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Robust Analog Beamforming for Periodic Broadcast
V2V Communication

Chouaib Bencheikh Lehocine, Fredrik Brännström, and Erik G. Ström, Fellow, IEEE

Abstract—We generalize an existing low-cost analog signal
processing concept that takes advantage of the periodicity of
vehicle-to-vehicle broadcast service to the transmitter side. In
particular, we propose to process multiple antennas using either
an analog beamforming network (ABN) of phase shifters, or
an antenna switching network (ASN) that periodically alternates
between the available antennas, to transmit periodic messages to
receivers that have an analog combining network (ACN) of phase
shifters, which has been proposed in earlier work. To guarantee
robustness, we aim to minimize the burst error probability for the
worst receiving vehicular user, in a scenario of bad propagation
condition that is modeled by a single dominant path between
the communicating vehicles. In absence of any form of channel
knowledge, we analytically derive the optimal parameters of both
ABN and ASN. The ABN beamforming vector is found to be
optimal for all users and not only for the worst receiving user.
Further, we demonstrate that Alamouti scheme for the special
case of two transmit antennas yields similar performance to ABN
and ASN. At last, we show that the derived parameters of the two
proposed transmission strategies are also optimal when hybrid
ACN-maximal ratio combining is used at the receiver.

Index Terms—Broadcast Vehicle-to-Vehicle communication,
periodic communication, beamforming.

I. INTRODUCTION

VEHICULAR communication paves the path for the real-
ization of cooperative intelligent transportation systems

(C-ITS). By allowing vehicles to share real-time information
about their status, vehicles can cooperate and coordinate
their movement and maneuvers, which results in increased
safety, efficiency, comfort, and sustainability of transportation
systems. Since C-ITS require the exchange of time-sensitive,
critical information, very high reliability and low latency need
to be supported by the vehicular communication systems.
One typical technical solution to those requirements is the
use of multiple antenna systems. In the context of vehicular
communications, antennas pose their own challenges. It has
been noted in several studies, including [1]–[3], that antenna
patterns are distorted by several factors including vehicle body
and mounting position. Such distortions can lead to very low
gains or even blind spots in certain directions, which may
result in low performance or outage when the transmitted or
received signal is along those directions. To enable robust
vehicle-to-vehicle (V2V) communication against the effects
of such disturbances, multiple antennas can be processed with
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the objective of ensuring certain performance in the worst-case
propagation scenario with respect to the antenna system.

The analog combining network (ACN) proposed in [4], is
such a solution that was designed to combine antennas at the
receiver to achieve robustness. In particular, it was designed
to minimize the outage probability of a C-ITS application,
measured through the loss of K consecutive periodic status
messages, when the received signal coincides with the worst-
case angle of arrival (AOA). We note that this metric is related
to age-of-information (AoI) assessment metric of broadcast
periodic communication [5], defined as the age of the in-
formation contained in the last correctly received periodic
message. The ACN is based on pure analog combining. To
leverage the digital processing benefits, a hybrid analog-digital
solution was presented in our previous work [6]. In both [4]
and [6], the transmitter side has not been considered. For
a comprehensive multiple antenna system, we would like to
explore, in accordance with a receiver that uses an ACN, what
beamforming solutions can be used at the transmitter side to
improve robustness in a scenario of V2V communication. As
we are considering a broadcast transmission, feeding back
the channel state information (CSI) may be infeasible due
to the high number of vehicular users (VUs). In addition,
every VU has only a limited number of antennas and limited
processing capabilities to beamform, based on CSI, to all
receiving VUs at the same time. Therefore, we herein target
a transmit beamformer that does not depend on CSI. This
implies a low-complexity solution. Moreover, we target a low-
cost analog beamforming solution.

A selection of publications that are relevant to the scope of
our work is [7]–[10]. In [7], two transmission strategies were
proposed and evaluated through measurement in a platoon
scenario. The first strategy is based on alternating the transmit
antennas periodically. The second uses information about the
road curvature and selects the antenna with a higher probabil-
ity to have a line of sight (LOS) with the receiving antennas.
The authors assess both strategies using an AoI approach. The
proposed schemes consider only the platoon vehicles. Other
vehicles on the road, to which cooperative messages have to
reach, are not considered. Similarly to [7], in [8], an antenna
selection technique was proposed and evaluated using simula-
tions in a platoon scenario. To perform antenna selection, VUs
send feedback to the network, notifying about their antenna
capabilities, the type of message to be sent, road conditions
(e.g., position of surrounding vehicles), and radio channel
conditions (e.g., received power on each antenna). Then, the
network selects a subset of antennas that is most suitable for
the communication context identified from the feedback. This
technique is feasible only under network coverage. VUs that



are out of coverage can not benefit from it. Therefore, in this
work, we aim for a solution that does not rely on network
coverage or feedback. In [9], another transmit beamforming
structure based on switches is proposed. The scheme is fully
analog, and it is a variant of antenna selection. Instead of
selecting a single antenna element, the transmitter chooses a
subset of antennas that result in maximizing the signal-to-noise
ratio (SNR) at the receiver. However, the scheme relies on
CSI, and as explained earlier, for our scenario of broadcast
transmission such an approach is not very relevant. Another
work of interest is a random beamforming technique proposed
in [10]. A uniform linear array of antennas is weighed by
a vector that is randomized over time-frequency blocks. The
achieved average pattern over many time-frequency blocks
is omnidirectional. This scheme does not require channel
knowledge, but it uses several radio frequency (RF) chains, and
therefore it is a digital strategy. Besides this, standard digital
approaches that do not depend on CSI, e.g., Alamouti trans-
mit diversity [11], and similar space-time or space-frequency
codes, are relevant in this scenario, however, they require the
use of multiple RF chains. We are interested in finding out
how we can improve the system in the analog domain, which
is characterized by low cost. The digital solutions can be used
on top to give enhanced performance and hybrid structures
that achieve a trade-off between performance and cost.

In this paper, we assume that VUs use an analog combining
network as proposed in [4] at the receiver, while we propose
two strategies that do not rely on CSI at the transmitter.
The first one is an analog beamforming network (ABN) of
phase shifters that has a similar construction to the receiver
ACN. The second strategy is an antenna switching network
(ASN) and it is based on alternating between the transmit
antennas in a periodic manner. We note that this switching
approach was used in [7] as well, however, it did not take
into account a receiver structure as the one proposed here.
Furthermore, it was assessed using AoI which is related to,
but not the same as our assessment metric. Given the proposed
schemes, we optimize the overall system parameters at both
transmitter and receiver for the ABN, while for the ASN only
the receiver parameters are optimized. Our optimization is
based on the minimization of burst error probability (BrEP)
of K consecutive packets for the worst user in the system
i.e., the user experiencing the worst BrEP, which under some
assumptions, can be defined by the worst-case AOA and
angle of departure (AOD). That ensures robust communication
against unfavorable angles with respect to the antenna system.
Once the optimal parameters are found, we come to show that
the developed networks can be further improved by adding a
digital processing stage at the receiver in the form of a hybrid
combiner with a similar structure to [6]. A summary of the
contributions of this paper follows.

• We present two fully analog transmission strategies (ABN
and ASN) that do not require any channel knowledge, in
combination with an ACN at the receiver.

• We provide the optimal transmitter and receiver parame-
ters (phase slopes) associated with both strategies. These
parameters minimize the BrEP for the worst receiving

Fig. 1. CAM broadcasting in a highway scenario. Only the dominant path,
LOS or SBR between the transmitting and receiving vehicles is shown. The
concrete wall or metallic fence separating the two driving directions is an
example of a reflecting object.

VU, under certain assumptions.
• We extend the optimality proof of the phase slopes of

the ACN developed in [4]. The phase slopes were shown
to be optimal only for systems with a number of receive
antennas Lr ∈ {2, 3}, Lr ≤ K. Here, we demonstrate
that they are optimal for any system with Lr ≤ K.

• We demonstrate that the analog structures can be up-
graded by a digital processing stage at the receiver, based
on maximal ratio combining (MRC), to yield enhanced
performance.

II. SYSTEM MODEL

In this section, we present the system model and the
transmission strategies we are considering together with the
receiver structure. Moreover, we state the main assumptions
that we use to deduce the optimal parameters of the proposed
strategies.

A. Antennas and Channel Model

Scarce multipath propagation with a single dominant
component—LOS or SBR—between the communicating ve-
hicles (see Fig. 1), poses a challenging scenario for the
robustness of a V2V communication based on some antenna
system. In such a scenario, the AOD and AOA may coincide
with a very low gain of the antenna patterns, which can
lead to packet loss, or outage if the same directions are
approximately sustained for a time span of several consecutive
packets. Such propagation conditions have been noted to be
prominent in traffic scenarios where the road is not surrounded
by buildings [12], e.g., highway. Moreover, it has been noted
that in such propagation environments the azimuth angular
spread is small [12], which implies that the few existing
multipath components are restricted to a narrow sector of
the antenna system. Therefore, a good framework to ensure
robust V2V communication against unfavorable AOD and
AOA is to use a channel model that assumes such propagation
conditions. In the model to follow, however, we consider only
the dominant path between the communicating vehicles, since
it contributes to most of the received power. Let gs

m and gr
l

be the far field functions of the mth transmit and lth receive
antennas1, respectively. The antennas are vertically polarized.
We assume that the far field functions are measured such that
the antenna position, placement, and car body effects are taken
into account, e.g., for side-windows mounted antennas, the

1Throughout the paper, the superscript letter ’s’ stands for sender, while ’r’
stands for receiver.
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blockage created by the vehicle body is accounted for in the
far field functions. Then, the baseband channel gain between
transmitter (Tx) antenna m and receiver (Rx) antenna l can be
modeled as [13, Ch. 6]

hl,m(t) = a(t)gs
m(φs, θs)gr

l (φ
r, θr)eΩ

s
me−Ω

r
l , (1)

where a(t) = |a(t)|e−2πfcτ0(t) is the complex-amplitude
of the dominant component, fc is the carrier frequency,
τ0(t) = d0,0(t)/c, d0,0(t) is the physical path length between
the transmit and receive reference antenna pair (0, 0), and c
is the speed of light in free space. The AOD and AOA in
the azimuth and elevation planes are denoted by (φs, θs) and
(φr, θr), respectively. The relative phase shifts with respect to
the reference antennas, Ωs

m, Ωr
l , depend on the AOD and AOA

and they are given by [13, Ch. 6]

Ωs
m = 〈kc(φ

s, θs),us
m − us

0〉, (2)
Ωr
l = 〈kc(φ

r, θr), ur
l − ur

0〉, (3)

where 〈· , ·〉 denotes the inner product, us
m and ur

l

are the coordinates of mth transmit and lth receive an-
tennas respectively, and kc(.) is the unit wave vec-
tor in the direction of AOD or AOA, with coordinates
(kx, ky, kz) = 2π/λc(sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)).
The elevation plane angle θ is here defined as the angle
between the z-axis and the vector of interest (i.e., polar angle).

We note that in (1), a(t), (φs, θs), and (φr, θr) are assumed
to be the same for all antenna pairs (l,m). This assumption
is reasonable when the distance between the Tx and Rx, or
the distance separating the refection point and the antenna
arrays (SBR propagation), is much larger than the inter-
separation between antenna elements of both Tx and Rx
arrays [14, Ch. 7]. Furthermore, the relative phase differences
as expressed in (2) and (3) follow from the same assumption.
Besides this, it is worth noting that the channel model is not
restricted to a specific antenna array arrangement.

Taking into account that vehicles are relatively of the same
height, the elevation angles are restricted to a narrow sector,
and they are therefore of less importance compared to the az-
imuth angles in a scenario of V2V communication. Following
that, we assume that the dominant component is arriving along
the azimuth plane with θs ≈ π/2, θr ≈ π/2. Consequently, the
AOD and AOA can be restricted to the azimuth plane angles
φs and φr in (1) and the far field functions are expressed as

gs
m(φs) , gs

m(φs, π/2), gr
l (φ

r) , gr
l (φ

r, π/2). (4)

B. Traffic Model of IEEE802.11p Cooperative Service

Consider a scenario where vehicles periodically broadcast
their status information to all vehicles in their proximity to
create a cooperative environment. Such functionality can be
supported by IEEE802.11p V2X technology, where vehicles
broadcast a CAM every T s that include information about
their dynamic status, like position, speed, heading, etc. The
period of dissemination is specified to be in the range of
0.1 ≤ T ≤ 1 s [15]. The physical layer supports multiple data
rates, however, for CAMs a data rate of 6 Mbit/s is deemed
suitable [16]. Given that a reasonable CAM size is in the range
100 to 500 bytes [16], the message duration Tm < 0.7 ms.

Motivated by the high dissemination frequency of CAMs, it
has been suggested in several works including [5], to measure
the reliability of a C-ITS application that depends on their
content using AoI. In this framework, given that a packet is
generated by a vehicle at time t = 0, then transmitted and
correctly received at time t = τ by a receiving vehicle, if
the time elapsing until the next packet reception exceeds a
maximum allowable age Amax, then an outage is declared.
Exceeding Amax implies that the age of the status information
decoded at t = τ is outdated and cannot be used by a C-ITS
application at the receiving vehicle. If the latency between
the generation and reception of packets is neglected (i.e,
τ ≈ 0), age-of-information is equivalent to inter-reception time
(IRT) which is defined as the time separating two successful
reception of packets, and it is elaborated in [17]. BrEP defined
as the probability of losing K consecutive CAMs can be
thought of as a physical layer counterpart to AoI and it was
first proposed in [4]. If latency is neglected, the two parameters
can be related as Amax = KT where K is the burst length and
T is the period of dissemination.

C. Transmission Strategies

In the following, we assume that a reference transmitting
vehicle is equipped with Ls antennas and the receiving vehi-
cles are equipped with Lr antennas. The receiver structure
is based on an ACN as proposed in [4]. The combining
network does not depend on CSI, and it is composed of
phase shifters that are modeled as affine functions of time
according to ϕr

l = (αr
l t + βr

l ), where αr
l ∈ R represents

a phase slope, βr
l ∈ [0, 2π) is an unknown initial phase

offset, and 0 ≤ l ≤ Lr − 1. We are interested in finding the
optimal parameters of the network for two multiple antenna
beamforming strategies. Before presenting the strategies, we
develop simple, generic equations for the received signal of a
particular VU. Let b be the beamforming vector, the received
signal can be expressed as

r = a(t)Hbx(t) + n, (5)

where x(t) = x̃(t − τ0(t)), x̃(t) is the transmitted baseband
signal, and τ0(t) is the propagation delay. The channel matrix
H has entries [H]l,m = hl,m(t)/a(t) following (1). The noise
vector n has Lr elements, each modeled as independent white
Gaussian noise over the system bandwidth with CN (0, σ2

n). At
the receiver, we apply the analog combining vector w,

[w]l = e−(α
r
lt+β

r
l ), 0 ≤ l ≤ Lr − 1. (6)

ACNABN

RF chainRF chain
LrLs

(a) Analog beamforming network of phase shifters (ABN)

ACNASN

RF chainRF chain
LrLs

(b) Transmit antenna switching network (ASN)

Fig. 2. Transmission strategies structures.
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The combined signal is given by

r(t) = a(t)x(t)wHHb+wHn (7)
= a(t)x(t)c(t) + ñ(t), (8)

where c(t) = wHHb and ñ(t) = wHn denote the ef-
fective channel gain and noise at the output of the ACN.
The signal ñ(t) is a zero-mean white Gaussian noise with
Pn = E{|wHn|2} = Lrσ

2
n, and Pr = E{|a(t)x(t)|2} is

the average received power. In the following, we present the
two beamforming strategies and their corresponding effective
channel gains.

1) ABN of Phase Shifters: We propose a transmitter struc-
ture that is similar to the receiver combining technique.
Namely, we use phase shifters modeled as ϕs

m(t) = (αs
mt +

βs
m) per antenna branch 0 ≤ m ≤ Ls − 1, where αs

m ∈ R is
a phase slope and βs

m ∈ [0, 2π) is an unknown initial phase
offset. The overall structure is shown in Fig. 2(a). The analog
beamforming vector is given by

[b]m =
1√
Ls

e(α
s
mt+β

s
m), 0 ≤ m ≤ Ls − 1. (9)

Note that the beamforming vector is determined by the phase
slopes ({βs

m} are unknown and could take any value in
[0, 2π)). The factor 1/

√
Ls, comes from splitting equally

the power among the transmit antenna branches, which is a
reasonable measure in absence of channel knowledge. Also,
it ensures the use of a similar power level compared to
the single transmit antenna case. Using (1), (4), and (8) the
corresponding effective channel gain is given by

c(a)(t) =
1√
Ls

Ls−1∑
m=0

gs
m(φs)e−(−Ωs

m−α
s
mt−β

s
m)

×
Lr−1∑
l=0

gr
l (φ

r)e−(Ω
r
l−α

r
lt−β

r
l ). (10)

2) Transmit ASN: Instead of using analog phase shifters, we
consider a transmitter that uses only switches. Since we are
restricting any form of channel-based control of the switches,
an ASN uses a single antenna element for transmission then
switches to the next element for the next transmission. The
overall structure is illustrated in Fig. 2(b). Let k denote the
packet index, the ASN beamforming vector for kT ≤ t ≤
kT + Tm, can be expressed as

[b]m = 1, m = mod(k, Ls) (11)
[b]i = 0, ∀i 6= m

where mod(a, b) denotes the remainder of dividing a by b.
We note that the same antenna element is used periodically
for every Ls transmissions. The received signal following this
strategy for the kth packet is given by (8), with effective
channel gain at kT ≤ t ≤ kT + Tm

c(b)(t) = gs
m(φs)eΩ

s
m

Lr−1∑
l=0

gr
l (φ

r)e−(Ω
r
l−α

r
lt−β

r
l ), (12)

where m = mod(k, Ls). Note that the power of the signal is
not split in this case, and a single antenna element uses full
power for every transmission.

D. Assumptions

Before tackling the design task, we consider a number of
assumptions. First, since the packet duration is very small
in comparison to the period, Tm � T , we assume that the
effective channel gains are constant over the packet duration
for both strategies. That is

c(.)(t) ≈ c(.)(kT ), kT ≤ t ≤ kT + Tm. (13)

Second, given the channel model, if the AOD and AOA
coincide with directions along which the antenna systems have
low gain, and the directions are sustained for KT s then an
outage may occur. Thus, taking into account this worst-case
propagation scenario and as part of our robust design approach,
we assume that the position and speed of transmitting and
receiving vehicles, and potential reflecting objects are such that
the dominant component between the Tx and Rx experiences
negligible change over the duration of KT s. Consequently,
the following assumptions apply.
• The AOD, φs, and AOA, φr, are assumed to experience

negligible change and thus are modeled as constant over
the duration of KT s.

• From (2) and (3), we see that Ωs
m and Ωr

l depend on
the AOD, AOA, and the geometry of the antenna arrays
(which is fixed), therefore they can be assumed constant
over the duration of KT s as well.

• The average received power along the dominant com-
ponent expressed as Pr = E{|a(t)x(t)|2} is assumed
constant over KT s.

III. DESIGN OF THE TX-RX SCHEMES

There exist several users to which CAM messages need to
reach. From a robustness aspect, we want to ensure certain
performance for the worst receiving VU. That depends on the
applied beamforming vector b, the combining vector w, and
the channel between the transmitting and receiving VUs. For
our simplified model, the channel can be represented by the
AOD, AOA, and the far field functions of antennas. Assuming
that all receiving VUs have the same antenna system, (i.e., the
same number of antennas Lr, and the same far field functions
gr
l ), the worst receiving user is defined by the worst-case AOD,

AOA for a given b and w. We will find out later that the
solution found under this assumption, is also optimal when the
system is generalized to receiving users with different numbers
of antennas and different far field functions.

We did set our framework to ensure the robustness of the
system. To quantify performance, we use the concept of BrEP,
that is, the probability of losing K consecutive CAM packets.
To derive some analytical results, we resort to the following
two assumptions. First, in our considered propagation scenario
of scarce multipath with a dominant component, the strongest
tap in a discrete baseband channel model has been observed to
follow a Rician distribution with a κ-factor that is medium to
high (5.71 to 16.51 dB corresponding to obstructed LOS and
LOS conditions, respectively) [18]. A Rician channel will tend
to an additive white Gaussian noise (AWGN) channel with
increasing κ-factor, and the resulting packet error probability
can be well approximated by an exponential function of SNR

4



Ja(φr, φs,αr,αs,ψr,ψs) =

Lr−2∑
l=0

Lr−1∑
i=l+1

cl,i(φ
r, φs)

K−1∑
k=0

cos
(
∆ψr

l,i −∆αr
l,ikT

)
+

Ls−2∑
m=0

Ls−1∑
j=m+1

dm,j(φ
r, φs)

K−1∑
k=0

cos
(
∆ψs

m,j −∆αs
m,jkT

)
+

Lr−2∑
l=0

Lr−1∑
i=l+1

Ls−2∑
m=0

Ls−1∑
j=m+1

c′l,i(φ
r)d′m,j(φ

s)

K−1∑
k=0

cos
(
∆ψr

l,i −∆αr
l,ikT

)
cos
(
∆ψs

m,j −∆αs
m,jkT

)
. (25)

cl,i(φ
r, φs) =

( Ls−1∑
m=0

|gs
m(φs)|2

Ls

) c′l,i(φ
r)︷ ︸︸ ︷

2
|gr
l (φ

r)||gr
i(φ

r)|
Lr

, dm,j(φ
r, φs) =

( Lr−1∑
l=0

|gr
l (φ

r)|2

Lr

) d′m,j(φs)︷ ︸︸ ︷
2
|gs
m(φs)||gs

j(φ
s)|

Ls
. (26)

in this case [19]. Thus, in the following, we assume that
the packet error probability is an exponential function of
SNR. Second, interference from other vehicles and potential
packet collisions are not considered2 in our scenario (ideal
medium access control is assumed). Thus, packet errors occur
solely due to noise and propagation and they are, therefore,
assumed to be independent. Under these two assumptions, the
minimization of BrEP is equivalent to the maximization of the
sum of the SNR of the K packets, referred to as sum-SNR in
this work. Exact details of relating BrEP to sum-SNR can be
found in [4, Section III], [6, Section III.B].

In summary, under the assumptions introduced herein, the
design objective, which can be formulated as minimizing
BrEP of K packets for the worst receiving VU, is equivalent
to maximizing the sum-SNR of K packets for the worst-
case AOA and AOD. From here, we go through the design
procedure for the two schemes separately.

A. Design of the Analog Beamforming Network

1) Deriving the SNR per Packet: Given an ABN transmitter,
the received signal is modeled by (8), where the effective
channel gain is given by c(a) (10). Incorporating the as-
sumptions in Section II-D, c(a) can be approximated when
kT ≤ t ≤ kT + Tm as

c(a)(kT ) =
1√
Ls

Ls−1∑
m=0

|gs
m(φs)|e−(ψ

s
m−α

s
mkT )

×
Lr−1∑
l=0

|gr
l (φ

r)|e−(ψ
r
l−α

r
lkT ), (14)

where the effective channel phases are given by

ψs
m = mod (−Ωs

m − gs
m(φs)− βs

m, 2π), (15)
ψr
l = mod (Ωr

l − gr
l (φ

r)− βr
l , 2π), (16)

and they are approximately constant over KT s. Let ψr,
αr be Lr-vectors with entries corresponding to ψr

l and αr
l ,

respectively, and analogously are defined the Ls-vectors ψs

2Consideration of interference is important, but it is outside the scope of
this work and left for future work, as discussed further in Section VI.

and αs. Then, recalling (8) we can express the kth packet
SNR, for k = 0, 1, · · · ,K − 1 as

γ
(a)
k =

Pr

Lrσ2
n

|c(a)(kT )|2 (17)

=
Pr

σ2
n

Gr(φ
r,αr,ψr, k)

Lr

Gs(φ
s,αs,ψs, k)

Ls
, (18)

where

Gr(φ
r,αr,ψr, k) =

∣∣∣∣ Lr−1∑
l=0

|gr
l (φ

r)|e−(ψ
r
l−α

r
lkT )

∣∣∣∣2 (19)

=

Lr−1∑
l=0

|gr
l (φ

r)|2 + 2

Lr−2∑
l=0

Lr−1∑
i=l+1

|gr
l (φ

r)||gr
i(φ

r)|

× cos
(
ψr
i − ψr

l − (αr
i − αr

l)kT
)
. (20)

and

Gs(φ
s,αs,ψs, k) =

∣∣∣∣ Ls−1∑
m=0

|gs
m(φs)|e−(ψ

s
l−α

s
lkT )

∣∣∣∣2. (21)

From Section II-D, we know that Pr is assumed approximately
constant over burst duration. Thus, we normalize the SNR with
respect to Pr/σ

2
n and we sum over a burst of K consecutive

packets to obtain the normalized sum-SNR given by

Sa(φr, φs,αr,αs,ψr,ψs) = σ2
n/Pr

K−1∑
k=0

γ
(a)
k

= KG(φr, φs) + Ja(φr, φs,αr,αs,ψr,ψs). (22)

That is, the sum-SNR Sa(.) has a part that depends only on
the AOA and AOD,

G(φr, φs) =

Lr−1∑
l=0

|gr
l (φ

r)|2

Lr

Ls−1∑
m=0

|gs
m(φs)|2

Ls
, (23)

and a part that captures the channel variation Ja(·), which,
with some simplification of notation, and introduction of the
operator

∆xl,i , xi − xl, (24)

can be expressed according to (25)–(26) on top of the page.
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2) Optimization Problem: We are interested in finding the
design parameters αr,αs that yield a robust system, i.e., that
maximize the sum-SNR for worst-case AOA, AOD. Besides
that, we need to account for the worst-case effective channel
phases (ψr,ψs), which depend on the initial unknown offset of
phase shifters (βr

l , β
s
m) at both Rx and Tx. Thus, the problem

can be stated formally as

(α̃r, α̃s) = arg sup
(αr,αs)

inf
(φr,φs)
(ψr,ψs)

Sa(φr, φs,αr,αs,ψr,ψs),

(27)

where, αr ∈ RLr , αs ∈ RLs , ψr ∈ [0, 2π)Lr , ψs ∈ [0, 2π)Ls

and φr, φs ∈ [0, 2π). The solutions to this problem can be
deduced from the following theorem.

Theorem 1. Given Sa defined in (22) and Lr + Ls > 2, let

S?a (φr, φs) , sup
(αr,αs)

inf
(ψr,ψs)

Sa(φr, φs,αr,αs,ψr,ψs).

Then, for any AOA, AOD, we have
(i) The objective function is upper bounded as

S?a (φr, φs) ≤ KG(φr, φs). (28)

(ii) If LrLs ≤ K, the upper bound is achievable

S?a (φr, φs) = KG(φr, φs). (29)

(iii) A solution (α̃r, α̃s) yields (29), when LrLs ≤ K if

∆α̃r
l,iT/2 ∈ X ∗, (30a)

∆α̃s
m,jT/2 ∈ X ∗, (30b)

(∆α̃r
l,i ±∆α̃s

m,j)T/2 ∈ X ∗, (30c)

where X ∗ = {qπ/K : q ∈ Z} \ {nπ : n ∈ Z}, 0 ≤ l <
i ≤ Lr − 1 and 0 ≤ m < j ≤ Ls − 1. The condition
is restricted to (30b) or (30a), when Lr = 1 or Ls = 1,
respectively.

(iv) If |gr
l (φ

r)| > 0, ∀l and |gs
m(φs)| > 0, ∀m, then (29)

=⇒ (30) and LrLs ≤ K.

Proof. See Appendix A.

Remark 1. The solutions satisfying (30) are independent of
φr and φs, and thus they solve (27) when LrLs ≤ K.

Remark 2. An optimal solution (α̃r, α̃s) (i.e., satisfies (30))
achieve for ψr ∈ [0, 2π)Lr , ψs ∈ [0, 2π)Ls ,

Sa(φr, φs, α̃r, α̃s,ψr,ψs) = KG(φr, φs). (31)

Proof. See Appendix A.

Theorem 1 indicates that choosing a set of phase slopes
satisfying (30) maximizes the sum-SNR for the worst-case
effective channel phase vectors, for all AOA, AOD including
the worst-case directions. Thus, the solutions satisfying (30)
are solutions to (27), when LrLs ≤ K. Assuming an antenna
system with |gr

l (φ
r)| > 0, ∀l and |gs

m(φs)| > 0, ∀m, then we
know that the only way to solve (27) is to use a set of phase
slopes satisfying (30). That implies that (30) is a sufficient
and necessary optimality condition in this case. Note that
the last assumption on the antenna system is easily satisfied

for physical antennas which typically radiate in all directions
including nulls. These usually correspond to very low, but
non-zero gains (several dBs below zero). Recalling (22), we
see that Remark 2 points out that the optimal phase slopes
average out the variation of sum-SNR due to effective channel
phases, i.e., Ja(φr, φs, α̃r, α̃s,ψr,ψs) = 0, ∀(ψr,ψs). Since
the optimal sum-SNR is proportional to G(φr, φs), we refer
to G as the effective radiation pattern realized using ABN.

The theorem results are general, and they apply to the
special cases Ls = 1 or Lr = 1. The optimality conditions
boil down to Lr ≤ K and (30a) for the former special
case, and to Ls ≤ K and (30b) for the latter. The system
with Ls = 1 has already been studied in [4]. The derived
condition (30a) coincides with the optimality condition of
phase slopes obtained in [4, Theorem 1, eq. (18)]. However, in
that work, it was shown that the phase slopes satisfying (30a)
ensure a lower bound on the objective function when Lr ≤ K,
while their optimality was shown to hold only in the special
cases of Lr ∈ {2, 3}. Here, Theorem 1 extends the optimality
of phase slopes satisfying (30a) to any system with Lr ≤ K
(Ls = 1).

Given the conditions (30) and LrLs ≤ K we can derive
phase slopes constructions that achieve optimality. These are
stated in the following corollary.

Corollary 1. If LrLs ≤ K, then the following phase slopes

α̃r
l = l

2π

KT
, α̃s

m = mLr
2π

KT
, (32)

α̃r
l = lLs

2π

KT
, α̃s

m = m
2π

KT
, (33)

where 0 ≤ l ≤ Lr − 1 and 0 ≤ m ≤ Ls − 1, satisfy (30) and
thus are optimal.

Proof. See Appendix A (Lemma 6).

These two phase slopes constructions are not unique. The
construction (32) yields the same receiver phase slopes that
were suggested in [4, Theorem 1, eq. (19)]. These construc-
tions require the knowledge of the number of antennas at
the receiver or the transmitter. So far, we assumed that all
receiving VUs have the same number of antennas. However,
we can generalize this solution to VUs with different numbers
of antennas.

3) Supporting VUs with Different Number of Antennas:
Instead of assuming that all users have the same number of
antennas, let us assume that the maximum number of antennas
any user can have is Lr,max at the receiver and Ls,max at the
transmitter. Moreover, we assume that all users are aware of
these two parameters, and they satisfy Ls,maxLr,max ≤ K.
Following that we can use (30) and attempt to find phase
slopes that work for any Ls ≤ Ls,max and Lr ≤ Lr,max. The
following corollary gives us such a solution.

Corollary 2. The phase slopes constructions given by

α̃r
l = l

2π

KT
, α̃s

m = mLr,max
2π

KT
, (34)

α̃r
l = lLs,max

2π

KT
, α̃s

m = m
2π

KT
, (35)
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where 0 ≤ l ≤ Lr − 1, 0 ≤ m ≤ Ls − 1 satisfy (30) when
Lr,maxLs,max ≤ K, and Lr ≤ Lr,max, Ls ≤ Ls,max.

Proof. This can be reached straightforwardly by substituting
in (30) and using the fact that Lr,maxLs,max ≤ K. (For exact
details see the proof of Corollary 1.)

Note that in such a case, a transmitter does not need to know
the number of antennas at the receiver. However, knowledge
of the maximum number of antennas that a user can have is
required.

The phase slopes at the Tx do not depend on the AOA,
AOD, nor on the far field functions of antennas. This implies
that a transmitter can use an ABN beamforming vector with
fixed phase slopes to achieve optimal performance for any VU
including the worst one (i.e., including the user with the worst
sum-SNR). Hence, the solutions to (27) solve the problem of
maximizing the sum-SNR for the worst receiving user, also
when VUs have different numbers of antennas Lr ≤ Lr,max

and different far field functions.

B. Design of the Transmit Antenna Switching Network

1) Deriving the SNR per Packet: We follow the same steps
as done when deriving the SNR for the ABN scheme. Given
the received signal (8) with effective channel gain c(b) (12),
and adopting the assumptions in Section II-D, the SNR for the
kth packet, k = 0, 1, · · · ,K − 1 can be expressed as

γ
(b)
k =

Pr

Lrσ2
n

|c(b)(kT )|2 =
Pr

σ2
n

|gs
m(φs)|2Gr(φ

r,αr,ψr, k)

Lr
,

(36)

where m = mod(k, Ls), Gr(.) is given by (19), and ψr is
an Lr-vector with elements ψr

l defined in (16). ASN switches
antenna after each transmission. To simplify its analysis, we
assume that K/Ls = Kr is an integer, implying that each
antenna element is used to transmit an equal number of
Kr packets within a burst of K packets. Then, the ASN
normalized sum-SNR is given by

Sb(φr, φs,αr,ψr) = σ2
n/Pr

K−1∑
k=0

γ
(b)
k (37)

=

Ls−1∑
m=0

|gs
m(φs)|2

Kr−1∑
k′=0

Gr(φ
r,αr,ψr,m+ k′Ls)

Lr
. (38)

From the expression, we observe that a packet is sent using the
mth antenna periodically every Ls transmissions. Using (20),
the normalized sum-SNR can be elaborated and stated as

Sb(φr, φs,αr,ψr) = KG(φr, φs) + Jb(φr, φs,αr,ψr), (39)

where G(φr, φs) is given by (23) and

Jb(φr, φs,αr,ψr) =

Ls−1∑
m=0

|gs
m(φs)|2

Lr−2∑
l=0

Lr−1∑
i=l+1

c′l,i(φ
r)

×
Kr−1∑
k′=0

cos
(
∆ψr

l,i −∆αr
l,i(m+ k′Ls)T

)
, (40)

where c′l,i(φ
r) is defined in (26).

2) Optimization: For the ASN only the receiver phase
slopes are to be found. The optimization problem has a similar
form to (27), and it is given by

α̃r = arg sup
αr∈RLr

inf
(φs,φr)

ψr∈[0,2π)Lr

Sb(φr, φs,αr,ψr). (41)

Note that ASN inherently treats all receiving VUs the same.
Thus, in spite of how many antennas and the type of far
field functions different receiving VUs have, the optimization
problem (41) and its solutions apply to any user including
the one experiencing the worst sum-SNR. The solution to the
problem can be deduced from the following theorem.

Theorem 2. Let Sb be as defined in (39), K/Ls = Kr ∈ Z,
Lr > 1, and let

S?b(φr, φs) , sup
αr

inf
ψr
Sb(φr, φs,αr,ψr). (42)

Then, for any (φr, φs)

(i) The function is bounded as

S?b(φr, φs) ≤ KG(φr, φs). (43)

(ii) If Lr ≤ Kr the bound is achievable, i.e.,

S?b(φr, φs) = KG(φr, φs), (44)

with solutions that satisfy

Ls∆α̃
r
l,iT/2 ∈ X ∗Kr

, (45)

where X ∗Kr
= {qπ/Kr : q ∈ Z} \ {nπ : n ∈ Z}, and

0 ≤ l < i ≤ Lr − 1.
(iii) Assuming |gr

l (φ
r)| > 0, ∀l, |gs

m(φs)| > 0, ∀m, and
|gs
m(φs)| 6= C, ∀m, then (44) =⇒ (45) and Lr ≤ Kr.

(iv) One optimal solution is given by

α̃r
l = l

2π

KT
, l = 0, 1, · · ·Lr − 1, Lr ≤ Kr. (46)

Proof. See Appendix B.

Similarly to the ABN case, the solutions satisfying (45)
are independent of the signal directions (φr, φs), hence they
solve (41) when Lr ≤ Kr = K/Ls. Moreover, under the
assumptions indicated in Theorem 2 (iii), (45) is a suffi-
cient and necessary optimality condition for (41). Note that,
|gs
m(φs)| = C, ∀m, is a special case where the antenna system

is equivalent to 1 × Lr system, and thus it is covered by
Theorem 1. In particular, for |gs

m(φs)| = C > 0, ∀m, and
|gr
l (φ

r)| > 0, ∀l, (44) =⇒ (30a) and Lr ≤ K. We observe
that the optimality condition related to the number of antennas
Lr ≤ Kr = K/Ls is equivalent to what has been obtained for
the ABN scheme (LrLs ≤ K). The phase slopes optimality
condition (45) is, on the other hand, simpler than (30).

We can draw two main conclusions from the theorem. First,
the performance achieved using an ASN is identical to that of
an ABN, S?b(φr, φs) = S?a (φr, φs). Hence, the main difference
between the two is the implementation. Second, the suggested
optimal phase slopes construction (46) at the receiver side
when an ASN is used, coincides with the phase slopes con-
struction (32) (or (34)), which is used to combine the antenna
signals when an ABN is used at the transmitter. Hence, we
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can design the receiver ACN such that it optimally combines
signals arriving from both ABN and ASN transmitters. Such
a receiver does not require any knowledge of the number of
antennas used at the transmitter side.

An important aspect of Theorem 2 is the assumption Kr =
K/Ls ∈ Z, which can be easily met if all VUs use the same
number of transmit antennas, however, in a context where VUs
are equipped with different numbers of transmit antennas it
may not be easily met. In the following, we investigate the
implications of the assumption in such context.

3) VUs with Different Number of Transmit Antennas:
Assume that the maximum number of antennas that can be
used by any VU to transmit and receive are Ls,max and
Lr,max, respectively. Further, assume that K/Ls,max ∈ Z, and
Lr,max ≤ K/Ls,max. Receiving VUs employ a phase slope
vector α̃r that satisfies (46). This selection of phase slopes is
optimal for any Tx with Ls satisfying K/Ls ∈ Z (including
Ls = Ls,max). The optimal sum-SNR is given by (44). For
transmitting VUs with K/Ls /∈ Z, the phase slopes are not
known to achieve the optimal sum-SNR. The performance is
governed in this case by

inf
ψr∈[0,2π)Lr

Sb(φr, φs, α̃r,ψr), (47)

where Sb is as defined in (37) (Note that (38)–(40) hold
when K/Ls ∈ Z). No analytical solution to (47) is available.
However, a numerical characterization of the expression and a
comparison with the optimal sum-SNR attained by ABN will
be shown in the numerical results section.

C. ABN and ASN Transceivers

In spite of the advantage of ABN over ASN in supporting
transmission with different numbers of antennas, we have
shown that the two structures yield the same performance
in the general case. However, each structure puts different
requirements on the transceiver. In particular, an ABN-ACN
transceiver needs to support two different sets of phase shifter
slopes, one tuned for transmission ({α̃s

m}) and another for
reception ({α̃r

l}). On the other hand, an ASN-ACN transceiver
has to support one set of phase shifter slopes ({α̃r

l}), and be
capable of transmitting with Ls times higher power than the
power transmitted on each antenna branch using ABN. From
these requirements stem the main implementation trade-offs
between the two structures, and depending on how transceivers
with such requirements are implemented, ABN and ASN may
differ in cost and complexity.

D. Alamouti Scheme Performance

In the following, we compare the performance of the devel-
oped analog multiple antenna system with the performance of
the fully digital Alamouti scheme. The scheme does not rely
on CSI, and therefore it is suitable for the broadcast scenario
we are considering. Assume that the receiver uses an ACN,
while the transmitter with Ls = 2 applies an Alamouti encod-
ing in space-time domain, in accordance with an orthogonal
frequency division multiplexing (OFDM) signal (see e.g., [20],

[21, Ch. 22])3. Assume that packets are composed of Nsym
OFDM symbols, si, each composed of N subcarriers. The
Alamouti encoding matrix is given by,[

s0 s1

−s∗1 s∗0

]
→ space
↓ time (48)

where s0 and s1 are two consecutive OFDM symbols. After
applying the space-time mapping, symbols are converted to
time domain, appended a cyclic prefix, then sent over the
channel. Given the channel gain hl,m as defined in (1), let
Hm = [h0,m, h1,m, · · · , hLr−1,m]T/a(t) denotes the mth col-
umn of H , where a(t) = |a(t)|e−2πfcτ0(t), then the received
signal after ACN combining with w as defined in (6), can be
modeled as

r(t) =
1√
2
a(t)wH(x̄0(t)H0 + x̄1(t)H1) +wHn, (49)

where x̄0(t) and x̄1(t) are the transmitted Alamouti encoded
signals delayed by τ0(t), and wHn is a zero-mean white
Gaussian noise with variance E{|wHn|2} = Lrσ

2
n.

Given the assumptions in Section II-D, we can approximate
c̄m = wHHm/

√
2, m ∈ {0, 1}, for the kth packet, as

1√
2
gs
m(φs)eΩ

s
m

Lr−1∑
l=0

|gr
l (φ

r)|e−(ψ
r
l−α

r
lkT ), (50)

where ψr
l is given by (16). To decode the message, the receiver

uses two consecutive OFDM symbols (after discarding the
cyclic prefix and conversion to the frequency domain), as
follows

y0 = c̄0Das0 + c̄1Das1 + z0, (51)
y1 = −c̄0Das

∗
1 + c̄1Das

∗
0 + z1, (52)

where Da = D̄
(i)
a , is a diagonal matrix carrying the frequency

response of the sampled finite channel impulse response
associated with a(t), at symbol duration i, and it is assumed
constant over two consecutive OFDM symbols duration (fol-
lows from the basic assumption of Alamouti scheme [11]).
The vectors z0, z1, are zero-mean independent white Gaussian
noises with variance E{|zi|2} = Lrσ

2
n/Nsym, i = 1, 2.

Forming the two combined signals, (c̄∗0D
∗
ay0 + c̄1Day

∗
1) and

(c̄∗1D
∗
ay0 − c̄0Day

∗
1), and employing (49) we can deduce the

normalized SNR of the kth packet

σ2
n

Pr
γ(Al)
k =

Gr(φ
r,αr,ψr, k)

Lr

Ls−1∑
m=0

|gs
m(φs)|2

Ls
, (53)

where Gr(·) is given by (19). The average signal power
is given in this case by Pr = E{|a(t)x̄0(t)|2} =

E{|a(t)x̄1(t)|2}=
∑Nsym−1
i=0 E{|Dasi|2}.

We can observe from (53) that optimizing the sum-SNR of
the Alamouti scheme is equivalent to optimizing

∑K−1
k=0 Gr(·)

which is the sum-SNR of an ACN with Lr antennas. By

3Alamouti can be applied to OFDM in space-frequency domain as well
(see e.g., [22]), and it is found to yield the same result.
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Theorem 1 we can conclude that if Lr ≤ K and phase slopes
are chosen to satisfy (30a), we can achieve

σ2
n

Pr

K−1∑
k=0

γ(Al)
k = S?a (φr, φs) = S?b(φr, φs). (54)

Hence, in this scenario where the channel is modeled as a
slowly varying dominant path, implying that the only available
spatial diversity of the channel is due to the different far
field functions of antennas (the propagation environment has
spatial diversity of order one), ABN and ASN achieve similar
performance compared to an Alamouti scheme. We note that
Alamouti requires two digital ports at the transmitter. More-
over, it is not a transparent scheme since additional processing
is needed at the receiver to decode the message. Therefore, it
has a higher cost and higher complexity than ABN and ASN.
From another perspective, the result of this section shows that
an ACN receiver communicates optimally not only with ABN
and ASN but also with an Alamouti transmitter.

IV. MRC ENHANCEMENT

The overall performance for VUs can be improved by
employing an MRC digital combining stage after the analog
combining at the receiver. Therefore, in this section, we use
a hybrid combiner at the receiver. We follow a sub-connected
configuration as in [6]. Antennas are divided into subgroups of
Lr,p elements that are combined in the analog domain using
an ACN then fed to a digital port. We would like to show that
the solutions provided by Theorem 1 and Theorem 2 are still
optimal. To that end, we model the signal at port p of a given
VU after the ACN following (8) as

rp(t) =a(t)x(t)cp(kT ) + np(t), (55)

where kT ≤ t ≤ kT + Tm, and the approximation cp(t) ≈
cp(kT ) follows from the assumptions in Section II-D. Em-
ploying MRC with coefficients c∗p(kT )/Lr,p [23], and since
the noise is uncorrelated between the ports, the overall SNR
per packet can be expressed as

γ
(d)
k =

P−1∑
p=0

Pr

Lr,pσ2
n

|cp(kT )|2. (56)

Given that we are using an ABN, the effective channel gain
for the kth packet is modeled by (14), with the following
change in notation adopted,

gr
l → gr

l,p, ψ
r
l → ψr

l,p, α
r
l → αr

l,p, Lr → Lr,p, (57)

where gr
l,p, αr

l,p, ψr
l,p are, respectively, the far field function,

phase slope, and effective channel phase associated with the
lth receive antenna connected to port p. The effective channel
gain can be explicitly expressed as

c(a)
p (kT ) =

1√
Ls

Ls−1∑
m=0

|gs
m(φs)|e−(ψ

s
m−α

s
mkT )

×
Lr,p−1∑
l=0

|gr
l,p(φ

r)|e−(ψ
r
l,p−α

r
l,pkT ). (58)

Let ψr
p and αr

p be vectors with Lr,p elements corresponding
to ψr

l,p and αr
l,p, respectively. Then, the normalized sum-SNR

can be expressed as

Sd(φr, φs,αr,αs,ψr,ψs) = σ2
n/Pr

K−1∑
k=0

γ
(d)
k

=

P−1∑
p=0

K−1∑
k=0

Gr,p(φ
r,αr

p,ψ
r
p, k)

Lr,p

Gs(φ
s,αs,ψs, k)

Ls

=

P−1∑
p=0

Sa,p(φ
r, φs,αr

p,α
s,ψr

p,ψ
s), (59)

where αr = [αr
0,α

r
1, · · · ,αr

P−1], ψr = [ψr
0,ψ

r
1, · · · ,ψ

r
P−1],

and Gr,p(·) is defined following (19) with change of nota-
tion (57) incorporated. The term Sa,p(·) is the same as (22),

Sa,p(φ
r, φs,αr

p,α
s,ψr

p,ψ
s) = KGp(φ

r, φs)

+ Ja,p(φ
r, φs,αr

p,α
s,ψr

p,ψ
s), (60)

where Gp and Ja,p are given by (23) and (25), re-
spectively, with (57) adopted (a sub-index p is added to
cl,i, c

′
l,i, dm,j , d

′
m,j in (26)).

As done earlier in Section III, we assume that all receiving
VUs have the same number of antennas, the same far field
functions, and additionally, we assume that they have the same
number of ports. That allows us to define the worst user in the
system based on the worst-case AOA, AOD. Following that,
Theorem 1 already give us the solutions for any (φr, φs) to
the per-port subproblems

(α̃r
p, α̃

s) = arg sup
(αr

p,α
s)

inf
(ψr

p,ψ
s)
Sa,p(φ

r, φs,αr
p,α

s,ψr
p,ψ

s)︸ ︷︷ ︸
,S?

a,p(φr,φs)

,

(61)

where, αr
p ∈ RLr,p , αs ∈ RLs , ψr

p ∈ [0, 2π)Lr,p , ψs ∈
[0, 2π)Ls . The optimal sum-SNR per subgroup of antennas
is given by

S?a,p(φ
r, φs) = KGp(φ

r, φs)

= K

Lr,p−1∑
l=0

|gr
l,p(φ

r)|2

Lr,p

Ls−1∑
m=0

|gs
m(φs)|2

Ls
. (62)

To deduce the optimum of the overall problem, we can make
use of the following lemma.

Lemma 1. Let Sd be given by (59), then

sup
(αr,αs)

inf
(ψr,ψs)

Sd(φr, φs,αr,αs,ψr,ψs)︸ ︷︷ ︸
,S?

d(φr,φs)

≤ K
P−1∑
p=0

Gp(φ
r, φs).

(63)

where Gp(φr, φs) is given by (62).

Proof. See Appendix C.

The right-hand side of (63) is equal to
∑P−1
p=0 S

?
a,p(φ

r, φs),
which means that the solutions to the subproblems do satisfy
the bound, and therefore are optimal for the overall problem.
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For that to hold, the optimality conditions Lr,pLs ≤ K
and (30) have to be satisfied for all ports p. Given that we
design the phase slopes according to a certain construction,
e.g., (32), then we can start with choosing α̃s and α̃r

p corre-
sponding to the largest Lr,p, then the remaining α̃r

p′ , p
′ 6= p

can be cloned on the already designed phase slope vector, and
all optimality conditions will be satisfied.

Similar to what has been found earlier, α̃s is independent
of the far field function of the antennas, and it can be designed
according to the maximum number of antennas a VU can
have Lr,max. For users with more than one digital port, the
condition on the maximum number of antennas is given by
Lr,p ≤ Lr,max, ∀p. Therefore, a transmitter can use the same
ABN beamforming vector to achieve optimal performance for
any user (in spite of the number of antennas, ports, and far
field functions employed), including the worst one.

Due to the limitation of space, we will not go through a
detailed analysis of the ASN. However, we point out that since
the optimization parameters are restricted to αr

p and ψr
p—

which are independent of one port to another—by solving the
subproblems per port using Theorem 2, we already solve the
overall problem and achieve the same optimal performance
given by

S?d(φr, φs) =

P−1∑
p=0

S?a,p(φ
r, φs) = K

P−1∑
p=0

Gp(φ
r, φs). (64)

Note that for a system with Lr,p = Lr/P , ∀p we get,

S?d(φr, φs) = PKG(φr, φs). (65)

Hence, the digital processing stage yields 10 log10(P ) dB
higher gain for any (φr, φs) compared to S?a (φr, φs).

V. NUMERICAL RESULTS

In this section, we visualize the performance of ABN/ASN
based on some examples of antenna radiation patterns that are
shown in Fig. 3. There is an ideal omnidirectional antenna
A0, and a non-ideal, synthetic omnidirectional antenna A1.
Furthermore, there is a sector antenna A2, which is a back-
to-back patch antenna designed by Smarteq4 for vehicular
applications. Finally, there is a directional antenna A3 with
characteristics that are modeled following an analytical radia-
tion pattern given by [24, Eq. 4]. All antenna types have the
same average power gain in the azimuth plane.

Since the optimal phase slopes of ABN were found to be
the same for any VU, including the worst one, and since ASN
strategy treats all users the same, we quantify the performance
of the two schemes in this section, assuming one transmitting
and one receiving, reference VUs. Performance is assessed
according to the sum-SNR of a burst of K consecutive CAM
packets, with a focus on the worst-case AOA, AOD, such
that we can characterize the robustness of V2V cooperative
communication against unfavorable angles.

4Smarteq Wireless AB is a Swedish industrial partner specialized in
developing antenna solutions for vehicle industry among others.
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Fig. 3. Test antennas radiation patterns, |g(φ)|2, in dBi. All antennas have the
same average power gain in the azimuth plane. (Omni. i.e., Omnidirectional).

A. Sum-SNR Achieved Using ABN/ASN

Consider the use of A2 sector antennas (Fig 3). Employing
two A2 modules pointing 180 deg apart, we can enable
full omnidirectional coverage. An ABN/ASN allows us to
do that using a single transmit digital port. Note that, with
a single digital port, and in absence of ABN/ASN, the use
of one A2 module would yield very low performance in the
direction where the antenna has low gain. Now, consider a
communication link with Ls = 2, Lr = 2, and a burst
of K = 4 = LrLs consecutive CAM packets. Both the
transmitter and the receiver are equipped with A2 antennas.
We plot in Fig. 4 the CDF of the sum-SNR of 2×2 ABN/ASN-
ACN system (with optimal phase slopes) for uniform AOA,
AOD. We note that the sum-SNR is normalized with respect
to Pr/σ

2
n, following (22) and (37), and that holds throughout

this section. As indicated in Remark 2 the sum-SNR CDF
is the same for any ψr ∈ [0, 2π)Lr ,ψs ∈ [0, 2π)Ls , and it
is identical for both ABN and ASN which coincides with
our analytical result, S?a (φr, φs) = S?b(φr, φs). We recall
that the optimal sum-SNR is proportional to the equivalent
radiation pattern G(φr, φs), defined in (23). To observe how
this is characterized at the transmitter side we visualize in
Fig. 5 the term

∑Ls−1
m=0 |gs

m(φs)|2/Ls, which can be seen
as the transmitter side equivalent pattern. We see that it
has a nearly ideal omnidirectional coverage. The receiver
equivalent pattern

∑Lr−1
l=0 |gr

l (φ
r)|2/Lr, which is omitted from

the figure, has the same characteristics. From this example,
we see that ABN/ASN yields an equivalent radiation pattern
with improved omnidirectional characteristics (that implies
improved robustness against unfavorable AOA, AOD).

We mentioned earlier that due to distortions caused by many
factors including vehicle body, a practical omnidirectional
pattern is far from ideal. As an example of how a non-ideal
omnidirectional antenna performs in comparison to an ideal
one, we see in Fig. 4 that 1×1 A1 (at both Tx and Rx) system
has much lower worst-case sum-SNR than 1× 1 A0, despite
that both antenna types have the same average power gain in
the azimuth plane. The ABN/ASN can be used to improve the
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1(φs−180)). Worst-case AODs are

marked with diamonds.

performance of a system based on such non-ideal antennas as
well. In particular, an improvement of around 4.5 dB in worst-
case sum-SNR is achieved using 2× 2 A1 ABN/ASN system
compared to 1 × 1 A1 system. This entails that ABN/ASN
results in improved robustness of the system, which is also
evident from the improved omnidirectional characteristics of
the resultant equivalent radiation pattern at the Tx side, shown
in Fig. 5.

Given access to more than one digital receive port and
MRC processing, the ABN/ASN sum-SNR can be enhanced
by 3 dB for all AOA, AOD. This can be seen from the 3 dB
shifted CDF of ABN/ASN-MRC shown in Fig. 4 compared
to ABN/ASN-ACN CDF. This 3 dB gain is in accordance
with (65) when setting Lr,p = 1, p = 0, 1. From another
aspect, we recall that an ABN/ASN has the same performance
as an Alamouti scheme. Therefore, given access to two digital
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(2 ports)
4 × 6 A3

x in dB

P
(S

≤
x
)

Fig. 6. CDF corresponding to the normalized sum-SNR of K = 16 packets,
using A3 directional antennas. The CDFs are computed for uniform AOA,
AOD. Antenna elements are pointing 180 deg and 90 deg apart, for the 2×2
and 4×4 systems, respectively. Antennas are divided equally among the two
ports Lr,p = 2, p = 0, 1, for the hybrid receiver (ACN+MRC).

transmit ports, and as shown by the CDFs of Alamouti, no
enhanced performance is achieved compared to ABN/ASN in
this case.

To shed more light on the performance of ABN/ASN-ACN,
we let K = 16 and we plot the CDF of the normalized
sum-SNR for different A3 antenna systems in Fig. 6. We see
that the performance of the 2 × 2 Alamouti-MRC system is
poor, which is natural since two A3 antennas do not fully
cover the azimuth plane. We cannot employ more than two
antennas (without analog combining) in the Alamouti-MRC
system, since we only have two digital ports. However, using
ABN/ASN-ACN we can employ more antennas than available
ports as long as LrLs ≤ K. Following that, we see in
Fig. 6 that the use of four A3 antennas at both ends yields
a higher worst-case sum-SNR compared to Alamouti-MRC.
Furthermore, combining ACN with a two-port MRC results in
an additional 3 dB performance enhancement. Finally, using 6
receive antennas the worst-case sum-SNR is further improved
by around 1 dB (the hybrid receiver allows the use of up to 8
receive antennas, Lr,p = 8/2 = 4, p = 0, 1). This latter gain
is due to the improvement of the equivalent radiation pattern
characteristics of the system.

B. On Optimality of Phase Slopes

In Theorem 1 we derived the optimality condition (30). To
get insight into it, we plot in Fig. 7 the sum-SNR of a 2 ×
2 ABN system based on A2 antennas as a function of the
transmitter phase slopes for a fixed AOA, AOD (recall that
Theorem 1 holds for any (φr, φs)). An ACN with phase slopes
vector that satisfies (30a) is used. In particular, the ACN vector
is chosen according to (32), (46), so it is optimal for ASN
as well. In the same figure, we also plot the sum-SNR for
the ASN as a reference. Since ASN does not depend on the
transmitter phase slopes, it maintains optimal performance. As
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for the 2 × 2 ABN, we can observe that when only (30b) is
satisfied, a suboptimal performance is achieved. Optimality is
ensured, however, when both (30b) and (30c) are met, which is
in accordance with the results of Theorem 1. In comparison to
2× 1 ABN, we see that at the points where (30b) is satisfied,
optimal performance is achieved. Thus, employing multiple
antennas at both Tx and Rx reduces the set of optimal phase
slope points. Consequently, we see in the figure that for a large
deviation from the optimal phase slopes, the relative sum-SNR
loss is larger for the 2 × 2 than the 2 × 1 system. Yet, for
a small phase slope mismatch, the relative loss is small for
both systems. Curves showing the effect of ACN phase slopes
mismatch on the sum-SNR of both ABN and ASN follow
similar trends, and they are omitted for clarity. Since ASN-
ACN depends only on phase slopes at the receiver, then it
is less susceptible to the effects of mismatch in phase slopes
compared to ABN-ACN.

C. ASN Performance when K/Ls /∈ Z
As stated in Section III-B3, in the case K/Ls /∈ Z, ASN

is not known to achieve the optimal performance attained by
ABN, when ACN phase slopes are set according to (46) (the
phase slopes are optimal for ASN when Ls/K ∈ Z, and for
ABN). In such a case, ASN performance is governed by (47),
to which we do not have an available analytical solution. To
quantify this numerically, we consider a burst of K = 9
packets, and a communication link between a transmitting VU
with Ls = 2 and a reference receiving VU with Lr = 2.
Both Tx and Rx use A2 antennas. In Fig. 8 we show the
CDFs of the achieved sum-SNR when the transmitting VU is
employing ASN or ABN, while the receiving VU is employing
an ACN (following (46)). We observe that ASN achieves
a suboptimal performance when K/Ls /∈ Z. Yet, for this
particular antenna system, the performance is negligibly lower
(by around 0.5 dB) than the optimal ABN worst-case sum-
SNR.
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Fig. 8. CDF corresponding to the normalized sum-SNR of K = 9 packets of
ABN and ASN (47), Lr = 2, Ls = 2. The CDFs are computed for uniform
AOA, AOD.

VI. CONCLUSIONS AND FUTURE WORKS

A fully analog, low-complexity, multiple antenna system for
cooperative, periodic, broadcast V2V communication has been
presented. Given that vehicular users (VUs) use an ACN [4]
with Lr antennas at the receiver, we proposed the use of a
network of phase shifters, ABN, or a network of switches,
ASN, with Ls antennas at the transmitter. The overall system
has been optimized, in absence of channel knowledge, to max-
imize the sum-SNR of K consecutive packets for the worst
receiving VU (which minimizes the burst error probability
when the packet error probability decreases exponentially with
the per-packet SNR). The main findings of this work follow.
• Optimal sets of phase slopes for ABN (30), and for

ASN (45) are derived when LrLs ≤ K. The phase slopes
are found to be independent of the far field functions
of antennas. Moreover, the receiver phase slopes are
consistent with what was found in [4].

• Both ABN and ASN yield the same optimal sum-SNR
in the general case. For the special case of Ls = 2
transmit antennas, the sum-SNR is equivalent to what can
be achieved using an Alamouti diversity scheme.

• Given the maximum number of receive antennas a VU
can have, Lr,max, the ABN can be designed to achieve
optimal performance for any user with Lr ≤ Lr,max,
including the worst receiving user. The ASN on the
other hand does not require knowledge of Lr,max, and
it achieves optimal performance as long as Ls divides
K.

• An ACN receiver can be designed to communicate opti-
mally with both ABN and ASN transmitters.

• The derived phase slopes for ABN/ASN structures guar-
antee optimal sum-SNR also for a hybrid analog-digital
ACN+MRC combiner.

In this work, to ensure a robust multiple-antenna sys-
tem, ABN/ASN-ACN has been designed to achieve optimal
sum-SNR under worst-case propagation scenario. This was
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modeled by a sparse multipath propagation with a dominant
path and a narrow angular spread, which tends to occur on
roads that are not surrounded by buildings, e.g., highways. In
future studies, it is important to also investigate the system
performance under rich multipath propagation with wide an-
gular spread, which is typical in urban scenarios. In addition,
and since interference from other transmitting vehicles is
prominent in such scenarios, its effect has to be taken into
account in the investigation of ABN/ASN-ACN performance.

APPENDIX A
PROOF OF THEOREM 1

A. Notation

For convenience, we introduce the following notation. For
an N -vector v = [v0, v1, · · · , vN−1]T we define the (N − 1)-
vector v̄n as

v̄n , [v0, v1, · · · , vn−1, vn+1, · · · , vN−1]T. (66)

We define the “averaging” operator A as an integral of a func-
tion with respect to variables y ∈ [0, 2π)Lr and v ∈ [0, 2π)Ls ,
such that

A[h(y,v)] ,
∫

[0,2π)Ls

∫
[0,2π)Lr

h(y,v) dydv. (67)

If we restrict the integration to be over just y or v, we use
the notation Ay and Av , respectively. We note that

A[·] = Av
[
Ay[·]

]
= Ay

[
Av[·]

]
. (68)

Finally, we define

Pr , {(l, i) : l, i ∈ Z, 0 ≤ l < i ≤ Lr − 1}, (69)

Ps , {(m, j) : m, j ∈ Z, 0 ≤ m < j ≤ Ls − 1}, (70)

∆yl,i , yi − yl. (71)

Note that Pr = ∅ when Lr = 1, and Ps = ∅ when Ls = 1. In
accordance with this, we use the convention∑

e∈S
ce = 0, when S = ∅. (72)

B. Preliminaries

For a fixed constant positive integer K we define the
function f : R2 → R as

f(x, y) ,
K−1∑
k=0

cos(y − 2kx). (73)

Noting that f(x, y) = Re{ey
∑K−1
k=0 e−2kx} and using the

sum of geometric series, we get

f(x, y) =

K cos(y), x ∈ X
sin(Kx)

sin(x)
cos
(
y − (K − 1)x

)
, x /∈ X

(74)

where X , {qπ : q ∈ Z}.
We state the following properties of f(x, y):

(i) f(x, y) = 0 for all y ∈ R, if and only if x ∈ X ∗, where

X ∗ , {qπ/K : q ∈ Z} \ X , (75)

which follows from (74). Furthermore, we note that x ∈
X ∗ ⇒ x /∈ X .

(ii) from the identity 2 cos(a) cos(b) = cos(a+b)+cos(a−b)
and (73), we deduce

2

K−1∑
k=0

cos(y1 − 2kx1) cos(y2 − 2kx2) =

f(x1 + x2, y1 + y2) + f(x1 − x2, y1 − y2). (76)

(iii) suppose a is a nonzero integer, then for all x,B,C ∈ R,∫ 2π

0

Bf(x, ay + C) dy = 0, (77)

which follows from (73).

Lemma 2. Let y = [y0, y1, · · · , yLr−1]T ∈ [0, 2π)Lr and
v = [v0, v1, · · · , vLs−1]T ∈ [0, 2π)Ls . Then for l, i ∈
{0, 1, · · · , Lr − 1} and m, j ∈ {0, 1, · · · , Ls − 1}

Ay[f(x,∆yl,i + C)] = 0, l 6= i (78)
Av[f(x,∆vm,j + C)] = 0, m 6= j (79)

A[f(x,∆yl,i + ∆vm,j + C)] = 0,

{
l 6= i, or
m 6= j

(80)

where x,C ∈ R.

Proof. Suppose l 6= i we can write f(x,∆yl,i+∆vm,j+C) =
f(x, yi +C ′), where C ′ = −yl + (vj − vm) +C is a constant
with respect to yi. Then, Ay[f(x,∆yl,i+∆vm,j +C)] can be
expressed as∫

[0,2π)Lr−1

[∫
yi∈[0,2π)

f(x, yi + C ′) dyi

]
︸ ︷︷ ︸

= 0 according to (77)

dȳi = 0,

which, together with (68), implies that (80) holds when l 6= i.
It is straightforward to develop a similar argument based on
Av[·] to prove (80) when m 6= j. Moreover, (78) and (79)
follow from (80) by considering m = j and l = i, respectively,
which completes the proof.

Lemma 3. Let y = [y0, y1, · · · , yLr−1]T ∈ [0, 2π)Lr and v =
[v0, v1, · · · , vLs−1]T ∈ [0, 2π)Ls . For w,w′ ∈ Pr and u, u′ ∈
Ps, we have

Ay[f(x1, C1 ±∆yw)f(x2, C2 ±∆yw′)] =0, w 6= w′ (81)
Av[f(x1, C1 ±∆vu)f(x2, C2 ±∆vu′)] =0, u 6= u′ (82)
A[f(x1,∆yw + a∆vu)f(x2,∆yw′ + a∆vu′)] = 0,

a = ±1, w 6= w′ or u 6= u′ (83)
A[f(x1,∆yw + ∆vu)f(x2,∆yw′ −∆vu′)] = 0, (84)
Ay[f(x1,∆yw ±∆vu)f(x2,∆vu′)] =0, (85)
Av[f(x1,∆yw ±∆vu)f(x2,∆yw′)] =0, (86)

A[f(x1,∆yw)f(x2,∆vu)] =0, (87)

where x1, x2, C1, C2 ∈ R.

Proof. Let w = (l, i), w′ = (r, q), u = (m, j) and u′ = (t, s)
throughout this proof. Given that w,w′ ∈ Pr, and u, u′ ∈ Ps,
it follows that l < i, r < q, m < j, and t < s.
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Let us start by proving (81). Suppose w 6= w′, i.e., (l, i) 6=
(r, q), which implies that l 6= r or i 6= q. Let us consider these
two cases separately.

(i) Suppose that l 6= r. Then either l < r or r < l, which
(since l < i and r < q) implies that n = min{l, r} is the
unique minimum element in the multiset [l, i, r, q]. Hence,
the integration variable yn appears in the argument of either
f(x1, C1±∆yw) = f(x1, C1±∆yl,i) = f(x1, C1±(yi−yl))
or f(x2, C2 ± ∆yw′) = f(x2, C2 ± ∆yr,q) = f(x2, C2 ±
(yq− yr)), but not in both. Then, the integrand in (81) can be
expressed as

Bf(x′, C ′ − ayn), a = ±1

where B = f(x2, C2 ±∆yr,q), C ′ = C1 + ayi and x′ = x1

if n = l, while B = f(x1, C1 ±∆yl,i), C ′ = C2 + ayq and
x′ = x2 if n = r. Note that in both cases B and C ′ are
constants with respect to yn. Hence, the left-hand side of (81)
satisfies∫

[0,2π)Lr−1

[∫
yn∈[0,2π)

Bf(x′, C ′ − ayn)dyn

]
︸ ︷︷ ︸

= 0 according to (77)

dȳn = 0,

and thus, (81) holds when l 6= r.
(ii) Suppose that i 6= q. Then either i > q or q > i, which

implies that n = max{i, q} is the unique maximum element in
the multiset [l, i, r, q]. Hence, just as in case (i), the integration
variable yn appears in the argument of either f(x1, C1±(yi−
yl)) or f(x2, C2 ± (yq − yr)), but not in both. Hence, (81)
holds also when i 6= q.

Combining the results of (i) and (ii) proves that (81) holds.
Moreover, the same basic arguments, (i) and (ii), can be
repeated to prove (82).

Now, consider the integrand in (83). When integrating over
y (Ay[·]), it can be expressed as

f(x1,∆yw + C1)f(x2,∆yw′ + C2),

where C1 = a∆vu = a∆vm,j = a(vj − vm) and C2 =
a∆vu′ = a∆vt,s = a(vs − vt) are constants and a = ±1.
Hence, it follows from (81) and the decomposition A[·] =
Av
[
Ay[·]

]
that (83) holds when w 6= w′. On the other hand,

by starting the integration over v, then employing (82) and
A[·] = Ay

[
Av[·]

]
, we deduce that (83) holds also when u 6=

u′, which completes the proof of (83).
By similar argument to what was presented to demon-

strate (83), we can show that (84) holds when w 6= w′ or
u 6= u′. For the case w = w′ and u = u′, i.e., (l, i) = (r, q)
and (m, j) = (t, s), the integrand of (84) can be expressed
based on (73) and the identity 2cos(a)cos(b) = cos(a+ b) +
cos(a− b) as

1

2

K−1∑
k=0

K−1∑
k′=0

cos(2∆yl,i − 2(kx1 + k′x2))

+ cos
(
2∆vm,j − 2(kx1 − k′x2)

)
. (88)

Integrating (88) with respect to y and v yields zero, and this
completes the proof of (84).

Since ∆vu and f(x2,∆vu′) are constants with respect to
y, the left-hand side of (85) can be written as

f(x2,∆vu′)Ay[f(x1,∆yw + C)],

where C = ±∆vu, and it follows directly from Lemma 2, (78)
(w = (l, i), l < i) that (85) holds. By similar argument (86)
follows from Lemma 2, (79). Finally, employing the decom-
position (68), (87) follows from Lemma 2, (78) or (79) and
this completes the lemma proof.

C. Proof of Theorem 1 and Corollary 1

Given the objective function Sa(φr, φs,αr,αs,ψr,ψs), de-
fined in (22), where Lr ≥ 1, Ls ≥ 1, and Lr + Ls > 2 (the
trivial case Lr = Ls = 1 is omitted). We define Lr-vectors
x ∈ RLr and y ∈ [0, 2π)Lr with elements xl , αr

lT/2 and
yl , ψr

l , 0 ≤ l ≤ Lr − 1. Analogously, we define Ls-vectors
z ∈ RLs and v ∈ [0, 2π)Ls with elements zm , αs

mT/2 and
vm , ψs

m, 0 ≤ m ≤ Ls − 1. Last, we let φ , (φr, φs). The
objective function can be expressed using this notation as

Sa(φ,x, z,y,v) = KG(φ) + Ja(φ,x, z,y,v), (89)

where Ja is given by (25). Using the definitions of f , Pr, and
Ps, we can express Ja as

Ja(φ,x, z,y,v) =

Jr
a︷ ︸︸ ︷∑

w∈Pr

cwf(∆xw,∆yw) +

Js
a︷ ︸︸ ︷∑

u∈Ps

duf(∆zu,∆vu)

+
∑
w∈Pr

∑
u∈Ps

0.5c′wd
′
uf(∆xw + ∆zu,∆yw + ∆vu)

+
∑
w∈Pr

∑
u∈Ps

0.5c′wd
′
uf(∆xw −∆zu,∆yw −∆vu), (90)

where the last two terms follow from (76). The dependency of
the nonnegative coefficients cw, c′w, du, d′u—defined in (26)—
on φ is dropped for convenience. Note that, in the special case
of Lr = 1, Pr = ∅ and with reference to the convention (72),
we get Ja = J s

a, while when Ls = 1, Ps = ∅, we get Ja = J r
a.

We observe that Ja(φ,x, z,y,v) is a linear combination of
f -functions with nonnegative coefficients—a crucial property
for the proof to follow. The proof is divided into three lemmas
which are presented first, then follows the demonstration of the
theorem claims at last.

Lemma 4. Let Ja be defined as in (90) where x ∈ RLr ,
y ∈ [0, 2π)Lr , z ∈ RLs , and v ∈ [0, 2π)Ls . Then,

A[Ja(φ,x, z,y,v)] = 0, (91)
inf

y∈[0,2π)Lr ,v∈[0,2π)Ls
Ja(φ,x, z,y,v) ≤ 0. (92)

Proof. From (90) we see that Ja(φ,x, z,y,v) is a linear
combination of f -functions with nonnegative coefficients. The
f -functions are of the general form f(x, a∆yw + b∆vu) =
f(x, a∆yl,i + b∆vm,j), where a, b ∈ {0,±1} and they are
not both zero at the same time. This is valid in the general
case of Lr > 1, Ls > 1, as well as in the special cases of
Lr = 1 (a = 0, b = 1), or Ls = 1 (a = 1, b = 0).
Since w = (l, i) ∈ Pr and u = (m, j) ∈ Ps, we have
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that i 6= l and j 6= m, and A[f(x, a∆yl,i + b∆vm,j)] = 0
according to Lemma 2 and (68). We recall that A[·] is an
integral over the same domain as over which the infimum is
taken in (92), namely y ∈ [0, 2π)Lr ,v ∈ [0, 2π)Ls . Hence,
A[f(x, a∆yl,i + b∆vm,j)] = 0 implies that

0 = A[Ja(φ,x, z,y,v)] (93)

≥ A
[

inf
y∈[0,2π)Lr ,v∈[0,2π)Ls

Ja(φ,x, z,y,v)

]
(94)

= (2π)Lr+Ls inf
y∈[0,2π)Lr ,v∈[0,2π)Ls

Ja(φ,x, z,y,v), (95)

where the last equality holds since A[C] = C(2π)Lr+Ls for a
constant C, and the lemma therefore follows.

Lemma 5. Let Ja be as defined in (90), where x ∈ RLr ,
y ∈ [0, 2π)Lr , z ∈ RLs , and v ∈ [0, 2π)Ls . Let X ∗ be as
defined in (75), and

DX , {∆xw,∆zu,∆xw ±∆zu : w ∈ Pr, u ∈ Ps}
= {∆zu : u ∈ Ps,Pr = ∅}
= {∆xw : w ∈ Pr,Ps = ∅}. (96)

(i) If DX ⊂ X ∗ then

Ja(φ,x, z,y,v) = 0, y ∈ [0, 2π)Lr ,v ∈ [0, 2π)Ls . (97)

(ii) Assuming that cw, c′w, du, d
′
u > 0, w ∈ Pr, u ∈ Ps,

then (97) =⇒ DX ⊂ X ∗.

Proof. (i) We see from (90) that Ja is a linear combination
of terms of the form f(∆X ,∆Y ), where ∆X ∈ DX defined
in (96), and ∆Y ∈ DY ,

DY , {∆yw,∆vu,∆yw ±∆vu : w ∈ Pr, u ∈ Ps}
= {∆vu : u ∈ Ps,Pr = ∅}
= {∆yw : w ∈ Pr,Ps = ∅}. (98)

Suppose DX ⊂ X ∗, then ∆X ∈ DX ⊂ X ∗, which together
with (75) implies that f(∆X ,∆Y ) = 0 for all ∆Y ∈ R, which
in turn implies that (97) hold. In other words, DX ⊂ X ∗ ⇒
(97).

(ii) Suppose (97) holds, then J2
a = 0, which implies that

A[J2
a ] = 0. From (90), we see that J2

a can be written as a linear
combinations of terms of the form f(∆X ,∆Y )f(∆′X ,∆

′
Y ),

where ∆X ,∆
′
X ∈ DX and ∆Y ,∆

′
Y ∈ DY . From Lemma 3,

we can see that A[f(∆X ,∆Y )f(∆′X ,∆
′
Y )] = 0 when ∆Y 6=

∆′Y . Hence, it follows from (90) that

A[J2
a ] = A[ξ]+

A

[∑
w∈Pr

c2wf
2(∆xw,∆yw) +

∑
u∈Ps

d2
uf

2(∆zu,∆vu)

+
∑
w∈Pr

∑
u∈Ps

(c′wd
′
u)2

4
f2(∆xw + ∆zu,∆yw + ∆vu)

+
∑
w∈Pr

∑
u∈Ps

(c′wd
′
u)2

4
f2(∆xw −∆zu,∆yw −∆vu)

]
,

(99)

where A[ξ] = 0 accounts for all cross-terms, i.e., the
terms when ∆Y 6= ∆′Y . Note that in the special case

of Lr = 1, Pr = ∅ and following the convention (72),
A[J2

a ] =
∑
u∈Ps

d2
u A[f2(∆zu,∆vu)], while for the special

case Ls = 1, A[J2
a ] =

∑
w∈Pr

c2w A[f2(∆xw,∆yw)].
The squared f -functions in (99) are of the form

f2(∆X ,∆Y ), where ∆X ∈ DX and ∆Y ∈ DY . We note
that not all combinations of ∆X ∈ DX and ∆Y ∈ DY are
present in (99), but will not make this dependency notationally
explicit. Now, with this abuse of notation, given (99) and
the assumption that cw, c′w, du, d′u > 0, are positive reals,
A[J2

a ] = 0 holds, if and only if

A[f2(∆X ,∆Y )] = 0, ∆X ∈ DX ,∆Y ∈ DY . (100)

Recalling (74), f2(∆X ,∆Y ) is equal to
K2 cos2(∆Y ), ∆X ∈ X
sin2(K∆X)

sin2(∆X)
cos2

(
∆Y − (K − 1)∆X

)
, ∆X /∈ X .

We also recall that A[f2(∆X ,∆Y )] is an integral over the
domain y ∈ [0, 2π)Lr ,v ∈ [0, 2π)Ls , i.e., with respect to
variables in ∆Y . Hence, A[f2(∆X ,∆Y )] is proportional to
the integral A[cos2(∆Y + C)] for a constant C. Now, since
2 cos2(a) = 1 + cos(2a) and A[1] = (2π)Ls+Lr ,

A[cos2(∆Y + C)] =
1

2
(2π)Ls+Lr +

1

2
A[cos(2∆Y + 2C)].

The latter integral is zero, since ∆Y ∈ DY contains at least
two independent integration variables (e.g., ∆Y = ∆vu =
∆vm,j = vm−vj), and therefore A[cos(2∆Y +2C)] = 0. We
have now shown that

A[f2(∆X ,∆Y )] =


1

2
(2π)Ls+LrK2, ∆X ∈ X

1

2
(2π)Ls+Lr

sin2(K∆X)

sin2(∆X)
, ∆X /∈ X

which is zero, if and only if ∆X ∈ X ∗, and thus (100) ⇐⇒
DX ⊂ X ∗.

Putting our argument in order, (97) ⇒ A[J2
a ] = 0, and

under the assumption that cw, c′w, du, d′u > 0, A[J2
a ] = 0

⇐⇒ (100) ⇐⇒ DX ⊂ X ∗. Therefore, we conclude that
(97)⇒ DX ⊂ X ∗, and the lemma follows.

Lemma 6. Let x ∈ RLr , z ∈ RLs , DX be as defined in (96)
and X ∗ as defined in (75). Then,

∃(x, z) : DX ⊂ X ∗ ⇐⇒ LrLs ≤ K. (101)

One selection of elements that satisfies DX ⊂ X ∗ is

xl = l
π

K
, l = 0, 1, · · ·Lr − 1, (102a)

zm = mLr
π

K
, m = 0, 1, · · ·Ls − 1. (102b)

Proof. Before tackling the proof, we start by presenting some
definitions and notation. We recall that X ∗ = {qπ/K : q ∈
Z} \ {nπ, n ∈ Z}. Then, let us define the set

X ∗∗ , {aπ/K : a ∈ Z, 1 ≤ a ≤ K − 1}, (103)

which satisfies X ∗∗ ⊂ X ∗ and

a ∈ X ∗ ⇐⇒ mod(a, π) ∈ X ∗∗, (104)
(a− b) ∈ X ∗ =⇒ mod(a, π) 6= mod(b, π). (105)
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where mod(a, b) is the remainder of dividing a by b. The sum
or subtraction of two sets is defined as

B ± C = {b± c : b ∈ B, c ∈ C}. (106)

Then, we define for x and z the sets

E∆x , {∆xl,i : (l, i) ∈ Pr}, If Pr = ∅, E∆x = ∅. (107)

E∆z , {∆zm,j : (m, j) ∈ Ps}, If Ps = ∅, E∆z = ∅. (108)

From (96) we see that, when Lr > 1, Ls > 1 (Pr 6= ∅, Ps 6= ∅)
DX = E∆x ∪ E∆z ∪ (E∆x + E∆z) ∪ (E∆x − E∆z), (109)

while DX = E∆z , when Lr = 1, and DX = E∆x when Ls = 1.
Last, we introduce the set notation

{N}n1
n0

, {N ∈ Z : n0 ≤ N ≤ n1}. (110)

Now, we are set to tackle the proof. We start by showing that
LrLs ≤ K =⇒ ∃(x, z) : DX ⊂ X ∗. Let LrLs ≤ K, and
let x and z be selected following (102). Then, for (l, i) ∈ Pr
and (m, j) ∈ Ps, we have ∆xl,i = xi − xl = (i − l)π/K,
0 ≤ l < i ≤ Lr− 1, and ∆zm,j = zj − zm = (j−m)Lrπ/K,
0 ≤ m < j ≤ Ls − 1. This implies

E∆x = {aπ/K : 1 ≤ a ≤ Lr − 1}, (111)
E∆z = {bLrπ/K : 1 ≤ b ≤ Ls − 1}, (112)

E∆z + E∆x =
{

(bLr + a)
π

K
: {a}Lr−1

1 , {b}Ls−1
1

}
, (113)

E∆z − E∆x =
{

(bLr − a)
π

K
: {a}Lr−1

1 , {b}Ls−1
1

}
. (114)

Since, (Lr − 1) ≤ K − 1, from (111) and (103) we deduce
that E∆x ⊂ X ∗∗. Similarly, we have that in (112)–(114)

Lr ≤ bLr ≤ (Ls − 1)Lr ≤ K − 1, (115)
Lr + 1 ≤ bLr + a ≤ LrLs − 1 ≤ K − 1, (116)

1 ≤ bLr − a ≤ (Ls − 1)Lr − 1 ≤ K − 1. (117)

It consequently follows by (103) that, also, E∆z , E∆z + E∆x,
and E∆z − E∆x are subsets of X ∗∗ ⊂ X ∗. Note that E∆z −
E∆x ⊂ X ∗ implies that −(E∆z − E∆x) ⊂ X ∗ (if x ∈ X ∗,
−x ∈ X ∗). Recalling (109) we can conclude that DX ⊂ X ∗.
Note that this holds in the special case of Lr = 1 (E∆x = ∅),
because DX = E∆z ⊂ X ∗, it also holds when Ls = 1 (E∆z =
∅), for DX = E∆x ⊂ X ∗.

We have shown that when LrLs ≤ K, (102) is a solution
satisfying DX ⊂ X ∗, when Lr + Ls > 2, and thus the
statement ”LrLs ≤ K =⇒ ∃(x, z) : DX ∈ X ∗” holds.

Now we move to the second part of the claim of the lemma,
∃(x, z) : DX ∈ X ∗ =⇒ LrLs ≤ K. We shall show that
through a proof of contradiction. Assume that LrLs > K. By
construction of the set X ∗∗ (103) we have that

|X ∗∗| = K − 1 < LrLs − 1, K < LrLs. (118)

To form a contradiction, we proceed to find a lower bound
on the cardinality of the set X ∗∗ assuming that there exists a
solution (x, z) that satisfies DX ⊂ X ∗. From (109) we see
that this last condition implies that E∆x, E∆z , and E∆x±E∆z
are subsets of X ∗. Without loss of generality5 let x0 = 0, and

5If x0 6= 0, we define x′0, x
′
1, · · · , x′Lr−1 such that x′0 = 0 and x′l =

xl−x0. If z0 6= 0, we analogously define z′0, z
′
1, · · · , z′Ls−1. Since, ∆xl,i =

∆x′l,i, and ∆zm,j = ∆z′m,j then ({x′l}, {z′m}) are also solutions, i.e.,
E∆x′ ∪ E∆z′ ∪ (E∆x′ ± E∆z′ ) ⊂ X ∗.

z0 = 0. Then, we have E∆x ⊂ X ∗ is equivalent to

∆x0,i = (xi − x0) = xi ∈ X ∗, 1 ≤ i ≤ Lr − 1 (119)
∆xl,i = (xi − xl) ∈ X ∗, 1 ≤ l < i ≤ Lr − 1 (120)

Then, from (104) and (119) we get that

Ẽx =
{

mod(xi, π) : {i}Lr−1
1

}
⊂ X ∗∗.

Moreover, since (105) and (120), implies that mod(xi, π) 6=
mod(xl, π), i 6= l, then |Ẽx| = Lr − 1.

Similarly, employing E∆z ⊂ X ∗ we deduce that

Ẽz =
{

mod(zj , π) : {j}Ls−1
1

}
⊂ X ∗∗, |Ẽz| = Ls − 1.

By the previous analysis, if only E∆x ⊂ X ∗ and E∆z ⊂ X ∗
need to be satisfied then |X ∗∗| ≥ max{Ls − 1, Lr − 1}.
However, let us consider (E∆x ± E∆z) ⊂ X ∗, which can be
expressed as

(∆xl,i ±∆zm,j) ∈ X ∗,

{
0 ≤ l < i ≤ Lr − 1

0 ≤ m < j ≤ Ls − 1
(121)

In particular, using ∆x0,i −∆z0,j = (xi − zj) ∈ X ∗, which
by (105) implies that

mod(xi, π) 6= mod(zj , π), {i}Lr−1
1 , {j}Ls−1

1 , (122)

we get Ẽx ∩ Ẽz = ∅ and |X ∗∗| ≥ (Ls − 1 + Lr − 1). This
lower bound can be further improved considering a set that
contains the elements mod(xi + zj , π). From (121), we get
that for {i}Lr−1

1 , {j}Ls−1
1

∆x0,i + ∆z0,j = (xi + zj) ∈ X ∗. (123)

Moreover, for {i}Lr−1
1 , 1 ≤ m < j ≤ Ls − 1,

∆x0,i + ∆zm,j = (xi + zj − zm) ∈ X ∗ (105)
=⇒

mod(xi + zj , π) 6= mod(zm, π), (124)

∆x0,i −∆zm,j = (xi − zj + zm) ∈ X ∗ (105)
=⇒

mod(xi + zm, π) 6= mod(zj , π). (125)

Combining these last two, and since by (119) it holds that
mod(xi + zj , π) 6= mod(zj , π), {i}Lr−1

1 , {j}Ls−1
1 , we deduce

that ∀i, j, n ≥ 1

mod(xi + zj , π) 6= mod(zn, π). (126)

We can use similar elaboration based on the conditions
(∆xl,i ± ∆z0,j) ∈ X ∗, 1 ≤ l < i ≤ Lr − 1, and {j}Ls−1

1

to deduce that ∀i, j, k ≥ 1

mod(xi + zj , π) 6= mod(xk, π). (127)

Finally, elaborating the conditions (∆xl,i ± ∆zm,j) ∈ X ∗,
where 1 ≤ l < i ≤ Lr − 1, 1 ≤ m < j ≤ Ls − 1, and
employing the fact that mod(xi + zj , π) 6= mod(xi + zn, π),
j 6= n, and mod(xi + zj , π) 6= mod(xk + zj , π), i 6= k, we
can readily reach that ∀i, j, k, n ≥ 1, (i, j) 6= (k, n)

mod(xi + zj , π) 6= mod(xk + zn, π). (128)

Now, let us gather our findings. Using (104) and (123) we
deduce that

Ẽ(x+z) =
{

mod(xi + zj , π) : {i}Lr−1
1 , {j}Ls−1

1

}
⊂ X ∗∗,
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while (126) and (127) implies that Ẽ(x+z) ∩ (Ẽx ∪ Ẽz) = ∅,
and, finally, by (128) we get that |Ẽ(x+z)| = (Ls−1)(Lr−1).

Then, under the assumption that there exists a solution
(x, z) satisfying DX ⊂ X ∗, we have shown that Ẽx, Ẽz and
Ẽ(x+z) are disjoint subsets of X ∗∗, and thus

|X ∗∗| ≥ Lr − 1 + Ls − 1 + (Lr − 1)(Ls − 1) = LrLs − 1.

This contradicts the claim in (118). Note that in the special
case of Lr = 1, DX = E∆z ⊂ X ∗, which implies Ẽz ⊂ X ∗∗,
|Ẽz| = Ls − 1, and thus |X ∗∗| ≥ Ls − 1. In similar manner,
we can deduce that |X ∗∗| ≥ Lr − 1 when Ls = 1. Both
form a contradiction to (118). Therefore, we readily conclude
that for Lr + Ls > 2 the statement ”∃(x, z) : DX ∈ X ∗
=⇒ LrLs ≤ K” holds, and by this we come to end the proof
of the lemma.

Now we show the claims of the theorem.

Proof. Given the objective function Sa (89), for x ∈ RLr ,
z ∈ RLs , y ∈ [0, 2π)Lr , and v ∈ [0, 2π)Ls , we express

S?a (φ) = sup
x,z

inf
y,v

Sa(φ,x, z,y,v)

= KG(φ) + sup
x,z

inf
y,v

Ja(φ,x, z,y,v). (129)

(i) From Lemma 4 (92) we get that

sup
x,z

inf
y,v

Ja(φ,x, z,y,v) ≤ 0, (130)

thus S?a (φ) ≤ KG(φ), and (28) follows
(
φ = (φr, φs)

)
.

(ii) If LrLs ≤ K, Lemma 6 (101) indicates that ∃(x̃, z̃) :
DX ⊂ X ∗, which by Lemma 5 (i) implies that

Ja(φ, x̃, z̃,y,v) = 0, ∀y,v. (131)

Hence, the upper bound in (130) is achievable, that is

sup
x,z

inf
y,v

Ja(φ,x, z,y,v) = 0. (132)

This, together with (129), implies that S?a (φ) = KG(φ),
hence (29) holds.

(iii) Since (132) is guaranteed when (x̃, z̃) satisfies DX ⊂ X ∗
then this last is a sufficient optimality condition when
LrLs ≤ K. Recalling that xl = αr

lT/2, zm = αs
mT/2,

and the definition of DX (96), we can straightforwardly
see that DX ⊂ X ∗ is the same as (30), when Lr >
1, Ls > 1, while in the special cases of Lr = 1 or Ls = 1,
it is expressed as (30b) or (30a), respectively.

(iv) Assume that (132) holds
(
i.e., S?a (φ) = KG(φ)

)
with

solution (x̄, z̄). Then, for y ∈ [0, 2π)Lr ,v ∈ [0, 2π)Ls

Ja(φ, x̄, z̄,y,v) ≥ inf
y,v

Ja(φ, x̄, z̄,y,v) = 0. (133)

Also, by Lemma 4 (91) we get that

A[Ja(φ, x̄, z̄,y,v)] = 0. (134)

From (133) and (134), we see that over the intervals
y ∈ [0, 2π)Lr and v ∈ [0, 2π)Ls , the continuous function
Ja(φ, x̄, z̄,y,v) is a non-negative function that integrates
to zero, and thus it must satisfy (97). It therefore, follows
that (132) =⇒ (97).

Now, given that |gr
l (φ

r)|, |gs
m(φs)| > 0, ∀l,m, then

from (26) we see that cw, c′w, du, d
′
u > 0 for w =

(l, i) ∈ Pr, u = (m, j) ∈ Ps. Under these assumptions,
Lemma 5 (ii) tells us that (97) implies that (x̄, z̄) satisfies
DX ⊂ X ∗, which is again the same as (30). The condition
LrLs ≤ K, follows as an implication by Lemma 6.

(v) (Corollary 1) By Lemma 6, we know that (102), which
is the same as (32), satisfies DX ⊂ X ∗ and thus it is
optimal. Interchanging between Lr and Ls in (102), and
interpreting (x′l = αs

lT/2, z′m = αr
mT/2) instead of

(xl = αr
lT/2, zm = αs

mT/2) we get that (33) is also
an optimal selection of phase slopes.

We have shown that all claims of Theorem 1 hold, including
Remark 2 which follows from (131) and (89). Also, we have
shown that the claim of Corollary 1 holds, and thus the proof
is completed.

APPENDIX B
PROOF OF THEOREM 2

Proof. We start by defining, xl , Lsα
r
lT/2, yl , ψr

l , where
0 ≤ l ≤ Lr − 1, em , |gs

m(φs)|2, 0 ≤ m ≤ Ls − 1, and
φ , (φr, φs). Then, from (39) we write Jb as

Jb(φ,x,y)

=

Ls−1∑
m=0

em
∑
w∈Pr

c′w

Kr−1∑
k=0

cos
(
∆yw − 2∆xw(m+ kLs)/Ls

)
=
∑
w∈Pr

c′w

Ls−1∑
m=0

emfKr(∆xw,∆yw − 2∆xwm/Ls), (135)

where fKr
is defined according to (73) over a sum of Kr =

K/Ls ∈ Z terms (instead of K), Pr is defined in (69), c′w is
defined in (26), x = [x0, x1, · · · , xLr−1]T ∈ RLr , and y =
[y0, y1, · · · , yLr−1]T ∈ [0, 2π)Lr . All properties and lemmas
stated for f in Appendix A-B are valid for fKr . In particular
we can define a set X ∗Kr

according to (75),

X ∗Kr
= {qπ/Kr : q ∈ Z} \ X , (136)

where X = {qπ : q ∈ Z}.
We observe that similarly to Ja (Theorem 1), Jb is also a

linear combination of fKr -functions with non-negative coeffi-
cients. The arguments stated earlier to show Theorem 1 can be
used here to show the result of Theorem 2. Therefore, to save
on space and avoid repetition we just outline the proof steps.
To show the claims of Theorem 2 we can take the following
steps.

(i) Using a similar argument to what was used in Lemma 4
we can easily show that

Ay[Jb(φ,x,y)] = 0, (137)
inf

y∈[0,2π)Lr
Jb(φ,x,y) ≤ 0. (138)

where Ay[h(·)] =
∫

[0,2π)Lr
h(·)dy.

(ii) By using similar steps as followed in Lemma 5, we can
augment our finding by showing that
a) Given D′X = {∆xw : w ∈ Pr},

D′X ⊂ X ∗Kr
=⇒ Jb(φ,x,y) = 0, y ∈ [0, 2π)Lr . (139)
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b) Assuming that c′w, em > 0, ∀w,m and em 6= C, ∀m,

D′X ⊂ X ∗Kr
⇐= Jb(φ,x,y) = 0, y ∈ [0, 2π)Lr . (140)

(iii) Last, by repeating some of the arguments used to show
Lemma 6 we can show that

∃x : D′X ⊂ X ∗Kr
⇐⇒ Lr ≤ Kr, (141)

and a solution that satisfies D′X ⊂ X ∗Kr
is given by

xl = lπ/Kr, l = 0, 1, · · · , Lr − 1, Lr ≤ Kr. (142)

(An alternative approach is to directly use Lemma 6 for
the special case of L̂s = 1, which implies DX = D′X , to
prove (141) and (142).)

Then, from (39) and (42) we have that

S?b(φ) = KG(φ) + sup
x∈RLr

inf
y∈[0,2π)Lr

Jb(φ,x,y). (143)

The claims of Theorem (2) are shown as follows.
(i) Using (138) we deduce that S?b(φ) ≤ KG(φ).

(ii) Employing (139) and (141) we can deduce that S?b(φ) =
KG(φ) when Lr ≤ Kr, and D′X = {∆xw : w ∈ Pr} ⊂
X ∗Kr

is a sufficient optimality condition.
(iii) Given that S?b(φ) = KG(φ) with a solution x̄. Then,

Jb(φ, x̄,y) ≥ infy Jb(φ, x̄,y) = 0. Adding this
to (137), and by continuity of Jb, we deduce that
Jb(φ, x̄,y) = 0, y ∈ [0, 2π)Lr , i.e., the right-hand side
of (140) holds. Now, assuming that |gr

l (φ
r)|, |gs

m(φs)| >
0, ∀l,m, and |gs

m(φs)| 6= C, ∀m, it follows that c′w, em >
0, ∀w,m and em 6= C, ∀m. Then, by (140) we deduce
that if S?b(φ) = KG(φ) then D′X ⊂ X ∗Kr

. The condition
Lr ≤ Kr follows as a consequence of (141).

(iv) Last, since the solution in (142) satisfies D′X ⊂ X ∗Kr
, then

it is optimal, and by that the proof outline of the theorem
is completed.

APPENDIX C
PROOF OF LEMMA 1

Proof. We start by defining Ls-vectors, z ∈ RLs and v ∈
[0, 2π)Ls , with elements zm , αs

mT/2 and vl , ψs
m, where

0 ≤ m ≤ Ls − 1. Moreover, we define for every port
p = 0, 1, · · · , P − 1, the vectors x(p) ∈ RLr,p and y(p) ∈
[0, 2π)Lr,p , with elements x(p)

l , αr
l,pT/2 and y

(p)
l , ψr

l,p,
where 0 ≤ l ≤ Lr,p − 1. Recalling that

∑
p Lr,p = Lr,

we define Lr-vector x = [x(0),x(1), · · · ,x(P−1)]T ∈ RLr

and, similarly, we define y = [y(0),y(1), · · · ,y(P−1)]T ∈
[0, 2π)Lr . Then, we can express Sd and Sa,p defined in (59)
and (60), respectively, as

Sd(φ,x, z,y,v) =

P−1∑
p=0

Sa,p(φ,x
(p), z,y(p),v)

= K

P−1∑
p=0

Gp(φ) +

P−1∑
p=0

Ja,p(φ,x
(p), z,y(p),v), (144)

where φ = (φr, φs), and Gp, Ja,p are expressed based on
G (23) and Ja (25), with Lr substituted by Lr,p and gr

l by

gr
l,p. In particular, Ja,p can be expressed based on Ja (90),

where Pr is defined with respect to Lr,p instead of Lr (x(p)

and y(p) have Lr,p elements), and cw, c′w, du, d
′
u are attributed

an additional sub-index p. Note that Ja and Ja,p represent
the same function, and the difference between the two is in
notation. Using Lemma 4 (91), and recalling (67) we get that∫

I
Ja,p(φ,x

(p), z,y(p),v)dy(p)dv = 0, ∀p (145)

where I = [0, 2π)Lr,p+Ls . Then, by the linearity of integral
we can easily deduce that∫

J

P−1∑
p=0

Ja,p(φ,x
(p), z,y(p),v)dydv = 0, (146)

where J = [0, 2π)Lr+Ls ,
∑
p Lr,p = Lr. Finally, by mono-

tonicity of Riemann integral and (146) we can conclude that
for x ∈ RLr , z ∈ RLs

inf
y∈[0,2π)Lr ,v∈[0,2π)Ls

[ P−1∑
p=0

Ja,p(φ,x
(p), z,y(p),v)

]
≤ 0,

which, together with (144), allows us to deduce that (63) holds,
and this ends the proof of the lemma.
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