. This is because when the mobile devices have
more task input data to execute, they prefer to offload more to
the UAVs to save their energy consumption. However, mobile
devices consume much more energy on local computing in the
equal offloading and local processing only.

The effects of the number of available subchannels on
the devices’ energy consumption and offloaded data size are
given in Fig. 0] As we can observe from Fig. [0] the energy
dissipated by the mobile devices reduces with the increasing
number of subchannels. This is because mobile devices can
minimize their transmit power by selecting the more favorable
subchannel while offloading their tasks to the UAVs. On the
other hand, they can offload more data to the UAVs by saving
energy consumption on data transmission.

In Fig. [I0] we study the effectiveness of our proposed
approach in terms of the system’s total energy consumption by
varying the number of mobile devices. The total energy con-
sumption of the system increases with the increasing number
of devices. We compare our proposed scheme (UAV+TBS)
with the other scheme (UAVs only) to verify how the pro-
posed scheme can give better results in terms of total energy
consumption. The total energy consumption while considering
UAVs only is higher than that UAVs and TBS collaboration.
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The reason is that both the mobile devices and UAVs might
consume too much energy on the task execution without the
assistance of the TBS.

VI. CONCLUSION

In this paper, we have studied a multi-UAV-assisted two-
stage MEC system in which MEC-enabled UAVs provide
computing and relaying services to the mobile devices. Taking
into account the tolerable delay of the tasks and the limited
communication/computation resources of the UAVs, we have
formulated a joint resource allocation and offloading problem
with the objective of minimizing the total energy consump-
tion of the mobile devices and UAVs. Since the formulated
optimization problem is a mixed-integer non-convex problem
which is NP-hard, we first relax the channel assignment vari-
able and reformulated the problem. However, the reformulated
problem is still non-convex due to the coupling among the
variables. To address that problem, the BSUM algorithm has
been deployed. The simulation results have shown that the

4007 _g— UAv+TBS Va

350 == UAVs only

300
250 4
200
150

100

Total energy consumption (kJ)

50 +

T T T T T T T T T T
10 20 30 40 50 60 70 80 90 100

Number of mobile devices

Fig. 10: Total energy consumption of the system vs number
of mobile devices.

proposed approach can reduce the energy consumption of the
network and outperformed the baseline schemes.
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