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Abstract—Driver distraction diverting drivers’ attention to 

unrelated tasks and decreasing the ability to control vehicles, has 

aroused widespread concern about driving safety. Previous studies 

have found that driving performance decreases after distraction 

and have used vehicle behavioral features to detect distraction. But 

how brain activity changes while distraction remains unknown. 

Electroencephalography (EEG), a reliable indicator of brain 

activities has been widely employed in many fields. However, 

challenges still exist in mining the distraction information of EEG 

in realistic driving scenarios with uncertain information. In this 

paper, we propose a novel framework based on Multi-scale 

entropy (MSE) in a sliding window and Bidirectional Long Short-

term Memory Network (BiLSTM) to explore the distraction 

information of EEG to detect driver distraction based on multi-

modality signals in real traffic. Firstly, MSE with sliding window 

is implemented to extract the EEG features to determine the 

distraction position. Statistical analysis of vehicle behavioral data 

is then performed to validate driving performance indeed changes 

around distraction position. Finally, we use BiLSTM to detect 

driver distraction with MSE and other traditional features. Our 

results show that MSE notably decreases after distraction. 

Consistent with the result of MSE, driving performance 

significantly deviates from the normal state after distraction. 

Besides, BiLSTM performance of MSE outperforms other 

entropy-based methods and is better than behavioral features. 

Additionally, the accuracy is improved again after adding MSE 

feature to behavioral features with a 3% increasement. The 

proposed framework is useful for mining brain activity 

information and driver distraction detection applications in 

realistic driving scenarios. 

 
Index Terms—Driver distraction, EEG, driving performance, 

MSE, BiLSTM 

 

I. INTRODUCTION 

OWADAYS, the traffic system is highly developed with 

the increasing number of cars on road. Unfortunately, 
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traffic accidents have become frequent. The World Health 

Organization reported that over 1.35 million people were killed 

and about 50 million were injured due to traffic accidents all 

over the world in 2018 [1]. According to the National Highway 

Traffic Safety Administration (NHTSA), one of the major 

contributory factors of traffic accidents is driver distraction [2]. 

Driver distraction is a diversion of attention away from 

activities critical for safe driving (i.e., the task of driving) 

toward a competing activity (e.g., using a cell phone) [3]. In a 

survey released by Ford Motor Company and Tsinghua 

University in 2017, almost 39% of respondents caused or nearly 

caused an accident because of distraction [4]. Due to the use of 

cell phones and advanced infotainment systems in cars, drivers’ 

attention is often taken away from roads while driving, thus 

reducing their abilities to control the vehicles and to aware of 

the surroundings causing more accidents [5]-[7]. What’s more, 

it can also increase the reaction time to the upcoming obstacles 

[8]. Using cell phones even topped the list for distracted driving 

reported in 2017 [4]. 

The existing research about driver distraction mechanism 

usually could be divided into four different types: manual 

distraction, audio distraction, visual distraction, and cognitive 

distraction [9]-[12]. In the previous studies, the subjects were 

usually asked to perform a specific secondary task while driving 

for a certain type of distraction to obtain distracted data and then 

to analyze driver distraction. For instance, “operate devices” 

tasks are usually used to get the manual distraction signals. 

Wollmer et al. [13] chose eight tasks (e.g., adjust radio sound 

settings, switch the TV mode and so on) as manual distraction 

conditions to get the vehicle behavioral signals. They found that 

tasks with different levels of difficulty would cause different 

degrees of distraction. As for cognitive distractions, Anh Son et 

al. [14] set an n-back task of digit recall in a simulated situation 

as well as in a naturalistic situation to impose cognitive 

workload. The result showed that tasks accompanied by high 
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cognitive demand had effects on the drivers’ eye involuntary 

movement and would cause a high level of distraction. 

Although these experiment designs of different kinds of 

distraction tasks mainly lead to a specific type of distraction to 

some degree and contribute to the research of distraction 

mechanism, it usually involves more than one type of 

distraction in realistic driving situations. For example, when 

drivers are asked to adjust the radio sound settings for collecting 

the manual distraction signals in a distraction experiment, they 

firstly should find where the button is and then turn it to the 

required place. This process involves not only the manual 

distraction but also the visual distraction. As driver distraction 

is a product of the driver-vehicle-environment interaction, its 

forms are not fixed and usually a combination of different types 

of distraction in real scenarios. Thus, there is still challenge in 

the detection of driver distraction in real driving scenarios. 

In fact, previous studies have explored many kinds of sensing 

technologies to detect driver distraction. A commonly used 

technology is video camera capturing drivers’ facial and body 

behaviors (e.g., gaze movement and head pose) [15]. This kind 

of method can easily collect the visual data and conveniently 

detect distraction. However, the results are sensitive to the 

illumination, facial occlusion, and drivers’ behavioral habits. 

The Controller Area Network-Bus (CAN-Bus) data providing 

the vehicle behavioral information is also widely utilized in the 

field. It mainly includes the speed, lateral position, and steering 

wheel angle, etc. [16]-[19]. The facilities of this kind of method 

are easy to obtain and quite low cost, but the signals are subject-

dependent and influenced by the weather and traffic conditions 

easily [20]. There is also some work that has been done by using 

the microphone to collect the acoustic signals for driver 

distraction detection [21], [22]. The performance of this 

approach is acceptable, but it just works for audio distraction. 

Moreover, wearable sensors have also been employed to get the 

human’s physiological signals such as electroencephalography 

(EEG), electrocardiogram (ECG), and electrooculography 

(EOG) [23]-[25]. EEG is the predominant and most used signal 

among all physiological signals. Although physiological 

signals provide more reliable results for representing drivers’ 

real internal state, the data collecting process is intrusive and 

may to some degree affect drivers’ behaviors. 

In recent years, with the development of portable and less 

intrusive equipment as well as the multi-sensor collection 

techniques, more and more researchers tend to use hybrid 

signals to study driver distraction, for it is widely agreed that no 

single signal alone could provide sufficient information about 

driver distraction [26],. Li et al. [27] collected data from video 

cameras, microphone arrays and CAN-Bus to model drivers’ 

behavior while executing secondary tasks. Zhang et al. [28] 

utilized vehicle behavioral signal, EMG, acoustic signal as well 

as visual signal for detecting driver distraction. Lechner et al. 

[29] designed a lightweight framework involving signals of 

driver movement and GPS position to recognize driver 

inattentiveness. In addition, Almahasneh et al. [30] conducted 

a simulated driving experiment to study how EEG and driving 

performance changes because of cognitive secondary tasks. 

They found that the effects of driver distraction can be clearly 

seen in the lane keeping ability and accidents occurrence level. 

As EEG provides reliable information of brain activities, and 

vehicle behavioral signals reflect the changes of driving 

performance, it is obvious that the system performance would 

be improved if EEG and vehicle behavioral signals are 

employed at the same time to develop driver distraction 

detection system. In this context, we propose a multi-modality 

driver distraction detection framework in real driving scenarios 

based on EEG and vehicle behavioral signals. 

The paper is organized as follows. Section II lists the related 

works about the literature review. Section III introduces the 

accomplished experiment details and the captured signals used 

in our research. The adopted methodologies are described in 

Section IV. Results of the study are presented in Section V and 

discussed in Section VI. Finally, Section VII concludes the 

paper. 

II. RELATED WORK 

There are two major parts in driver distraction detection 

including the feature extraction part and classification part. 

Various features are adopted to explore distraction information 

existing in different types of data. Many researchers analyzing 

driver distraction based on EEG in the literature, and they 

usually extract the frequency domain, or the time domain 

features of EEG to mine the distraction information. Fan et al. 

[31] calculated the energies of different EEG rhythms and their 

ratios as frequency domain features of EEG and used them for 

distraction detection. Yang et al. [32] extracted the power 

spectral density and log-transformed power of four EEG waves 

to evaluate the distraction detection performance. Barus et al. 

[33] used not only frequency domain features but also time 

domain features of EEG like kurtosis and Hurst Exponent to 

detect drivers’ cognitive load. However, it still only achieved 

about 70% accuracy. As we all know, EEG signals are recorded 

directly on the scalp surface and the reflection of the driver’s 

internal electrical activity originated by the brain [34]. But they 

are also quite complex containing a large amount of information 

[35]. The conventional features can surely represent the 

frequency or time domain features of EEG, but how to manifest 

the complexity of EEG still needs to be further studied. It can 

reflect the non-linear dynamic changes of the brain activities 

and manifest the complex distraction information by analyzing 

the EEG signals of the distracted drivers from the perspective 

of complexity. The complexity-based algorithm is currently 

widely utilized in many other areas (e.g., fatigue analysis, 

emotion classification and sleep staging) and has shown 

advantages. For example, Gao et al. [36] implemented the 

wavelet entropy to investigate the EEG-based fatigue driving 

and found that a significant difference exists between the alert 

and fatigue states. Zheng et al. [37] trained an advanced deep 

learning model with differential entropy. The results showed 

that differential entropy possesses accurate and stable 

information of EEG data for emotion classification. Tang [38] 

applied sample entropy and fuzzy entropy to represent the 

features of the sleeping EEG data. He demonstrated that the two 

kinds of features could effectively improve the accuracy of 

sleep staging. In these studies, the dynamic changes of EEG 
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during fatigue and sleep are reflected through the complexity-

based features. 

In spite of the existing advantages, a significant challenge 

still remains in the distracted EEG analyzing procedure based 

on complexity features. Actually, no matter what kinds of 

preprocessing methods are adopted, the artifacts cannot be 

eliminated completely and will still exist to a certain extent [39]. 

In this case, the residual noise will be included in the 

complexity of EEG while calculating the complexity-based 

feature, and the robustness of the obtained result will be 

relatively poor. Multi-scale entropy (MSE) can reduce the 

influence of residual noise on the results by calculating 

complexity features in different time scales [40] and has been 

successfully used in many fields. Azami et al. [41] calculated 

the MSE feature as well as variate MSE features of the EEG 

signals to observe the dynamical complex properties in the EEG 

signals gathered from Alzheimer’s disease (AD). They found 

that MSE could characterize the EEG changes in a detailed way. 

Luo et al. [42] proposed a method based on MSE to detect 

driver fatigue. The result showed that MSE can obviously 

present the fatigue features and effectively improve the 

accuracy of fatigue detection. 

As for how to recognize driver distraction, there are many 

classification techniques utilized in the literature to detect 

whether a driver is distracted or not. Traditional methods like 

support vector machines (SVM) and multiple adaptive 

regression trees (MART) are widely employed in various 

research areas. Liao et al. [43] proposed a method to detect 

cognitive distraction based on the optimal features extracted by 

SVM and classify driver state based on SVM. It also compared 

the SVM performance between two different driving situations. 

Wu et al. [44] used SVM to recognize flight operating patterns 

based on physiological parameters and reached an average 

accuracy of 0.84. Torkkola et al. [45] described an approach 

based on MART to find the inattention duration while driving 

according to the vehicle data. It could detect about 80% of the 

driver inattention time segments. Besides, deep learning 

methods has been applied to recognize mental status in the 

literature. In the work of Wu et al. [46], they proposed a stacked 

contractive sparse antoencoders network to detect the mental 

status of pilots. What’s more, they also designed a gamma deep 

belief network to study the cognitive status of pilots, which 

could learn the EEG features with simplest network structure 

[47]. However, traditional deep learning methods usually learn 

the information in a single time point and it has been revealed 

that the time dependencies are critical in predicting human’s 

mental status [48]. Recurrent Neutral Network (RNN) is a 

typical deep learning method with memory that could keep the 

information from the contexts and then make decisions. 

However, the vanishing gradient problem occurs when the input 

data is too long (i.e., to keep long-term memory) [49]. As a 

variant of RNN, Long Short-term Memory Network (LSTM) 

has the property of capturing both short and long-term 

dependencies, which has been successfully applied to many 

time-series classification tasks such as driver identification, 

seizure detection and driver behavior classification [50]-[52]. It 

is realized by adding memory blocks in the hidden unit to mine 

for and store critical information for classification over long 

time periods [53]. Kouchak et al. [54] proposed a distraction 

recognition method based on LSTM and validated that it 

outperformed multilayer neural network (MLP) for considering 

dependency between input data. Wollmer et al. [13] used 

LSTM to model the long-term dependency in vehicle 

behavioral data for detecting driver distraction. They also made 

a comparison with SVM and found the classification accuracy 

of LSTM was obviously higher than that of SVM. Recently, the 

Bidirectional Long Short-term Memory Network (BiLSTM), 

an improvement of LSTM, has been proved to achieve better 

performance than traditional one directional LSTM in fields of 

sleep apnea detection and text classification [55], [56]. As 

BiLSTM learns long-term dependencies both from former time 

steps to later time steps and from later time steps to former time 

steps, it could learn and store more useful information thus 

improving the performance of the model [57]. 

In this paper, we propose a framework for driver distraction 

detection based on MSE with a sliding window and vehicle 

features. Our approach, using BiLSTM, is to model the 

bidirectional contextual information in EEG and vehicle 

behavioral data captured in real scenarios. To collect the 

distracted EEG and vehicle behavioral signals, a distracted 

driving experiment is firstly performed in realistic driving 

situations. The MSE in a sliding window is then implemented 

to extract the features of the captured EEG signals. Statistical 

analysis is performed on the vehicle behavioral data to find out 

whether significant differences appear in driving behaviors 

before and after distraction. After that, BiLSTM classifier is 

utilized to learn the time dependent relationships in the 

extracted MSE and vehicle statistical features and to detect 

driver states. Finally, the classification accuracy of BiLSTM is 

compared with four different types of traditional classifiers. 

III. EXPERIMENT DESIGN 

In order to collect the data reflecting the physiological and 

vehicle behavioral changes of the distracted drivers, we 

conducted an experiment in realistic driving scenarios. This 

section is a description of the participants, the data collection 

 

 
Fig. 1.  The distraction experiment scene.  
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system, and the procedure. 

A. Participants 

This study was reviewed and approved by Ethics Committee, 

Dalian University of Technology. There were six right-handed 

subjects without mental illness or neurological diseases 

involved in the experiment. All subjects have normal or 

corrected to normal vision and normal auditory. A driving 

license and driving experience are required for each subject. All 

of the subjects owe smartphones and are experienced in using 

WeChat (an online chatting APP in China). What’s more, they 

are banned from consuming coffee, tea, alcohol as well as 

smoking the day before the experiment. The qualification of 

each subject was verified and informed consent from each 

subject was obtained prior to the experiment. 

 

B. Data collection system 

The experiment was conducted on a real straight road at 

Dalian University of Technology. The Mangold-10 Bluetooth 

enabled wireless multipurpose polygraph, a portable and non-

intrusive data acquisition headband, was used to collect drivers’ 

EEG signals. It transmitted the EEG data via wireless Bluetooth. 

As the headband is designed to have little effects on drivers’ 

behaviors, and more importantly, previous studies have 

demonstrated that the occipital brain region is related to driver 

mental state [58], [59], we put the electrodes on O1 and O2 in 

accordance with the International 10-20 System. The sampling 

rate was kept at 256 Hz. 

As the car signals could provide useful information about the 

vehicle’s behavior, a car equipped with sensors was used as the 

experimental car. The vehicle behavioral data including speed 

and deceleration with a sampling frequency of 50 Hz was 

analyzed in our present study. Fig. 1 shows the experiment 

scene. 

C. Procedure 

All subjects were given written and oral instructions on the 

driving experiment. To obtain the data of the distracted drivers, 

a “cellphone use” task was set as distracting factor. The 

distracting task could be described simply as: The drivers were 

asked to use WeChat for at least 3 seconds when they drove to 

half of the distance. 

Each subject participated in two sessions amounted to six 

trials of the experiment. The first driving session was one 

normal driving trial (i.e., driving without distracting task) which 

lasted for at least 6 seconds. The second session included five 

distracted driving trials (i.e., performing the “cellphone use” 

task while driving), each trial lasted for around 20 seconds and 

the task began at about 12 seconds. There was a short break 

after each trial. 

During the experiment, one experimenter was in the car 

together with the subject and gave hints for the start and end of 

the task. In the normal driving process, subjects were asked to 

drive down the road with full attention. However, they were 

supposed to drive normally at first in the distracted driving 

process, few seconds later the experimenter would send 

cellphone messages to them. After receiving messages, they 

had to check the messages for 3 seconds at least. In addition, 

another experimenter would throw a quadrate foam box to the 

road while each trial was going to end, and subjects were 

required to react to the obstacle as soon as possible. The EEG 

signal and the vehicle behavioral signals were recorded all the 

way from the car starting to stopping. 

IV. METHODOLOGY 

A. Analysis of EEG data 

The process of EEG analysis contains three steps: 

preprocessing, artifacts removal and feature extraction. 

1) Preprocessing 

We first extracted the EEG segments corresponding to the 

duration of each trial in our study. Then, the alpha frequency 

band was obtained applying wavelet decomposition, as 

previous studies have demonstrated that the alpha frequency 

band is highly correlated with distraction [30], [60]. 

Wavelet transform is a time-frequency analysis method, 

which can reflect the local features of signals both in the time 

and frequency domain. And with the property of multi-

resolution, it is widely used to analyze non-stationary signals 

[61]. A mother wavelet ( )t , in order to decompose the signal, 

is utilized in this method. The signal can be decomposed and 

expressed in terms of scaled and shifted versions of ( )t  and 

a corresponding scaling function ( )t  in discrete domain [62]. 

The discrete mother wavelet is represented as 

( ) ( )2
, 2 2 , , Z

j

j

j k t t k k j  −= −                   (1) 

The signal S(t) then can be expressed as 

( ) ( ) ( ) ( ) ( ), ,j j k j j k

k k

S t s k t d k t = +                   (2) 

where sj(k) and dj(k) are the approximate and detailed 

coefficients at level j. 

In this paper, the EEG signal has been decomposed into 4 

levels in which the detailed component at level 4 roughly 

 

 
Fig. 2.  Schematic illustration of the coarse graining process. 
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represents the alpha band (8-13 Hz). Since db6 (Daubechies 

family) is similar to the EEG signal in our case as shown in Fig. 

3, it is selected as the mother wavelet. 

 

2) Artifacts removal 

After preprocessing, the artifacts (e.g., the blinks) in the 

alpha band were then removed using a wavelet-based technique. 

The wavelet coefficients mentioned above represent the 

correlation between the signal and the selected mother wavelet. 

High amplitude coefficients will be generated at places where 

artifacts present. We can eliminate these kinds of coefficients 

utilizing a thresholding technique. It has been proven to be 

effective in the analysis of driver fatigue [63], [64]. The 

threshold can be defined as 

( ) 2 std( )j j jT mean C C= +                   (3) 

where Cj represents the wavelet coefficient at the jth level of 

wavelet decomposition. If the value of any coefficient is greater 

than the computed threshold, it is halved. Then the new set of 

wavelet coefficients are reconstructed to obtain the wavelet-

corrected signal. 

 

3) Feature extraction 

MSE extends the idea of Sample entropy (SE) to several time 

scales and is an effective method to quantify the complexity of 

a time series over different time scales. Time series with large 

fluctuation will produce a larger MSE value, which is 

considered to have high complexity. Similarly, a highly regular 

time series will generate lower entropy. This method was first 

proposed by Costa et al. in 2002 [65]. 

There are two steps in MSE analysis: coarse graining and SE 

calculation. Considering the EEG signal {x1, …, xi, …, xN}, we 

should construct a consecutive coarse-grained time series {y(τ)}, 

corresponding to the time scale factor τ: Firstly, the original 

EEG signal is divided into non-overlapping windows of length 

τ, then the data points inside each window are averaged (see Fig. 

2). Each coarse-grained time series can be defined as 

( )

( )1 1

1
, 1

j

j i

i j

y x j N







 = − +

=                    (4) 

After the coarse graining procedure, SE is calculated for the 

obtained time series {y(τ)}. For a time series {y1, …, yj, …, yn}, 

it can be made up into an m dimension vector

( ) ( ) ( ) ( )[ , 1 , , 1 ], 1mY i y i y i y i m i n m= + + −   −
. And d, the 

distance between Ym(i) and Ym(j) is defined as 

( ) ( )max[| |],

0 1, ,1

d y i k y j k

k m i j j n m

= + − +

  −    −
                 (5) 

Then count the number of d＜r for each i, and ( )m

iB r  can be 

expressed as 

( )
 

( )

the number of

1

m

i

rd

n

j
r

m

i
B

 
=

− −

,
                 (6) 

where r is the given tolerable distance. The set of ( )m

iB r  are 

then averaged and the average value can be calculated by 

( ) ( )
1

1 n m
m m

i

i

B r B r
n m

−

=

=
−

                  (7) 

Add the dimension by 1 to form an m+1 dimension vector and 

repeat the above process, then we can get Bm+1(r). After all the 

procedures, the basic definition of SE is given by 

( )
( )

( )

1

SE , lim ln

m

mn

B r
m r

B r

+

→

 
= − 

  
                 (8) 

When n is finite, it can be calculated by the following 

 
Fig. 4.  The basic topological structure of LSTM. 

 

 
Fig. 5.  The details of a LSTM cell. 

 
Fig. 3.  Alpha wave and typical mother wavelets. 
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expression: 

( )
( )

( )

1

SE , , ln

m

m

B r
m r n

B r

+ 
= −  

  
                 (9) 

In Narayan’s study, it has been revealed that MSE changes 

with time scale and there will be a peak indicating the existence 

of maximum entropy at that time scale, which indicates high 

correlation exists in time scale and MSE value [66]. In this 

paper, the maximum MSE appears when time scale is five, then 

5-scale MSE with a sliding window is calculated for the 

extracted alpha frequency band. 

 

B. Statistical analysis of vehicle behavioral data 

The speed data and the deceleration data, corresponding to 

the duration of each trial, were further analyzed after the 

experiment. Statistical analysis was performed in MATLAB. 

To find out whether there were significant differences between 

the vehicle behavioral data before and after distraction, we 

firstly carried out significance tests on the vehicle behavioral 

data. Then the mean value and the standard deviation of the data 

were calculated to investigate the changes before and after 

distraction. 

 

C. BiLSTM 

LSTM is a special kind of RNN, capable of addressing the 

vanishing gradient problem. It was firstly introduced by 

Hochreiter et al. [53] in 1997. LSTM has two major features 

compared with RNN [67]. One feature is that it can learn both 

short and long-term dependencies (i.e., keep both short and 

long-term memory). The other is that it cannot only add useful 

information but also remove irrelevant details during the 

learning process. Fig. 4 is the basic topological structure of 

LSTM. It consists of a chain of repeating modules of neural 

networks. The repeating module of LSTM has four neural 

network layers (see Fig. 5) unlike the standard RNN having one, 

and they interact in a specific way. 

A LSTM cell can add or remove information through 

structures called “gate”. There are totally three types of gates in 

it: forget gate, input gate and output gate. They work as follows. 

At first, it is to decide what information should be removed 

from the cell state by forget gate (10). Then the input gate 

decides what new information is going to store in the cell state. 

This step can be divided into three parts. The first part is to use 

a sigmoid layer to find what is going to be updated using (11). 

Next is to create a new candidate cell state tC  by a tanh layer 

(12). After that, the old cell state Ct-1 can be updated into the 

new cell state Ct by (13). Finally, the output gate is activated to 

decide the output ht of the cell by using (14) and (15). 

 ( )1,t f t t ff W h x b −=  +                  (10) 

 ( )1,t i t t ii W h x b −=  +                  (11) 

 ( )1tanh ,t C t t CC W h x b−=  +                  (12) 

1t t t t tC f C i C−=  +                   (13) 

 ( )1,t o t t oo W h x b −=  +                  (14) 

tanh( )t t th o C=                   (15) 

In these equations, σ and tanh are the active functions in the 

 

 
Fig. 7.  The time-frequency results of alpha band. (a) Result of normal driving 

trial. (b) Result of distracted driving trial. The white solid line in (b) shows the 

onset of using cellphone. 

(a) 

(b) 

 

 
Fig. 6.  Schematic illustration of the BiLSTM framework. 
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cell, W, h, and b represent the weight, hidden state, and bias 

separately. xt indicates the EEG feature of time t in Figs. 4-6. 

As the traditional the one directional LSTM  usually learns 

the long-term information only from previous time steps to 

latter time steps, and research has found that the inputs of the 

latter time steps also contain some information about the inputs 

of the previous time steps [68]. BiLSTM, an update of LSTM, 

consists of two layers of LSTM. One layer processes the inputs 

in a forward direction, and the other learns information from the 

inputs in a backward direction. Additionally, it can also 

concatenate the two directions interpretations according to 

long-term dependency in the inputs. In this study, we use both 

LSTM and BiLSTM to learn the dependency among the 

extracted features and compare their performance for driver 

distraction recognition. The BiLSTM model structure diagram 

used here is shown in Fig. 6. 

V. RESULTS 

A. Analysis of EEG data 

Time-frequency analysis of the extracted alpha frequency 

band was firstly performed. Fig. 7(a) shows the time-frequency 

graph of the normal driving trial and Fig. 7(b) is the result of a 

distracted driving trial. We also calculated the mean absolute 

amplitudes of alpha band, the results are shown in Fig. 8. 

During the normal driving process, the activity of alpha band 

showed a trend of decreasing, while it increased after using 

cellphone in the distracted driving process as shown in Fig. 7 

and Fig. 8. Then the 5-scale MSE feature was calculated to 

extract the valuable information of the EEG signal. From the 

MSE result, we can see there is an obvious decrease after using 

cellphone. Fig. 9 gives the results of the MSE for both normal 

trial and distracted trial. Fig. 9(a) is the waveform of the normal 

driving trial, and the result of the distracted driving trial is 

shown in Fig. 9(b). It can be seen that the waveform in 

distracted trials fluctuated obviously. The MSE value began to 

decrease notably after the onset of distraction task and reached 

the minimum value a few seconds later after the task. Besides, 

the trough of MSE waveform was obviously lower than the 

average of MSE. However, there were small and gentle 

fluctuations in normal trials as shown in Fig. 9(a). The time that 

MSE reaches its minimum value is defined as the EEG most 

distraction position (DP) of the subject pointed out in Fig. 9(b). 

According to the MSE results, the EEG most distraction 

positions of all subjects could be obtained. The time difference 

between DP and the onset of using cellphone was then 

calculated and listed in Table Ⅰ. Trial 1, which is the normal 

driving process, is excluded from the table. 

 

B. Statistical analysis of vehicle behavioral data 

The statistical analysis of the obtained vehicle behavioral 

data (i.e., speed and deceleration data) was performed to 

validate abnormal changes also appear in driving performance 

before and after distraction. This section consists of two parts: 

the first part is to analyze data that before and after the subjects 

start to use cellphone, the other is before and after DP of the 

subjects. 

 

1) Analysis of the vehicle data before and after using 

cellphone 

In this part, the speed and deceleration data before and after 

using cellphone was analyzed to investigate the impact of 

distraction task on the driving performance. 

 
TABLE Ⅰ 

THE TIME DIFFERENCE BETWEEN DP AND THE ONSET OF USING CELLPHONE OF 

ALL SUBJECTS (s) 

Trial 
 

Subject 
2 3 4 5 6 

1 1 0 0 1 2 

2 4 4 1 5 8 

3 1 2 4 8 0 

4 1 5 5 7 1 

5 5 5 7 5 5 

6 2 0 3 7 2 

 

At the beginning of the analysis, we performed unpaired t-

test on the vehicle data in each trial to verify whether significant 

differences exist between the data before and after using 

cellphone. The significance level is set as 0.05. The t-test results 

are shown in Table Ⅱ and Table Ⅲ. Trial 2 to Trial 6 are 

distracted driving processes that drivers were asked to use 

cellphone while driving. h indicates if there are significant 

differences between the vehicle data before and after distraction. 

h = 1 means significant differences exist. h = 0 means no 

significant differences. p represents the probability that the data 

 

 
Fig. 8.  The mean absolute amplitudes of alpha band. (a) Result of normal 

driving trial. (b) Result of distracted driving trial. The black solid line in (b) 

shows the onset of using cellphone. 

(a) 

(b) 
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before and after distraction is distributed identically. 

From the results of the speed data, we can see clearly that 

there are significant differences between the speed before and 

after using cellphone except for Trial 3. All trials show 

significant differences between the two conditions in 

deceleration data shown in Table Ⅲ. 

 
TABLE Ⅱ 

THE T-TEST RESULTS OF THE SPEED DATA 

Trial 2 3 4 5 6 

h 1 0 1 1 1 

p ＜0.05 0.935 ＜0.05 ＜0.05 ＜0.05 

 

TABLE Ⅲ 

THE T-TEST RESULTS OF THE DECELERATION DATA 

Trial 2 3 4 5 6 

h 1 1 1 1 1 

p ＜0.05 ＜0.05 ＜0.05 ＜0.05 ＜0.05 

 

The statistical features (i.e., mean value and standard 

deviation) of speed and deceleration before and after using 

cellphone are calculated and listed in Table Ⅳ - Table Ⅶ 

separately. “Before” and “After” represent before and after 

distraction, respectively. 
TABLE Ⅳ 

THE MEAN VALUE OF SPEED (km/h) 

Trial 2 3 4 5 6 

Before 5.877 5.397 5.145 5.410 5.496 

After 5.406 5.331 4.903 4.775 5.094 

 
TABLE Ⅴ 

THE MEAN VALUE OF DECELERATION (m/s2) 

Trial 2 3 4 5 6 

Before -0.131 -0.121 -0.126 -0.134 -0.114 

After 0.234 0.246 0.277 0.229 0.232 

 

All of the mean values of speed before using cellphone are 

greater than those after distraction in Table Ⅳ and Trial 3 has 

the smallest gap between the two conditions. Table Ⅴ shows 

that the mean values of deceleration before using cellphone are 

all negative and that the mean values become positive after 

distraction. When comparing the absolute values of the 

deceleration mean values, it is obvious that the absolute values 

after using cellphone are greater than that of before distraction. 

 
TABLE Ⅵ 

THE STANDARD DEVIATION OF SPEED 

Trial 2 3 4 5 6 

Before 2.343 1.657 1.613 1.720 1.583 

After 3.199 2.240 2.294 2.641 2.411 

 

The standard deviations of the speed and deceleration data 

reflect the same trend that all of them becomes greater after 

using cellphone shown in Table Ⅵ and Table Ⅶ. The changing 

patterns of the speed and deceleration data could also be clearly 

shown in the following error bar figures (see Fig. 10) according 

to the statistical results. 

 

 
Fig. 9.  The MSE results of alpha band. (a) Result of normal driving trial. (b) 

Result of distracted driving trial. The black solid line shows the onset of using 

cellphone and the red circle is the distraction position of this trial in (b). 

(a) 

(b) 

 

 
Fig. 10.  Statistical results of the vehicle data. (a) The mean value of speed. (b) 
The absolute value of mean deceleration. Error bar shows the standard 

deviation. 

(a) 

(b) 
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TABLE Ⅶ 

THE STANDARD DEVIATION OF DECELERATION 

Trial 2 3 4 5 6 

Before 0.523 0.484 0.508 0.523 0.502 

After 0.752 0.832 0.760 0.810 0.915 

 

2) Analysis of the vehicle data before and after the most 

distraction position 

The vehicle behavioral data before and after the EEG most 

distraction position (DP) was also analyzed. The analyzing 

procedure in this part was similar to 1). To explore whether 

significant differences exist between the vehicle data before and 

after DP, unpaired t-test was firstly performed with the 

assumption that all subjects are considered as a whole. 

The test results are shown in Table Ⅷ and Table Ⅸ. It is 

clear that significant differences do exist in all trials for both 

speed and deceleration before and after DP. 

 
TABLE Ⅷ 

THE T-TEST RESULTS OF THE SPEED DATA 

Trial 2 3 4 5 6 

h 1 1 1 1 1 

p ＜0.05 ＜0.05 ＜0.05 ＜0.05 ＜0.05 

 
TABLE Ⅸ 

THE T-TEST RESULTS OF THE DECELERATION DATA 

Trial 2 3 4 5 6 

h 1 1 1 1 1 

p ＜0.05 ＜0.05 ＜0.05 ＜0.05 ＜0.05 

 

Then the mean value and the standard deviation of the data 

before and after DP were calculated separately. Table Ⅹ to 

Table XIII give the results. We can see from Table Ⅹ that all of 

the mean values of speed before DP are obviously greater than 

that of after DP. Table Ⅺ shows that the mean values of 

deceleration before DP are negative and that after distraction 

the mean values are positive. Besides, the absolute values of the 

mean deceleration after DP are greater than before DP. As for 

the standard deviation, it becomes greater after DP showed in 

Table Ⅻ and Table XIII. 

 
TABLE Ⅹ 

THE MEAN VALUE OF SPEED (km/h) 

Trial 2 3 4 5 6 

Before 5.795 5.394 5.175 5.495 5.584 

After 5.440 4.987 3.938 2.615 4.562 

 
TABLE Ⅺ 

THE MEAN VALUE OF DECELERATION (m/s2) 

Trial 2 3 4 5 6 

Before -0.068 -0.061 -0.070 -0.045 -0.098 

After 0.204 0.249 0.447 0.413 0.353 

 

The error bar figures are drawn as Fig. 11 according to the 

statistical results. The changing rules mentioned above could be 

easily seen from the figures. Compared with Fig. 10, the 

statistical differences of the vehicle behavioral data between 

before distraction and after distraction increase in Fig. 11. 

 
TABLE Ⅻ 

THE STANDARD DEVIATION OF SPEED 

Trial 2 3 4 5 6 

Before 2.454 1.631 1.634 1.725 1.475 

After 3.286 2.679 2.630 3.134 2.843 

 
TABLE XIII 

THE STANDARD DEVIATION OF DECELERATION 

Trial 2 3 4 5 6 

Before 0.615 0.591 0.534 0.596 0.493 

After 0.671 0.780 0.912 1.009 1.067 

 

C. The classification results of BiLSTM 

In this paper, we not only analyzed the dynamic brain activity 

changes of distracted driving based on MSE and the changes in 

driving performance but also detected whether a driver is 

distracted or not using BiLSTM. The detection results were 

compared with four different types of traditional classifiers, i.e., 

LSTM, SVM, convolutional neural network (CNN) and k-

nearest neighbor (kNN). In addition, to be more reliable and 

convincing, the results were also compared with the results of 

traditional vehicle behavioral features and another four entropy-

based algorithms i.e., Approximate entropy (AE), Differential 

entropy (DE), Fuzzy entropy (FE) and Sample entropy (SE) of 

 

 
Fig. 11.  The statistical results of the vehicle data. (a) The mean value of speed. 

(b) The absolute value of the deceleration mean value. Error bar shows the 

standard deviation. 

 

(a) 

(b) 
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EEG. 

We built and trained a BiLSTM model, which adopted the 

calculated feature matrixes as inputs and output the category 

vectors. There are 2 categories in the paper: distraction and non-

distraction. The data of five subjects were used for training and 

that of the remained subject was utilized for testing. In the 

training process, different numbers of LSTM layers and training 

iterations were tried to find the best model in the BiLSTM 

classifier. The classification results of different features are 

shown in Table XIV. “VS” means statistical features (i.e., mean 

and standard deviation) of speed and deceleration. 

 
TABLE XIV 

THE MEAN ACCURACIES OF DIFFERENT CLASSIFIERS FOR DIFFERENT FEATURES 

(%) 

Feature AE DE FE SE MSE VS VS+MSE 

BiLSTM 83.29 82.67 76.35 67.01 91.83 89.85 92.48 

LSTM 82.24 81.31 71.03 63.55 89.72 88.79 91.59 

CNN 62.62 73.63 62.01 60.32 73.90 67.29 78.5 

SVM 52.94 54.6 54.27 56.75 66.72 74.85 77.76 

kNN 69.45 71.93 67.12 59.05 65.34 76.84 77.07 

 

Table XIV shows that the performance of BiLSTM and 

LSTM are much better than those of the other three common 

classifiers and that the BiLSTM model is slightly better than the 

conventional LSTM modal. As for the results of different 

features using BiLSTM and LSTM, the mean accuracy of the 

LSTM and BiLSTM using MSE of EEG reaches 89.72% and 

91.83%, respectively, which is clearly higher than the results of 

using vehicle statistical features and other entropy-based 

methods. The SE feature of EEG leads to the lowest 

classification accuracy of 63.55% in LSTM and 67.01% in 

BiLSTM, and the accuracy of the other algorithms lies between 

the accuracy of SE and MSE. When inputting the features of 

EEG and vehicle data at the same time, the performance of 

BiLSTM increases, peaking at 92.48%. The accuracy of LSTM 

also improved under this condition. In sum, when we just use 

the EEG features to train the BiLSTM model, the best result is 

obtained by the MSE feature. Besides, MSE feature of EEG 

also performs better compared with the result of conventional 

vehicle behavioral features in BiLSTM, and the mean accuracy 

is about 3% higher than that of VS when we add MSE feature 

to the vehicle behavioral features. 

VI. DISCUSSION 

The concern for driver distraction is growing in recent years 

with the development of advanced infotainment systems. There 

are many effects and characteristics of driver distraction [9]-

[12]. The distraction information of the dynamic brain activity 

and the changing rules of vehicle behavioral data before and 

after distraction are here discussed. A driver distraction 

classification model using BiLSTM is proposed based on the 

MSE feature, and the results are compared with four kinds of 

traditional classifiers as well as other conventional feature 

extraction methods. 

As shown in Fig. 7 and Fig. 8, the activity of the alpha 

frequency band is related to driver distraction, which increases 

after being distracted. However, it shows a trend of decreasing 

with the process of the normal driving trial. The results are 

consistent with previous studies that the activity of alpha 

rhythm increases in parietal-occipital brain regions if 

attentional lapses occur [69], [70]. The important changes in 

MSE feature of EEG after being distracted can be seen in Fig. 

9. The EEG complexity is clearly illustrated by the fluctuation 

of MSE feature. The MSE value decreases sharply when drivers 

start to use cellphone (see Fig. 9(b)) compared with normal 

driving, which indicates that the complexity of the alpha 

frequency band decreases while distraction. Drivers have to 

keep high alertness to pay attention to the surroundings like the 

pedestrians and other cars so that they can drive safely in the 

normal driving process [71]. In this situation, the brain activity 

is usually active, and it embodies the relatively high complexity 

of the alpha frequency band. Contrary to normal driving, drivers’ 

perceptions of driving and the surroundings decrease while 

using cellphone and then the complexity also decreases, thus 

leading to the decreased MSE value while distraction. The time 

difference for each trial in Table Ⅰ means that it usually takes 

drivers a few seconds to shift their attention to the task related 

work. Hence, DP occurs a few seconds later after drivers start 

to use cellphone. 

Statistical analysis of the vehicle behavioral data before and 

after using cellphone is then performed considering all subjects 

as a whole. From the t-test results [Table Ⅱ and Table Ⅲ] of the 

speed and deceleration data, we confirm that the performance 

of drivers to control cars is highly affected by the “cellphone 

use” task, which has been validated in previous studies [72]-

[74]. 

For the statistical analysis results, drivers tend to drive at a 

lower and much safer speed after beginning to use cellphone 

shown in Table Ⅳ and Fig. 10(a). Many studies have proved 

that drivers attempt to reduce their workload by decreasing 

speed while distracted [75], [76], which explained why the 

mean speed is lower after distraction than that before distraction. 

Besides, Trial 3 shows the smallest gap between before and 

after using cellphone. It is because that the changes between the 

two conditions in this trial are not obvious as listed in Table Ⅱ. 

As shown in Table Ⅴ, the mean deceleration is negative before 

using cellphone due to the stepwise accelerating stage in this 

process. However, it becomes positive after using cellphone. A 

possible reason for the phenomenon is that drivers tend to 

decrease speed for safety while distracted. What’s more, the 

absolute value of the mean deceleration before using cellphone 

is apparently lower than after using cellphone in Fig. 10(b), 

which indicates that distracted drivers often make emergency 

brakes when obstacles appear. When drivers begin to use 

cellphone, they are distracted by the task and their abilities to 

monitor the environment may be reduced, the decision to brake 

would then be consequently delayed. As a result, drivers will 

have to brake harder to avoid accidents. This explanation is in 

accordance with the results of Hancock et al. [77]. Their work 

reported that distracted drivers responded slowly to the traffic 

lights and had to take stronger braking actions to compensate 

for the delay in starting braking. 
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In line with previous driver distraction analysis, the 

variability of the speed and deceleration data increases after 

using cellphone in Table Ⅵ and Table Ⅶ. The change can also 

be seen from the error bar in Fig. 10. The previous study 

reported that variability in velocity increased while drivers 

performing auditory tasks as attention need to be shifted to the 

task processing streams from focusing on driving leading to the 

performance decrements [78]. In our study, drivers pay more 

attention to the task and the brake pedal controlling ability is 

then weakened. Hence, greater variability occurs in speed and 

deceleration, which explains why greater standard deviations 

appear. 

In this paper, vehicle behavioral data analysis is discussed 

not only before and after using cellphone, but also before and 

after DP. Identical to the analyzing process before and after 

using cellphone, the speed and deceleration data are analyzed 

firstly considering all subjects as a whole. Results in Table Ⅷ 

and Table Ⅸ imply that significant changes emerge in driving 

performance between conditions before and after DP as a 

consequence of distraction, which is also consistent with 

previous studies in [72]-[74]. Furthermore, the mean value and 

standard deviation of speed and deceleration are analyzed to 

find out how drivers are affected by the “cellphone use” task. 

As shown in Table Ⅹ and Fig. 11(a), the mean speed in each 

trial after DP is visibly greater than that before DP. The results 

are agreed with the work of Reimer [75] and Mehler [76], 

pointing out that distracted drivers usually try to decrease speed 

to reduce workload and keep safe. As for the results of mean 

deceleration shown in Table Ⅺ, the same inference with Table 

Ⅴ can be made. the mean deceleration is negative in the 

accelerating stage before DP, which becomes positive after DP 

when obstacles abruptly appear in the process. Moreover, 

compared to Table Ⅴ, the difference value of the mean 

deceleration before and after distraction in Table Ⅺ is greater, 

which indicates the performance of controlling the brake pedal 

after DP is even weaker than after beginning to use cellphone. 

The absolute value of the mean deceleration is also compared 

in Fig. 11(b). Note that the ability to monitor the surroundings 

after DP may be reduced and then the decision on when to brake 

is delayed. Therefore, drivers have to make harder brake to 

avoid obstacles [77]. In addition, the variability of speed and 

deceleration also increases after DP in Table Ⅻ and Table XIII, 

which shows the same rules as the same as in Table Ⅵ and 

Table Ⅶ. Previous studies have validated that drivers will shift 

their attention to the task after distraction [78], thus the ability 

to handle the brake pedal is weakened. As a result, 

augmentation variability appears in speed and deceleration. 

After mining the valuable information of driver distraction 

based on MSE feature of EEG and analyzing the changes in 

driving performance, we finally use BiLSTM to show that 

driver distraction can be detected with the MSE features. The 

classification results in Table XIV indicate that the 

classification accuracy of MSE using BiLSTM is better than 

traditional vehicle behavioral features and other entropy-based 

features since it can not only present the complex distraction 

information of EEG but also reduce the influence of the residual 

noise on the results [40]. The classification accuracy of MSE is 

comparable with the research of Li et al. [79], which used the 

temporal and spatial features of the 32-channel EEG signals and 

reached an accuracy of 92%. Besides, Xie et al. [80] also 

collected six kinds of vehicle signals and smartphone sensor 

signals to detect driver distraction. The accuracy of VS using 

BiLSTM in our work is 3% higher than their accuracy obtained 

from traditional classifiers. The performance of the trained 

BiLSTM model is further improved with an accuracy of 92.48% 

when adding MSE features to the statistical features of vehicle 

behavioral data, which suggests that MSE features could 

remedy the inadequacy of traditional vehicle behavioral 

features. It is consistent with the observation in the literature 

that hybrid signals can provide more sufficient information 

about driver distraction than one type of signal alone [28]. In 

addition, the performance of BiLSTM is compared to four 

conventional classifiers in the study. The results in Table XIV 

show that BiLSTM, which could learn the bidirectional long-

term dependency among the extracted features, is slightly better 

than traditional one directional LSTM and significantly better 

than CNN, SVM and kNN. It corresponds to the results in [67] 

that BiLSTM can decrease the model’s train and test error and 

thus improve the classification accuracy. The reliable results of 

the study suggest the potential to mine the distraction 

information in realistic driving environment and to detect driver 

distraction using MSE and BiLSTM. 

The limitation of the study is that only six persons 

participated in the experiment, so the dataset is a little bit small 

to some degree. It is difficult to collect the data with driver 

distraction in realistic driving scenarios. The sample size, while 

acceptable for distraction detection, had limited statistical 

power. 

VII. CONCLUSION 

In this paper, we have applied the BiLSTM model to present 

a driver distraction detection framework based on the 

complexity-based MSE feature of EEG. It demonstrates that it 

is better to use MSE to explore the complex dynamic distraction 

information of EEG than other features used in the previous 

studies. Besides, compared to conventional vehicle behavioral 

features, the model performance is enhanced by adding features 

of EEG to features of vehicle data. It confirms that the MSE 

feature can provide complementary information about 

distracted drivers. For a driver, the MSE value of EEG 

decreases obviously in the distraction process and the ability to 

manipulate the vehicle is also greatly influenced, which is 

manifested in the decreased speed, harder brakes as well as the 

increased variability of speed and deceleration. 

In the future work, an experiment will be designed in driving 

simulator involving more participants and more types of signals 

to study driver distraction applying the proposed method. The 

new dataset containing multi-modality signals provides better 

opportunities for further investigating the effectiveness of 

different kinds of signals in detecting driver distraction. What’s 

more, an improvement of the present algorithm will also be 

explored to detect driver distraction accurately. Another 

particular interest is to study the influence of the left- and right-

handed in the detection performance in the future. 
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