
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, KATRINIOK et al. 1

Fully Distributed Model Predictive Control of
Connected Automated Vehicles in Intersections:

Theory and Vehicle Experiments
Alexander Katriniok, Senior Member, IEEE, Benedikt Rosarius and Petri Mähönen, Senior Member, IEEE

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—We propose a fully distributed control system ar-
chitecture, amenable to in-vehicle implementation, that aims
to safely coordinate connected and automated vehicles (CAVs)
at road intersections. For control purposes, we build upon a
fully distributed model predictive control approach, in which the
agents solve a nonconvex optimal control problem (OCP) locally
and synchronously, and exchange their optimized trajectories via
vehicle-to-vehicle (V2V) communication. To accommodate a fast
solution of the nonconvex OCPs, we apply the penalty convex-
concave procedure which solves a convexified version of the
original OCP. For experimental evaluation, we complement the
predictive controller with a localization layer, being in charge
of self-localization, and an estimator, which determines joint
collision points with other agents. Experimental tests reveal the
efficacy of the proposed control system architecture.

Index Terms—Distributed control, predictive control, dis-
tributed optimization, automotive control, autonomous vehicles.

I. INTRODUCTION

THE automation of road vehicles utilizing vehicle-to-
everything (V2X) communication is an emerging field

and will support many advancements in intelligent transporta-
tion systems [1]. Connected and automated vehicles (CAVs)
are equipped with a communication device for mutual data
exchange with other vehicles, the infrastructure or even vulner-
able road users. This ability to communicate may complement
conventional on-board sensors like radars, cameras or LiDARs
such as to extend their sensing capabilities in terms of range
and the detection of occluded objects. With a sufficient pene-
tration in the market, CAVs can even operate more proactively
by negotiating control actions instead of reacting on instanta-
neous measurements or predicted (but still uncertain) motion
trajectories of surrounding vehicles. Potential use cases may
involve, amongst others, collaborative lane change maneuvers
or the automation of road intersections [2]. In this article, we
particularly aim to address the latter problem, that is, to safely
coordinate CAVs at road intersections with no traffic signs or
lights.

A. Related Work
For the problem at hand, there is a rich body of literature.

Very recent and comprehensive surveys in that space can

A. Katriniok is with the Ford Research & Innovation Center, 52072 Aachen,
Germany, de.alexander.katriniok@ieee.org.

B. Rosarius was with the Ford Research & Innovation Center, 52072
Aachen, Germany, benedikt.rosarius@rwth-aachen.de.

P. Mähönen is with the Institute for Networked Systems (INETS), Depart-
ment of Electrical Engineering, RWTH Aachen University, 52072 Aachen,
Germany, pma@inets.rwth-aachen.de.

be found in [2], [3]. From an architectural viewpoint, the
respective control schemes can be categorized into centralized,
distributed, decentralized and hybrid approaches. Centralized
control regimes [4], [5], [6], [7] require the vehicles (also re-
ferred to as agents) to communicate with a central node, which
then grants exclusive access to the intersection or optimizes
the agents’ trajectories through the intersection. In distributed
schemes [8], [9], [10], [11], the agents communicate with
each other and solve their part of the control problem locally
without the involvement of any central node. Decentralized ap-
proaches [12], [13], [14], [15] differ from distributed concepts
in a sense that they do not even involve any communication.
Finally, hybrid approaches [16], [17], [18] are a combination of
the aforementioned architectures, that is, these combine, e.g.,
a centralized regime, assigning a passing order to the agents,
with distributed or decentralized controllers being in charge
of determining appropriate control actions. Contemplating the
applied methodology, the intersection coordination problem
has amongst others been addressed through hybrid system the-
ory [18], [19], responsibility-sensitive safety (RSS) rules [20],
resource reservation protocols [21], [22], scheduling-based
approaches [23], [24], game theory [14], [25], virtual platoons
[12], [26], reinforcement learning [13], [27] or optimization-
based control [5], [10], [16], [28], [29].

Narrowing our focus to optimization-based control, [5] in-
troduces a centralized model predictive control (MPC) scheme
which minimizes the total quantified risk of collision between
agents. Another centralized MPC scheme is proposed in [6],
where the optimal solution is obtained by solving optimal
control subproblems for all combinations of agent crossing
sequences. The subproblems are convex and are formulated
in the spacial instead of the time domain. A hybrid approach
with a centralized coordination layer, which prescribes the in-
tersection crossing order, and a distributed MPC-based motion
planner is outlined in [16]. A similar idea is pursued in [30]
where a central node is in charge of time slot allocation, while
agents are controlled in a decentralized fashion. The authors
in [9] propose a distributed MPC scheme in which the agents
decide sequentially (for a given and fixed decision order)
whether to pass the intersection before or after the agents
with higher decision order by solving two convex quadratic
programming (QP) problems. Another sequential approach
within a distributed MPC framework is presented in [31]. The
agents solve their optimal control problem (OCP) sequentially
for an a priori fixed intersection crossing order. [29] suggests
to decompose the control problem into a distributed decision

ar
X

iv
:2

10
4.

07
38

3v
2

 [
m

at
h.

O
C

]
 2

4
M

ar
 2

02
2

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, KATRINIOK et al. 2

maker, which determines intersection entry and exit times, and
a distributed motion planner, which optimizes every agent’s
speed profile such as to meet the respective entry and exit
times. Moreover, [32] presents a decentralized consensus-
based control strategy which determines the intersection cross-
ing order as part of a high-level consensus algorithm and
solves a distributed OCP on a lower level to determine vehicle
controls. Instead of using time slots, collision avoidance is
ensured by imposing a lower bound on agent distances. The
hierarchical distributed control scheme in [11] optimizes its
optimal trajectory and lane to pass on a higher control level
while the optimal vehicle acceleration is determined on a lower
control level. A semi-distributed control regime is proposed
in [17]. It utilizes a central coordinator to solve a nonlinear
high-level time slot allocation problem for a fixed intersection
crossing order, while control actions are determined locally
by the agents as part of a nested low-level OCP. Essentially,
every agent solves a QP and two linear programming (LP)
problems, and transmits their solution to the coordinator which
solves a nonlinear programming (NLP) problem. This work
is extended towards rear-end collision avoidance in [33]. In
[28], the authors present in-vehicle experiments for the use
case of straight crossing agents. For localization, a centimeter-
precision real-time kinematic (RTK) system is utilized.

As part of our own research, we have outlined a fully
distributed MPC scheme in [10] where every agent solves
a nonconvex quadratically constrained QP (QCQP) through
semidefinite relaxation (SDR) with randomization. To decom-
pose the OCP, we introduce a priori fixed agent priorities
which release the higher priority agent from imposing collision
avoidance constraints. In [34], we investigate a reformulation
of [10] which is solved by exploiting a first order optimization
method. Our work in [35] extends [10], [32] towards a hier-
archical distributed control architecture which accommodates
time-varying agent priorities. For human driven vehicles, we
have proposed a stochastic distributed control regime which
issues speed recommendations to the driver [36].

B. Main Contribution and Outline
In this article, we propose a fully distributed control system

architecture, which is amenable to in-vehicle implementation
and able to safely coordinate CAVs at road intersections with
no traffic signs or lights. For control purposes, we utilize
a fully distributed MPC scheme, in which the agents solve
their respective OCPs synchronously and fast to meet real-
time requirements. We consider MPC to be an appealing
methodology to approach the control problem at hand as it
allows us to explicitly accommodate constraints and to exploit
anticipated trajectories of other agents. Compared to a central
node, the distributed scheme is more resilient against a single
point of failure and scales much better with the number of
agents. For information exchange among the agents, we rely
on vehicle-to-vehicle (V2V) communication, more particularly
on Dedicated Short Range Communication (DSRC).

We have built upon our previous work [10] which provided
an initial proof of concept under simplifying assumptions in a
simulation environment. That said, the real-time implementa-
tion in a test vehicle goes far beyond running our algorithm in

[10] on an embedded hardware. Conversely, we had to change
and improve our control concept and come up with additional
algorithms which are essential for in-vehicle implementation:
• In [10], we solve the OCP via SDR with randomization,

which is computationally prohibitive on an embedded
hardware. To this end, we propose a tailored version of
the penalty convex-concave-procedure (CCP) [37] which
is computationally efficient for embedded implementation
and allows the utilization of mature QP solvers.

• We introduce a self-localization algorithm which accu-
rately and smoothly estimates agent positions by inte-
grating inertial measurements with GNSS measurements.
That way, we accommodate the (simplifying) assumption
in [10] that the entire state vector is measurable.

• Another (simplifying) assumption in [10] is the a priori
knowledge of joint collision points. For the experimental
setup, we design an estimator within the localization layer
to determine these collision points online.

• The real-time control system is finally implemented on
a dSPACE MicroAutoBox II, integrated in our test vehi-
cles and evaluated in experimental tests on the proving
ground. Along these lines, we ensure the synchronous
execution of local MPC controllers and propose a pro-
prietary V2V communication protocol for information
exchange between these controllers.

• We investigate the feasibility of using a low-cost
Global Navigation Satellite System (GNSS) instead of
a centimeter-precision RTK as in [19], [28].

In literature, several experiments have already addressed the
problem of autonomous intersection crossing, e.g., as part of
the DARPA Urban Challenge (DUC) 2017 [38]. The AVs in
the DUC, though, had to solve the problem without inter-
vehicle communication but through anticipation of the other
road users’ behavior. Experiments that involve V2V communi-
cation have been reported in [19] (using hybrid system theory)
and in [26] where the authors pursue a virtual platooning
approach at the Grand Cooperative Driving Challenge (GCDC)
2016. To the authors’ best knowledge, only few experiments on
(semi-)distributed MPC schemes for intersection automation,
which rely on V2V communication, have been carried out, see
e.g. [28]. In that regard, our contribution can be stated as:
• We propose and experimentally evaluate a fully dis-

tributed MPC scheme, which is independent of a central
node as opposed to semi-distributed concepts [28].

That way, we contribute with a novel and relevant perspective
to the sparse literature on experiments in that area of research.
To keep complexity at a manageable level, similar to [28],
we focus on scenarios in which agents cross the intersection
straight. We then only manipulate the longitudinal acceleration
while steering control can be taken care of by the driver. That
said, the control system can be viewed as an adaptive cruise
control (ACC) system which accommodates crossing vehicles.

The remainder of the article is organized as follows.
Section II defines the intersection coordination problem along
with a control-oriented kinematic agent model. Starting with
a centralized problem formulation in Section III, we continue
with a distributed version and its fast numerical solution in

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, KATRINIOK et al. 3

Section IV. Thereafter, Section V outlines the control system
architecture which is utilized in our experiments and involves
localization, communication and optimal control. Experimen-
tal results are finally discussed in Section VI.

II. INTERSECTION AUTOMATION PROBLEM

A. Notation
With xk+j|k, we refer to the prediction of variable x at the

future time step k + j given information up to time k. For
x ∈ Rn and i ∈ {1, . . . , n}, [x]i is the i-th entry of x, and the
interval [a, b] ⊂ N with a < b is denoted as N[a,b]. Moreover,
N+ is the set of positive integers and A> denotes the transpose
of a matrix A ∈ Rm×n.

B. Problem Description
Control Problem 1. We aim to automate agents in a four
way, single lane unsignalized intersection by manipulating
their acceleration. With fully automated longitudinal control,
the agents shall cross the intersection straight without any
collisions while tracking a desired speed as close as possible.

In the remainder, we rely on the following assumptions.
Assumption 1. A1. Only single intersection scenarios with
one lane and one agent per direction are considered; A2. The
control scheme only influences longitudinal control to avoid
collisions; A3. Lateral vehicle control is accommodated by a
separate, independent control module (or the driver); A4. The
desired route of every agent is determined by a high-level
route planning algorithm; A5. Every agent is equipped with
V2V communication; A6. Communication failures or package
dropouts are neglected; A7. The local MPC solutions at time
step k are available to all agents at time step k + 1; A8. The
local MPCs are executed synchronously. A9. Vehicle states are
measurable or can be estimated appropriately. A10. Avoiding
rear-end collisions with frontal vehicles is not in scope.

Assumptions A1-A3, A5, A6 and A10 are common in the
literature and are used to reduce complexity [9], [17]. The use
of a high-level planning algorithm which is postulated in A4
is quite common in AV architectures too [39]. Lastly, A7 can
be satisfied by choosing the MPC sampling time appropriately
and A8-A9 can be accomplished as shown in Section V.

C. Modeling of Agent Kinematics
For intersection automation, we consider the set
A , {1, . . . , NA} of NA connected and automated agents.
The motion dynamics of every agent i is described in terms
of its geometric center’s acceleration a

[i]
x , velocity v[i] and

path coordinate s[i] along a given path, see Fig. 1. For these
kind of problems, it is a common approach to describe the
time evolution of velocity and position as a double integrator
[9], [17], [32]. By modeling drivetrain dynamics as a first
order lag element, Agent i’s motion can be summarized as a
linear time-invariant state space model, i.e.,

d

dt

a[i]xv[i]
s[i]

 =

−
1

T
[i]
ax

0 0

1 0 0
0 1 0

︸ ︷︷ ︸

A[i]

a[i]xv[i]
s[i]

︸ ︷︷ ︸
x[i]

+

1

T
[i]
ax

0
0

︸ ︷︷ ︸
B[i]

a
[i]
x,ref

︸︷︷︸
u[i]

(1)

s[2]

d
[2]
c,3

s[3]

W [3]

L[3]

current
position

s
[3]
c,2, s[2]c,3

s
[1]
c,3, s[3]c,1s

[1]
cr,in s

[1]
cr,out

s[1]

critical
region

Fig. 1. Example intersection scenario with NA = 3 straight crossing agents.
The collision point with Agent l along the path of Agent i within the critical
region [s

[i]
cr,in, s

[i]
cr,out] is denoted as s[i]c,l while d[i]c,l is the distance to s[i]c,l

where x[i] , [a
[i]
x , v[i], s[i]]> is the state vector, u[i] , a

[i]
x,ref

the reference acceleration as control input and T
[i]
ax the dy-

namic drivetrain time constant. States and inputs are con-
strained by polyhedral sets, that is, x[i] ∈ X [i] ⊆ Rnx and
u[i] ∈ U [i] ⊆ Rnu with nx = 3 and nu = 1. To be used within
numerical optimization algorithms, we discretize (1) by using
zero-order hold discretization. This way, we gain the discrete-
time linear time-invariant state space model

x
[i]
k+1 = A

[i]
d x

[i]
k +B

[i]
d u

[i]
k (2)

with A[i]
d , eA

[i]Ts and B[i]
d ,

∫ Ts

0
eA

[i]τdτB[i] where Ts > 0
is the corresponding sample time.

D. Distance Between Agents

To compute the distance between two agents i, l ∈ A,
in a first step, the collision points s

[i]
c,l and s

[l]
c,i have to

be determined. According to Fig. 1, these collision points
correspond to the intersection of the agents’ paths along their
path coordinates s[i] and s[l]. If their respective paths do not
intersect, we define s[i]c,l = s

[l]
c,i =∞. In a second step, agents

i and l calculate the distances d[i]c,l and d[l]c,i to their respective
collision points s[i]c,l and s[l]c,i respectively, that is,

d
[i]
c,l ,

{
|s[i] − s[i]c,l| , s

[i]
c,l 6=∞

∞ , otherwise.
(3)

Finally, we define the distance between Agent i and Agent l
as the sum of distances to their joint collision point, i.e.,

dist(i, l) , d
[i]
c,l + d

[l]
c,i. (4)

III. CENTRALIZED PROBLEM FORMULATION

In this section, we aim to formalize the problem definition in
Section II-B in terms of a centralized OCP, that is, a problem

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, KATRINIOK et al. 4

that is solved in a receding horizon fashion by a central node.
For reasons outlined in Section I-B, we rely on an MPC-based
framework. When applying MPC, at every time step k we
solve a finite-time OCP over a prediction horizon of N time
steps. After optimization, only the first control input is applied
to the plant and optimization is repeatedly executed over a
shifted horizon at time k+1. With a centralized OCP in place,
we transition to a fully distributed formulation in Section IV.

A. Agent Objectives and Constraints

The centralized OCP is actually an aggregation of every
agent’s local objectives and constraints as well as joint colli-
sion avoidance constraints which couple the agents.

Objectives In terms of local objectives, every agent i is
intended to follow a reference speed v

[i]
ref while at the same

time fertilizing ride comfort and efficiency by minimizing step
changes of the control input (i.e., the longitudinal acceleration
u[i] = a

[i]
x) and its magnitude, respectively. These objectives

can be cast as a convex quadratic cost of the form

J [i](x
[i]
·|k, u

[i]
·|k) , Q

[i]
N (v

[i]
ref,k+N |k − v

[i]
k+N |k)2

+ Q[i]
N−1∑
j=1

(v
[i]
ref,k+j|k − v

[i]
k+j|k)2 (5)

+ R[i]
N−1∑
j=0

(∆u
[i]
k+j|k)2 + S[i]

N−1∑
j=0

(u
[i]
k+j|k)2

where the first term represents the terminal cost, Q[i],
Q

[i]
N , R[i], S[i] > 0 are positive scalar weights and

∆u
[i]
k+j|k , u

[i]
k+j|k − u

[i]
k+j−1|k is the step change of control

inputs with u[i]k−1|k , u
[i]
k−1 for j = 0.

Constraints Besides objectives, we also need to accommo-
date constraints on the agents’ inputs and states. Particularly,
we contemplate actuator limitations in terms of maximum
and minimum feasible accelerations which translates into box
constraints on the inputs, that is,

u[i] ≤ uk+j|k ≤ u[i], ∀j ∈ N[0,N−1]. (6)

Moreover, it is intended to solely drive in the forward direction
and to accommodate a maximum speed v[i] (e.g., the road
speed limit). We phrase these conditions as a state constraint
on the velocity, i.e.,

0 ≤ v[i]k+j|k ≤ v
[i]
k+j|k, ∀j ∈ N[1,N]. (7)

To guarantee collision avoidance, we need to satisfy the
following condition before Agent i enters the critical region
[s

[i]
cr,in, s

[i]
cr,out] of the intersection (see Fig. 1): At the end of the

prediction horizon, Agent i has either i) left the critical region
or ii) has stopped before entering that region [10]. Case i) is
equivalent to a terminal constraint which forces Agent i to
leave the critical region at time step k +N , that is,

s
[i]
k+N |k ≥ s

[i]
cr,out. (8)

That said, we only have to impose (8) if Agent i is about
to enter or is located within the critical region, that is, if
s
[i]
k ∈ [s

[i]
c,in − dbrake, s

[i]
c,out] where dbrake > 0 is a brake safe

distance. In all other cases, i.e., far away from the intersection
and after crossing it, we set s[i]cr,out in (8) to a sufficiently large
negative value, thus satisfying the constraint at all times. If
constraint (8) causes the OCP to be infeasible, the respective
agent is forced to stop before entering the critical region —
thus accommodating case ii) and recovering feasibility. Finally,
constraints (6), (7) and (8) can concisely be written as

P [i]
x x

[i]
·|k + P [i]

u u
[i]
·|k + q[i]xu ≤ 0 (9)

where P [i]
x � 0, P [i]

u � 0, and q[i]xu are matrices and vectors of
appropriate dimension.

B. Collision Avoidance

While all constraints in Section III-A refer to the individual
Agent i, collision avoidance eventually couples the agents
among each other. To mathematically claim collision avoid-
ance, we first define Agent i’s conflict set

A[i]
c ,

{
l ∈ A | l 6= i ∧ s[i]c,l 6=∞

}
,

i.e., the set of agents l 6= i which have a joint collision
point with Agent i. Avoiding collisions between Agent i and
Agent l ∈ A[i]

c is then stated as a lower bound on their distance

d
[i]
c,l,k+j|k + d

[l]
c,i,k+j|k ≥ dsafe, ∀j ∈ N[1,N] (10)

where d
[i]
c,l,k+j|k, d[l]c,i,k+j|k at the predicted time step k + j

depend on the predicted path coordinates s[i]k+j|k, s[l]k+j|k and

the collision points s[i]c,l, s
[l]
c,i in accordance to (3). Moreover,

dsafe > 0 is a suitable safety distance which also captures the
agents’ width and length.

C. Centralized Optimal Control Problem

The centralized intersection coordination problem results
from the sum of agents’ costs (5) subject to their state
and input constraints (9), their dynamics (2) and their joint
collision avoidance constraints (10). In essence, we obtain

min
x·|k, u·|k

NA∑
i=1

J [i](x
[i]
·|k, u

[i]
·|k; x

[i]
k) (11a)

s.t. agent constraints – ∀i ∈ A :

P [i]
x x

[i]
·|k + P [i]

u u
[i]
·|k + q[i]xu ≤ 0 (11b)

x
[i]
k+j+1|k=A

[i]
d x

[i]
k+j|k+Bdu

[i]
k+j|k,∀j∈N[0,N−1] (11c)

x
[i]
k|k = x

[i]
k (11d)

coupling constraints – ∀i ∈ A, ∀l ∈ A[i]
c :

d
[i]
c,l,k+j|k + d

[l]
c,i,k+j|k ≥ dsafe, ∀j ∈ N[1,N] (11e)

In (11), the quadratic cost (11a) is convex as all weights are
positive. The same holds for the agent constraints as these
are linear in the decision variables. Eventually, nonconvexity
arises with the absolute value collision avoidance constraint
(11e) which relates to every agent’s decision to cross the inter-
section before or after the other agent. To ensure feasibility of
(11), given that terminal constraint (8) is satisfied, constraints
(11b) and (11e) are implemented as soft constraints.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, KATRINIOK et al. 5

IV. FULLY DISTRIBUTED MPC SCHEME

A. Decomposition

1) Decoupling Collision Avoidance Constraints: When dis-
tributing problem (11), it would be detrimental to minimize
every agent’s cost subject to its input and state constraints,
and to impose collision avoidance constraints (11e) on Agent i
and Agent l simultaneously when their paths intersect. In that
case, both agents have to take independent decisions at time k
instead of jointly agreeing on how to avoid collisions — this
may eventually lead to collisions.

To accommodate this issue, we define the bijective priori-
tization function γ : A → A which assigns a unique priority
to every agent where a lower value corresponds to a higher
priority [10]. To this end, we specify the prioritized conflict
set

A[i]
c,γ ,

{
l ∈ A[i]

c | γ(l) < γ(i)
}

containing all agents l ∈ A[i]
c which have a joint collision point

with Agent i but a higher priority. For all agents l ∈ A[i]
c,γ , we

then impose constraint (11e) only on Agent i (having lower
priority), thus yielding fully decoupled agent OCPs.

Remark 1. We would like to stress that agent priorities do
not imply an intersection crossing order. Conversely, they just
define which agent has to accommodate collision avoidance
constraints.

2) Reformulation of Collision Avoidance Constraints: To
appropriately pose collision avoidance constraint (11e) for
numerical optimization, we rewrite it in a quadratic form. After
rearranging (11e), we square both sides of the inequality, i.e.,

(s
[i]
k+j|k − s

[i]
c,l)

2 ≥ (dsafe − d[l]c,i,k+j|k)2. (12)

It can be recognized that applying (12) as constraint is only
valid if dsafe − d

[l]
c,i,k+j|k ≥ 0 holds. Conversely, (12) only

needs to be imposed if dsafe − d
[l]
c,i,k+j|k > 0. In all other

cases, the original constraint (11e) is satisfied per se. That
said, we define the time dependent prioritized conflict set

A[i]
c,γ,j ,

{
l ∈ A[i]

c,γ | dsafe − d[l]c,i,k+j|k > 0
}

and impose (12) for every l ∈ A[i]
c,γ,j and j ∈ N[1,N] to en-

sure collision avoidance. Moreover, we specify the parameter
sequence z

[i]
·|k , {(d[l]c,i,k+j|k)j∈N[1,N]

}
l∈A[i]

c
, which Agent i

receives from the other agents via V2V communication, and
rewrite (12) in dependence of Agent i’s state vector x[i]k+j|k as

(x
[i]
k+j|k)>P

[i]
l,j x

[i]
k+j|k + (q

[i]
l,j)
> x

[i]
k+j|k + r

[i]
l,j(z

[i]
·|k) ≤ 0 (13)

with P
[i]
l,j , diag(0, 0,−1), a suitable vector q[i]l,j ∈ Rnx

and parameterized scalar r[i]l,j(z
[i]
·|k) ∈ R. Evidently, P [i]

l,j is a
negative semi-definite matrix which reflects the nonconvexity
of the collision avoidance constraint. We iteratively substitute
system dynamics

x
[i]
k+j|k(u

[i]
·|k) = (A

[i]
d)jx

[i]
k|k +

j−1∑
ι=0

(A
[i]
d)j−1−ιB

[i]
d u

[i]
k+ι|k (14)

into (13), thus yielding

(u
[i]
·|k)>P̄

[i]
l,j u

[i]
·|k + (q̄

[i]
l,j)
>u

[i]
·|k + r̄

[i]
l,j(z

[i]
·|k) ≤ 0 (15)

with suitable matrices, vectors and scalars P̄ [i]
l,j � 0, q̄[i]l,j and

r̄
[i]
l,j , where r̄[i]l,j is parameterized with respect to z[i]·|k.

3) Distributed Optimal Control Problem: Finally, for every
Agent i we substitute (14) into the cost (11a) as well as input
and state constraints (11b), thus obtaining the condensed cost
J̄ [i] in (16a) and the condensed constraint (16b). This way, the
resulting OCP, which is solved in parallel by every agent i, can
be stated as a parameterized nonconvex QCQP, i.e.,

min
u
[i]

·|k

J̄ [i](u
[i]
·|k; x

[i]
k) (16a)

s.t. P̄ [i]
xu u

[i]
·|k + q̄[i]xu ≤ 0 (16b)

(u
[i]
·|k)>P̄

[i]
l,j u

[i]
·|k + (q̄

[i]
l,j)
>u

[i]
·|k + r̄

[i]
l,j ≤ 0, (16c)

∀l ∈ A[i]
c,γ,j , ∀j ∈ N[1,N]

where P̄ [i]
xu � 0 and q̄[i]xu are matrices and vectors of appropriate

dimension. To ensure the feasibility of OCP (16), given that
terminal constraint (8) is satisfied (see Section III-A), state
constraints (16b) and collision avoidance constraints (16c) are
implemented as soft constraints.
Remark 2. Along the lines of agent prioritization, in the
distributed setting terminal constraint (8) has only to be
imposed if there are conflicting agents of higher priority that
have not yet left the critical region at time k.

B. Fast Numerical Solution of the Distributed OCP
Referring to Section I-B, a major challenge is to solve the

nonconvex problem (16) fast on an embedded hardware. To
this end, we rely on the penalty convex-concave procedure
(CCP) [37] which allows us to solve (16) as a sequence of
QPs and as such to leverage efficient of-the-shelve QP solvers.

1) Background on the Convex-Concave Procedure: The
main idea behind CCP is that every nonconvex function
h : Rn → R can be written as the difference of two convex
functions f : Rn → R and g : Rn → R, that is,

h(x) = f(x)− g(x).

Along these lines, a nonconvex minimization problem with
a smooth, nonconvex cost h0(x) and smooth, nonconvex
constraints hi(x) ≤ 0 with i ∈ N[1,M] can be written as

min
x

f0(x)− g0(x) (17a)

s.t. fi(x)− gi(x) ≤ 0, ∀i ∈ N[1,M]. (17b)

Then, starting at an initial point x0, optimization problem (17)
is solved iteratively by successively linearizing the nonconvex
term −gi(x), i ∈ N[0,M] with respect to the current solution
candidate xν at every iteration ν, that is,

h̃i(x) , fi(x)− (∇x gi(xν))>x− gi(xν), i ∈ N[0,M] (18)

until a suitable convergence criterion is satisfied. The penalty
CCP method, applied in the remainder, is a variant of the
standard CCP method and does not require a feasible initial
point. As such a point may not even be known a priori, penalty
CCP is much better suited for our type of application.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, KATRINIOK et al. 6

2) Application of the Penalty CCP Method: To solve the
nonconvex OCP (16) fast, we apply the penalty CCP method
to approach a numerical solution in an iterative fashion,
see Algorithm 1. For reasons of clarity, the superscript [i],
indicating the corresponding agent, is omitted in Algorithm 1
and the subsequent description of the algorithm. At every
time step k, every agent i ∈ A starts with an initial solution
candidate u0 , u0·|k (representing the control actions over
the prediction horizon), an initial penalty weight ρ0c > 0, a
maximum penalty ρc ≥ ρ0c and a penalty update parameter
µ > 1. These parameters are further explained in the remainder
of the section. That said, the following steps are carried out.

Step 1 In problem (16), the cost (16a) as well as
input and state constraints (16b) are convex while only col-
lision avoidance constraints (16c) are nonconvex. By virtue
of Section IV-A2, the nonconvex part of (16c) corresponds to
the term (u·|k)>P̄l,j u·|k with P̄l,j � 0. By means of (18), we
have to linearize this term with respect to the current solution
candidate uν , thus gaining (uν)>P̄l,j u+ (uν)>P̄l,j u

ν .
Step 2 & Step 3 By linearizing the nonconvex part of (16c),

the originally nonconvex constraints are replaced by linear
(and as such convex) constraints (19). This way, the resulting
OCP (20) is convex. In (20), constraints (19) are imposed as
a soft constraints by introducing a vector of slack variables
εc ≥ 0 where each slack variable is penalized in the augmented
cost function (20a). In standard penalty CCP, every nonconvex
constraint comes along with its own slack variable. To reduce
the dimensionality and as such the computational complexity
of OCP (20), we propose to use a single slack variable per
time step k + j. That said, the corresponding slack variable

Algorithm 1 Penalty CCP algorithm to solve every agent’s
OCP (16). For reason of clarity, we drop the superscript [i].

For every agent, we run the following steps at time k:
Input: Initial point u0 , u0·|k, ρ0c > 0, ρc, and µ > 1

Set iteration ν ← 0 and define uν , uν·|k.
repeat

Step 1. Convexify collision avoidance constraints (16c):(
(uν)>P̄l,j + q̄>l,j

)
u+ r̄l,j + (uν)>P̄l,j u

ν ≤ 0 (19)

Step 2. Solve convexified version of problem (16):

(uν , ενx, ε
ν
c)←

argmin
u,εx,εc

J̄(u;xk) + ρxεx + ρνc

N∑
j=1

[εc]j (20a)

s.t. agent state & input constraints:
P̄xuu+ q̄xu ≤ Ξ̄xεx, εx ≥ 0 (20b)

collision avoidance (19): ∀l∈Ac,γ,j , ∀j∈N[1,N](
(uν)>P̄l,j + q̄>l,j

)
u+ r̄l,j + (uν)>P̄l,j u

ν ≤ [εc]j ,

εc ≥ 0 (20c)

Step 3. Update weight: ρν+1
c ← min{µρνc , ρc}

Update iteration count: ν ← ν + 1
until stopping criterion is satisfied

Output: Stationary point u? ← uν

represents the violation of (19) with respect to the most critical
agent (the∞-norm) at that time step. Starting with a low initial
penalty ρ0c > 0, the numerical algorithm is allowed to initially
explore potential local optima, while in subsequent iterations
ν > 0 of the algorithm the penalty ρc is increased up to a
specified maximum ρc ≥ ρ0c (Step 3). That way, subsequent
iterations tie the solution to a certain (local) feasible region. By
virtue of [37], it can be shown that as εc → 0 the solution of
OCP (20) provides a feasible point for the original nonconvex
QCQP (16). It is evident, though, that Algorithm 1 is a local
method to solve problem (16). However, solving for a local
stationary point instead of the global optimal solution is a
common approach, especially in a real-time setting. Besides
εc, we apply the additional slack variable εx ≥ 0 (∞-norm,
weighted by ρx > 0 in the cost) along with a suitable vector
Ξ̄x to implement state constraint (7) on the agent’s velocity as
a soft constraint.

Stopping Criterion The algorithm is iterated until a
stopping criterion is satisfied. Particularly, we rely on the
condition proposed in [37], which holds if either the penalty
ρ has reached its maximum value ρ or the improvement of
the objective function (20a) between iteration ν − 1 and ν is
less than a sufficiently small threshold and the overall violation
ρ ‖ενc‖1 of collision avoidance constraints is sufficiently small.

After Algorithm 1 has converged to a stationary point u?·|k
at time k, only the first control action u?k|k is applied to
the system. At the next time step k + 1, Algorithm 1 is
warm started by leveraging the shifted solution u?·|k from time
step k. A proof showing that Algorithm 1 finally converges to
a (local) stationary point can be found in [37].

Remark 3. The advantage of (penalty) CCP over other meth-
ods, such as SQP, is that more information is retained in
each of its iterates [37]. While SQP methods linearize the
entire constraint (16c) at the current solution candidate, CCP
only linearizes the nonconvex part u>P̄l,ju, thus preserving
q̄>l,ju+ r̄l,j in (16c).

V. IN-VEHICLE CONTROL SYSTEM ARCHITECTURE

After addressing the challenge of distributing and efficiently
solving the control problem at hand, this section outlines the
overall design of the control system architecture, amenable to
in-vehicle implementation. A schematic of this architecture,
run on a dSPACE MicroAutoBox II, is illustrated in Fig. 2.
On the input stage, firstly, we receive GNSS positioning and
UTC timing information from a low-cost u-blox EVK-M8L
GNSS receiver (UBX NAV PVT message) every 200 ms.
Secondly, we leverage CAN bus signals such as the ego vehicle
speed, acceleration and yaw rate, and thirdly, we receive V2V
messages from other equipped remote vehicles (RVs). For
communication purposes, we utilize a Denso DSRC V2X
unit, which is interfaced with the MicroAutoBox through a
UDP Ethernet connection. V2V messages involve standardized
Cooperative Awareness Messages (CAM) [40], received on
average every 100 ms, and proprietary Cooperative Control
Messages (CCM), which have been designed for the experi-
ment at hand (see Section V-B). The CAM messages are stored
in a persistent RV buffer to keep track of agents in the vicinity.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, KATRINIOK et al. 7

Low-Cost GNSS

CAN Bus

V2X Rx RV
Buffer

v[i], ψ̇[i]

CAM
Msg.

Self-Localization
(50 ms)

Collision Point
Estimation

(200 ms)

Distributed Model
Predictive Control

(200 ms)

Local Clock
(sync w/ UTC)

(s
[i]
c,l)l∈A[i]

c

CCM Msg.

v[i], a
[i]
x

UTC Time

Exec. Trigger

UTC Sync Trigger (1000 ms)

(p
[i]
WGS, θ

[i])

(x
[i]
m , y

[i]
m , z

[i]
m , ψ

[i]
m)

Encode
CCM
Msg.

{(d[i] ?l,k+j|k)j∈N[2,N+1]
}
l∈A[i]

c

a
[i] ?
x,ref

Local UTC Time

Actuators
(Acceleration)

V2X Tx

I/O and Services
Localization
Optimal Control

Fig. 2. Control system architecture utilized in every vehicle and run on a dSPACE MicroAutoBox II (illustration for Agent i). First, the input data is processed
within localization algorithms before it is leveraged by the local MPC controller. The execution of the MPC is synchronized with the other agents. Finally,
the optimized acceleration is applied to the actuators and the optimized distances to the collision points are broadcasted to the other agents.

The input data is then processed by localization algorithms
which are in charge of GNSS-based self-localization as well
as determining joint collision points with other agents. The
local MPC controller of Agent i exploits the agent’s speed,
acceleration and distance to the closest collision point to
determine the initial condition x

[i]
k . Moreover, it utilizes the

CCM message, containing the predicted distances z[i]·|k of other
agents to their collision points, to impose collision avoidance
constraints. To ensure that the CCM information is valid and
consistent when processed within the MPC, every agent’s
MPC is executed synchronously every 200 ms. For that pur-
pose, we make use of a local clock which is synchronized with
Universal Time Coordinated (UTC). More precisely, the local
clock obtains the UTC time from a GPS message and performs
a synchronization step by exploiting an accurate digital UTC
trigger signal every UTC second. After optimization, only the
first optimal control input u[i] ?k|k = a

[i] ?
x,ref,k|k is applied to the

acceleration interface. Moreover, the optimized distances to
the joint collision points with other agents are encoded as a
CCM message and then broadcasted by the Denso V2X unit.

To reduce the complexity of localization algorithms, we
only contemplate straight crossing agents as indicated in
Section I-B and illustrated in Fig. 4. In our experiments, the
test driver ensures that the vehicle stays within its designated
lane. Longitudinal control is taken care of by the control
system in Fig. 2, which behaves like an ACC system that
accommodates crossing traffic. While common ACC systems
exhibit a sample time less than 100 ms, the increased MPC
sample time is related to a limited broadcast frequency of
the CCM message along with the requirement to solve the
underlying OCP in real-time.

A. Self-Localization

In our experimental setup, we exploit a low-cost GNSS-
based localization system, which receives position updates

only with a low frequency (i.e., every 200 ms) and asyn-
chronously to the execution of the local MPC controller. To
make sure that the latest position information is available
whenever the MPC is run and to obtain smooth motion
trajectories without discontinuities, we integrate low frequency
GNSS measurements with high frequency inertial measure-
ments from the Controller Area Network (CAN) bus by means
of an extended Kalman filter (EKF) based estimator, which is
run with a sample time of 50 ms. In literature, many mature
algorithms have already been proposed for this purpose, see
[41] for a comprehensive overview. These algorithms, though,
mostly require the ego vehicle’s accelerations and angular rates
in three dimensions. In our test vehicles, however, we only
measure the yaw rate and not the pitch and roll rate. We
therefore decided to follow a simpler approach to solve the
self-localization problem. Operating in open sky conditions,
we are not expecting any GNSS measurement dropouts. That
said, our analysis has shown that a simple constant velocity
model [42] is sufficient for our use case, i.e., to ensure smooth
position trajectories with a high update frequency.

To be more precise, the Self-Localization problem at hand
aims to estimate the ego vehicle’s position (x

[i]
m, y

[i]
m , z

[i]
m),

i.e., the position of its geometric center, and its heading
ψ
[i]
m in a Cartesian reference frame oriented forward-left-

upward which has its fixed origin at the initial maneuver

E N

xm

ym

zm
θ0

ψm(t)(xm(t), ym(t), zm(t))

Fig. 3. Navigation frame (green) and maneuver reference frame (blue). The
origin of the latter refers to the initial pose PWGS,0, set at maneuver initiation.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, KATRINIOK et al. 8

position — referred to as maneuver reference frame. As we
are focusing on the ego vehicle, for notational convenience we
omit the superscript [i], which has been used in the previous
sections to refer to Agent i. Moreover, we subsequently only
highlight the most relevant contents of the navigation filter
as it is not the main focus of this article. That said, from
the vehicle CAN bus we obtain the vehicle speed v and its
yaw rate ψ̇. The GNSS receiver measures the vehicle position
pWGS = [ϕ, λ, h]> in the World Geodetic System 1984 (WGS-
84) in terms of latitude ϕ, longitude λ and altitude h, and the
vehicle heading θ with respect to geographic North, see [41]
for further details. The underlying constant velocity estimator
model approximates the vehicle as a point mass with position
pm , [xm, ym, zm]> and heading ψm relative to an initial
pose PWGS,0 , (ϕ0, λ0, h0, θ0) in the WGS-84 coordinate
frame, see Fig. 3 for an illustration. The prediction of states
x , [xm, ym, zm, ψm]> is performed through numerical
integration of

d

dt

xm
ym
zm
ψm

︸ ︷︷ ︸

x

=

v cos(ψm)
v sin(ψm)

0

ψ̇

︸ ︷︷ ︸

f(x,u)

(21)

with input vector u , [v, ψ̇]>. We utilize the measurement
vector y , [ϕ, λ, h, θ]> and derive the measurement equation
y = hy(x) from [41]. Essentially, we apply the function

Tm2WGS : (xm, ym, zm, ψm; PWGS,0) 7→ (ϕ, λ, h, θ)

which transforms the Cartesian estimates x back to the
WGS-84 frame. At the output stage, Self-Localization provides
the estimated ego vehicle pose Pm , (xm, ym, zm, ψm) in
the maneuver reference frame.

B. Collision Point Estimation

Continuing downstream, Collision Point Estimation aims at
determining the joint collision point (if it exists) of the ego
vehicle (i.e., Agent i) with other potentially conflicting agents
l 6= i. As an input, the algorithm consumes the ego vehicle
pose P

[i]
m and kinematic states of other agents l 6= i which

are stored in the RV buffer (see Fig. 2). RV data contains
the WGS-84 position of an Agent l along with its heading
angle with respect to geographic North, that is, its pose
P

[l]
WGS , (ϕ[l], λ[l], h[l], θ[l]). Through the mapping function

TWGS2m : (ϕ, λ, h, θ; PWGS,0) 7→ (xm, ym, zm, ψm),

we determine Agent l’s pose P [l]
m , (x

[l]
m, y

[l]
m , z

[l]
m , ψ

[l]
m) in the

ego vehicle’s maneuver frame.
Before going further into detail, we would like to recall that

our particular interest is on scenarios in which the agents are
crossing the intersection straight. That said, we first predict
the future position of Agent i and Agent l at time tf > tk
(tf sufficiently large), starting at the current time tk, that is,[

xm(tf)
ym(tf)

]
=

[
xm(tk)
ym(tk)

]
+ (tf − tk)

[
v(tk) cos(ψm(tk))
v(tk) sin(ψm(tk))

]

Google Maps, Imagery ©2021 Aerodata International Surveys,
GeoBasis-DE/BKG, GeoContent, Maxar Technologies

N

E

(x[2]
m (tk), y

[2]
m (tk))

(x[1]
m (tk), y

[1]
m (tk))(x[1]

m (tk), y
[1]
m (tk))

(xm,CP, ym,CP)

xm ym

Agent 2
(Ford Mondeo)

Agent 1
(Ford Edge)

Fig. 4. Paths of Agent 1 (red) and Agent 2 (blue), predicted by Agent 1. The
straight line predictions intersect in the estimated joint collision point (green).

with a constant velocity v and constant heading ψm and as
such with a yaw rate ψ̇ equal to zero due to the agents’ straight
motion. This way, we obtain the line segment

S ,
{

(xm(tk), ym(tk)) , (xm(tf), ym(tf))
}

(22)

for Agent i and Agent l, which we refer to as S [i] and S [l] re-
spectively. Second, we examine whether S [i] and S [l] intersect
in the horizontal plane (without road inclination, we neglect
the zm-dimension), see Fig. 4 for an illustration. If there is no
intersecting point, there is still the possibility that one of the
agents has already passed the collision point. Then, we repeat
the calculation by replacing (xm(tk), ym(tk)) in (22) with a
point from the path history, that is, (xm(tk−th), ym(tk−th))
with sufficiently large th > 0 (first, only for Agent i, then
only for Agent l and finally for both). Assume, there is
an intersecting point, say (xm,CP, ym,CP). Then the distance
d̃
[i]
c,l , s

[i]
c,l − s[i] between Agent i’s joint collision point

s
[i]
c,l with Agent l and its current position s[i] at time tk is

equal to the Euclidean distance between (xm(tk), ym(tk)) and
(xm,CP, ym,CP) if Agent i has not yet passed the collision
point and equal to the negative Euclidean distance otherwise,
see Section II-D. If there is no intersecting point, we define
s
[i]
c,l =∞.

C. Distributed Model Predictive Control

As outlined in the beginning of the section, the local MPC
controller is run synchronously on every agent to ensure
the synchronicity of broadcasted trajectories z

[i]
·|k and agent

decisions u[i]·|k. For its execution, the MPC requires the ini-

tial condition x
[i]
k = [a

[i]
x,k, v

[i]
k , s

[i]
k]> and the other agents’

distances to the joint collision point with Agent i, that is,
z
[i]
·|k = {(d[l]c,i,k+j|k)j∈N[1,N]

}
l∈A[i]

c
as input, see Section IV-B.

The initial velocity v
[i]
k and acceleration a

[i]
x,k can directly

be obtained from the vehicle CAN bus. The path position s[i]k ,
though, is calculated based on the output of the Collision Point
Estimation in Section V-B. More precisely, it is set to the
negative estimated distance to the closest collision point (if
it exists), that is, s[i]k = −min

l∈A[i]
c
{d̃[i]c,l}. If Agent i is not in

conflict with any other agent, we set s[i]k to zero. The second

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, KATRINIOK et al. 9

input to the MPC, that is, the trajectories z[i]·|k can directly be
obtained from the CCM message that has been received via
V2V communication, see Section V-D.

After termination of Algorithm 1, the optimized distances
(d

[i] ?
l,k+1|k, . . . , d

[i] ?
l,k+N |k) to every agent l ∈ A[i]

c are derived

from the solution u
[i] ?
·|k of the OCP. When transmitting such

distances over V2V to the other agents, though, these distances
will be exploited in the next optimization run at time k + 1.
That said, the by one time step shifted trajectory of Agent l
is required, i.e., beginning at time step k + 2 until time step
k + N + 1 (when the current time step is k). Therefore, we
additionally compute d[i] ?l,k+N+1|k by keeping the control input

constant after time k + N − 1, that is, u[i]k+N |k , u
[i] ?
k+N−1|k.

Finally, the trajectories {d[i] ?l,k+2|k, . . . , d
[i] ?
l,k+N+1|k}l∈A[i]

c
are

forwarded to the Encode CCM Msg. block in Fig. 2.

D. Cooperative Control Message (CCM)

With these optimized distances, Agent i sets up the Coop-
erative Control Message (CCM)

CCM ,

(
Tstmp, ID[i],

{
ID[l], d

[i] ?
l,k+2|k, . . . , d

[i] ?
l,k+N+1|k

}
l∈A[i]

c

)
and broadcasts the message to other agents in the vicinity of
the intersection. The CCM contains a time stamp Tstmp = tk
(minutes of hour, milliseconds of minute, 3 Bytes), a unique
ID of Agent i (1 Byte), and for every conflicting agent l
its respective ID (1 Byte) along with the optimized distances
(4 Bytes each, single precision floating point value) of Agent i
to the joint collision point with Agent l over the prediction
horizon of length N . As such, for every agent l ∈ A[i]

c , we
need to store 1+4N Bytes within the message, e.g., 81 Bytes
for N = 20. Additionally, 4 Bytes are required for the time
stamp and the ego vehicle ID.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup and Parameterization

To evaluate the proposed control system architecture in
experimental tests, two test vehicles have been available to
the research team, that is, a Ford Edge (Agent 1) and a Ford
Mondeo Hybrid (Agent 2), see Fig. 5. Each test vehicle is

Fig. 5. The two V2X equipped test vehicles on the proving ground:
Ford Edge (left) is Agent 1 and Ford Mondeo Hybrid (right) is Agent 2.

equipped with the same hardware and software as described
in Section V. A centimeter-precision RTK positioning system
has not been available for our experiments such as to serve
as ground truth with respect to the low-cost GNSS used for
control purposes. The main aim of the control system, though,
is to satisfy collision avoidance constraints given the low-
cost GNSS positioning information. So, the availability of
ground truth measurements would help to assess the actual
distance between agents when crossing the intersection but
is not necessarily required in our case. Actually, we never
encountered critical situations due to position inaccuracies, in
which the agents got too close. To accommodate positioning
uncertainties within the control system, we have anyway added
an additional error budget to the minimum distance between
the agents. The test drives have been carried out on the
Aldenhoven Testing Center close to Aachen, Germany. We
utilized a single lane four-way intersection which has been
crossed straight by the agents. With the given control system
architecture and the experimental setup, all fundamental as-
sumptions that have been made in Section II-B are satisfied.

Subsequently, we discuss two scenarios that mostly differ
with respect to the agents’ reference speeds. Particularly, in
Scenario 1 the agents exhibit a set-speed of 12 m/s (Agent 1)
and 10 m/s (Agent 2) respectively. These speeds can, e.g.,
be observed in urban areas with lower urban speed limit
of 30 kph. Then, in Scenario 2 we increase the reference
speed of Agent 1 to 15 m/s which is slightly above the
regular urban speed limit of 50 kph in Germany. Due to a
limited track length, though, the reference speed of Agent 2
is almost the same as in Scenario 1. For both scenarios, the
agents’ maximum speed is set to v[i] = 1.1v

[i]
ref and their

initial configuration corresponds to Fig. 4. Moreover, Agent 2
always exhibits a higher priority than Agent 1. Recall that
the definition of priority defines which agent needs to impose
collision avoidance constraints rather than an intersection
crossing order. Nonetheless, we have intentionally chosen the
initial conditions such that Agent 1 always has to brake for
Agent 2. Otherwise, both agents would exhibit almost no
control action, making it less attractive for our analysis.

In terms of parameterization, Agent 1 and Agent 2 have
the same length and width of L = 4.8 m and W = 1.9 m
respectively. To ensure safe intersection crossing, the minimum

TABLE I
PARAMETERIZATION OF THE LOCAL MPC CONTROLLERS

Agent 1 Agent 2
(Ford Edge) (Ford Mondeo)

Common Parameters
MPC Sample Time [s] 0.2 0.2
Horizon Length N [−] 20 20
Weights (Q, QN , R, S) (1, 1, 5, 5) (1, 1, 5, 5)
Min./Max. Ref. Accel. [m/s2] (-5, 2) (-5, 2)
Safety Distance dsafe [m] 15 15
Vehicle Length L, Width W [m] (4.8, 1.9) (4.8, 1.9)
Priority [−] 2 1

Scenario 1: Lower Urban Speed Limit
Ref. Speed vref, Max. Speed [m/s] (12, 13.2) (10, 11)
Init. Condition1 (s0 [m], v0 [m/s]) (-83.5, 11.9) (-64.8, 10.0)

Scenario 2: Regular Urban Speed Limit
Ref. Speed vref, Max. Speed [m/s] (15, 16.5) (11, 12.1)
Init. Condition1 (s0 [m], v0 [m/s]) (-103.1, 14.8) (-66.7, 10.3)
1 Initial distance to collision point is equal to |s0|.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, KATRINIOK et al. 10

safety distance dsafe, defined as the distance between the
agents’ geometric centers along their path coordinate s (see
Section II-D), has been set to 15 m. In the perpendicular
straight crossing scenario, the minimum distance between the
vehicle bounding boxes amounts to dsafe − (W + L)/2 =

11.65 m. For the dynamic powertrain time constant T
[i]
ax ,

we recognized during system identification that this quantity
evolves as a function of the current state x[i] and input u[i].
To this end, the MPC utilizes a lookup table T

[i]
ax(x

[i]
k , u

[i]
k)

to determine the time constant at every time step k. The
local MPC controllers exhibit a sample time of 200 ms with a
prediction horizon of 20 steps, thus covering a preview time
of 4 s. To solve OCP (20) on the dSPACE MicroAutoBox II,
qpOASES [43] is applied as QP solver. If terminal constraint
(8) renders OCP (20) infeasible, we perform an appropriate
braking maneuver to prevent the agent from entering the
intersection. Tab. I conveys the most relevant parameters.

B. Discussion of Results

1) Scenario 1 (Lower Urban Speed Limit): Fig. 6 illustrates
the experimental results for Scenario 1. With Agent 1 in the
left and Agent 2 in the right column, the figure reveals from
top to bottom: 1) actual (solid blue) and reference acceleration
(solid red) along with the upper and lower bound of the refer-
ence (dashed black); 2) actual (solid blue), reference (solid
red) and maximum velocity (dashed black); 3) actual path
position (solid blue). The bottom plot provides the distance
dist(1, 2) and dist(2, 1) (see (4)) between the agents along
their paths, derived from the calculations in Section V-B, along

−4

−2

0

2

ref.

min.

max.

A
cc

el
.[

m
/s

2
]

Agent 1 (Edge)

0

5

10

15 max.

ref.

V
el

oc
ity

[m
/s

]

−100

−50

0

50

Po
si

tio
n

[m
]

0 2 4 6 8
0

50

100

150

B
efore

C
P

A
fter

C
P

min. dist.

Time [s]

D
is

ta
nc

e
[m

]

ref.

min.

max.

Agent 2 (Mondeo)

ref.

max.

0 2 4 6 8

B
efore

C
P

A
fter

C
P

Time [s]
Fig. 6. Scenario 1 (Lower Urban Speed Limit): Acceleration, velocity and
path position of both agents along with their distance to each other. Agent 1
(low priority) is able to satisfy collision avoidance constraints at all times.

with the minimum safety distance that has to be ensured by
Agent 1. As Agent 2 exhibits higher priority, the dashed red
line only indicates the minimum safety distance while collision
avoidance constraints are not imposed on this agent. It should
be noted that dist(1, 2) and dist(2, 1) are the same in theory.
In practice, though, they depend on every agent’s local GNSS
measurements, the estimated collision point and the optimized
distance of the other agent to the respective collision point, see
Section V-C. For that reason, we have plotted both quantities
to provide evidence that a safe distance is indeed ensured
for both agents. Moreover, the red patches indicate the time
interval when the respective agent is approaching the joint
collision point (CP), i.e. s[i] ≤ s

[i]
c,l, while the green patches

highlight the time interval when the agent is moving away
from it, i.e., s[i] > s

[i]
c,l.

To start with, in the first scenario Agent 1 (low priority)
exhibits an initial speed of 11.9 m/s while Agent 2 (high
priority) approaches the collision point with 10 m/s — cor-
responding to speeds that can be observed in lower urban
speed limit areas. By evidence of Fig. 6, Agent 2 crosses the
intersection with constant velocity and without any reaction
to Agent 1. Minor acceleration demands results from a slight
inclination of the road section. Conversely, Agent 1 starts to
decelerate at t = 2.1 s to give right of way to Agent 2. More
precisely, Agent 1 decelerates with a maximum deceleration
of −4.2 m/s2. To compensate the drivetrain lag, even higher
decelerations of up to −5 m/s2 are requested by the MPC.
This way, Agent 1 slows down to a minimum speed of
8.3 m/s. After Agent 2 has passed the joint collision point
at t = 6.8 s, Agent 1 can safely pass that point at t = 8.4 s

−4

−2

0

2

ref.

min.

max.

A
cc

el
.[

m
/s

2
]

Agent 1 (Edge)

0

5

10

15
ref.

max.

V
el

oc
ity

[m
/s

]

−100

−50

0

50

Po
si

tio
n

[m
]

0 2 4 6 8
0

50

100

150

B
efore

C
P

A
fter

C
P

min. dist.

Time [s]

D
is

ta
nc

e
[m

]

ref.

min.

max.

Agent 2 (Mondeo)

ref.

max.

0 2 4 6 8

B
efore

C
P

A
fter

C
P

Time [s]
Fig. 7. Scenario 2 (Regular Urban Speed Limit): Acceleration, velocity and
path position of both agents along with their distance to each other. Agent 1
(low priority) is able to satisfy collision avoidance constraints at all times.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, KATRINIOK et al. 11

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

moving
direction

moving
direction

Agent 1
Agent 2

mean
3σ

mean

3σ
d
[i]
c,l ≤ 50m (•)

d
[i]
c,l > 50m (×)

East [m]

N
or

th
[m

]

Fig. 8. Estimated collision points of both agents for Scenario 1. At distances
≤ 50m, the collision points are shown as a filled circles (•), and as crosses
(×) at larger distances. Additionally, we illustrate the mean (triangle) and three
times the standard deviation (circle). The solid lines are the agents’ paths.

and continues to track its reference speed. Most importantly,
during the entire maneuver a minimum safety distance of
15 m can be guaranteed by Agent 1 (with respect to the low-
cost GNSS positioning information). That said, the proposed
control concept successfully accomplishes the maneuver.

Besides the satisfaction of control objectives and constraints,
we have additionally analyzed the variation of the estimated
collision point, required to determine whether Agent i is in
conflict with Agent l as well as to compute its initial condition
x
[i]
k at time tk. Especially at larger distances, the estimated

position of the collision point is very sensitive to small changes
of the agent’s heading angle and as such to GNSS heading
errors or driver steering inputs. Fig. 8 provides an overview
of the distribution of estimated collision points in a Cartesian
(North, East) coordinate frame for Scenario 1. We represent
all collision points at a distance less than or equal to 50 m with
a filled circle (•) and above that threshold with a cross (×).
Moreover, assuming a normal distribution N (µ, σ) we show
the mean µ (4) along with the 3σ standard deviation. Finally,
the solid lines highlight the agents’ paths. It can be recognized
that the maximum deviation of the estimated collision points
from the actual one is less than 1 m during the entire maneuver
and even less when the agents get closer to that point. Our
experiments have shown that our control system is robust
to variations of that magnitude. If GNSS errors increase or
the driver steering input is inappropriate (an uncontrollable
noise factor to our system), larger variations may cause an
uncomfortable driving behavior. When, e.g., the distance to the
collision point suddenly gets smaller, the control system may
need to decelerate more severely to satisfy collision avoidance
constraints. To make the control system robust against such
noise factors has actually not been in the scope of this work.

2) Scenario 2 (Regular Urban Speed Limit): The second
scenario mainly differs with respect to the agents’ speed.
That said, Agent 1 (low priority) exhibits an initial speed of
14.8 m/s which corresponds to a regular urban speed limit.
Agent 2 (high priority) approaches the collision point with an

initial speed of 10.3 m/s. Similar to Scenario 1, Agent 2 passes
the intersection with a constant velocity and without the need
to react to Agent 1. With an increased speed, Agent 1 needs
to decelerate more heavily compared to Scenario 1, that is, at
t = 2.0 s with a maximum deceleration of −4.6 m/s2. As a
consequence, Agent 1 slows down to 10.3 m/s to let Agent 2
pass the joint collision point at t = 6.2 s. After Agent 1
has crossed the intersection, Agent 2 follows at t = 7.9 s
and resumes to track its reference speed. In spite of the
higher maneuver speed, it is evident that collision avoidance
constraints can still be satisfied at all times.

To conclude, the proposed control system architecture has
successfully been evaluated in urban driving scenarios. More
precisely, it accommodates control objectives, ensures colli-
sion avoidance and is amenable to in-vehicle implementation.
The latter statement is further supported by the fact that all
calculations have been finished within the given sample time
on the dSPACE MicroAutoBox II.

VII. CONCLUSION

We have conveyed a fully distributed control system archi-
tecture to safely coordinate CAVs at road intersections with no
traffic signs or lights. For control purposes, a fully distributed
MPC scheme has been proposed. To allow every agent to solve
its originally nonconvex OCP fast, penalty CCP is applied
to obtain a local solution in real-time. For an in-vehicle
implementation, the control layer is complemented with a
localization layer to estimate the agents’ positions and their
joint collision points. The entire control system architecture is
implemented on two test vehicles and the respective algorithms
are run on a dSPACE MicroAutoBox II. Two experimental
tests, i.e., a lower urban speed limit and a regular urban speed
limit scenario have demonstrated that the proposed concept
satisfies control objectives and ensures collision avoidance.

While agent priorities have been fixed in this work, our
current research works [35] also investigate time-varying pri-
orities. Moreover, we aim to solve the centralized OCP through
distributed numerical optimization methods w/o prioritization.

REFERENCES

[1] H. Wymeersch, G. R. de Campos, P. Falcone, L. Svensson, and E. G.
Ström, “Challenges for cooperative ITS: Improving road safety through
the integration of wireless communications, control, and positioning,” in
Conf. on Computing, Netw. and Communications, 2015, pp. 573–578.

[2] M. Khayatian, M. Mehrabian, E. Andert, R. Dedinsky, S. Choudhary,
Y. Lou, and A. Shirvastava, “A Survey on Intersection Management
of Connected Autonomous Vehicles,” ACM Transactions on Cyber-
Physical Systems, vol. 4, no. 4, pp. 1–27, 2020.

[3] E. Namazi, J. Li, and C. Lu, “Intelligent Intersection Management
Systems Considering Autonomous Vehicles: A Systematic Literature
Review,” IEEE Access, vol. 7, pp. 91 946–91 965, 2019.

[4] M. Quinlan, T.-C. Au, J. Zhu, N. Stiurca, and P. Stone, “Bringing
Simulation to Life: A Mixed Reality Autonomous Intersection,” in
Conference on Intelligent Robots and Systems, 2010, pp. 6083–6088.

[5] M. A. S. Kamal, J. i. Imura, T. Hayakawa, A. Ohata, and K. Aihara,
“A Vehicle-Intersection Coordination Scheme for Smooth Flows of
Traffic Without Using Traffic Lights,” IEEE Transactions on Intelligent
Transportation Systems, vol. 16, no. 3, pp. 1136–1147, 2015.

[6] N. Murgovski, G. R. de Campos, and J. Sjöberg, “Convex Modeling
of Conflict Resolution at Traffic Intersections,” in IEEE Conference on
Decision and Control, 2015, pp. 4708–4713.

[7] E. R. Müller, R. C. Carlson, and W. K. Junior, “Intersection control
for automated vehicles with MILP,” IFAC Symposium on Control in
Transportation Systems, vol. 49, no. 3, pp. 37–42, 2016.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, KATRINIOK et al. 12

[8] L. Makarem and D. Gillet, “Model predictive coordination of au-
tonomous vehicles crossing intersections,” in IEEE Conference on
Intelligent Transportation Systems, 2013, pp. 1799–1804.

[9] G. R. Campos, P. Falcone, H. Wymeersch, R. Hult, and J. Sjöberg, “Co-
operative Receding Horizon Conflict Resolution at Traffic Intersections,”
in IEEE Conf. on Decision and Control, 2014, pp. 2932–2937.

[10] A. Katriniok, P. Kleibaum, and M. Joševski, “Distributed Model Pre-
dictive Control for Intersection Automation Using a Parallelized Opti-
mization Approach,” in IFAC World Congress, vol. 50, no. 1, 2017, pp.
5940–5946.

[11] A. A. Malikopoulos, L. Beaver, and I. V. Chremos, “Optimal time
trajectory and coordination for connected and automated vehicles,”
Automatica, vol. 125, p. 109469, 2021.

[12] A. I. M. Medina, N. v. d. Wouw, and H. Nijmeijer, “Automation of a
T-intersection Using Virtual Platoons of Cooperative Autonomous Ve-
hicles,” in IEEE International Conference on Intelligent Transportation
Systems, 2015, pp. 1696–1701.

[13] Y. Wu, H. Chen, and F. Zhu, “DCL-AIM: Decentralized coordination
learning of autonomous intersection management for connected and
automated vehicles,” Transportation Research Part C: Emerging Tech-
nologies, vol. 103, pp. 246–260, 2019.

[14] R. Tian, N. Li, I. Kolmanovsky, Y. Yildiz, and A. R. Girard, “Game-
Theoretic Modeling of Traffic in Unsignalized Intersection Network
for Autonomous Vehicle Control Verification and Validation,” IEEE
Transactions on Intelligent Transportation Systems, pp. 1–16, 2020.

[15] G. Schildbach, M. Soppert, and F. Borrelli, “A collision avoidance
system at intersections using robust model predictive control,” in IEEE
Intelligent Vehicles Symposium, 2016, pp. 233–238.

[16] K. D. Kim and P. R. Kumar, “An MPC-Based Approach to Provable
System-Wide Safety and Liveness of Autonomous Ground Traffic,”
IEEE Trans. on Autom. Control, vol. 59, pp. 3341–3356, 2014.

[17] R. Hult, M. Zanon, S. Gros, and P. Falcone, “Primal decomposition of
the optimal coordination of vehicles at traffic intersections,” in IEEE
Conference on Decision and Control, 2016, pp. 2567–2573.

[18] J. Gregoire and E. Frazzoli, “Hybrid centralized/distributed autonomous
intersection control: Using a job scheduler as a planner and inheriting
its efficiency guarantees,” in IEEE Conference on Decision and Control,
2016, pp. 2549–2554.

[19] M. R. Hafner, D. Cunningham, L. Caminiti, and D. D. Vecchio, “Cooper-
ative Collision Avoidance at Intersections: Algorithms and Experiments,”
IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 3,
pp. 1162–1175, 2013.

[20] M. Khayatian, M. Mehrabian, H. Allamsetti, K.-W. Liu, P.-Y. Huang,
C.-W. Lin, and A. Shrivastava, “Cooperative Driving of Connected Au-
tonomous Vehicles Using Responsibility-Sensitive Safety (RSS) Rules,”
in ACM/IEEE International Conference on Cyber-Physical Systems, ser.
ICCPS ’21. Association for Computing Machinery, 2021, pp. 11–20.

[21] K. Dresner and P. Stone, “A Multiagent Approach to Autonomous
Intersection Management,” Journal of Artificial Intelligence Research,
vol. 31, no. 1, pp. 591–656, 2008.

[22] H. Kowshik, D. Caveney, and P. R. Kumar, “Provable Systemwide Safety
in Intelligent Intersections,” IEEE Transactions on Vehicular Technology,
vol. 60, no. 3, pp. 804–818, 2011.

[23] H. Ahn, A. Colombo, and D. D. Vecchio, “Supervisory control for in-
tersection collision avoidance in the presence of uncontrolled vehicles,”
in IEEE American Control Conference, 2014, pp. 867–873.

[24] A. Colombo and D. D. Vecchio, “Least Restrictive Supervisors for
Intersection Collision Avoidance: A Scheduling Approach,” IEEE Trans.
on Automatic Control, vol. 60, no. 6, pp. 1515–1527, 2015.

[25] H. Wei, L. Mashayekhy, and J. Papineau, “Intersection Management for
Connected Autonomous Vehicles: A Game Theoretic Framework,” in
Conference on Intelligent Transportation Systems, 2018, pp. 583–588.

[26] C. Englund, L. Chen, J. Ploeg, E. Semsar-Kazerooni, A. Voronov, H. H.
Bengtsson, and J. Didoff, “The Grand Cooperative Driving Challenge
2016: boosting the introduction of cooperative automated vehicles,”
IEEE Wireless Communications, vol. 23, no. 4, pp. 146–152, 2016.

[27] I. Lamouik, A. Yahyaouy, and M. A. Sabri, “Smart multi-agent traffic
coordinator for autonomous vehicles at intersections,” in Conf. on
Advanced Technologies for Signal and Image Processing, 2017, pp. 1–6.

[28] R. Hult, M. Zanon, S. Gros, and P. Falcone, “Optimal Coordination of
Automated Vehicles at Intersections: Theory and Experiments,” IEEE
Trans. on Control Systems Techn., vol. 27, no. 6, pp. 2510–2525, 2019.

[29] C. Liu, C. Lin, S. Shiraishi, and M. Tomizuka, “Distributed Conflict
Resolution for Connected Autonomous Vehicles,” IEEE Transactions
on Intelligent Vehicles, vol. 3, no. 1, pp. 18–29, 2018.

[30] M. Kneissl, A. Molin, H. Esen, and S. Hirche, “A Feasible MPC-
Based Negotiation Algorithm for Automated Intersection Crossing,” in
European Control Conference, 2018, pp. 1282–1288.

[31] X. Qian, J. Gregoire, A. de La Fortelle, and F. Moutarde, “Decentralized
model predictive control for smooth coordination of automated vehicles
at intersection,” in European Control Conference, 2015, pp. 3452–3458.

[32] F. Molinari and J. Raisch, “Automation Of Road Intersections Using
Consensus-based Auction Algorithms,” in IEEE American Control Con-
ference, 2018, pp. 5994–6001.

[33] J. Shi, Y. Zheng, Y. Jiang, M. Zanon, R. Hult, and B. Houska,
“Distributed control algorithm for vehicle coordination at traffic inter-
sections,” in European Control Conference, 2018, pp. 1166–1171.

[34] A. Katriniok, P. Sopasakis, M. Schuurmans, and P. Patrinos, “Nonlinear
Model Predictive Control for Distributed Motion Planning in Road
Intersections Using PANOC,” in IEEE Conference on Decision and
Control, 2019, pp. 5272–5278.

[35] F. Molinari, A. Katriniok, and J. Raisch, “Real-Time Distributed Au-
tomation of Road Intersections,” in IFAC Wrld C., 2019, pp. 2606–2613.

[36] A. Katriniok, S. Kojchev, E. Lefeber, and H. Nijmeijer, “A Stochas-
tic Model Predictive Control Approach for Driver-Aided Intersection
Crossing With Uncertain Driver Time Delay,” in European Control
Conference, 2019, pp. 243–249.

[37] T. Lipp and S. Boyd, “Variations and extension of the convex-concave
procedure,” Optimization and Eng., vol. 17, no. 2, pp. 263–287, 2016.

[38] M. Bühler, K. Iagnemma, and S. Singh, The DARPA Urban Challenge:
Autonomous Vehicles in City Traffic. Springer, 2009, vol. 56.

[39] W. Lim, S. Lee, M. Sunwoo, and K. Jo, “Hierarchical Trajectory
Planning of an Autonomous Car Based on the Integration of a Sam-
pling and an Optimization Method,” IEEE Transactions on Intelligent
Transportation Systems, vol. 19, no. 2, pp. 613–626, 2018.

[40] ETSI EN 302 637-2 V1.3.2 (2014-11), Part 2: Specification of Cooper-
ative Awareness Basic Service Std.

[41] J. A. Farrell, Aided Navigation: GPS with High Rate Sensors. McGraw
Hill, 2008.

[42] R. Schubert, E. Richter, and G. Wanielik, “Comparison and evaluation
of advanced motion models for vehicle tracking,” in International
Conference on Information Fusion, 2008, pp. 1–6.

[43] H. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl, “qpOASES:
A parametric active-set algorithm for quadratic programming,” Mathe-
matical Programming Computation, vol. 6, no. 4, pp. 327–363, 2014.

Alexander Katriniok (M’15–SM’19) received the
PhD in Mechanical Engineering from RWTH
Aachen University, Aachen, Germany, in 2013.
Since 2016, Dr. Katriniok is with the Ford Research
& Innovation Center (RIC) in Aachen, Germany. He
is working on sensing & perception, machine learn-
ing and advanced control methods for connected
and automated driving applications. His scientific
research interests include learning-/data-based MPC,
distributed optimal control and (distributed) numeri-
cal optimization with application to motion planning

and control of automated vehicles and robots in uncertain environments.

Benedikt Rosarius received the master degree in
Electrical Engineering from RWTH Aachen Uni-
versity, Aachen, Germany, in 2019. As part of his
master thesis at Ford, he focused on V2V-based
intersection automation utilizing distributed model
predictive control. His research focused on extend-
ing and applying the distributed MPC algorithm
to in-vehicle experiments, and the comparison of
simulation-based and experimental results in on-road
scenarios.

Petri Mähönen (SM’01) is currently a Full Pro-
fessor and the Chair of Networked Systems with
RWTH Aachen University. His current research fo-
cuses on cognitive radio systems, embedded in-
telligence, future wireless networks architectures,
including MillimeterWave systems, and techno-
economics especially from a regulatory perspective.
He is currently serving as Editor of IEEE Transac-
tions of Wireless Communications.

	I Introduction
	I-A Related Work
	I-B Main Contribution and Outline

	II Intersection Automation Problem
	II-A Notation
	II-B Problem Description
	II-C Modeling of Agent Kinematics
	II-D Distance Between Agents

	III Centralized Problem Formulation
	III-A Agent Objectives and Constraints
	III-B Collision Avoidance
	III-C Centralized Optimal Control Problem

	IV Fully Distributed MPC Scheme
	IV-A Decomposition
	IV-A1 Decoupling Collision Avoidance Constraints
	IV-A2 Reformulation of Collision Avoidance Constraints
	IV-A3 Distributed Optimal Control Problem

	IV-B Fast Numerical Solution of the Distributed OCP
	IV-B1 Background on the Convex-Concave Procedure
	IV-B2 Application of the Penalty CCP Method

	V In-Vehicle Control System Architecture
	V-A Self-Localization
	V-B Collision Point Estimation
	V-C Distributed Model Predictive Control
	V-D Cooperative Control Message (CCM)

	VI Experimental Results
	VI-A Experimental Setup and Parameterization
	VI-B Discussion of Results
	VI-B1 Scenario 1 (Lower Urban Speed Limit)
	VI-B2 Scenario 2 (Regular Urban Speed Limit)

	VII Conclusion
	References
	Biographies
	Alexander Katriniok
	Benedikt Rosarius
	Petri Mähönen

