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Abstract— As transportation system plays a vastly important
role in combatting newly-emerging and severe epidemics like
the coronavirus disease 2019 (COVID-19), the vehicle routing
problem (VRP) in epidemics has become an emerging topic
that has attracted increasing attention worldwide. However, most
existing VRP models are not suitable for epidemic situations,
because they do not consider the prevention cost caused by
issues such as viral tests and quarantine during the traveling.
Therefore, this paper proposes a multi-objective VRP model for
epidemic situations, named VRP4E, which considers not only
the traditional travel cost but also the prevention cost of the
VRP in epidemic situations. To efficiently solve the VRP4E,
this paper further proposes a novel algorithm named multi-
objective ant colony system algorithm for epidemic situations,
termed MOACS4E, together with three novel designs. First,
by extending the efficient “multiple populations for multiple
objectives” framework, the MOACS4E adopts two ant colonies
to optimize the travel and prevention costs respectively, so as
to improve the search efficiency. Second, a pheromone fusion-
based solution generation method is proposed to fuse the
pheromones from different colonies to increase solution diversity
effectively. Third, a solution quality improvement method is
further proposed to improve the solutions for the prevention
cost objective. The effectiveness of the MOACS4E is verified
in experiments on 25 generated benchmarks by comparison
with six state-of-the-art and modern algorithms. Moreover, the
VRP4E in different epidemic situations and a real-world case in
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the Beijing-Tianjin-Hebei region, China, are further studied to
provide helpful insights for combatting COVID-19-like epidemics.

Index Terms— COVID-19, epidemics, vehicle routing prob-
lem, multi-objective optimization, evolutionary computation, ant
colony system, multiple populations for multiple objectives.

I. INTRODUCTION

SEVERE epidemics that may outbreak worldwide pose
great threats to human beings and real-world society.

For example, the coronavirus disease 2019 (COVID-19),
a fast-spread respiratory disease, has caused more than five
hundred million confirmed infections and over six million
deaths worldwide from December 2019 to May 2022 [1], [2].
Moreover, although the vaccines have been started, the virus
that causes COVID-19 mutates rapidly against the vaccines
and related treatments. Therefore, it is predicted that the
significant damage to society due to the COVID-19 epidemics
will continue [3]–[5]. Under such a situation, people in various
fields are jointly devoting efforts to combat the epidemics and
save lives. In combatting COVID-19-like severe epidemics,
transportation systems that can support daily operations in
epidemic areas play a vastly important role [6]–[8]. However,
transportation systems in epidemic situations have to face
many great challenges, such as strict traffic control in epidemic
areas, the infection among drivers and passengers, and the
virus transmission via transportation networks. Therefore, the
research on intelligent transportation systems that can address
the challenges brought by serious epidemics is of great need
and has become an emerging research topic.

In transportation systems, vehicle routing is one of the most
essential and significant parts [9]. Therefore, this paper focuses
on the vehicle routing problem (VRP) under epidemic condi-
tions. Generally speaking, the basic goal of VRP is to obtain
a vehicle route that serves all customers with a minimal travel
cost [10], [11]. For different specific applications, various
objectives and constraints can be added to form various VRP
variants. For example, considering the capacity of the vehicle,
the VRP can be easily transformed into the capacity VRP
(CVRP), which is one of the most widely-studied VRP variants
[12], [13]. Moreover, considering the objective such as waiting
and delay time [14], environmental pollution [15], and energy
consumption [16], various VRP models can be developed and
researched. Therefore, the VRP and its variants, being NP-
hard combination problems, have been widely studied and
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Fig. 1. The effects of epidemics on the quality of a routing solution.

applied in many real-world application areas and attracted
wide attention from both academic research and industrial
communities.

Although many VRP variants have been proposed and
studied, they do not consider the influence of epidemics and
thus are not suitable for epidemic situations, resulting in the
gap between research and practice in combatting epidemics.
Motivated by this, this paper attempts to explore the VRP
that is suitable for epidemic situations. In particular, a major
difference between VRP in the ordinary and epidemic situ-
ations is that various prevention and protection approaches
have to be conducted to control the virus spread in epidemic
scenarios, such as viral and antibody tests within 3 or 7 days,
quarantine, self-isolation, and disinfecting of the products
and vehicles [17]. As these prevention approaches will cost
considerable time and money of drivers/customers and even
stop their journey due to area lockdown and travel restrictions,
the prevention cost becomes an important factor for the quality
of a routing plan. For example, Fig. 1 shows that a good
routing solution for ordinary situations can be very poor in
the epidemic situation due to the quarantine. That is, a routing
solution with the smallest travel distance may not have the
smallest cost for prevention, and vice versa. Hence, this paper
considers not only the travel cost objective but also the pre-
vention cost objective of the VRP in epidemic situations, and
then formulates a multi-objective VRP model for epidemics,
which is named VRP4E. The reason for using multi-objective
optimization is that the travel cost and the prevention cost
objectives conflict with each other. Moreover, multi-objective
optimization can provide a set of solutions for users to choose
according to their preferences and requirements.

To solve the proposed challenging multi-objective com-
binational VRP4E problem, a suitable and efficient opti-
mizer should be designed. As a well-known and widely-
used evolutionary computation approach [18]–[21], ant colony
optimization (ACO) [22], [23] has shown great efficiency
in solving combinational optimization problems, such as
autonomous robotics [24], cloud computing [25], and water
system design [26]. In particular, the ant colony system
(ACS) [22], as an efficient ACO variant, has been applied
to various applications including VRP successfully in the past
decade [27]–[29]. Therefore, this paper attempts to propose
a better ACS variant for solving the VRP4E efficiently.
As ACS is originally a single-objective algorithm, it should
be integrated with multi-objective optimization techniques
when solving the proposed multi-objective VRP4E problem.

In recent years, a novel multiple populations for multiple
objectives (MPMO) framework [33] has been proposed for
multi-objective optimization. In the MPMO, multiple popu-
lations are co-evolved for solving the problem, where each
population aims at one objective while all the populations
cooperate to search the whole Pareto front. Due to its great
efficiency and effectiveness, MPMO has been widely studied
and has attracted increasing attention as a new multi-objective
optimization framework in recent years [34]–[36]. Therefore,
the ACS and the MPMO framework can be adopted as the
basic component of a novel and efficient ACS algorithm to
handle the proposed multi-objective VRP4E.

Based on the above, this paper proposes a novel multi-
objective ACS algorithm for VRP in epidemics, which is
called MOACS4E. In general, by extending the MPMO frame-
work, the MOACS4E uses two independent ant colonies to
optimize the travel and prevention costs respectively, so that
the two objectives can be searched sufficiently. Besides, the
MOACS4E is with two novel and efficient methods, which are
a pheromone fusion-based solution generation (PFSG) method
and a solution quality improvement (SQI) method. First, as
each colony only focuses on its corresponding objective, the
central part of the Pareto front may lack enough exploration.
Therefore, the PFSG method is proposed to solve this issue.
By fusing the pheromone information from different colonies,
the PFSG can generate solutions with the consideration of
both travel and prevention costs, providing exploration for
the central part of the Pareto front. Second, the SQI method
is proposed to enhance the solutions for the prevention cost
objective, which can improve the optimization efficiency of
the MOACS4E.

To sum up, the major contributions of this paper are as
follows:

1) This paper proposes a novel multi-objective VRP4E
model that takes not only travel cost but also prevention cost
into consideration, which can provide significant benefits in
combatting the COVID-19 and other similar epidemic out-
breaks worldwide. Nevertheless, to the best of our knowledge,
this paper is the first that considers the prevention cost of VRP
in epidemics. In addition, this paper has also analyzed whether
the VRP4E is suitable to be solved via the multi-objective
optimization theoretically.

2) An efficient MOACS4E algorithm that integrates ACS
and MPMO framework is proposed to solve the proposed
multi-objective VRP4E model, where two colonies are utilized
to optimize travel and prevention cost objectives, respectively,
so as to search the two objectives sufficiently.

3) A novel PFSG method is proposed to better explore the
central part of the Pareto front, so that the MOACS4E can
produce Pareto solutions with a better tradeoff between the
travel and prevention costs.

4) A novel SQI method is proposed to further improve the
solution quality for the prevention cost objective, which can
improve the efficiency of MOACS4E.

In the experiments, the proposed MOACS4E is investi-
gated on 25 VRP4E problem instances generated based on
widely-used VRP benchmarks, where six state-of-the-art algo-
rithms are adopted as contenders. Moreover, visualizations



25064 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 12, DECEMBER 2022

of the found Pareto front of VRP4E problem instances with
different outbreak situations are also provided and analyzed
in the paper, which may help provide insightful information
for the potential readers from various fields in combatting
epidemics. Besides, a real-world case study with data from
the Beijing-Tianjin-Hebei region is also conducted for deeper
investigation and observations. Therefore, it is expected that
this paper can provide great benefits to both the research and
application of VRP in epidemics, and more importantly, help
save more lives.

The rest contents are provided as follows: Section II gives
a brief introduction of the background of the multi-objective
problem and VRP, and a review of related work for multi-
objective VRPs. Section III formulates the multi-objective
VRP for epidemics, while Section IV details the proposed
MOACS4E algorithm for solving the multi-objective VRP4E.
Section V offers the experiments, including settings, metrics,
comparisons, and analyses. In the end, Section VI gives the
conclusion.

II. BACKGROUND AND RELATED WORK

A. Multi-Objective Optimization Problem

Generally speaking, a minimization multi-objective problem
(MOP) on a search space � can be formulated as follows:

MinimizeF(x) = [ f1(x), f2(x), . . . , fM (x)] (1)

where x ∈ �, F consists of M objective functions f1, f2, …,
and fM and maps x from � to the objective space �M , i.e.,
F : � → �M . Given a minimization MOP as Eq.(1), some
important concepts about MOP can be defined as follows.

Definition 1 [Pareto Domination]: Given any two vectors
u =[u1, u2, …, uM ] and w =[ w1, w2, …, wM ] in the
objective space, we say that u dominates w if um ≤ wm for
all m = 1, 2, …, M and u �= w, denoted as uw.

Definition 2 [Pareto optimal]: A solution vector x ∈ �
is Pareto optimal if there is no x∗ ∈ � such that F(x∗)
dominates F(x).

Definition 3 [Pareto set]: The Pareto set (PS) is a set of the
Pareto optimal solutions, which can be represented as

PS = {x ∈ � and x is Pareto optimal} (2)

Definition 4 [Pareto front]: The Pareto front (PF) is composed
of the solutions in PS, as

P F = {F(x) |x ∈ PS } (3)

B. Vehicle Routing Problem

Many VRP variants have been proposed and studied in
the past decades [10]. Without loss of generality, this paper
employs the CVRP model as the basic model for developing
VRP4E. CVRP is one of the most well-known VRP variants
in the literature and is similar to VRP except that the vehicle
has the capacity [10]. Therefore, compared with the original
VRP, the CVRP is not that complex but can be more realistic
for real-world applications.

Mathematically, a CVRP can be formulated as follows.
Given a connected undirected graph G={V, E} consists of

a customer set V={vi |i =0, 1, 2, …, N}, where N denotes
the total number of customers and v0 is the depot, and an
edge set E ={ei j |i , j = 0,1, 2, …, N and i �= j }. Each
edge ei j represents the edge between vi and v j . Considering
the depot has K available vehicles, a set of demand load for
each customer L={load(vi)|vi ∈V}, and a travel cost matrix trc
where trci, j represents the travel cost between vi and v j , the
goal of CVRP is to find a set of vehicle routes S ={rk |k =1,
2, …, K } with a minimal total travel cost such that:

1) each route rk must begin and end with the depot v0 and
must be a directed acyclic graph with |rk |–1 edges, where |rk |
is the number of vertexes in rk ;

2) the total load of each rk can not exceed the available
capacity of each vehicle;

3) each vi (0< i ≤ N) appears only once in S, i.e., each
customer should be and only be served once.

Based on the above, the objective function of CVRP for
minimizing travel cost can then be defined as:

ftravel(S) =
K�

k=1

tcost (rk) (4)

where tcost(rk) is the function that summarizes the travel cost
of each edge in the route rk based on the trc.

C. Related Work

This part briefly introduces related work on both the aspects
of the proposed model and the proposed algorithm.

Firstly, the work related to the proposed model is reviewed.
Existing studies about VRP in epidemics can be categorized
into two major categories, the approach for epidemic control
via VRP and the approach for epidemic control in VRP.
The first category mainly focuses on how to control the
epidemic via VRP, e.g., urgent transportation and assignment
of patients and medical resources [37]–[39]. Therefore, the
main challenges concerned in this category are often due to the
time constraint, resources and tools shortage, and the demand
(which can be dynamic and uncertain) [40]. As this paper
is not in this category, the methods in this category are not
detailed herein. Different from the first category, the second
category considers how to prevent and control epidemics in
VRP, so as to perform transportation both safely and efficiently
in epidemics. However, not enough attention has been paid to
this category yet. The core issue in this category is to reduce
the negative influence of the routing plan in epidemics, which
will be heavily influenced by the prevention policy during the
travel. For example, isolation of the driver and quarantine of
the vehicle can be in high demand in such situations because
they can help reduce the infection risk. Therefore, to meet
the high demand for isolation and quarantine, Majzoubi et al.
[41] proposed a VRP model where each vehicle can serve up
to two patients. Furthermore, Zhang et al. [42] studied the
efficient high-risk individual transfer with a limited number
of quarantine vehicles. Given that the quarantine can prevent
the virus spread, Mook et al. [43] analyzed the efficiency of
quarantine policy for VRP in epidemics. In addition, some
studies also cover the issue of social distancing (e.g., the
maximum number of customers assigned to each vehicle) [44],
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infection risk [45], and possible transmission degree [46].
However, the above VRP models in epidemics consider the
VRP from the aspect of how to achieve safety and efficiency,
but do not consider the cost in the reality for achieving safety,
e.g., the prevention cost. Differently, this paper considers the
prevention cost for achieving safety in epidemic situations,
which can help bridge the gap between existing research
and practice in combatting epidemics. Moreover, note that
the proposed model can be regarded as a basic model and
then further extended with more issues (e.g., the time-window
constraints), so as to become a more suitable or specially-
designed model according to the need of users. Therefore, the
proposed model is rational and practical, which would have
great research and application potential in the community.

Secondly, the work related to the proposed algorithm
is reviewed. To date, there have been many works about
multi-objective ACS/ACO algorithms for solving traditional
transportation problems [27], [47]–[49]. Among them, few
multi-population algorithms have obtained promising results
in VRP [49]. However, the algorithm proposed in this
paper is very different from these existing algorithms in
three aspects. First, the existing multi-objective and multi-
population ACS/ACO algorithms do not consider how to opti-
mize the prevention cost of the routing plan. For example, the
pheromone update in these algorithms does not integrate the
information about prevention cost. Therefore, these algorithms
are not suitable for solving the VRP with consideration on
the prevention cost. Second, to the best of our knowledge,
no research has used the MPMO framework to help solve
multi-objective VRP (no matter in epidemics or not in epi-
demics). That is, the proposed algorithm in this paper is the
first that attempts to solve the multi-objective VRP problem
via MPMO. Third, only few of the existing multi-population
ACS/ACO algorithms have adopted pheromone fusion meth-
ods [50], [51]. Moreover, all these existing pheromone fusion
methods are designed to exchange information among dif-
ferent populations for solving the same objective in the
single-objective optimization problem. Differently, the PFSG
method is proposed in this paper to exchange the information
from populations aiming at different objectives, so as to better
explore the central part of the Pareto front. Based on the above,
the MOACS4E algorithm proposed in this paper is very novel
when compared with existing algorithms and methods.

III. THE VRP4E MODEL

The proposed VRP4E model is a multi-objective CVRP
model, where the first objective is the travel cost as represented
in Eq.(4) and the second objective is the prevention cost that
will be formulated in this part.

During the COVID-19 epidemics, various prevention
approaches, such as quarantine and lockdown, have been taken
to slow the COVID-19 spreads [17], which can affect the
vehicle routing among different regions, cities, and nations
seriously. In such cases, the prevention cost should be con-
sidered carefully because the prevention cost can differ from
route to route greatly. For example, when a driver travels from
a high-risk area to a low-risk area, he may be required to spend

several hours for COVID-19 testing by the local public health
authorities, e.g., viral tests and antibody tests, due to his earlier
exposure to COVID-19 in a high-risk area. Even, he may be
asked for quarantine to watch for symptoms until 14 days if
the local authorities adopt a strict prevention policy. These
will result in expensive costs in time and money, e.g., for the
testing and the quarantine of the driver in Hotels. Moreover,
an additional driver should be employed temporarily to replace
the quarantined driver to accomplish the rest transportation
tasks so that the goods and products can be delivered on time
to the rest customers. For example, to ensure on-time daily
deliveries, JD.com’s logistics delivered goods and products
to Shanghai, China, in 2022 via “suicide logistics” with 14
groups of couriers[52]. That is, the i th batch of couriers needed
to be isolated for 14 days after entering high-risk areas of
Shanghai on day i , i.e., isolated from day i to day i + 14,
the (i + 1)th batch of couriers continued the transportation the
next day and isolated from day i + 1 to day i + 15, so as
to realize the logistics and transportation on time every day
through circulation.

However, this will result in more costs than ordinary cases
undoubtfully (e.g., ordinary cases do not need to employ
an additional driver). These costs are due to the prevention
policy, and therefore can be referred as the prevention cost.
Despite the driver, the goods and products in the vehicle
may also be unpacked for testing and disinfecting, which will
increase cargo damage, especially when the goods are fresh
food and frozen goods. Hence, visiting a high-risk area will
greatly increase the prevention cost for the following journey.
However, if the driver does not visit high-risk areas before,
he will just need to take a simpler and quicker temperature
measurement and have some visit registrations before entering
a new area. That is, the transportation is similar to that
in ordinary cases and we do not need the cost of having
quarantine and employing an additional driver. In this case, the
prevention cost for the following journey is not expensive. That
is, visiting high-risk areas will result in high prevention costs
for the following journey, while visiting low-risk areas will
only have a much cheaper prevention cost for the following
journey.

Based on the above, we can formulate the prevention cost
of a routing plan as follows. Given a routing solution with K
routes, S ={rk |k =1, 2, …, K }, the objective function of the
prevention cost can be formulated as:

f prevent ion(S) =
K�

k=1

pcost (rk) (5)

where the pcost(rk) is the prevention cost during the kth route
(i.e., the route of kth vehicle), and can be formulated as

pcost (rk) =
|rk |�
i=2

(lpc · (1 − I (rk, i)) + hpc · I (rk, i)) (6)

where lpc means the low prevention cost if the vehicle has
not visited any high-risk area, while hpc denotes the high
prevention cost if the vehicle has visited some high-risk areas
before. The I (rk , i) is to indicate whether the vehicle has
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Fig. 2. Example of 4 routes with different prevention costs.

visited any customers in high-risk areas before visiting the i th

customer in route rk , which can be written as

I (rk, i) =
�

1, if ∃ j < i, h(rk, j) == 1

0, otherwise
(7)

where h(rk , j) is to indicate whether the corresponding area
of j th vertex in the route rk is high-risk, and can be written as

h(rk, j) =
�

1, if the j th vertex in rk is high-risk

0, otherwise
(8)

where h(rk , j) =1 indicates that the corresponding area of j th
vertex in the route rk is high-risk, while h(rk , j) =0 indicates
that the corresponding area is low-risk. It should also be
noted that the Eq.(6) summarizes the results from i = 2 to
i = |rk | because the first vertex in rk is the depot v0 and there
are only |rk |–1 edge in every rk . In addition, it is assumed
that the depot is in a low-risk area, which is reasonable in
that the high-risk epidemic area is often the one that needed
to be supported by other areas through transportation systems
rather than the one that offers help to other areas.

To make the above contents easier to understand,
Fig. 2 gives 4 example routes. As can be seen, during the
r1 in Fig. 2, as the second index is Customer 1 in a high-risk
area, i.e., h(r1,2)=1, the prevention costs for visiting the rest
customers are all hpc. During the r2, the route first visits Cus-
tomer 2 in a low-risk area and then visits Customer 1, i.e., the
third node is a Customer in a high-risk area (i.e., h(r2,3)=1),
therefore both the prevention costs from the depot to Customer
2 and from the Customer 2 to Customer 1 are lpc while the
rest visiting will have hpc. The r3 is similar to r1 because
the second node is a Customer in high-risk areas. In the r4,
the vehicle will visit all customers in low-risk areas before
visiting any customers in high-risk areas. Therefore, this route
has h(r4, j) =0 for j = 1, 2, and 3, and only the travel after
visiting the fourth area (i.e., Customer 5) will have hpc.

To reduce the prevention cost, it is suggested that the
vehicle should first visit customers in low-risk areas and
then visit the customers in high-risk areas. However, the
prevention cost objective can be conflicted with the travel
cost objective, because the travel cost objective requires the
customers to be visited in an order with the shortest travel
distance. Therefore, to minimize such two objectives together,
we model this problem as a multi-objective problem, which
can be formulated as:
MinimizeFV R P4E (S) = [min ftravel(S), min f prevent ion(S)]

(9)

Fig. 3. The confliction probability (CP) with different numbers of total
visiting areas and different percentages of high-risk areas.

where the ftravel(S) and f prevent ion(S) are defined as Eq.(4)
and Eq.(5), respectively.

Note that the key issue of MOP is that the multiple
objectives are conflicted with each other and no solution can
get the optima on all objectives at the same time. Therefore,
we analyze the confliction probability (CP) between the travel
cost and the prevention cost herein to show that it is rational
and suitable to formulate the VRP4E as a MOP.

Assume that a route visiting N areas (customers) has an
optimal travel cost, and T is the number of high-risk areas.
Note that the high-risk areas should be visited at the end of the
route to get the smallest prevention cost. That is, a route with
optimal travel cost can also have optimal prevention cost only
if the T high-risk areas are exactly the last T areas visited in
the route (only one possible case). Therefore, the probability
of the event “the route with optimal travel cost also has the
optimal prevention cost” is

1�
T
N

� = 1
N !

T !×(N−T )!
= T ! × (N − T )!

N ! (10)

That is, the CP of the two objectives can be calculated as:

C P = 1 − 1�
T
N

� = 1 − T ! × (N − T )!
N ! (11)

To investigate the CP, Fig. 3 plots the CP with a different
number of visiting areas (i.e., N) and different percentages
of high-risk areas (i.e., T /N). As can be seen, unless the
high-risk percentage is very close to 0 or 1, the CP is very
high. That is, the travel and prevention cost objectives have a
high probability to be conflicted with each other when there
are some high-risk areas. This makes the VRP4E problem
complex and difficult to optimize. Therefore, it is suitable to
consider the optimization of the two objectives as a MOP.

IV. THE PROPOSED MOACS4E

To solve the VRP4E model described in Section III, this
paper proposes the MOACS4E algorithm with the extending
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MPMO framework and the PFSG and SQI methods. The
following contents will detail the solution encoding, solution
construction, pheromone initialization and update, PFSG, SQI,
and the complete algorithm one by one.

A. Solution Encoding

To make the solution reproduction more efficient, this paper
adopts the efficient solution encoding scheme proposed for
single-objective VRP problems in [29]. That is, each solution,
representing a candidate S, is encoded as a permutation of
all customer indexes and several ‘0’s, where the ‘0’s indi-
cate the depots that partition S into routes r1, r2, …, and
rK for K corresponding vehicles. For example, considering
a routing for 5 customers, an individual (solution) S ={0,
2, 1, 0, 5, 0, 3, 4, 0} corresponds to a routing plan with
3 routes, i.e., r1 ={0→2→1→0}, r2 ={0→5→0}, and
r3 ={0→3→4→0}; while an individual (solution) S ={0,
2, 1, 3, 0, 4, 5, 0} means a solution with 2 routes, i.e.,
r1 ={0→2→ 1→ 3→0} and r2 ={0→ 4→ 5→0}.

Algorithm 1 Solution Construction
Input: τ -the pheromone information of the colony;

Nr - the number of customers;
trc - travel cost between every two customers including depot;

Output:S -the constructed solution.
1: Begin
2: //Step 1
3: Initialize rest with the indexes of all customers;
4: Initialize currently-located index j = 0; //begin at depot
5: Initialize solution S={0};
6: Initialize Lc =0; //current load
7: While rest is not emptyDo
8: // Step 2
9: Compute Pj based on rest according to Eq.(13);
10: If j==0 Then //if it is the depot
11: Pj (0)=0; // will not consider the depot
12: End If
13: Sample q uniformly within [0,1];
14: Select next_j according to Eq.(12);
15: // Step 3
16: Set j as next_j;
17: Update current load Lc according to Eq.(14);
18: Remove next_j from rest;
19: End While
20: End

B. Solution Construction

Imitating the foraging behavior of ants for finding food,
ACS constructs solutions efficiently based on pheromone and
heuristic information in an iterative fashion. That is, in every
solution construction iteration, ACS uses pheromone and
heuristic information to determine which customer should be
the next one to visit. Moreover, as the total load demand
in a route should not exceed the maximum capacity of a
vehicle, the load demand is also considered when constructing
a solution in MOACS4E.

The pseudo code of solution construction is presented as
Algorithm 1, which mainly has three steps. Considering N
customers, the solution construction through an ant Ai , can
be presented as follows.

Step 1: Initialization of the beginning index, i.e., the depot.
In this step, Ai is initialized with the route as Si ={0}, the
current load Lc as 0, and an index list of all customers that
needed to be visited, denoted as rest.

Step 2: Select the next customer to visit. Suppose Ai locates
in customer j currently (if it is the depot, j is 0), the algorithm
will select one index from the rest, based on the probability
Pj (rest_k) for choosing every index rest_k ∈rest. Noted that
if the currently-located customer j is not the depot, then
index set rest will include the depot index, otherwise, the
rest will not consider the depot, so that the cyclic route (e.g.,
{depot→depot→depot}) can be avoided. To select an index
based on Pj , two selection methods, i.e., greedy- and roulette-
based methods, are combined with a control parameter q0.
When selecting the index based on Pj , say next_j, a random
value q is sampled uniformly within [0,1]. If q ≤ q0, the algo-
rithm will select the index next_ j with maximum Pj (next_j);
otherwise, the algorithm will select the next_j through a
roulette wheel selection according to Pj . Mathematically, the
selection of next_j can be presented as:

next_ j =
�

arg maxrest_k∈rest Pj (rest_k), ifq ≤ q0

roulette(Pj , rest), otherwise
(12)

where roulette(Pj , rest) will output an index in rest based
on the roulette wheel selection according to Pj . Noted that
if q ≤ q0(i.e., in greedy-based selection) and some customers
have the same Pj value, the first one in the list will be selected.

The Pj (rest_k) is calculated based on pheromone τ j,rest_k ,
and the heuristic information η j,rest_k and θ j,rest_k , which can
be written as:

Pj (rest_k)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τα
j,rest_k×η

β
j,rest_k×θ

γ
j,rest_k


z∈rest τα
j,z×η

β
j,z×θ

γ
j,z

, if load (rest_ k)

+Lc ≤ Capaci ty

0, otherwise

(13)

where a larger η j,rest_k =1/trc j,rest_k means a smaller travel
cost between customer j and rest_k, a larger θ j,rest_k =
trc j,0+ trc0,rest_ k–trc j,rest_k indicates visiting rest_k after j in
a route can be more desired than separating them into different
routes. Besides, the α, β, and γ are parameters for controlling
the influence of pheromone and heuristic information on
selecting the next customer to be visited. It should also be
noted that the Eq.(13) can still work well when the vehicle
is nearly fully-loaded and cannot serve any more customers,
because in this situation, Eq.(13) will set Pj of all the rest
customers as 0 except the depot. In such a situation, the depot
will be surely selected because only the depot has a positive
probability, i.e., Pj (0)>0, which means that the construction
of the current route will be finished and the next route is to
begin.

Step 3: Complete the solution. After choosing the next_ j ,
the algorithm will update the corresponding construction infor-
mation by setting the currently-located index j to be next_ j ,
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Fig. 4. The roles of Tcolony, Pcolony, and PFSG in the proposed algorithm
for finding the Pareto front.

removing next_ j from rest, and updating the current load as

Lc =
�

Lc + load(next_ j), if next_ j is not the depot

0, otherwise
(14)

Then, if there are still some customers in rest, the algorithm
will go back to Step 2 and continue selecting the next
customer. Otherwise, the solution construction finishes.

C. Pheromone Initialization and Update

In the proposed algorithm, two ant colonies use different
pheromones for minimizing different objectives correspond-
ingly. For simplicity, this paper denotes the colonies for the
travel and prevention cost objectives as Tcolony and Pcolony,
respectively. Following this, τ T colony and τ Pcolony are used
to denote the pheromones in colonies Tcolony and Pcolony,
respectively. Noted that when constructing a solution in the
Tcolony or the Pcolony population, the τ in Eq. (13) is
replaced by τ T colony or τ Pcolony , respectively. The pheromone
initialization and update process are described as follows.

1) Pheromone Initialization
In the proposed algorithm, the initial pheromone values

for Tcolony and Pcolony are defined as Eq.(15) and Eq.(16),
respectively.

τ
T colony

0 = 1

ftravel(ST G)
(15)

τ Pcolony
0 = 1

f prevent ion(SPG )
(16)

where ST G and SPGare the greedy solutions for Tcolony and
Pcolony, respectively. The construction process of ST G is
the same as that described in previous Section IV-B, except
that only the greedy-based method is used to select the next
customer to be visited, i.e., q0 =1 in Eq. (12), and therefore
the customer with the largest Pj will be selected as the next
one every time. Moreover, the generated solution will then be
further enhanced by the classical and widely-used 2-opt local
search method [53], [54], which results in the final ST G . The
SPG is improved from ST G by using SQI, where the SQI will
be described in Section IV-E.

2) Pheromone Local Update
When an ant completes the construction of a solution, the

solution will be used to perform the pheromone local update
immediately. It should be noted that the solution construction

Fig. 5. Example of two routes before and after the SQI.

process of Tcolony and Pcolony are independent of each
other, which provides an advantage that they can use different
pheromone values (including initial value and updated value)
to minimize their objective correspondingly.

The local update process of pheromone for Tcolony and
Pcolony are in the same way, which updates the pheromone
value on the visited edge. For example, if next_ j is the next
customer to be visited after visiting j in the solution Si which
is newly generated in Tcolony (or Pcolony), then the related
pheromones in Tcolony (or Pcolony) are updated as Eq.(17)
(or Eq.(18)), respectively.

τ
T colony

j,next_ j = (1 − ρ) × τ
T colony

j,next_ j + ρ × τ
T colony

0 (17)

τ
Pcolony

j,next_ j = (1 − ρ) × τ
Pcolony

j,next_ j + ρ × τ
Pcolony

0 (18)

where ρ ∈[0,1] is a parameter to control the change rate of
the pheromone value.

3) Pheromone Global Update
The pheromone global update for Tcolony and Pcolony is

based on the current best solutions for the travel and prevention
objectives respectively (i.e., ST and SP ), as represented as:

τ
T colony

j,next_ j = (1 − ρ) × τ
T colony

j,next_ j + ρ × 1

ftravel(ST )
(19)

τ
Pcolony

j,next_ j = (1 − ρ) × τ
Pcolony

j,next_ j + ρ × 1

f prevent ion(SP )

(20)

Algorithm 2 Solution Quality Improvement
Input: S-the solution to be improved;
Output: Simpr -the improved solution.
1: Begin
2: Split S into several routes according to the number of “0” in S;
3: Store the obtained routes in Routes;
4: For each route ri in RoutesDo
5: Initialize mid as an empty set;
6: For each index j in ri Do
7: If h(ri , j) ==1 Then //the definition of h(ri , j) refer to Eq.(8)
8: Add j into mid;
9: End If
10: End For
11: Move indexes of ri that are in mid to the end of ri ;
12: End For
13: Merge all the routes in Routes to form Simpr ;

14: End

D. Pheromone Fusion-Based Solution Generation

The PFSG is proposed to fuse the pheromone information
from Tcolony and Pcolony to generate solutions with both
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small travel and prevention costs, so as to explore the central
part of the Pareto front. For a better illustration, Fig. 4 shows
the roles of Tcolony, Pcolony, and PFSG in the proposed
algorithm for finding the Pareto front.

The solution construction in PFSG is the same as that
described in previous Section IV-B, except that the adopted
pheromone in Eq. (13) is fused by the pheromones in Tcolony
and Pcolony. The fused pheromone, sayτ fused, can be obtained
as:

τ f used = λ × σ T colony + (1 − λ) × σ Pcolony (21)

where σ T conlny and σ Pconlny are the normalized versions of
τ T conlny and τ Pconlny , respectively, and their normalization
processes are in the same way and can be represented as

σi, j = τi, j
N
z=0 τi,z

(22)

where 0 is the depot index. Furthermore, the λ in Eq.(21) is a
uniformly distributed random value within [0,1] for generating
different τ f used , so that different solutions can be generated
based on different τ f used . This can increase the diversity of
generated solutions for exploring the central part of the real
Pareto front more evenly.

E. Solution Quality Improvement

The SQI is proposed to improve the solution for the
prevention cost. If the solution is generated in Pcolony, the
algorithm will further improve this solution before evaluating
its objective value. To be specific, for each route in the
solution, the customers in high-risk areas will be moved to the
end of the route in order. For better illustration, Fig. 5 gives the
example of two routes before and after the SQI. Considering
that when customers 1, 3, and 5 are in high-risk areas,
for a solution with two routes r1 ={0→1→2→3→0} and
r2 ={0→4→5→6→0}, the improved solution after SQI
can be with two new routes r1 ={0→2→1→3→0} and
r2 ={0→4→6→5→0}. As can be seen in Fig. 5, the routes
after SQI can have less hpc, which will result in a lower
total prevention cost. The pseudo code of SQI is presented as
Algorithm 2. In Algorithm 2, lines 2 and 3 split the solution
into several routes, and lines 4 to 12 move the high-risk
customers to the end of the corresponding route. Finally, the
improved routes are merged to form the improved complete
solution Simpr , as shown in line 13 of Algorithm 2.

F. The Complete Algorithm

Fig. 6 presents the flowchart of the complete MOACS4E,
and the corresponding pseudo code is given in Algorithm 3.
After the initialization, the evolution process of MOACS4E
mainly includes the solution generation in Tcolony, Pcolony,
and PFSG, as can be seen in lines 7 to 32 in Algorithm 3.
All the generated solutions will be measured by two objec-
tive functions and then used to update their corresponding
pheromones. Note that if a solution violates the constraints
(e.g., exceeding the maximum number of available vehicles),
both the two objective values will be set as a large value (e.g.,
1 ×1025). To obtain the Pareto set, all the generated solutions

will be stored in an Archive. At the end of each generation,
the Archive will drop solutions that are denominated by other
solutions in the Archive, as shown in line 27 of Algorithm 3.
The evolution process will repeat until the stop criteria are met.
Finally, the Archive that contains the non-dominated solutions
will be output, and then the algorithm finishes.

Algorithm 3 The Complete MOACS4E
1: Begin
2: Generate and evaluate greedy solution ST G and SPG ;
3: Store ST G and SPG into an empty set Archive;
4: Initialize τ T colony and τ Pcolony according to Eq.(15) and Eq.(16);
5: Initialize ST = ST G ; //the best solution for travel objective
6: Initialize SP = SPG ; //the best solution for prevention objective
7: While stop criteria are not metDo
8: For each ant Ai in TcolonyDo
9: Generate solution Si based on τ T colony ; //Algorithm 1
10: Evaluate Si and store it in Archive;
11: /∗ Pheromone local update in Tcolony∗/
12: Update τ T colony according to Eq.(17);
13: End For
14: For each ant Ai in PcolonyDo
15: Generate solution Si based on τ Pcolony ; //Algorithm 1
16: Improve Si for prevention objective; //Algorithm 2
17: Evaluate Si and store it in Archive;
18: /∗ Pheromone local update in Pcolony∗/
19: Update τ Pcolony according to Eq.(18);
20: End For
21: /∗ PFSG ∗/
22: Normalize τ T colony to be σ T conlny ;
23: Normalize τ Pcolony to be σ Pcolony ;
24: Sample λ in [0,1] and compute τ f used according to Eq.(21);
25: Generate solution S f used based on τ f used ; //Algorithm 1
26: Evaluate S f used and store it in Archive;
27: Drop dominated solutions in Archive;
28: /∗ Pheromone global update ∗/
29: Update ST and SP based on Archive; //update best solutions
30: Update τ T colony with ST according to Eq.(19);
31: Update τ Pcolony with SP according to Eq.(20);
32: End While
33: End

Output: All non-dominated solutions in Archive.

V. EXPERIMENTAL STUDIES

A. Problem Instances

To obtain problem instances for the proposed VRP4E
model, this paper extends widely-used CVRP instances by
selecting some customers to be high-risk randomly. In par-
ticular, the number of randomly-selected high-risk customers
is configured as the maximum integer smaller than N×10%.
Table I provides the details of the 25 generated VRP4E
instances used in this paper, including the customer number
(denoted as N), vehicle number, the capacity of vehicles,
and the number of high-risk customers. As can be seen, the
25 instances are with different characteristics such as N and
therefore they can help observe how the proposed algorithm
will perform in various scenarios. In the experiments, the hpc
and lpc are set as 10 and 1, respectively, so as to emphasize
the significant influence of visiting high-risk areas. Besides,
all the original CVRP instances can be downloaded online
(http://akira.ruc.dk/∼keld/research/LKH-3/).
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Fig. 6. Flowchart of the complete MOACS4E.

TABLE I

THE PROPERTIES OF 25 TEST PROBLEMS INSTANCES

B. Performance Metrics

As the real Pareto fronts of the test instances are unknown,
some performance metrics based on Pareto fronts, e.g., the
inverted generational distance, can not be calculated. There-
fore, this paper adopts two widely-used performance metrics
that do not require Pareto front data for evaluating and com-
paring algorithms. The two adopted metrics are hypervolume
and set coverage, i.e., HV and C [55]. HV calculates the

volume between the solution set and a reference point. The
reference point is constructed with the worst values about the
two objectives among all solutions produced by all algorithms
in all runs. Therefore, the larger the HV value an algorithm
has, the better performance an algorithm has. Differently, C
measures the degree of how much a solution set dominates
another set. Given two solution sets U and W , the C(U , W )
can be calculated as

C(U, W ) = |{w ∈ W |∃u ∈ U : udominatesw}|
|W | (23)

where |W | means the number of solutions in set W .

C. Compared Algorithms and Experimental Settings

As the VRP4E model is firstly proposed in this paper and
no other algorithms have been designed for it, we can only
adapt some widely-used and state-of-the-art multi-objective
algorithms and apply them to solve the VRP4E model for
comparisons. To be specific, this paper adopts six algo-
rithms, which are NSGA-II [56], MOEA/D [57], TS-MOEA
[58], coevolutionary constrained multi-objective optimiza-
tion (CCMO) [59], multi-objective local search (MOLS)[60],
ant colony algorithm (ACA) [48] and multi-objective ACO
(MOACO) [49]. The NSGA-II and MOEA/D are well-known
and widely-used state-of-the-art approaches for multi-objective
optimization and have been also widely researched in various
multi-objective VRP variants [10], while the TS-MOEA is
a currently-proposed two-stage multi-objective algorithm that
combines the NSGA-II and MOEA/D for multi-objective
VRP problems. Moreover, the CCMO and MOLS are
also recently-proposed efficient algorithms for multi-objective
VRP. Besides, the ACA and MOACO are also recent multi-
objective ACO/ACS algorithms for multi-objective VRPs.
Therefore, these algorithms with various characteristics are
ideal to compare the proposed algorithm.

For the algorithm settings, MOACS4E sets the commonly-
seen parameters for pheromone as α = 1, β = 3, γ = 2,
and ρ = 0.15, as suggested in the literature about using ACS
for solving VRP problems [29]. Furthermore, the population
size of both Tcolony and Pcolony is set as 50, i.e., the total
population size is 100. For fair comparisons, the population
size of peer algorithms is also set as 100. In addition, the rest
hyperparameters of peer algorithms are set according to their
original papers.

In the experiments, all algorithms will be executed with
30 independent runs on each problem and the average results
will be used for companions, so that the statistical error can
be reduced. For the sake of fairness, the maximum number
of fitness evaluations is set as 1 × 105 for each algorithm
in each run. In addition, this paper uses the Wilcoxon’s rank
sum test with a significant level α = 0.05 to compare the
algorithm results [27]. Based on the Wilcoxon’s rank sum
test, the symbols ‘+’, ‘≈’, and ‘-’ are used to denote that
the proposed algorithm can perform significantly better than,
similar to, and significantly worse than other algorithms.

D. Experimental Comparisons

In this part, the proposed MOACS4E is firstly compared
with non-metaheuristic methods and then multi-objective opti-
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TABLE II

COMPARISONS WITH THE GREEDY METHODS

mization methods, where the results are given and analyzed
as follows.

1) Comparison with Non-Metaheuristic Methods: Greedy
heuristic method is an efficient non-metaheuristic algorithm
for solving single-objective problems. Therefore, the greedy
method is adopted to compare the proposed MOACS4E.
For simplicity, the greedy methods for the travel objective
and the prevention objective are denoted as GreedyT and
GreedyP, respectively. Noted that the processes of GreedyT
are the same as that described in Section IV-C for generat-
ing the initial solutions for Tcolony, while the solution of
GreedyP is initialized randomly and then is improved by
SQI to minimize its prevention objective value. Note that
MOACS4E is a multi-objective algorithm whose output is a
solution set containing multiple solutions in a run. Therefore,
for each objective, the solution with the best value on this
corresponding objective is regarded as the best solution found
by MOACS4E, and the mean result of the best solutions on
this objective in all the runs is compared with the solution
obtained by the greedy method.

Table II presents the comparison results between MOACS4E
and two greedy methods, where the better results are marked
in boldface. As can be seen in Table II, the proposed
MOACS4E can obtain smaller travel and prevention costs
than greedy methods on all problem instances. This suggests
that MOACS4E is effective for producing more satisfactory
solutions. Moreover, the Fig. S.1 of the supplementary material
provides the convergence curve of the proposed MOACS4E
algorithm on the travel cost objective and the prevention cost
objective of P01. As can be seen from Fig. S.1, the MOACS4E
can quickly converge on the two objectives, which further
shows the optimization efficiency of the MOACS4E.

2) Comparison with Multi-Objective Methods: The com-
parison results of HV and C metrics between MOACS4E
and state-of-the-art multi-objective algorithms are given in
Table III and Table IV, respectively. The detailed comparison
results of Table III and Table IV and given in Table S.I
and Table S.II of the supplementary material, respectively.
As shown in Table III, according to the Wilcoxon’s rank sum
test, the proposed MOACS4E can obtain significantly better
HV values on at least 18 problems than all compared algo-
rithms. Moreover, Table IV shows that most solutions obtained
by the MOACS4E can dominate the solutions produced by
the compared algorithms on most problem instances, which
suggest that the MOACS4E can outperform the compared
algorithms in term of the set coverage metric. It is no surprise
that the proposed MOACS4E can outperform the compared
algorithms, because the MOACS4E is proposed for solving
the proposed VRP4E problem while the compared algorithms
are originally designed for other multi-objective VRP variants.
In conclusion, the comparison results have verified the effec-
tiveness of the proposed MOACS4E.

E. Component Analysis

This part analyzes the components of MOACS4E experi-
mentally, including the Tcolony for travel cost objective, the
Pcolony for prevention cost objective, the PFSG for producing
more solutions on the Pareto fronts, and SQI for solution
improvement. Therefore, this part compares MOACS4E and
its variants without Tcolony, without Pcolony, without PFSG,
and without SQI. For the sake of simplicity, the four vari-
ants are denoted as ‘MOACS4E-w/o-T’, ‘MOACS4E-w/o-P’,
‘MOACS4E-w/o-PFSG’, and ‘MOACS4E-w/o-SQI’, respec-
tively. In the implementation, the MOACS4E-w/o-T only
evolves a population for optimizing prevention cost, while the
MOACS4E-w/o-P only evolves a population for optimizing
traversal cost. Moreover, the PFSG, which is based on two
populations for different objectives, is not included in either
‘MOACS4E-w/o-T’ or ‘MOACS4E-w/o-P’. Other parameter
settings of ‘MOACS4E-w/o-T’ and ‘MOACS4E-w/o-P’ are the
same as MOACS4E.

The comparisons between the MOACS4E and its variants
are given in Table V, where the detailed companion results
can be seen in Table S.III of the supplementary material.
As shown in Table V, according to the Wilcoxon’s rank
sum test with a significant level α =0.05, the MOACS4E
significantly outperforms MOACS4E-w/o-T, MOACS4E-w/o-
P, MOACS4E-w/o-PFSG, and MOACS4E-w/o-SQI on 18, 25,
17, and 25 problems, respectively, and performs significantly
worse on none problems. Moreover, Table S.III shows that
the MOACS4E obtains the best results (as marked in bold-
face) among the variants on all problem instances. These
suggest that each component has its contribution to the great
effectiveness of MOACS4E and dropping any of them will
degrade the algorithm performance. Besides, it can be seen
that the MOACS4E outperforms MOACS4E-w/o-PFSG on
fewer problems than those of other variants. This indicates
that the travel cost objective and prevention cost objective can
be conflicted with each other heavily, and therefore only a



25072 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 12, DECEMBER 2022

TABLE III

COMPARISON RESULTS BETWEEN MOACS4E AND STATE-OF-THE-ART ALGORITHMS BASED ON HYPERVOLUME

TABLE IV

COMPARISON RESULTS BETWEEN MOACS4E AND STATE-OF-THE-ART ALGORITHMS BASED ON SET COVERAGE

TABLE V

COMPARISONS BETWEEN MOACS4E VARIANTS BASED ON HYPERVOLUME FOR COMPONENT ANALYSIS

TABLE VI

COMPARISONS BETWEEN MOACS4E VARIANTS WITH DIFFERENT PARAMETERS IN PFSG BASED ON HYPERVOLUME

few non-dominated solutions with both low travel and pre-
vention costs can be found even though the PFSG is adopted.
In addition, the MOACS4E-w/o-P and MOACS4E-w/o-SQI
perform worse than other MOACS4E variants, which suggests
that the Pcolony and SQI have more contribution than other
components. Overall, the experimental results have verified the
benefits of the components in the proposed MOACS4E.

F. Parameter Study

Compared with existing ACS variants for VRP problems,
the additional parameter in MOACS4E is the λ in PFSG.
As can be seen in Eq.(21), the λ controls the preferences
of pheromones in Tcolony and Pcolony for producing high-
quality solutions. Therefore, this part compares MOACS4E
with its variants using different λ. As the original λ is
uniformly generated within [0, 1] at every generation, the
compared variants use fixed λ = 0.3, λ = 0.5, and λ =
0.7. The comparison results of HV are given in Table VI,
whereas the detailed results are provided in Table S.IV of
the supplementary material. As can be seen in Table VI, the
original λ has similar results with different λ values based on
the Wilcoxon’s rank sum test, which suggests the performance
of MOACS4E is not sensitive to the parameter λ. This may be
because that the Pareto front is not continuous and therefore
different parameters do not have significant differences in
producing the solutions for the central part of the Pareto front.
However, the results also show that the original λ can obtain
the best results on 10 problems, while the variants with λ =0.3,
λ = 0.5, and λ = 0.7 only gained the best results on 8, 6,
8 problems, respectively, which verify the effectiveness of the

original configuration. Based on the above, the performance
of the proposed algorithm is not sensitive to the parameter λ
and the original setting of λ is recommended.

G. Model Analysis of VRP4E in Different Situations

To provide further analysis of the VRP4E, this part visual-
izes the Pareto front of VRP4E in different epidemic situations,
i.e., with different percentages of high-risk customers. Noted
that Pareto fonts of the VRP4E instances are unknown and we
can only use the solutions produced by algorithms to approxi-
mate the Pareto front. Therefore, the solutions produced by all
the algorithms are collected to approximate the Pareto fronts
for visualization. Noted that only the non-dominated solutions
in the collected set will be plotted, where the set contains the
solutions produced by all algorithms in all runs.

Fig. 7 plots the found Pareto solutions on P01 to P04 with
different percentages of high-risk customers. From Fig. 7,
we can obtain two important observations. First, the found
Pareto fronts are not continuous with a considerable gap in
the central part of the Pareto front. This may be because that
the travel and prevention cost objective are conflicted with
each other and it is hard to find solutions that have both small
travel and prevention costs. Therefore, it is suitable and recom-
mended to consider these two conflict objectives in a multi-
objective problem, so as to obtain a set of high-quality and
non-dominated candidate solutions for applications. Second,
when choosing the solution with consideration of both travel
and prevention costs, the scenarios that some customers are
in high-risk areas (e.g., 30% or 50% are high risks) can be
more challenging than the scenarios that most customers are
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Fig. 7. The found Pareto solutions on VRP4E with different percentages of high-risk customers (a) P01; (b) P02; (c) P03; and (d) P04.

TABLE VII

COMPARISONS OF MEAN RESULTS ON THE REAL-WORLD CASE INSTANCE

in high-risk areas (e.g., 90% are high risks), which is consistent
with the analysis in Section III. As shown in Fig. 7, the range
of the prevention cost of non-dominated solutions in 30%
high-risk scenarios is larger than those in 70% or 90% high-
risk scenarios. That is, if the percentage of high-risk are not
closer to 0 or 1, the two objectives are conflicted with each
other heavily. Based on the above, if the epidemic outbreaks
and clusters occur in some areas rather than almost all areas
(i.e., the percentage of high-risk areas is between 0 to 1),
which are possibly the common cases in the post-COVID-19
period, emphasis should be paid to the prevention cost of
routing plans. In such scenarios, it is recommended to consider
the travel and prevention costs as two objectives in a multi-
objective problem model to obtain higher-quality solutions.

H. A Case Study on Real-World VRP4E

This part conducts a case study on a VRP4E problem with
real-world data. As there were local COVID-19 epidemics
reported in the Beijing-Tianjin-Hebei region, China, at the
beginning of 2021, we consider the VRP4E with the data
of this region for the case study. Noted that herein the
Beijing-Tianjin-Hebei (pronounced as ‘Jing-Jin-Ji’ in Chinese)
region refers to the whole province-level region of Beijing,
Tianjin, and Hebei in China. According to the COVID-19
Prevention and Control Plan (7th Edition) issued by the State
Council of China [61], all local authorities of the county-
level regions (based on the regional division standard) are
required to adjust their epidemic risk level dynamically and

make it known on time. As the Beijing-Tianjin-Hebei region
consists of 199 county-level administrative regions, including
16 in Beijing, 16 in Tianjin, and 167 in Hebei, these 199
county-level regions are considered as the customers needed
to be served. Moreover, according to the corresponding health
commission of Beijing, Tianjin, and Hebei, people who have
visited high-risk or medium-risk county-level regions may be
placed under concentrated quarantine for 7 to 14 days for
health observation based on the actual situations, while people
from low-risk regions can travel normally with the “green
code” of health passcode and a negative nucleic acid test
if their temperature detection is normal. That is, the time
cost is the main prevention cost in this VRP4E case, and the
prevention cost after visiting high-risk or medium-risk county-
level regions is similar. Hence, we set the prevention cost after
visiting both high-risk and medium-risk county-level regions
as hpc=7 while the prevention cost after visiting low-risk
county-level regions as lpc=0.5 (about half a day to get the
nucleic acid test result). The unit of hpc and lpc is driver day,
where one driver day means one workday of one driver. Note
that the medium-risk and high-risk county-level regions con-
duct the same prevention approach, the medium-risk regions
are also regarded as high-risk herein. As for the travel cost
objective, we directly consider the total travel distance of
the candidate routes. Without loss of generality, we set the
location of Beijing (i.e., the capital city of China) as the depot.
Also, Beijing is low-risk at that time. All the location and
travel distance data about the 199 county-level regions and the
depot can be obtained from the API provided by Amap [62],
where the data distribution can be seen in Fig. 8. Moreover,
Fig. 8 also marks the locations of low-risk regions, high-risk
regions, and the depot (i.e., Beijing) with red, green, and black
color, respectively, where 182 and 17 county-level regions are
high-risk and low-risk, respectively, according to the report of
local authorities in Beijing-Tianjin-Hebei region on January
19, 2021. As for the demand and car capacity, we set that
every county-level region requires 10 units of material and
the car capacity is 100 units, because the regions of the same
level often have similar demands during the epidemics. The
maximum number of vehicles is set as 20.

In the experiment, the multi-objective and greedy methods
used in the previous contents are adopted for comparison.
Besides, to provide a deeper analysis of the real-world VRP4E,
we also add an efficient single-objective ACO (SACO) vari-
ant [29] in the comparison, which only uses the travel cost
objective. The comparison results are shown in Table VII.
From Table VII, three observations can be obtained. First,
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Fig. 8. Visualization of the real-world data for all the 199 divisions in the
Beijing-Tianjin-Hebei region.

MOACS4E obtains the best HV value, travel cost, and preven-
tion cost among all the compared algorithms, showing its supe-
rior performance. Second, multi-objective methods such as
MOACS4E and NSGA-II can outperform the compared single-
objective methods, which again supports that multi-objective
methods are more suitable for solving the VRP4E. Third,
as the MOACS4E significantly outperforms other algorithms
including the greedy algorithm, the solutions obtained by
MOACS4E can be more practical than the compared algorithm
in the real world. Concluding from the above, the effectiveness
of MOACS4E in solving the VRP4E is verified in the real-
world case study.

In addition, the visualization of the two solutions is shown
in Fig. S.2 of the supplemental material. As can be seen
in Fig. S.2, the solution with the best travel cost has more
separate routes than the solution with the best prevention cost
on the top area of the map. This is because that the high-risk
areas are mainly located at the bottom area of the map, and
these areas require more vehicles to reduce the prevention cost.
Therefore, in the solution with the best prevention cost, only
fewer vehicles (i.e., fewer separate routes) can be used to meet
the travel demand on the top area of the map. This further
shows that the travel cost objective and the prevention cost
objective conflict with each other.

VI. CONCLUSION

This paper studies a new VRP4E model under the epidemic
scenarios, which considers not only the traditional travel cost
objective but also the prevention cost in epidemic situations.
As the travel and prevention cost tend to be conflicted with
each other, this paper formulates the VRP4E as a multi-
objective problem. Furthermore, to solve the VRP4E, this
paper proposes the MOACS4E based on the MPMO frame-
work and with two proposed methods, i.e., the PFSG and
SQI methods. Extensive experiments and comparisons with
state-of-the-art algorithms on 25 benchmark problems and a
case study have verified the effectiveness of the proposed
MOACS4E.

For future work, the proposed VRP4E model can be fur-
ther extended with different levels of risks and more other
objectives and constraints for various transportation systems
in epidemics, such as considering the users’ preferred pickup
time (period) as a constraint. Furthermore, more kinds of
routing, such as hierarchical routing, will be further studied

for different situations. In addition, intelligent and efficient
techniques from other aspects, e.g., data-driven optimiza-
tion [63]–[65], knowledge transfer [66], [67], and distributed
computation [68]–[70], will be integrated to handle more VRP
difficulties in epidemic situations.
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