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Semantic Cameras for 360-Degree Environment
Perception in Automated Urban Driving

Andra Petrovai and Sergiu Nedevschi , Member, IEEE

Abstract— The European UP-Drive project addresses
transportation-related challenges by providing key contributions
that enable fully automated vehicle navigation and parking
in complex urban areas, which results in a safer, inclusive,
affordable and environmentally friendly transportation system.
For this purpose, the project consortium developed a prototype
electrical vehicle equipped with cameras and LiDARs sensors
that is capable to autonomously drive around the city and find
available parking spots. In UP-Drive, we created an accurate,
robust and redundant multi-modal environment perception
system that provides 360◦ coverage around the vehicle. This
paper summarizes the work of the project related to the
surround view semantic perception using fisheye and narrow
field-of-view semantic virtual cameras. Deep learning-based
semantic, instance and panoptic segmentation networks, which
satisfy requirements in accuracy and efficiency have been
developed and integrated into the final prototype. The UP-Drive
automated vehicle has been successfully demonstrated in urban
areas after extensive experiments and numerous field tests.

Index Terms— Automated driving, environment perception,
image segmentation.

I. INTRODUCTION

THE future of mobility is the automation of individual
transportation, which will bring major social, economical

and ecological benefits. Automated electric transportation will
alleviate challenges regarding massive urbanization and per-
sistent traffic congestion, and a more efficient coordination of
vehicles in traffic will address the problem of climate change
with reduced greenhouse gas emissions. Moreover, automated
driving means increased safety on roads by removing human
error. Car-sharing will become more attractive and the mobility
of the aging or disabled population will be improved. However,
due to the lack of maturity of key technologies especially in
the context of complex urban areas, full vehicle automation is
a long-time vision and an ongoing effort from academia and
the automotive industry.

The H2020 European UP-Drive project [4] addresses these
technological challenges by developing a fully automated
electrical vehicle that is able to safely navigate in a complex
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Fig. 1. The UP-Drive VW e-Golf prototype performs fully automated
driving in urban areas. Semantic environment perception is achieved with
five semantic cameras that constantly monitor 360◦ around the vehicle.

urban environment with use cases such as robot taxi or
automated valet parking service. Solving automated driving
in urban areas is an extremely difficult challenge, and in order
to accommodate the limited 4-year time frame of the project,
the area of application has been restricted to urban 30 km/h
zones and mapped areas.

The UP-Drive vehicle is capable of automatically finding
empty parking spots in urban areas, using a long-term semantic
map shared between multiple agents, is able to autonomously
drive to the available parking spot, park in and also to drive
to any pick-up place around the city. Creating an advanced
system for automated driving and parking requires develop-
ment and research of key technologies: robust surround view
environment perception, accurate life-long metric localization
and mapping, scene understanding and aggregation of seman-
tic data over a cloud-based infrastructure.

The goal of perception in autonomous driving applications
is to detect, track, classify and represent the objects in the
driving environment. The key elements to achieve these tasks
are a redundant, robust, accurate and multi-modal sensory
system providing a 360◦ coverage of the vehicle surrounding.
For a robust perception, redundancy must be ensured at
algorithmic level, but also at sensory level, with different types
of sensors providing geometric, semantic, motion information.
Towards this goal, the UP-Drive vehicle is equipped with
fisheye cameras that provide 360◦ coverage, front narrow field
of view cameras for increased depth range and 360◦ LiDARs
for 3D perception.

For safe navigation in urban areas, we develop a robust and
fast 360◦ 2D perception solution with semantic cameras that is
deployed on the UP-Drive vehicle. The motivation to develop
such a semantic perception solution stems from a key element
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of our 3D perception system: the low-level representation of
the environment that is built by fusing semantic, instance and
geometric information. In order to achieve this, the proposed
semantic virtual cameras need to cover the same 360◦ area
around the vehicle, in the near and far depth range, as the
LiDAR sensors. From the multitude of sensors mounted on the
vehicle, the camera system is best at capturing the semantics of
the environment: images provide rich appearance information
such as color and texture which makes the semantic segmen-
tation in the 2D space the most robust. The goal of our 2D
perception system is to detect static road infrastructure, but
also to detect dynamic objects such as road users. In our
holistic panoptic image segmentation approach, each pixel in
the image is uniquely assigned a semantic label and also an
instance identifier. The panoptic information is further used by
the low-level sensor fusion module, in which the semantic and
instance information extracted from images is associated to the
3D point clouds from LiDARs. The augmented 3D point cloud
is further processed to classify 3D objects using the semantic
information and to refine raw 3D bounding boxes based on
the instance identifiers. The classified 3D objects provided
by the perception module are further processed by other
modules in the software stack, such as scene understanding,
motion planning, maneuver prediction, decision making or
traffic flow prediction [7]. Modeling the interaction between
traffic participants is highly correlated with their semantics
since assumptions about their behavior could be implemented.

This paper describes the 360◦ 2D semantic environment
perception system, more specifically, the proposed deep
learning-based semantic virtual cameras that provide semantic,
instance and panoptic segmentation by processing images from
four fisheye and one narrow field-of-view frontal camera. Our
semantic cameras need to meet requirements of high accuracy
and low processing time in order to enable fully automated
navigation of the vehicle in urban areas. In order to keep the
processing time reasonable (100-150 ms) given the limited
hardware resources, we perform semantic segmentation on all
five images and detect instances only from the frontal fisheye
and narrow field-of-view images, since the frontal area offers
the most relevant information for navigation. We also develop
an original panoptic segmentation solution [13] which unifies
semantic and instance segmentation of the front fisheye image
and increases the segmentation accuracy. The instance and
panoptic segmentation can be easily extended to other views,
when using more powerful hardware.

To summarize, our main contributions are the following:
• We describe the complete process of developing a 360◦

2D semantic environment perception system that can
be integrated into a fully automated software stack and
discuss the challenges associated with bringing a lab
prototype to operate in real-world conditions. To the
best of our knowledge, this is the first work that thor-
oughly presents each step of the process from a practical
perspective: from camera setup to network design and
implementation, dataset creation, network training and
testing, network deployment, and software integration.
We also highlight the problems that we encountered and
our solutions towards developing a fully working system

in the real environment that can operate reliably and fast
on limited hardware with low power consumption.

• Our 360◦ 2D semantic environment perception system
meets requirements of high accuracy and low inference
time, while processing images from five cameras: four
fisheye and one narrow field-of-view camera.

• We propose deep learning-based semantic virtual cameras
that provide pixel-level semantic, instance and panoptic
information. Our novel panoptic segmentation module
unifies semantic and instance segmentation such that each
pixel is uniquely assigned a semantic and instance label.
Our panoptic module increases the segmentation accuracy
and facilitates the low-level fusion with the 3D point
clouds as part of the 3D perception system.

• Our solution has been deployed on a prototype vehicle
and integrated into the fully automated software. We pro-
vide implementation details and thoroughly describe the
integration process. We also perform extensive experi-
ments on our UP-Drive dataset and numerous field tests
with the prototype vehicle in urban environment.

• We find that, from a practical perspective, detecting
distant objects is important especially when driving at
high speeds. Fisheye cameras limit our detection range
due to its wide-angle lenses. We propose using high
resolution images, as well as network optimization and
quantization, to extend the detection range, while keeping
the processing time low. Another important finding is that
by adding a narrow field-of-view camera to our system,
we can extend the detection range for pedestrians three
times compared to fisheye cameras.

II. RELATED WORK

In this section, we review semantic, instance and panoptic
segmentation networks from the literature.

A. Semantic Segmentation

Semantic segmentation partitions an image into meaning-
ful segments, which share a common representation. Each
pixel in the image receives a semantic class that belongs
to either stuff or things categories. Stuff classes represent
amorphous and uncountable elements in the scene, that usually
have repetitive texture, but not a fixed shape or size. In the
driving environment, examples of stuff classes include road,
sidewalk, building, nature. On the other hand, things classes
define objects that can be counted and have a specific shape.
Road users belong to this category: vehicles, pedestrians and
cyclists. Fully Convolutional Networks (FCN) [31] are widely
used in the semantic segmentation task, due to their state-of-
the-art results on public benchmarks, such as Cityscapes [12],
Mapillary Vistas [32] or COCO [29]. In FCNs, fully-connected
layers from a CNN are replaced with convolutional layers.
Two important aspects should be considered for accurate
pixel level classification: how to capture context cues and
how to maintain details of finer scales such as shapes and
boundaries. [8], [9] enlarge the receptive field of classification
CNNs by adopting dilated convolutions in the last residual
blocks, while providing a higher output resolution. Deformable
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convolutions [14] avoid dilation stride engineering by learning
filters with adaptive receptive fields. Spatial Pyramid Networks
(PSPNet) [50] capture global image information by employing
parallel pooling operations and fusing features at different
scales. [8] proposes Atrous Spatial Pyramid Pooling (ASPP)
with parallel dilated convolutions. The drawback of dilated
convolutional neural networks is that they have a high memory
footprint, since they generate a high output stride of 8×.

Another popular CNN architecture for semantic segmen-
tation is the encoder-decoder [26], [43], [46]: the encoder
network learns hierarchical feature representations, while the
decoder network upsamples feature maps to the input image
resolution and recovers spatial information. In [44], the authors
propose an encoder-decoder network for free space segmenta-
tion that processes RGBD data, in the context of a real-time
multi-sensor perception framework for automated vehicles.

The end-to-end training in the multi-task setting can
improve accuracy compared to separately trained networks
for each task and leads to a solution that can generalize
better [20]. Therefore, semantic segmentation has been cou-
pled with object detection and instance segmentation tasks
in [13], [21], [48], where the authors extend the state-of-the-art
two-stage object detector and instance segmentation network
Mask R-CNN [17] with a semantic segmentation head. These
two-stage networks provide accurate results but are difficult
to train due to the high number of design parameters. The
complexity of the inference pipeline makes deployment and
optimization with deep learning inference engine such as
TensorRT [2] difficult to achieve.

Automated driving requires real-time performance of
semantic segmentation algorithms. From the above mentioned
methods, the encoder-decoder architectures achieve the best
trade-off between accuracy and latency. Therefore, we employ
the efficient ERFNet [43] network for semantic segmentation
of fisheye images, which delivers high quality segmentation at
reduced computational costs.

B. Instance Segmentation

Instance segmentation predicts a semantic mask and an
instance identifier for each object such that we can differentiate
between objects belonging to the same class. Classification is
performed at instance-level, which means that object masks
could overlap. All pixels from an instance mask have the
same semantic class and the same instance identifier. Instance
segmentation approaches follow in general two directions:
segmentation of candidate regions or segmentation of instances
without proposals.

The most representative solution for proposal-based meth-
ods is Mask-RCNN [17], which has demonstrated outstanding
performance on public benchmarks [12], [29]. The authors
extend the two-stage object detector Faster R-CNN [42] with
a mask prediction head, which performs segmentation inside
detected 2D bounding boxes. Mask R-CNN achieves scale
invariance by introducing the RoiAlign operation which sam-
ples a fixed number of features inside each candidate box.
Cascade R-CNN [6], Non-local networks [47], PANet [30]
bring improvements to Mask R-CNN at different stages of

the pipeline and provide accurate masks, but at reduced
inference speed and are not suitable for real-time processing.
With the introduction of specialized losses such as Focal
Loss which addresses the class imbalance problem or by
using training tricks and multi-scale predictions [41], single-
stage object detectors manage to obtain on-par accuracy with
two-stage detectors while being significantly faster. Retina-
Mask [15] integrates a mask prediction head on top of
RetinaNet [28], improves the loss function and includes hard
examples in training, thus increasing the detection perfor-
mance while keeping the computational cost of the detector
network.

Proposal-free methods perform semantic segmentation and
cluster pixels belonging to the same instance based on sim-
ilarity measures. Kendall et al. [20] and Neven et al. [33]
propose learning an offset vector for each pixel that points
to the instance centroid. PersonLab [34], CornerNet [24]
introduce keypoint guided instance segmentation, while Deep
Polygon Transformer [25] and DeepSnake [36] formulate
instance segmentation as the problem of fitting a polygon
around the object. TensorMask [10] employs 4D Tensors and
demonstrates advantages over 3D Tensors with increased com-
putational costs. DWT [5] models the energy of the watershed
transform with CNNs, but cannot handle objects separated into
multiple parts. Instance segmentation can be also viewed as
a graph partition problem in which the total score of edges
connecting different components is maximized, but these types
of methods [16], [23] are currently time-consuming due to the
complexity of the graph space.

Proposal-based methods achieve top-performing results for
instance segmentation and single-stage approaches enable fast
inference and are suitable for automated driving applications.
We employ RetinaMask [15] in our image segmentation mod-
ule, due to its high accuracy, reduced computational costs
and more importantly the reduced complexity of the inference
pipeline, which allows for further acceleration with deep
learning inference engines [2] and eases the deployment in
the perception software.

C. Panoptic Segmentation

Panoptic segmentation provides a unified semantic and
instance representation. It performs dense pixel classification
into things and stuff classes and assigns an instance identifier
to every things pixel in the image. Panoptic segmentation can
be achieved by simultaneously solving two other tasks: seman-
tic and instance segmentation. Kirillov et al. has formally
defined the task of panoptic segmentation in [22] and has pro-
posed a baseline approach in [21]. They integrate a semantic
segmentation head in the Mask R-CNN framework [17] and
propose merging heuristics for instance and semantic segmen-
tation that solve overlaps and semantic class mismatches. [39],
[48] propose an end-to-end trainable network that employ
semantic and instance logits to build the panoptic output which
is directly learned inside the network. [40] achieves state-
of-the-art results by designing a multi-scale fusion layer that
facilitates information flow within the network. Although these
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Fig. 2. Test vehicle setup. The vehicle is equipped with 5 cameras,
11 LiDARs and 7 radars.

methods provide accurate results, their high latency makes
them unsuitable for use in the automated driving context.

We propose an original panoptic segmentation fusion
scheme [13] that corrects semantic classification using instance
classes and improves instance masks by propagating instance
identifiers on semantic masks. The advantage of our method
is that it is fast, it provides improved and unified semantic
and instance segmentation output and can be easily integrated
as a post-processing step on top of any image segmentation
networks.

III. TEST VEHICLE SETUP

The test vehicle platform for the UP-Drive project is the
fully electric VW e-Golf. Three different types of sensors
have been mounted on the vehicle in order to guarantee
a 360◦ 3D multimodal environmental perception: cameras,
radars and LiDARs. Five externally synchronized cameras are
integrated into the sensor setup in order to cover the near
and far-range surround view of the vehicle: one 60◦ field-of-
view camera located behind the windshield and four fisheye
cameras. The front and rear fisheye cameras are mounted
horizontally near the vehicle emblem, while the left and
right cameras are mounted on each side mirror and are tilted
downwards. With four wide 185◦ field-of-view cameras, the
system offers 360◦ coverage around the vehicle with some
overlap between neighboring cameras. The fisheye system of
cameras delivers color images of resolution 1280×800, JPEG
compressed at 30 frames/second.

The fisheye system of cameras have wide-angle lenses and
an equivalent short focal length, that determine a large extent
of the scene to be captured. The apparent size of objects
in the images is smaller compared to narrow-field of view
cameras. Thus, the fisheye cameras limit the detection range of
segmentation algorithms. From our experiments, we obtained
robust pedestrian segmentation with fisheye images up to only
25 meters. Detecting distant objects is important especially
when driving at high speed. In order to overcome this problem,
we introduced a narrow-field of view RGB camera in the
setup, mounted behind the windshield. The camera has a 60◦
horizontal field-of-view, it delivers 1928 × 1208 resolution
images with a framerate of 30 frames/second and extends the
detection range three times. The complete sensor suite can be
visualized in Figure 2.

Fig. 3. Results of the fisheye images unwarping process. First row: fisheye
images, second row: cylindrical projection of the fisheye images. From left
to right: front view, right view, rear view and left view.

IV. 2D PERCEPTION WITH SEMANTIC CAMERAS

In this section, we describe our 360◦ 2D semantic environ-
ment perception system, as seen in Figure 4. First, we provide
details about image pre-processing steps such as undistortion
and fisheye unwarping in Section IV-A. Next, we describe our
virtual semantic cameras that provide semantic, instance and
panoptic segmentation in Section IV-B. We provide details
about the datasets used for training and testing, networks
architecture, training procedure and the original solution for
panoptic segmentation [13]. Finally, network integration and
deployment is discussed in Section IV-B.5.

A. Image Undistortion and Unwarping

The raw fisheye images are not used in practice by our
perception system because structures and objects in the image
are highly distorted due to the wide-angle lenses. Therefore,
we apply image undistortion and unwarping in order to obtain
a more suitable representation of the scene in the image.
Unwarping is the process of backprojecting the fisheye image
onto a virtual projection surface. In our case [45], we adopt
cylindrical unwarping which generates images with large
horizontal field-of-view (HFV) and small distortions, while
also preserving the orientation of vertical lines. In the image
unwarping process, we reduce the horizontal field-of-view
from 185◦ to 160◦. We provide a visual comparison of fisheye
and unwarped fisheye images in Figure 3.

B. Deep Semantic, Instance and Panoptic Segmentation

Deep learning extends the problem of classification to
representation learning and has shown superior results to algo-
rithms based on hand-crafted features in many computer vision
tasks, including semantic, instance and panoptic segmentation.
In order to achieve accurate and robust results, the deep neural
networks require a large, consistent and high-quality dataset
of labeled images, generated manually, semi-automatically or
even automatically. Real-time performance is supported by the
new generation of GPU devices and advanced studies in neural
network optimization, allowing high inference speed with low
computational costs on the new low-power GPUs. Considering
the advantages of deep learning and the advances in technol-
ogy, deep neural networks based solutions are suitable for the
automated driving perception software.

1) Image Segmentation Dataset: For training and evaluating
the proposed deep neural network for semantic and instance
segmentation on fisheye images, we employ our internal
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Fig. 4. Our semantic perception system processes input images from five cameras: four fisheye surround-view cameras that cover 360◦ around the vehicle
and one front narrow field-of-view camera. The Data Flow Manager receives the five synchronized image samples and outputs the best temporally aligned set
with the beginning of the perception processing cycle. The four fisheye images are first unwarped and undistorted and semantic segmentation follows. For the
front unwarped fisheye image, we also perform instance segmentation and implement a fusion between semantic and instance segmentation to finally obtain
the panoptic output. Due to time constraints, the narrow field-of-view image is processed only by the instance segmentation algorithm.

UP-Drive dataset. The lack of publicly available datasets for
360◦ perception, also identified by [49], has driven us to record
and annotate our own dataset. To fuel interest towards 360◦
perception, [49] has recently published sensory data with a
different configuration than ours, but which also covers the
surround view: left, right fisheye cameras, and front, rear
stereo cameras.

Our UP-Drive dataset is large and has been designed to
capture a wide variety of outdoor weather and lighting con-
ditions. The data was recorded by driving the car in several
cities in northern Germany but also on highways and country
roads. Recordings were performed in daytime and account
for different lighting conditions, from morning to afternoon.
Sequences were acquired in a time span of several months in
three seasons: spring, summer and autumn. The diversity of
weather conditions has been taken into consideration, therefore
the data was recorded in sunny, cloudy weather but also in
heavy rain. Lens flare, but also lens distortions from rain
drops have been captured. From all the recordings, 19562 non-
sequential frames were selected for semantic and instance-
level annotation. Images cover the surrounding view of the
vehicle: front, left, right and rear. There are 5111 front view
images, 4684 left view images, 4800 right view images,
4967 rear view images. The UP-Drive dataset was labeled
using similar methodology with the Cityscapes dataset [12].
Pixel-level semantic segmentation annotation is provided for
all images into 23 classes, and also instance-level labels for a
subset of 6 classes that represent traffic participants. We split
the dataset into the training set, with 15782 images and the
validation set, with 3780 images.

The image dataset of narrow field-of-view images is rela-
tively less diverse and smaller than the fisheye dataset. It con-
tains 1869 images which are labeled with pixel-level instance
masks for 6 classes. We train our network on 1495 images
and validate on 374.

2) Semantic Segmentation: We implement a Fully Convolu-
tional Neural Network (FCN) [31] for semantic segmentation

of the four fisheye images. In order to correct the distortions
introduced by the wide-angle lenses, the fisheye images are
undistorted and unwarped at both train and inference time.
State-of-the-art semantic architectures are either very deep or
wide or employ complex layers at the cost of higher memory
usage and higher execution time. Computational resources
should be considered when developing perception systems for
automated driving since the algorithms must run in real-time
on low power hardware in the vehicle. For our segmentation
network, we adopt ERFNet [43], an efficient network that
achieves a good trade-off between accuracy and efficiency.
The network has an encoder-decoder architecture, where the
encoder extracts image features at different scales and the
decoder combines the features in a higher resolution represen-
tation. The building block of ERFNet is the factorized residual
layer. This layer represents a 1D non-bottleneck residual
module that decomposes a 2D kernel into a linear combination
of 1D kernels. In this design, each 3 × 3 convolution is
transformed into 3 × 1 and 1 × 3 convolutions. The number
of parameters is reduced with 33% when using a kernel size
of 3. At the same time, the network is much more memory
efficient and faster while having an increased capacity which
results in a high accuracy of segmentation similar to more
complex models. The feature extractor encodes features at
three scales: 1/2, 1/4, 1/8 from the original input resolution
by stacking residual 1D non-bottleneck blocks having dilated
convolutions. A high output resolution is important in order
to preserve detailed information and small objects. Dilation
in convolutional layers has proven an efficient mechanism for
capturing multi-scale context, which is essential for correct
classification. The lightweight decoder is formed of 1D non-
bottleneck blocks and recovers spatial and semantic informa-
tion from the last layer of the encoder.

We implement our model in the PyTorch [35] framework on
a system with four Tesla V100 GPUs. The network is trained
for 150 epochs with a batch size of 12 images per GPU
and a polynomial learning rate decay starting from 0.0025.
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The cross entropy loss function is optimized with Adam
optimizer. We crop the images to 1280 × 640 and apply
random horizontal flipping augmentation and random left-right
translation. The network is initialized with pretrained weights
on the Cityscapes dataset [12].

3) Instance Segmentation: The deep instance segmentation
network needs to be accurate and efficient and at the same time
the architecture should allow optimization and deployment
with deep learning inference engines such as TensorRT [2].
In order to keep the processing time of the entire perception
system low, we perform instance segmentation only on the
front fisheye image and on the narrow-field of view image,
since the area in the front of the ego-vehicle contains the most
important information about the environment needed for safe
navigation.

In the first iterations of the project, we developed a
two-stage Mask R-CNN-based solution for semantic and
instance segmentation [13]. Two-stage networks propose
object candidates in the first stage, while in the second stage,
candidate bounding boxes are regressed and classified and a
binary mask is predicted for each object. Due to the complexity
of the inference pipeline, optimization of the network with
TensorRT [2] was hard to achieve. Although the network pro-
vides accurate results, the network is computational expensive
and cropping and downsampling the fisheye input images from
1280 × 800 to 512 × 256 was required in order to reduce the
inference time. The difficulties we encountered with network
acceleration, deployment and the high inference time even at a
smaller resolution, motivated us to search for a more efficient
single-shot instance segmentation network with a simplified
inference pipeline.

Our final solution for instance segmentation employs
RetinaMask [15], which extends the state-of-the-art single-
shot object detector RetinaNet [28] with a Mask R-CNN type
of instance mask prediction head. For the feature extraction
backbone, we use the ResNet-50 [18] with a 5-level Feature
Pyramid Network (FPN) [27]. FPN allows multi-scale object
detection by encoding multi-resolution representations from
1/4 to 1/64. The FPN follows the original implementation [27]
with 256 feature maps and 5 anchor scales. A bounding box
regression and classification head with four convolutional lay-
ers is appended to each level of the pyramid. The bounding box
predictions are aggregated, filtered and distributed to layers in
the FPN. Next, the ROIAlign [17] operation samples the same
number of features (14 × 14) from each predicted bounding
box, which are finally processed by the mask prediction head
with four convolutional layers and one transposed convolution.
Finally, a [1 × 1] convolution generates the final class-wise
masks of size 28 × 28.

We train two instance segmentation networks on fisheye and
narrow-field of view images from the UP-Drive dataset. The
network is pretrained on Microsoft COCO dataset [29] and
Cityscapes dataset [12]. We set the batch size to 16 images
and train for 30k iterations with the base learning rate of 0.01,
which is decreased by 10 at 20k iteration. Optimization of
the loss function is done using Stochastic Gradient Descent
(SGD). Fisheye images are cropped to 1280 × 640 and then
scaled during training with the shorter edge of the image

randomly sampled from [480, 640]. Narrow-field of view
images are resized to 832 × 416 and multi-scale training is
performed at scales in [320, 416]. We apply random horizontal
flipping augmentation.

4) Panoptic Segmentation: We propose an original solution
for panoptic segmentation in which we fuse the semantic
and instance segmentation output by applying a novel fusion
scheme, which efficiently solves instance-level overlaps and
conflicts between semantic classes. Our solution is derived
from the following observations: instance segmentation masks
are more raw due to their low resolution (28×28) and errors at
object border could be observed especially in the case of large
objects, while semantic segmentation provides good delimi-
tation between things and stuff pixels but confuses classes
belonging to the same category. In our implementation, we use
three categories: vehicles, humans and two-wheeled and six
classes: bicycle, motorcycle, bus, car, truck, person. In the first
step of the fusion process, we divide pixels into things and stuff
based on the semantic segmentation result. In the panoptic
output, stuff pixels receive the semantic class from semantic
segmentation. In the case of things classes, masks provided
by instance and semantic segmentation may be misaligned
or their semantic classes may be different. To establish the
semantic class of each things pixel, we consider the class
provided by the object detector and use the instance mask
to guide a pixel-to-pixel matching. The class label and the
instance label of a pixel given by the instance segmentation
is preserved only if it is consistent with the semantic category
of that pixel from the semantic segmentation. The instance
mask pixels which are not matched and correspond to either
things pixels or other categories in the semantic segmentation
output are deleted. After the matching process, we may have
things pixels that were not covered by any instance mask.
In this case, they are connected to the closest previously
labeled pixel with a direct semantic path. This extension
can be achieved with a breadth-first-search region growing
algorithm. The semantic class and instance identifier are prop-
agated, resulting in a more stable object level classification
in comparison with pixel level classification. In the case of
things pixels which did not receive an instance identifier after
the region growing process, due to the fact that they were
isolated, we generate a new instance identifier and preserve
the semantic class from semantic segmentation. We employ
a threshold over the segment area in order to avoid introduc-
ing false positive segments. The fusion process is depicted
in Figure 6.

In UP-Drive, unifying semantic and instance segmentation
in the form of panoptic segmentation, which ensures a unique
semantic and instance label per pixel, is important in order
to increase the segmentation accuracy, but also in the broader
context of 3D object detection. Without using the panoptic
fusion module, a pixel could have multiple mismatched seman-
tic labels and multiple instance identifiers, since an instance
segmentation network provides overlapping instances. This
means that a 3D point would be associated with multiple
semantic and instance labels and further processing steps
would be necessary in order to solve semantic class mis-
matches and overlaps. Having a unique semantic and instance
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Fig. 5. Network architecture for panoptic segmentation on the front unwarped fisheye image. Semantic segmentation and instance segmentation output is
fused using a novel merging scheme. The lightweight encoder-decoder semantic segmentation network also processes left, right, back fisheye images. The
single-shot instance segmentation network processes the front unwarped fisheye image and the front narrow field-of-view image.

Fig. 6. Fusion of semantic and instance segmentation into a unified panoptic
segmentation output. (1) Input: semantic segmentation (where a part of the
car is missclassified as truck), instance segmentation (mask for car is slightly
misaligned and cropped, and the pedestrian behind the car is not detected).
(2) Matching: category-wise pixel matching (3) Filling: region growing with
instance semantic label and instance ID propagation on the semantic mask
(4) Panoptic segmentation.

label per pixel simplifies subsequent processing steps on the
3D augmented point cloud.

5) Network Integration and Deployment: We integrate the
segmentation network, the two instance segmentation net-
works (one for fisheye and one for narrow HFV images)
and the panoptic segmentation fusion algorithm, as seen in
Figure 5 into our perception software running in ADTF [1].
The panoptic fusion algorithm is implemented in C++ and
CUDA. For integrating the semantic and instance networks,
we employ the powerful TensorRT library [2] that generates a
high-performance runtime engine which can be easily loaded
into the C++/CUDA project. TensorRT brings another benefit:
it performs network optimization and quantization, which
drastically reduces the inference time.

Since TensorRT library cannot import PyTorch models,
we first convert the semantic segmentation PyTorch model into

the ONNX format using the ONNX Parser [3]. Next, a network
object is created in TensoRT and populated with the input
from the ONNX model. The Builder component of the library
takes the TensorRT network and generates a deployment-ready
engine that is optimized for the target platform, in our case
NVIDIA GTX 1080 GPU. The generated engine which per-
forms the inference is loaded in the ADTF perception project.
In order to reduce the inference time, in the case of semantic
segmentation of fisheye images, we create a batch of four
images (surround view) and forward them simultaneously
through the network. Moreover, in the build phase, the library
optimizes the layer graph by eliminating layers whose output
is not used, fuses convolution, bias and ReLU operations,
aggregates operations and merges concatenation layers. The
semantic segmentation network is also quantized into INT8,
resulting in four times faster inference speed at full image
resolution.

Instance segmentation networks cannot be directly opti-
mized with TensorRT in the same manner as the segmentation
network, due to hand-crafted operations such as ROIAlign,
filtering of candidate boxes and their assignment to a specific
FPN layer. Moreover, the Non-Maxima Suppression (NMS)
operation has to be implemented in order to remove over-
lapping boxes. Therefore, we divide our network into three
parts: the backbone with object detection heads, hand-crafted
operations (filter out boxes with low confidence, select top
1000 boxes from each FPN layer, apply NMS, select top
50 scoring bounding boxes, ROIAlign) and finally the mask
prediction head. The backbone, object detection and mask
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Fig. 7. Semantic segmentation of unwarped fisheye images. We process four images from the fisheye 160◦ horizontal field-of-view cameras which provide
360◦ coverage around the vehicle. Each camera views a different direction around the vehicle: front, right, rear and left.

prediction heads are converted to ONNX format, since they
contain operations natively implemented in both ONNX and
TensorRT. On the other hand, we implement hand-crafted
operations as Plugin types of layers in TensorRT using native
CUDA. Finally, we generate an optimized engine for instance
segmentation with FP32 precision and we obtain almost two
times faster inference time.

The fusion module for panoptic segmentation is imple-
mented as a fast post-processing step and is running in 5 ms
on the NVIDIA GTX 1080 GPU on the 1280 × 640 front
unwarped image It has been integrated with the semantic and
instance segmentation modules in the ADTF framework.

V. EXPERIMENTS

In this section we provide experimental results for 2D
semantic, instance and panoptic segmentation on the UP-Drive
dataset.

A. Evaluation Setup

1) Evaluation Metrics: We evaluate semantic segmentation
using standard mIoU (mean Intersection over Union) metric.
For instance segmentation the AP@[.5:.05:.95] (Average Pre-
cision over classes and 10 IoU levels from 0.5 to 0.95 with a
step size of 0.05) is used.

2) Inference Time: We report the inference time of the
networks, measuring the forward pass and all the necessary
post-processing steps (e.g. NMS). The execution time is

TABLE I

EVALUATION OF THE SEMANTIC SEGMENTATION NETWORK ON FISHEYE

IMAGES CORRESPONDING TO FRONT, LEFT, BACK, RIGHT VIEWS.
1280 × 640 - INT8 IS INTEGRATED INTO THE FINAL SOLUTION

measured on a NVIDIA GTX 1080 GPU with batch size of
1 unless otherwise stated.

B. Image Segmentation Results

In Table I we analyze the performance of the semantic
segmentation network using different resolutions. In the first
stage of the project, we developed a custom CUDNN-based
framework that runs PyTorch models natively on GPU, due to
the lack of integration possibilities with C++ projects. The
inference time is measured using our custom CUDNN-based
framework, but is equivalent to the inference time in the
PyTorch framework. We train the semantic segmentation net-
work using unwarped fisheye images from all four views.
The advantage of using the same model for all images is
that the inference can be accelerated by processing the batch
of 4 images simultaneously. With 512 × 256 we obtain
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Fig. 8. The front area of the vehicle is covered by two cameras: a narrow 60◦ horizontal field-of-view camera which provides instance segmentation at
increased depth and a wider 160◦ horizontal field-of-view camera, which provides instance, semantic and panoptic segmentation for the near-range.

64.52 mIoU and an inference time of 15 ms per image, and
60 ms for all four view images. The full resolution yields
a more than 3% increase in accuracy, but it is computational
expensive and not suitable for our system. In the first iterations
of the project, we integrated into the system the model trained
on 512 × 256 images by using the CUDNN-based custom
framework. We achieved a compromise between accuracy and
processing speed by lowering the resolution. The release of the
TensorRT library allows us to apply network optimization and
reduce the inference time, while processing the full resolution
image 1280 × 640. TensorRT also provides routines for cali-
bration for lower precision (INT8). After graph optimization
and by using FP32 precision, we obtain high accuracy at
67.87% but with reduced inference time of 20 ms/image. INT8
precision degrades accuracy by 2.7% but provides significant
performance improvements, all four unwarped fisheye images
are semantically segmented in 36 ms. Finally, we adopt 8-bit
inference with network quantization by calibrating the network
graph on 300 images and integrate the INT8 optimized model
in the perception software.

In the early stages of the project, we developed an orig-
inal multi-task network based on Mask R-CNN for instance

and semantic segmentation of the unwarped fisheye images,
which we name MTN Panoptic [13]. We extend the instance
segmentation network with a novel semantic segmentation
head, which learns multi-scale features using Feature Pyramid
Networks (FPN) [27] and an Atrous Spatial Pyramid with
parallel dilated convolutions [8]. In Table II we present the
results. We train with the original 1280 × 640 resolution and
obtain 31.3% mAP for mask prediction and 66.4% segmenta-
tion mIoU. The two-stage network is computational expensive,
running in 171 ms for full resolution and in 68 ms for lower
resolution, and does not answer the imposed time and accuracy
constraints of the 2D perception system. We do not integrate
this solution but we decided to investigate one-stage networks
such as RetinaMask, that provide similar accuracy, but with
reduced inference time.

We train and evaluate the one-stage RetinaMask instance
segmentation network on all four unwarped fisheye images
images (front, left, right, back) and present the results in
Table III. We experiment with three different resolutions:
1280 × 640, 832 × 416, 640 × 320. The network is accel-
erated with the TensorRT library using FP32 precision for
increased quality. Compared to the two-stage Mask R-CNN
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TABLE II

EVALUATION OF THE MASK R-CNN BASED SEMANTIC AND INSTANCE
SEGMENTATION NETWORK ON FISHEYE IMAGES CORRESPONDING TO

FRONT, LEFT, BACK, RIGHT VIEWS

TABLE III

EVALUATION OF THE INSTANCE SEGMENTATION NETWORK ON FISHEYE

IMAGES CORRESPONDING TO FRONT, LEFT, BACK, RIGHT VIEWS.
1280 × 640 - FP32 IS INTEGRATED INTO THE FINAL SOLUTION

TABLE IV

EVALUATION OF THE INSTANCE SEGMENTATION NETWORK ON NARROW
FIELD-OF-VIEW IMAGES CORRESPONDING TO FRONT VIEW. 832×416

- FP32 IS INTEGRATED IN THE FINAL SOLUTION

based network, we observe a slight decrease in accuracy for
1280 × 640 resolution from 31.3% mask mAP to 30% mask
mAP, but the inference time is reduced 2.5 times to 66 ms.
Adopting the largest resolution available of 1280 × 640 is
critical for fisheye images, where the apparent size of objects
is small.

We also train and evaluate an instance segmentation network
on images from the front camera with a narrow, 60◦ HFV.
Results are in Table IV. In order to achieve the trade-off
between processing speed and quality, we optimize the net-
work with FP32 and adopt 832 × 416 resolution, with 21.4%
mask mAP and 44 ms inference time.

In Table V, we present ablation studies of each segmentation
module on the front unwarped fisheye images at 1280 × 640.
By using the INT8 model for the semantic segmentation, the
mIoU computed for all four views images is 65.1%, while
the mIoU for the front view images is 65.9%. The unified
panoptic segmentation improves the semantic segmentation
with almost 1%, from 65.9% mIoU to 66.8% mIoU. Moreover,
the panoptic module increases the instance segmentation mAP
with 0.3%. In terms of panoptic quality, we obtain 42.4% PQ
for all classes, 42.2% PQ for stuff classes and 43% PQ for
things classes.

We measure the inference time of the entire 2D perception
pipeline in Table VI. The image unwarping is performed for
the four fisheye images, while the image undistort for all
five images. This is a fast processing step and runs in 5 ms
on the GPU. Semantic segmentation of all four unwarped
fisheye images using the INT8 quantized network takes 36 ms.
Instance segmentation of the front unwarped fisheye image
is the most costly operation with 66 ms. We reduce the
resolution of the front 60◦ horizontal field-of-view image to
reduce the inference time to 44 ms. The entire pipeline runs
in 157 ms. When all the segmented images are available,
the 3D point cloud is projected into the images in order to

TABLE V

ABLATION STUDIES OF EACH SEGMENTATION MODULE ON THE
FRONT VIEW UNWARPED FISHEYE IMAGE. WE EVALUATE SEMAN-

TIC SEGMENTATION, INSTANCE SEGMENTATION AND PANOPTIC

SEGMENTATION ON 1280 × 640 IMAGES

TABLE VI

TIME EVALUATION OF THE ENTIRE 2D SEMANTIC PERCEPTION SYSTEM

build the enhanced semantically segmented 3D point cloud,
which is further processed by high-level functions for 3D
object detection and classification. By running only image
unwarping, the semantic segmentation on the four unwarped
fisheye images and instance segmentation on the front 60◦
HFV image, the pipeline runs in 86 ms on one NVIDIA
GTX 1080 GPU.

In Table VII we provide a comparison with state-of-the-
art networks for semantic and instance segmentation on the
Cityscapes [12] validation set. We compare the mean Inter-
section over Union, mask mean Average Precision and the
unoptimized inference time. We select the ResNet-50 variant
of the networks, which we also use, for fair comparison.
Our proposed solution was developed in the context of a
system that can be deployed on a fully automated vehicle,
which imposed constraints such as real-time processing and
high accuracy. In order to balance efficiency and accuracy,
we select lightweight and fast networks and process lower
resolution Cityscapes images with a size of 1024 × 512.
Compared to the other methods, our solution is the fastest
with 68 ms, and achieves comparable semantic segmentation
mIoU with networks using higher resolution images. However,
we observe that our instance segmentation results are less
accurate, since detection and segmentation of small objects
in the downsampled image is more difficult. From a practical
point of view, considering the imposed constraints, we obtain a
good trade-off between speed and accuracy, competitive results
at much lower computational costs.

In Figure 9 we provide a visual comparison between the
front 160◦ HFV and the 60◦ HFV instance segmentation.
Figure 9 presents the case of a pedestrian on the left-hand side
sidewalk. Up to 20 meters, the pedestrian in visible only in
the front unwarped fisheye image. By processing unwarped
fisheye images, we obtain robust instance segmentation of
pedestrians up to 25 meters. At 25 meters, the pedestrian
is visible and is detected in both images. At distances more
than 25 meters, the pedestrian has a very small size in the
unwarped fisheye image and is not detected, however the
pedestrian is detected in the 60◦ HFV image. With the use of
both cameras, we provide an increased detection range up to
75 meters.
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Fig. 9. Comparison between wide and narrow field of view instance segmentation. A pedestrian is marked with a green box in the 3D top view image and
a red bounding box in the wide and narrow field of view images. On the first column, we provide the bird’s eye view of the 3D point cloud with detected
objects. Best viewed in color and zoom.

TABLE VII

EVALUATION OF SEMANTIC AND INSTANCE SEGMENTATION COMPARED TO STATE-OF-THE-ART NETWORKS ON THE CITYSCAPES validation SET.
INFERENCE TIME IS MEASURED ON GTX 1080TI GPU. FOR ENTRIES MARKED WITH * WE APPROXIMATE THE

INFERENCE TIME BASED ON THEIR REPORTED SPEED
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VI. CONCLUSION AND LESSONS LEARNED

Building a fully automated vehicle prototype is challenging
from multiple perspectives: selection of the most proper sensor
suite, development of fast and robust algorithms that provide
accurate results in real-world scenarios, creation of quality
and complete datasets for training deep learning algorithms,
but also integration of the algorithms and deployment on the
vehicle.

Our semantic cameras setup perceive 360◦ around the vehi-
cle. Our first solution used only fisheye cameras mounted in all
four directions. However, the segmentation and detection range
was limited to the near range around the vehicle. In the case
of pedestrians, the segmentation was robust up to 25 meters,
which is suitable only for very low-speed driving and parking
maneuvers. For the left, right and back view, detection in
the near range provides sufficient information for maneuver
prediction and decision making even in the case of higher-
speed driving. However, detection and segmentation in the
far-range is necessary especially on the front view. In our
final solution, we concluded that both fisheye cameras and
narrow field-of-view cameras for front view are necessary to
cover the near and far range. Also, another important aspect is
that the detection range can be increased by processing higher
resolution images.

During the 4-year course of the project, we observed a
very fast evolution of methods, tools and frameworks used.
In the early stages of the project, we employed the Torch
framework for training our networks, but as time passed,
more comprehensive and advanced frameworks have emerged:
PyTorch, Tensorflow etc. The Torch framework did not provide
integration possibilities of the inference functions in the C++
project, therefore we developed our custom C++/CUDA
framework for inference. Later, the launch of the TensorRT
library by NVIDIA has provided us several benefits: easy
network optimization that enables us to use larger image
resolutions with a reduced processing time, and also it eases
the integration with C++/CUDA/Python projects. TensorRT
was adopted in the later stages of the project. However, not all
architectures can be easily optimized, for example, in the case
of two-stage architectures, the backbone and network heads
can be optimized, but there are many hand-crafted processing
steps that need to be implemented on the GPU and inte-
grated with the TensorRT optimized network parts. Choosing
a single-stage network brings major benefits in terms of speed,
but it can also be more easily optimized and integrated.

The quality and completeness of the training dataset is
important and very much effort has been directed towards
building a consistent and comprehensive dataset. The activities
associated with creating the dataset have been: recording data
in diverse weather conditions (including adverse weather) and
different seasons, organization and integration of data collected
from various sequences, selecting relevant and interesting
scenarios in order to ensure the diversity of the training set,
selecting images with rare classes and corner cases. Images
have been annotated for semantic and instance segmentation
in three iterations. In the first iteration, a batch of 1k images
from all four views have been annotated in-house using a
semi-automatic annotation tool that we developed for this

purpose [37]. Next, the network trained with the available
dataset has been deployed on the UP-Drive vehicle and it has
been tested on real-world scenarios in the urban environment,
in order to detect cases where the network does not perform
well. Two more iterations of data annotation have followed
in which the dataset has been extended to 20k images and
multiple image augmentation techniques have been introduced.
The lesson learned is that realistic synthetic data generation,
automatic annotation, semi-supervised and unsupervised learn-
ing have to be investigated.

In the UP-Drive project we have successfully developed
an automated vehicle that is able to safely navigate urban
areas. We provided a modular deep learning based solution for
environment perception based on fisheye and narrow field-of-
view semantic cameras with semantic, instance and panoptic
segmentation capabilities. In this paper, we present the chal-
lenges we encountered in developing the semantic environ-
ment perception system because of the high requirements in
accuracy, robustness and real-time performance. We investi-
gated multiple solutions, motivated our final design choices,
presented details regarding integration of the segmentation
modules with the software and finally we discussed the learned
lessons during the 4-year course of the project.
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