
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 14, NO. 8, APRIL 2022 1

Conflict-free Cooperation Method for Connected
and Automated Vehicles at Unsignalized
Intersections: Graph-based Modeling and

Optimality Analysis
Chaoyi Chen1, Qing Xu∗,1, Mengchi Cai1, Jiawei Wang1, Jianqiang Wang1, Keqiang Li1.

Abstract—Connected and automated vehicles have shown great
potential in improving traffic mobility and reducing emissions,
especially at unsignalized intersections. Previous research has
shown that vehicle passing order is the key influencing factor in
improving intersection traffic mobility. In this paper, we propose
a graph-based cooperation method to formalize the conflict-free
scheduling problem at an unsignalized intersection. Based on
graphical analysis, a vehicle’s trajectory conflict relationship is
modeled as a conflict directed graph and a coexisting undirected
graph. Then, two graph-based methods are proposed to find
the vehicle passing order. The first is an improved depth-first
spanning tree algorithm, which aims to find the local optimal
passing order vehicle by vehicle. The other novel method is
a minimum clique cover algorithm, which identifies the global
optimal solution. Finally, a distributed control framework and
communication topology are presented to realize the conflict-
free cooperation of vehicles. Extensive numerical simulations are
conducted for various numbers of vehicles and traffic volumes,
and the simulation results prove the effectiveness of the proposed
algorithms.

Index Terms—Connected and Automated Vehicle, Unsignalized
intersection, Conflict-free cooperation, Distributed control

I. INTRODUCTION

Intersections are the most common merging points in ur-
ban traffic scenarios [1]. According to the Federal Highway
Administration, more than 2.8 million intersection-related
crashes occur in the US each year, accounting for 44% of
all crashes [2]. The rapid development of the V2X technology
provides an opportunity to improve traffic mobility and safety
in intersection management [3]. Through vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I) communication, a
centralized controller is deployed at the intersection to co-
ordinate the connected and automated vehicles (CAVs) to
pass through the intersection; this guarantees conflict-free
vehicle cooperation. Hence, CAVs have immense potential in
improving traffic safety and mobility at intersections [4], [5].

This work was supported by the National Key Research and Development
Program of China under Grant 2018YFE0204302, National Natural Science
Foundation of China under Grant 52072212, Key Algorithms in Intelligent
and Connected Cloud Control System for China Intelligent and Connected
Vehicles Research Institute (CICV), Tsinghua University-Didi Joint Research
Center for Future Mobility and Tsinghua-Toyota Joint Research Institute
Cross-discipline Program..

1Chaoyi Chen, Qing Xu, Mengchi Cai, Jianqiang Wang and Keqiang Li
are with School of Vehicle and Mobility, Tsinghua University

*Corresponding author: Qing Xu, Email address:qingxu@tsinghua.edu.cn

In a fully autonomous intersection scenario, a hierarchical
framework is frequently used to realize the CAV coordina-
tion [6]. First, after collecting the information of the CAVs
in real-time, the centralized controller schedules the arrival
time of the CAVs to improve the traffic efficiency. Then,
a distributed controller is applied to the CAV to implement
the determined arrival plan. Multiple methods have been
proposed to address the vehicle control problem, e.g., fuzzy
logic [7], [8], model predictive control [9], [10], and optimal
control [11], [12]. Moreover, the virtual platoon method was
used in [13], [14], which projects the CAVs from different
lanes into a virtual lane. Thus, the typical vehicle platoon
analysis methods [15] can be used in the control problem of
the CAVs on different lanes as if they are traveling in the same
lane.

Intersections are the converging point of traffic flows in
different directions. The intersection geometry structures regu-
late the routes of incoming CAVs, which leads to complicated
conflict relationships at intersections. Therefore, CAVs’ arrival
time needs to be staggered to avoid collisions. What’s more, a
high-efficiency conflict-free arrival plan is required to improve
traffic mobility. Researchers have also pointed out that the
passing order of the vehicles is the key factor influencing
traffic mobility at intersections [16], [17]. As incoming CAVs
approach the intersection from different directions, the opti-
mal passing order changes constantly and the solution space
increases exponentially, preventing the determination of the
optimal passing order using the brute-force method. This prob-
lem is typically solved using a reservation-based method [18].
The most straightforward reservation-based solution is the
first-in-first-out (FIFO) strategy, in which vehicles that enter
the intersection first are scheduled to leave it first [6], [11],
[19]. However, the FIFO passing order is not likely to be
the optimal solution in most cases. Batch-based strategy is
an improved version of the FIFO strategy, and it processes the
vehicles in batches according to their direction to reduce the
traffic delay [20]; however, its performance has not been fully
optimized. Another widely used strategy is the optimization-
based method. After formulating the scheduling problem as an
optimization problem, various methods have been proposed
to find the optimal passing order, e.g., mixed-integer pro-
gramming [21], Monte Carlo tree search [22], and dynamic
programming [23]. However, the solution space exponentially

ar
X

iv
:2

10
7.

07
17

9v
3

 [
cs

.R
O

]
 2

8
A

pr
 2

02
2

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 14, NO. 8, APRIL 2022 2

increases with the number of the vehicles, making the use of
optimization-based methods unfeasible.

Apart from these specific methods, graph theory is also
introduced to find the optimal passing order of multiple CAVs,
which is a discrete problem. For example, [24], [25] employs
conflict graph analysis to optimize the traffic-signal phase
plan. In terms of multiple CAVs scheduling, several graph-
based methods have also been used. Apart from the depth-
first spanning tree (DFST) algorithm proposed in [13], Petri
net [26] and conflict duration graph [27] are also used in
modeling the scheduling problem. However, the discussion on
the optimality of the scheduling problem of multiple CAVs is
inadequate.

To tackle the problem of optimality, mathematical mod-
eling, i.e., the computational reduction of the intersection
scheduling problem, is an essential research aspect. Some
researchers have focused on reducing this problem into typ-
ical algorithmic problems, including the job-shop scheduling
problem [28], abstraction-based verification problem [29], and
polling system problem [30]. However, most of these methods
mainly focus on the feasibility of a conflict-free passing
order solution. In practice, traffic efficiency is another critical
topic that has not been fully considered in the computational
reduction of this problem.

In this study, we mainly focused on finding the opti-
mal CAV passing order at unsignalized intersections, i.e.,
the CAV scheduling problem. Most of the existing studies
have focused on obtaining the passing order through specific
methods without considering the optimality and computational
complexity [13], [16], [17], [19], [22]. Some have focused on
the feasibility of a conflict-free solution but neglected traffic
efficiency optimization [20], [26], [27], [28], [29], [30]. To
address this problem, we introduce a graph-based conflict-free
cooperation method to model the conflict relationship of the
vehicles. Based on the conflict analysis, two novel methods
are proposed to obtain the optimal vehicle passing order.
Improved DFST (iDFST) obtains the local optimal solution
while minimum clique cover (MCC) targets the global optimal
one. The contributions of our study are as follows:

1) An improved DFST method is proposed based on [13]
to improve traffic efficiency. Instead of considering all
conflict types as one united conflict set, we categorize
different conflict types to further reduce the overall depth
of the spanning tree, i.e., the evacuation time of vehicles.
The computational complexity of the improved algorithm
remains low, and the passing order solution generated by
it is proved to be the local optimum.

2) Based on the concise and rigid graphical analysis, we
first reduce the CAV scheduling problem to the mini-
mum clique cover problem. Unlike most of the existing
research [11], [13], [19], our reduction of the problem
is proposed without the assumption of the FIFO prin-
ciple. Hence, the global optimal passing order solution
is obtained by solving the MCC problem. Moreover,
we propose a heuristic method to solve the problem of
numerous vehicles with a low computation burden.

3) A distributed feedback control method is designed to
apply the scheduling results of the proposed algorithms.

In particular, the predecessor–leader following topology
is used as the communication topology to lower the com-
munication bandwidth requirement. Traffic simulations
are conducted for various numbers of vehicle inputs and
traffic volumes. The simulation results reveal that the
proposed algorithms significantly improve both traffic ef-
ficiency and fuel economy with acceptable computational
time.

The remainder of this paper is organized as follows. Sec-
tion II introduces the scenario addressed in this study. Sec-
tion III presents the conflict analysis, iDFST method, MCC
method, and distributed control. The simulation results are
presented in Section IV, and Section V concludes the paper.

II. PROBLEM STATEMENT

Figure 1(a) depicts one of the most congested intersections
near the Tsinghua campus. In this scenario, because the
number of approaching lanes is higher than the number of
departure lanes, traffic congestion frequently occurs during
rush hour. In this study, we simplified the traffic scenario
by separating the vehicles into different lanes based on
their destination. A hierarchical framework was established
to realize the cooperation of the CAVs [6]. A central cloud
coordinator was deployed at the intersection to guide the
CAVs in driving through the intersection. After collecting the
positions and velocities of all the CAVs, the upper coordinator
schedules the passing order of the approaching CAVs, while
the lower distributed vehicle controller controls the vehicle
according to the determined passing order. The scheduling
method is presented in Sections III-A, III-B, III-C, and the
distributed control is presented in Section III-D. First, the
following assumptions were devised to facilitate the design
of the strategy.

Assumption 1: Similar to most of the existing studies on
intersection traffic [11], [13], [22], lane change behavior was
prohibited to guarantee vehicle safety and improve traffic effi-
ciency. For safety reasons, vehicles with conflict relationships
are not allowed to drive in the conflict zone of the intersection
simultaneously.

Assumption 2: An ideal communication condition without
communication delay or packet loss is under consideration.
CAVs transmit their velocity and position to the central
cloud coordinator through wireless communication, e.g., V2I
communication [31].

Assumption 3: The CAVs are capable of fully autonomous
driving and are assumed to have perfect steering performance.
Therefore, we only focused on the longitudinal control of the
vehicle.

The incoming CAVs are indexed from 1 to N according to
their arrival sequence at the control zone of length Lctrl in
Fig. 2, i.e., only the CAVs in the control zone are under coor-
dination. Note that since we focus on multi-vehicle scheduling
problem rather than vehicle control problem, second-order ve-
hicle model as defined in (1) is used instead of more complex

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 14, NO. 8, APRIL 2022 3

(a) Intersection Scenario (b) Incoming Vehicles and Conflict Points

Fig. 1: One of the most congested intersections near the Tsinghua campus in Beijing is depicted in 1(a) and the conflict
relationship of the traffic scenario is illustrated in 1(b). Vehicles coming from different lanes are distinguished by different
colors. The red circles, orange squares, and green arrows represent different potential collision points, which are interpreted
in Section III-A.

vehicle dynamic model. For each CAV i (i ≤ N, i ∈ N+), the
CAV dynamic model is described as follows:

ẋi(t) = Axi(t) + Bui(t),

xi(t) =

[
−pi
vi

]
, A =

[
0 1
0 0

]
, B =

[
0
1

]
,

(1)

where xi is the state space of CAV i, and pi, vi, and
ui(t) denote the remaining distance to the stopping line,
velocity, and control input of CAV i at time t. We consider
homogeneous vehicle platoons, and thus a continuous-time
linear time-invariant system, (A,B), is used.

There also exist velocity and acceleration constraints of the
vehicle.

0 ≤ vi ≤ vmax,

umin ≤ ui ≤ umax,
(2)

where vmax is the maximum velocity limit; umin and umax

are the deceleration and acceleration limits, respectively.
As mentioned earlier, we aim to propose a cooperation

method to improve both traffic safety and efficiency, i.e., obtain
the collision-free optimal CAV passing order. Assign tini as
the time step when vehicle i enters the control zone, and touti

as the time step when it arrives at the intersection. Several
performance indexes have been proposed to measure the
scheduling performance. We use two performance indexes to
represent overall traffic efficiency and average traffic efficiency
respectively. The first one is overall traffic efficiency, namely
evacuation time as shown in Definition 1.

Definition 1 (Evacuation Time): The evacuation time of N
CAVs is defined as the time when the last CAV reaches the
stopping line; it is expressed as

tevc = max touti , i ≤ N, i ∈ N+. (3)

Considering N incoming CAVs, tevc represents the arrival
time of the last CAV at the stopping line. For N CAVs,
smaller evacuation time means these CAVs pass through the
intersection in shorter time. Thus, it shows the overall traffic
efficiency performance, i.e.,the overall benefits of the CAVs.

In addition, the vehicle travels through the control zone in
touti − tini time, whereas it travels through it under the free
driving condition in Lctrl/vmax time. Accordingly, the average
travel time delay (ATTD) is also chosen as performance index
to measure the average traffic efficiency of the vehicles, as
described in Definition 2.

Definition 2 (Average Travel Time Delay): The ATTD is
designed to evaluate the average traffic efficiency of N CAVs.
It is expressed as

tATTD =
1

N

N∑
i=1

(
touti − tini −

Lctrl

vmax

)
, (4)

where Lctrl is the length of the control zone and tATTD

represents the average travel delay of the CAVs. Since the
travel time of every CAV is considered in tATTD, it denotes
the individual benefits of N CAVs, which is the secondary
optimization target of traffic efficiency.

In this study, we mainly focused on finding the optimal CAV
passing order to minimize the evacuation time, as defined in
Definition 1. In addition, the passing order should also satisfy
the conflict-free relationship between the CAVs. Section III
presents the specific methods used to guarantee safety and
improve traffic efficiency. Moreover, the ATTD defined in
Definition 2 is introduced to evaluate the algorithm perfor-
mance. The simulation results and algorithm performance are
presented in Section IV.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 14, NO. 8, APRIL 2022 4

Lctrl

1

2

3

5

4

CAV

Crossing Conflict

Diverging Conflict

Converging Conflict

7

6

Fig. 2: Illustration of different conflict relationship between
the seven CAVs. Crossing conflicts are plotted as red circles,
diverging conflicts as yellow squares, and converging conflicts
as green arrows.

III. METHODOLOGY

In the following paragraph, Section III-A first introduces
the graph-based intersection conflict analysis method. Then,
Section III-B presents the optimization of the DFST method
to obtain the local optimal passing order solution, termed as
the iDFST method. In Section III-C, we introduce the MCC
method to find the global optimal passing order solution.
Finally, the distributed controller design is presented in Sec-
tion III-D to undertake the scheduling plan.

A. Conflict Analysis

Conflict analysis is one of the most fundamental area in
multi-agent cooperation research [32], [33], [34]. In [13], the
DFST method using a virtual platoon was proposed, which
projects the CAVs from different lanes onto a virtual lane to
avoid collision. DFST scheduling method is built on vehicle
conflict relationship analysis.

In Fig. 1, the CAVs from different lanes form multiple
conflict points. Despite the complicated conflict scenarios, they
can be classified into the following conflict modes. Without
loss of generality, several CAVs are selected in Fig. 2 to
illustrate the conflict relationship. First, we introduce the route
conflicts, where CAVs have trajectory intersections on their
paths.

1) Crossing Conflict: Vehicles from different lanes have the
potential to collide while crossing the conflict points,
indicated by the 24 red circles. For example, CAV 2 and
CAV 3 have a crossing conflict point.

2) Diverging Conflict: Lane changing and overtaking are not
permitted, as explained in Assumption 1. Thus, vehicles
on the same lane cannot pass the intersection simultane-
ously, as indicated by the 14 orange squares. For example,
CAV 6 and CAV 7 have a diverging conflict point.

3) Converging Conflict: Vehicles from different lanes cannot
enter the same lane simultaneously, as shown by the 6
green arrows. For example, CAV 2 and CAV 4 have a
converging conflict point.

Apart from the above-mentioned three kinds of conflicts
that describe the route conflict of the CAVs, we claim that
there exists another conflict type caused by the speed and
acceleration limitation of the CAVs. For instance in Fig. 2,
CAV 7 arrives at the control zone when CAV 5 is about
to reach the stopping line with the designed virtual platoon
velocity. If we schedule CAV 5 and 7 to pass simultaneously,
CAV 5 has to wait for CAV 7 near the stopping line for a
long time, which jeopardizes traffic safety and efficiency. In
this case, CAV 7 is not supposed to catch up with CAV 5 at
the stopping line even if they have no conflict relationship,
because of the limitations on the speed and acceleration of
CAV 7. Hence, we further introduce the fourth type of CAV
conflict, namely, the reachability conflict.

4) Reachability Conflict: Even if the CAVs have no route
conflict, their acceleration and velocity constraints still
limit them from passing the intersection simultaneously.
For example, as described before, CAV 5 and CAV 7 have
a reachability conflict.

Assume CAV 7 reaches the control zone at distance of Lctrl

with initial speed of designed virtual platoon velocity vp. From
equation (1) and (2), if CAV 7 immediately accelerates with
maximum acceleration umax until it reaches maximum speed
vmax, it still takes tmin time until it reaches the stopping line
as shown in (5).

tmin =
vmax − vp
umax

+
1

vmax

(
Lctrl −

v2max − v2p
2umax

)
. (5)

We assume CAV 5 is also running with designed virtual
platoon velocity vp within the control zone, and we expect
CAV 5 to maintain its speed in order to obtain a steady traffic
state near the stopping line. If CAV 5 in the control zone is
so close to the stopping line that it arrives at the stopping line
in less than tmin time, CAV 7 is impossible to catch up with
CAV 5. By simplifying (5), we obtain the judging condition
as

Lprec

vp
<
Lctrl

vmax
+

(vmax − vp)2

2umaxvmax
, (6)

where Lprec is the distance of the preceding CAV from the
stopping line. In other words, preceding vehicles with steady
vp form a steady scheduling plan near the intersection. If the
new CAV cannot catch up with some of them because of
velocity/acceleration constraints, reachability conflict is used
to preserve the consistency of scheduling results. Note that
most of the existing researches assume that the CAVs can reach
the stopping line under all circumstances, i.e., the reachability
conflict is ignored.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 14, NO. 8, APRIL 2022 5

TABLE I: Conflict Analysis of Example 1.

i 1 2 3 4 5 6 7
Ci ∅ ∅ {2} ∅ {2, 3} ∅ ∅
Di {0} {0} {0} {0} {0} {0} {6}
Vi ∅ ∅ ∅ {2} ∅ {3} {3}
Ri ∅ ∅ ∅ ∅ ∅ ∅ {1, 5}

We define different conflict sets to describe the conflict
relationship of the CAVs. For each CAV i (i ≤ N, i ∈ N+), the
crossing set is defined as Ci, diverging set as Di, converging
set as Vi, and reachability set as Ri. Note that conflict sets
are determined when the CAV reaches the control zone border.
At this time, CAV i is at the control zone border while other
vehicles are in the control zone. Hence, other CAVs’ indexes
j in CAV i’s conflict sets are smaller than i itself, i.e., the
elements in CAV i’s conflict sets satisfy (7).

j < i, if j ∈ Ci ∪ Di ∪ Vi ∪Ri. (7)

Example 1 (Conflict analysis for 7 CAVs): Consider the
example shown in Fig. 2. CAVs 1 and 2 are approaching
from the east direction and have two separate destinations.
Two CAVs are traveling straight from the west with 3 on one
lane and 4 on another. CAV 5 is approaching from the south
on the left lane and CAV 6, 7 is on the right lane. Note that
CAV 7 is too far from CAVs 1 and 5 to catch up with them
at the stopping line.

Note that a virtual leading vehicle 0 is set with a constant
velocity vp in front of the CAVs that are closest to the intersec-
tion. vp represents pre-defined desired platoon speed in virtual
platoon coordination. Without the virtual leading vehicle 0,
CAVs which are closest to the intersection will accelerate
to vmax and make it impossible to form a virtual platoon.
With this pre-defined vp and the spanning tree generated
in Section III-B, the virtual platoon is controlled the same
way as typical vehicle platooning. Accordingly, virtual leading
vehicle 0 is added to the diverging set of the CAV closest
to the intersection on each lane; therefore, in Example 1,
Dk = {0}, k = {1, 2, 3, 4, 5, 6}. The remaining conflict sets
are shown in Table I.

B. Improved DFST Method

Based on the conflict set analysis in Section III-A, we
further define the conflict directed graph (CDG) GN+1 to
represent the conflict relationship between the CAVs.

Definition 3 (Conflict Directed Graph): The CDG is denoted
as GN+1 = (VN+1, EN+1). If there are N CAVs in the control
zone, we have the node set VN+1 = {0, 1, 2, . . . , N} (node 0
denotes the virtual leading vehicle). The unidirectional edge
set is defined as EuN+1 = {(i, j) | i ∈ Dj ∪ Rj}, and
bidirectional edge set is defined as EbN+1 = {(i, j) | i ∈
Cj ∪ Vj}. The edge set is the union of these two sets as
EN+1 = EuN+1 ∪ EbN+1.

The CDG of the case scenario in Fig. 2 is drawn in Fig. 3(a).
The nodes in the CDG represent the N + 1 CAVs in the
control zone, while the edges represent their conflicts. The

2

5

3

4

71

6

0

(a) Conflict Directed Graph

2

5

3

4

7

1

6

(b) Coexisting Undirected Graph

Fig. 3: Fig. 3(a) is the conflict directed graph (CDG). The
black unidirectional edges represent the diverging conflicts and
reachability conflicts, whereas the red bidirectional edges rep-
resent the crossing conflicts and converging conflicts. Fig 3(b)
is the Coexisting Undirected Graph (CUG), which is the
complement graph of the CDG (exclude node 0), and describes
the coexistence relationship of the vehicles.

black unidirectional edges represent the diverging conflicts and
reachability conflicts. The existence of a unidirectional edge
(i, j) implies that CAV j is not allowed to overtake CAV i
because of Assumption 1 or CAV j is not able to catch up to
CAV i because it satisfies (6). Thus, CAV j cannot reach the
intersection earlier than CAV i. The red bidirectional edges
denote the crossing conflict and converging conflict, which
means that the arrival sequence of the CAVs i and j’s can
be exchanged. Note that in the DFST method, the crossing
conflict Ci, diverging conflict Di, and converging conflict Vi
are treated as one union unidirectional-edge conflict. In Algo-
rithm 2, we will interpret the separation of these conflict sets
to improve the performance of the original DFST algorithm.

It is straightforward that the CDG describes all the conflict
relationships of the CAVs. Previous researches have proved
that the CDG in the DFST method possesses a DFST, as
shown in Lemma 1. Because this conclusion is drawn with
only unidirectional edges in the CDG, it can be applied to our
iDFST method.

Lemma 1 ([13]): A CDG has a DFST with root node 0, i.e.,
the virtual leading vehicle.

Because the CDG describes all the conflict relationships of
the CAVs, and the edges specifically describe the conflict type,
a feasible passing order solution can be obtained by building
a spanning tree from the CDG. Similar to the general graph
theory, the depth of each node in the spanning tree is calculated
based on its distance to the root node 0. Specifically, the depth
of the nodes represents the passing order of the CAVs, i.e., the
CAVs at the same depth shall pass the intersection simultane-
ously. [13] has proved that if the spanning tree is built by the
DFST method, the CAVs of the same depth have a conflict-
free attribute, i.e., a feasible spanning tree, which has been
proved in Lemma 2.

Lemma 2 ([13]): Consider a virtual platoon characterized by
the spanning tree G′N+1, which is built from the CDG GN+1.
The trajectories of two CAVs at the same depth in G′N+1 have
no conflict relationship with each other.

Hence, it implies that for a group of CAVs in the control

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 14, NO. 8, APRIL 2022 6

Algorithm 1 Improved Depth-first Spanning Tree Method

Input: Conflict Directed Graph GN+1 = (VN+1, EN+1)
Output: Improved Depth-first Spanning Tree G′N+1 =(

VN+1, E ′N+1

)
1: initialize: Set the depth of node 0’s layer d0 = 0
2: for i = 1, 2, ..., N do
3: Pu = {m ∈ VN+1 | (m, i) ∈ EuN+1}. Find all parent

nodes m of i in VN+1 with unidirectional edges (m, i)
4: Pb = {n ∈ VN+1 | (n, i) ∈ EbN+1}. Find all parent

nodes n of i in VN+1 with bidirectional edges (n, i)
5: k = FIND-OPT-PARENT(G′N+1, Pu, Pb)
6: Set node k as the parent node of i in the graph G′N+1,

add a node i and an edge (k, i) to the graph G′N+1, and
set the depth of the node i to dk + 1

7: end for

zone, a passing order solution is related to the DFST. It can be
also inferred that the depth of the spanning tree is related to
the traffic mobility at the intersection. Note that the spanning
tree dynamically changes as CAV enters the control zone or
arrives at the stopping line, which will be shown in the case
study in Section IV-B.

In our research, CAVs are abstracted as nodes in the
spanning tree. Therefore, the largest depth of the spanning
tree nodes dall is related to evacuation time as defined in
Definition 1, and the average depth of the spanning tree nodes
is related to ATTD as defined in Definition 2. Note that
vehicles of the same depth in the spanning tree are assumed
to pass the stopping line simultaneously. It also means that at
any time, vehicles in the conflict zone are conflict-free to avoid
potential collisions. Therefore, adequate passing time should
be given to each layer to ensure that CAV in every trajectory
is able to pass the conflict zone. We are aware that if CAVs of
different trajectories are treated respectively, traffic efficiency
can be further optimized. However, this deviates from our topic
of optimality and computation complexity. Thus, the same
passing time is assumed for each layer in the spanning tree.

Evacuation time represents the overall time cost for all the
CAVs to pass the intersection, i.e., the arrival time of the last
CAV. Thus, minimizing the evacuation time is equivalent to
finding the smallest possible dall in all the feasible spanning
trees. Formally, we describe this problem as

Proposition 1 (SMALLEST-DEPTH): < GN+1,G′N+1, k >:
GN+1 has a feasible spanning tree G′N+1 with dall = k.

We propose the iDFST method in Algorithm 1 and 2 to
generate a DFST. For each node i, we first find all its parent
nodes in GN+1 in Lines 3 and 4 of Algorithm 1. Note that both
the original DFST method and iDFST method are based on the
FIFO principle. Even though there are bidirectional edges in
the CDG, the passing order is decided according to the arrival
sequence of the CAVs. Thus, the larger-index CAVs should
not be considered in the passing-order optimization process
of the smaller-index CAVs. This also implies that only the
smaller-index CAVs are selected as the parent node candidates,
corresponding to the conflict definition in (7).

Then, in Line 5 of Algorithm 1, i.e., Algorithm 2, we
treat the conflict types differently. If the parent node j is

Algorithm 2 FIND-OPT-PARENT

Input: G′N+1, Pu, Pb
Output: Optimal Parent node k

1: lu = max dm, s.t. m ∈ Pu
2: Lb = {dn | n ∈ Pb}
3: Find min dk, s.t. {k ∈ Pu ∪ Pb | dk + 1 > lu, and (dk +

1) ∩ Lb = ∅}
4: return k

2

53

4

71

0

6

(a) DFST Spanning Tree

2

53

4

71

6

0

(b) iDFST Spanning Tree

2

5

34

7

1

6

0

(c) MCC Spanning Tree

Fig. 4: Comparison of spanning tree results of three different
methods. The DFST and iDFST methods yield dall = 4 and
the MCC method yields dall = 3. Note that the average depth
of the nodes of iDFST result is smaller than that of DFST
result.

in the diverging or reachability conflict set of CAV i, i.e.,
j ∈ Di ∪ Ri, i cannot surpass j because of the overtaking
restriction or acceleration limitation. The target depth of CAV
i should not surpass the depth of the CAVs in Di or Ri, i.e.,
the largest depth lu of the unidirectional edge parents. In other
cases, the parent node j is in the crossing conflict set Ci or
converging set Vi of CAV i. It means CAVs i and j cannot
arrive at the intersection simultaneously, but their arrival order
can be exchanged. Either CAV i or CAV j can pass the
intersection first; therefore, we find the union depth set of
the crossing conflict parents Lb. To find the optimal parent
k, we should select the proper depth of CAV i. Because the
depth of the parent k is dk, the depth of CAV i is dk + 1. As
mentioned before, dk + 1 should be neither smaller than lu
nor have an intersection with the set Lb. Considering traffic
efficiency, the depth dk should be as small as possible, as
shown in Line 3 in Algorithm 2. The application of the iDFST
method in Example 1 is shown in Table II and the output
iDFST is plotted in Fig. 4(b).

We promote the proposition 2 to show the depth character-
istics of the two algorithms.

Proposition 2: In deciding layer for each node, the iDFST
method always arranges the node at the same or smaller depth
compared to DFST method.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 14, NO. 8, APRIL 2022 7

TABLE II: Application of the iDFST method to the CDG in Fig. 3(a), resulting in Fig. 4(b).

Candidate Node i 1 2 3 4 5 6 7
Pu = Di ∪Ri {0} {0} {0} {0} {0} {0} {1, 5, 6}
Pb = Ci ∪ Vi ∅ ∅ {2} {2} {2, 3} {3} {3}

lu 0 0 0 0 0 0 3

Lb ∅ ∅ {1} {1} {1, 2} {2} {2}
Selected Parent Node k 0 0 1 2 3 0 5

di 1 1 2 2 3 1 4

dall 1 1 2 2 3 3 4

Proof: We use contradiction to prove the proposition.
Without loss of generality, we assume in deciding the layer
of vehicle i, the target layer depth of DFST dDFSTi is smaller
than that of iDFST diDFSTi for the first time. Since it is
the first time dDFSTi < diDFSTi holds, for vehicles j with
smaller index i, it holds dDFSTj ≥ diDFSTj . It means that for
the vehicles with j < i, iDFST always puts them at smaller
depth. Thus for every node j in Pb and Pu, dDFSTj ≥ diDFSTj .
Thus, dDFSTj,max ≥ diDFSTj,max . Since DSFT method use the largest
depth of the nodes in Pb ∪ Pu to decide dDFSTi , we obtain
dDFSTi ≥ dDFSTj,max . And if dDFSTi < diDFSTi , for vehicle i
we have diDFSTi > dDFSTi ≥ dDFSTj,max ≥ diDFSTj,max , which
leads to diDFSTi > diDFSTj,max . It means that in iDFST, the
depth of CAV i diDFSTi is always bigger than the previous
largest depth diDFSTj,max . Since the spanning tree depths are
consecutive integers, it infers that the depth in iDFST is always
growing, i.e., at least diDFSTi = diDFSTi−1 + 1. However,
in Algorithm 2, depth of CAV i diDFSTi ≤ diDFSTi−1 is
possible, which leads to a contradiction. Therefore, it holds
dDFSTi ≥ diDFSTi for every node i.

Proposition 2 implies that both DFST and iDSFT are based
on FIFO principle, and iDSFT further minimizes the depth
of every CAV at each step. It also means that iDFST tries to
minimize ATTD of the CAV in scheduling it. However, since
it is locally optimized, minimum ATTD for all CAVs can not
be guaranteed. From proposition 2, since dDFSTi ≥ diDFSTi

holds for every node, it is evident to conclude theorem 1.

Theorem 1: In solving the SMALLEST-DEPTH problem as
shown in Proposition (1), iDFST method always obtains the
same or smaller overall depth of the spanning tree compared
to DFST method.

The main improvement of the iDFST method is in Algo-
rithm 2. In [13], the conflict parent nodes are treated as one
union conflict set P = Pu ∪ Pb. Therefore, the largest depth
dk of all the parent nodes P are found in the same way. For
instance, in the DFST method, the parent nodes of CAV 6
are the nodes {0, 3}, which causes the largest depth dk of the
parent nodes to be d3 = 2; therefore, the DFST method has
d6 = 2 + 1 = 3, as shown in Fig. 4(a). On the contrary, in
the iDFST method, the conflict nodes are separated into two
sets Pu, Pb. By distinguishing whether the parent nodes can
be surpassed or not, the smaller dall, i.e., the locally optimal
solution is obtained. As shown in Fig. 4(b), CAV 6 is ranked
d6 = 1 in the iDFST method. Therefore, the depth of CAV 6
is decreased from 3 to 1 by iDFST method. Even if the total
depth of DFST and iDFST spanning tree are both dall = 4,

the average depth of the nodes in iDFST spanning tree is 2,
which is smaller than that of DFST spanning tree 2.28.

Remark 1: We conclude that the DFST method focuses on
the feasibility of the passing order problem. The proposed
iDFST method additionally considers the optimality, i.e., finds
the smallest depth for each CAV, but the solution is still found
CAV by CAV, i.e., based on the FIFO principle. In other words,
the iDFST solution is locally optimal in arranging each CAV.
Because each CAV needs to check all the conflict relationships
of the parent nodes, the overall computational complexity is
O(N2). In the simulation, however, the spanning tree of the
previous step is passed on to generate the spanning tree of
the current step. It means that only one CAV needs to be
handled in each calculation step. Therefore the simulation
computational complexity is O(N). What’s more, to further
reduce the computational complexity, a higher-efficiency data
structure in saving the previous scheduling result is needed.

C. Minimum Clique Covering Method

As mentioned before, we aim to minimize the overall depth
dall of the spanning tree, which corresponds to the evacuation
time of all the CAVs. If we reconsider the traffic scenario
in Fig. 1, a maximum number of six CAVs can pass the
intersection simultaneously. In other words, because there is
a limited number of CAVs in the control zone, the overall
depth of the spanning tree can be minimized by maximizing
the CAV groups that can drive through the intersection at
the same time. From this point of view, another method to
describe the conflict relationships of the CAV is to describe
their coexistence relationships.

Definition 4 (Coexisting Undirected Graph): The CUG is
defined as the complement graph of the CDG GN+1, excluding
node 0. Thus, GN =

(
VN , EN

)
, where VN = VN+1 − {0},

EN = {(i, j) | i, j ∈ VN , i 6= j, and (i, j) /∈ EN+1}.
In Example 1, the CDG is drawn in Fig. 3(a) and the CUG

in Fig. 3(b). Because the CDG edge EN+1 implies that two
CAVs have conflicts and the CUG is the complement graph
of the CDG, the CUG edge VN implies that the two CAVs
are conflict-free, i.e., they can pass through the intersection
simultaneously.

Recall that we aim to minimize the overall depth dall of
the spanning tree. Because the total number of CAVs, i.e., the
node number

∣∣VN ∣∣, is a constant value N , minimizing the
overall depth of the spanning tree is equivalent to widening
its average width. Thus, solving the optimal passing solution
is equivalent to finding the minimum number of groups of

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 14, NO. 8, APRIL 2022 8

Fig. 5: Cliques of sizes 2, 3, 4, 5, 6.

the combinations of coexisting CAVs in the CUG. Note that
this conclusion corresponds to common sense. The maximum
groups of the coexisting CAVs represent the maximizing of
the time utility of the intersection, which minimizes the overall
evacuation time.

In graph theory, the clique is suitable for describing the
coexistence relationship of the CAVs. The definition of the
clique is shown in Definition 5, and the cliques of sizes
3, 4, 5, 6 are plotted in Fig. 5.

Definition 5 (Clique[35]): A clique C in an undirected graph
G = (V,E) is a subset of the nodes, C ⊆ V, such that
every two distinct nodes are adjacent. This is equivalent to the
condition that the subgraph of G induced by C is a complete
graph.

The clique C is the aforementioned group. Because the
edges are selected from the CUG GN , the CAVs in one clique
can pass through the intersection simultaneously in a conflict-
free manner. In Fig. 3(b), C = {1, 2} is a clique, but it is not
the maximum clique because cliques of larger sizes exist, e.g.,
{1, 2, 6}. The maximum clique of a graph G is a clique
with the maximum number of nodes. Particularly, the number
of nodes in the maximum clique in G is called the clique
number, denoted as ω(G). In Fig. 3(b), ω(GN) = 4, which
corresponds to the traffic scenario in Example 1, where a
maximum number of 4 CAVs can pass through the intersection
simultaneously. Note that in the overall intersection scenario
Fig. 1, ω(GN) = 6 as long as there is an adequate number of
CAVs on the coexisting lanes.

Recall that our target is to find the minimum number of
groups in the CUG, i.e., the minimum number of cliques
covering all the nodes in the CUG GN . Therefore, we define
the MCC problem as follows.

Definition 6 (Minimum Clique Cover (MCC) [36]): A clique
cover of a graph G = (V,E) is a partition of V into k disjoint
subsets V1, V2, . . . , Vk, such that for 1 ≤ i ≤ k, the subgraph
induced by Vi is a clique, i.e., a complete graph. The MCC
number of G is the minimum number of subsets in a clique
cover of G, denoted as θ(G).

The MCC number θ(GN) of the CUG represents the min-
imum number of cliques covering the CUG. Because the
cliques in the CUG represent the CAVs that can pass through
the intersection simultaneously, these CAVs in the same clique
can be scheduled to drive through the intersection at the same
time, i.e., be scheduled at the same depth of the spanning tree.
Note that the MCC does not lead to the maximum clique and
vice versa. For example, considering the CUG in Fig. 3(b), the
MCC number θ(GN) = 3 and the corresponding cliques are
listed in Table III. The maximum cliques {1, 4, 5, 6} appears
in solution 1 but not in the subsequent solutions. We conclude
that for an arbitrary intersection scenario, the coexistence

TABLE III: Possible minimum clique cover solutions of
Fig. 3(b). Note that θ(GN) = 3 in this graph.

Solutions
Subsets

V1 V2 V3

1 {1, 4, 5, 6} {2, 7} {3}
2 {4, 5, 6} {2, 7} {1, 3}
3 {1, 3, 4} {5, 6} {2, 7}
4 {1, 5, 6} {2, 7} {3, 4}

relationship of the incoming CAVs is perfectly depicted in the
CUG GN . The clique number ω(GN) of the CUG represents
the maximum number of CAVs that can simultaneously pass
through the intersection, whereas the MCC number θ(GN)
represents the possible minimum passing order solution.

Note that θ(GN) = 3 in CUG Fig. 3(b), which means the
spanning tree generated by the MCC solutions are in dall = 3.
It also means that the theoretical evacuation times of these
solutions are the same, i.e., the theoretical values of tevac
are the same. Thus, the performance index of tevac in (3)
corresponds to θ(GN), which is the global optimal passing
order considering the evacuation time. In addition, we further
consider the ATTD among these solutions as a secondary
index. The definition of tATTD in (4) can be rewritten in
graphical terms as

min

k∑
i=1

di|Vi|, i ∈ N+

subject to :

k∑
i=1

|Vi| = N,

(8)

where Vi, 1 ≤ i ≤ k are the k cliques obtained from MCC
algorithm. Since clique Vi is a sub-graph induced from CUG
GN , |Vi| represents the node number of clique Vi. Because
vehicles of number |Vi| in one clique Vi are arranged in the
same layer, i.e., of the same depth di,

∑k
i=1 di|Vi| represents

the weighted summing depth of the spanning tree. Since the
total vehicle number is a constant value (

∑k
i=1 |Vi| = N),

minimizing the average depth of the spanning tree equals to
min

∑k
i=1 di|Vi|, i ∈ N+.

In this circumstance, it is evident that the subsets Vi should
be arranged in the descending order to decrease the average di
of N CAVs in (8). Because of the same reason, we prefer to
choose the solutions with the maximum cliques when they
have the same θ(GN). For example, in Table III, we tend
to choose the Solution 1, and the corresponding optimized
spanning tree is scheduled as {1, 4, 5, 6} → {2, 7} → {3}, as
shown in Fig. 4(c).

After introducing the MCC problem, we describe the formal
complexity of the original SMALLEST-DEPTH problem in
Theorem 2.

Theorem 2: SMALLEST-DEPTH problem is NP-complete.
Proof: First, we prove that SMALLEST-DEPTH ∈ NP.

Assume we have a CDG GN+1 = (VN+1, EN+1), a spanning
tree G′N+1 =

(
VN+1, E ′N+1

)
, and an integral k. The certificate

we choose is k = |VN+1|. The verification algorithm consists
of two procedures, i.e., whether the spanning tree G′N+1 is

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 14, NO. 8, APRIL 2022 9

Algorithm 3 Minimum Clique Cover Method

Input: Coexisting Undirected Graph GN =
(
VN , EN

)
Output: Spanning Tree G′N+1 =

(
VN+1, E ′N+1

)
1: Calculate the complement graph GN = GN
2: Find the breadth-first search sequence K =

(v1, v2, . . . , vN) of the nodes in GN
3: for each node vi of GN in the sequence K do
4: assign node vi the smallest possible clique index
5: end for
6: Rank V1, V2, . . . , Vk in the descending order and obtain

the spanning G′N+1

7: Exchange the conflicting CAVs of G′N+1 in the same lane
if necessary

8: return G′N+1

feasible and dall of the spanning tree is k. Checking the edge
connections of EN+1 and the depth of each node of VN+1 can
be evidently accomplished in polynomial time.

Secondly, we prove that the SMALLEST-DEPTH problem
defined in Proposition (1) is NP-hard by showing that it
can be reduced to the MINIMUM-CLIQUE-COVER prob-
lem [36] defined in Definition 6, i.e., SMALLEST-DEPTH ≤p
MINIMUM-CLIQUE-COVER. As mentioned before, given a
CDG GN+1 = (VN+1, EN+1), we define the corresponding
CUG as GN =

(
VN , EN

)
, where VN = VN+1 − {0},

EN = {(i, j) | i, j ∈ VN , i 6= j, and (i, j) /∈ EN+1}. The
transformation of the CDG into CUG is easily achieved in
polynomial time.

If the CDG GN+1 has a feasible spanning tree G′N+1 with
dall = k, we claim that the corresponding CUG GN has VN
partitioned into k disjoint cliques. Because G′N+1 is a feasible
spanning tree, if i, j are the nodes of same depth, they should
not have a conflicting relationship, i.e., (i, j) /∈ EN+1. Because
the CUG is the complement graph of the CDG, it is evident
that (i, j) ∈ EN . Thus, the nodes of the same depth in the
spanning tree G′N+1 are connected with each other, i.e., they
form cliques in GN . The overall depth of the spanning tree k
corresponds to the clique cover number of GN .

On the contrary, we assume the the CUG GN has VN
partitioned into k disjoint cliques. We know that k disjoint
cliques lead to a feasible passing order, that is, the CDG GN+1

has a feasible spanning tree G′N+1 with dall = k.
We have proven that the SMALLEST-DEPTH problem can

be reduced to the MCC problem, which implies that the MCC
number θ(GN) of the CUG is the smallest possible dall of
the spanning tree solutions, i.e., the global optimal solution.
However, solving the NP-hard problem is a difficult task
in real deployment. In the simulation, for a small number
of vehicles, we applied the brute-force method to find the
MCC number, i.e., the strictly global optimal solution. In the
previous work, we have shown that when the traffic scenario is
simple, i.e., a maximum number of two vehicles are allowed
to pass the intersection simultaneously, the CAV scheduling
problem is reduced to a maximum matching problem [37].
In this case, the global optimal solution is obtained in O(n4)
time.

For a large number of vehicles and complicated intersection
scenarios, the dimensional explosion makes the brute-force
method impossible to deploy. Therefore, we apply a practical
approach to solve the problem heuristically, as shown in Line 1
to 5 of Algorithm 3. The MCC problem of G is proved
to be reduced to the graph coloring problem of G [38],
and there are numerous heuristic methods to solve the graph
coloring problem. Recall that we intend to find the solutions
with larger cliques. Thus, we first generate a node sequence
K = (v1, v2, . . . , vN) by breadth-first search (BFS). Then,
we greedily assign node vi the smallest possible color, i.e.,
the clique index according to the node sequence K, forming
the subset cliques V1, . . . , Vk. Line 6 is the spanning process,
which arranges the cliques into a spanning tree and has a
constant calculation time.

Remark 2: The BFS sequence generation needs O(|EN | +
|VN |). Afterwards, the MCC is solved greedily in O(|VN |)
and the ranking of the spanning tree requires a constant time.
Hence, the overall computational complexity of the heuris-
tically solved MCC method, i.e., Algorithm 3 is O(|EN | +
2 |VN | + 1) = O(N), which is the same as O(N) of the
DFST and iDFST methods. In the simulation, we will show
that even if the heuristically solved MCC method is not the
strictly globally optimal solution, it outperforms the other two
methods.

D. Distributed Control

In the ideal communication condition, every CAV obtains
driving information, e.g., position and velocity, from the other
CAVs in real-time. However, the communication resource, e.g.,
the bandwidth, is always limited around an intersection. There-
fore, we design a hierarchical framework to lower the com-
munication burden. In the upper level, the central coordinator
collects the information of the CAVs and assigns the scheduled
arrival plans to them. In the lower level, a CAV executes its
arrival time through distributed control. Similar to the virtual
platoon analysis in [13], we design the distributed control as
follows.

1) Geometric Topology: As mentioned in Section III, all
the three methods, i.e., DFST, iDFST, and MCC, lead to a
feasible spanning tree G′N+1 =

(
VN+1, E ′N+1

)
, as shown in

Fig. 4, which forms the geometric topology of the virtual
platoon. Because each node Vi in G′N+1 represents a CAV
i and the edge E ′i = (j, i) represents the virtual preceding
CAV j, the CAV can always follow its parent node CAV Vj .
In other words, CAV i and its parent CAV j intend to maintain
a constant desired car-following distance Ddes and the same
velocity vdes.{

lim
t→∞

‖vi(t)− vj(t)‖ = 0

lim
t→∞

(pj(t)− pi(t)−Ddes) = 0
, i ∈ N+, (9)

where pi(t), pj(t) denote the remaining distance of the CAVs i
and j to the stopping line, and vi(t), vj(t) for their velocities.
Lemma 2 has proven that the CAVs at the same depth have
no conflict relationship. Therefore, if CAVs i and j are of the
same depth, (9) also aligns them at the same depth in arriving
at the stopping line.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 14, NO. 8, APRIL 2022 10

Communication Topology

Geometry Topology

2

53

4

71

6

0

(a) iDFST

Communication Topology

Geometry Topology

2

5

34

7

1

6

0

(b) MCC

Fig. 6: Predecessor–leader following (PLF) communication
topology illustration of the iDFST and MCC methods. Red
edges represent the geometric topology of the virtual platoon,
which is the result of different scheduling methods, as shown
in Fig. 4. The black edges represent the PLF communication
topology of the virtual platoon, where each CAV collects
information from the virtual preceding vehicle and the virtual
leading vehicle.

2) Communication Topology: The communication topology
represents the information exchange route among the CAVs.
Various communication topologies have been studied in the
field of vehicle platoon control [39]. For simplicity, we use
the predecessor–leader following (PLF) topology, where each
CAV communicates with its preceding vehicle in the virtual
platoon and the virtual leading vehicle. Similar to the topology
analysis in [13], [15], we introduce G′N+1 =

{
VN+1, EN+1

}
as the communication graph of the spanning tree G′N+1 ={
VN+1, E ′N+1

}
. The nodes still represent the CAVs; thus,

VN+1 = VN+1. Meanwhile, the edges EN+1 represent the
information exchange among the CAVs. The communication
topologies of the iDFST and MCC spanning trees are shown
in Fig. 6. Specifically, the CAVs collect information from the
following two types of CAVs.

1) Virtual leading vehicle: because the CAV obtains its
target layer in the scheduled spanning tree, every CAV in
the spanning tree communicates with the virtual leading
vehicle 0.{

(0, j) | j ∈ VN+1, j 6= 0
}
∈ EN+1. (10)

2) Virtual preceding vehicle: the second type is the vir-
tual preceding vehicle in the spanning tree G′N+1 ={
VN+1, E ′N+1

}
. This term is used to help the CAVs

maintain a safe distance from the upper layer in the
spanning tree. Note that the preceding vehicle in the
spanning tree does not symbolize the preceding vehicle
of the same lane in the simulation and vice versa. The
CAVs 0 and 4 are the preceding vehicles of CAV 2 in
the iDFST and MCC spanning trees. respectively.{

(i, j) | (i, j) ∈ E ′N+1, i, j 6= 0
}
∈ EN+1. (11)

The adjacency matrix A = [aij] ∈ RN×N and pinning
matrix Q = [qij] ∈ RN×N are further introduced to represent
the communication topology.

aij =

{
1, if (i, j) ∈ EN+1

0, else
, i, j ∈ N+, (12)

where aij = 1 indicates that CAV i receives information from
CAV j.

qij =

{
1, if i = j, (0, j) ∈ EN+1

0, else
, i, j ∈ N+, (13)

where qij = 1 indicates that CAV i receives information from
the virtual leading vehicle 0. Therefore, Q is a diagonal matrix.

Further, a Laplacian matrix L = [lij] ∈ RN×N is also
introduced as

lij =

{
−aij , i 6= j∑N
k=1 aik, i = j

, i, j ∈ N+. (14)

Note that we assume the information exchange is bidirec-
tional; thus, aij = aji. Hence, both A, Q and L are symmetric
matrices.

Remark 3: The communication topology graph G′N+1 ={
VN+1, EN+1

}
is designed based on the geometric topology

graph of the spanning tree G′N+1 =
{
VN+1, E ′N+1

}
. Because

the geometric topology represents the feasibility and optimal-
ity of an arrival plan, the communication topology represents
the communication realization of the arrival plan. [13] does
not specify the communication topology. However, in this
paper, we use PLF to simplify the communication topology
and demonstrate the effectiveness of the algorithm. Topologies
with greater complexity will be addressed in future research.

3) Controller Design: The control input of CAV i is
calculated according to the communication topology. The car-
following distance in the virtual platooning is defined as in (9).
Hence, the virtual platoon controller is designed as follows.

Firstly, a union set Ii is defined to describe the information
exchange of CAV i, as follows:

Ii = {j | aij = 1} ∪ {0 | qii = 1} . (15)

The distance and velocity errors are defined as

δ
(i,j)
p = pj(t)− pi(t)−Ddes (dj − di)
δ
(i,j)
v = vi(t)− vj(t)

, j ∈ Ii, (16)

where δ(i,j)p is the car-following distance error of CAV i, and
δ
(i,j)
v is the car-following velocity error considering all the

CAVs in Ii.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 14, NO. 8, APRIL 2022 11

Note that the arrival plans are described by the virtual
platoon. Therefore, typical platoon controllers [13], [15], [39]
can be used in controller design. Since our research focuses
on the scheduling problem rather than the control problem, a
linear feedback controller is designed as follows:

ui =−
∑
j∈Ii

kpδ
(i,j)
p −

∑
j∈Ii

kvδ
(i,j)
v

=− kp
∑
j∈Ii

aij (pj(t)− pi(t)−Ddes (dj − di))

− kpqii (p0(t)− pi(t)−Ddes (d0 − di))

− kv
∑
j∈Ii

aij (vi − vj)− kvqii (vi − vp) ,

(17)

where kp and kv are the feedback gains of the distance and
velocity errors of CAV i. Because we consider a homogeneous
scenario, the same gains are set for all the CAVs.

As mentioned before, we consider a second-order vehicle
dynamics as shown in (1). We define the car following errors
as the new vehicle state.

x̄i =

[
x̄i,1
x̄i,2

]
=

[
p0 − pi −Ddes (d0 − di)

vi − vp

]
, i ∈ N+.

(18)
The vehicle input remains the same, i.e., ūi = ui.

Therefore, the car-following vehicle dynamic model is

˙̄xi = Ax̄i + Būi, i ∈ N+. (19)

The linear feedback controller is simplified to

ūi = −kp
∑
j

(lij + qij) x̄j,1 − kv
∑
j

(lij + qij) x̄j,2, j ∈ Ii.

(20)
Defining k = [kp, kv]

T , we have

ūi = −
∑
j

(lij + qij)k
T x̄i, i ∈ N+. (21)

IV. SIMULATION

A. Simulation Environment and Performance Index

The traffic simulation was conducted in SUMO, which
is widely used in traffic researches[40]. The simulation was
run on an Intel Core i7-12700F 2.1 GHz processor. The
intersection scenario and lane direction settings are the same as
shown in Fig. 1, and the control zone length Lctrl = 900m.
Note that CAVs should converge to their target layer when
arriving at the stopping line. Therefore, adequate control zone
length is provided to enable CAVs to form an equilibrium
virtual platoon state. It is an interesting future research topic
to analyze the shortest control zone length needed in algorithm
deployment. The CAV arrival is assumed to be a Poisson
distributed flow, given by

P (X = k) =
λk

k!
e−λ, k = 0, 1, · · · , (22)

where X represents the vehicle’s arrival at the control zone.
λ is the expected value as well as the variance of the Poisson
distribution.

Traffic efficiency is the main consideration in the proposed
scheduling algorithms. To better show the improvement of the

proposed algorithms, we further introduce fuel consumption
as a performance indicator to evaluate the fuel economy. For
the overall traffic efficiency, the evacuation time is as defined
in Definition 1. In terms of individual benefits, the ATTD is
considered as defined in Definition 2. As for fuel consumption,
the HBEFA3 model is used to evaluate the fuel consumption
of the CAVs, which is integrated with SUMO [41]. Other key
simulation parameters are shown in Table IV.

Remark 4: For safety concerns, Ddes is designed relatively
conservatively to avoid vehicles in different layers from col-
lision, and vehicles are assumed to maintain desired virtual
platoon speed vp in the intersection conflict zone. There-
fore, maximum speed vmax can only be reached in CAVs’
intersection-approaching behavior. These speed settings accord
with the local traffic regulations. Furthermore, it would be an
interesting future direction to consider vehicle speed trajectory
planning in the conflict zone and robust controller, which helps
to further increase traffic efficiency and platoon performance.

B. Case Study of Algorithm Comparison

We demonstrate a case study in Example 2 to show the
effectiveness of the proposed algorithms. The benchmark algo-
rithm is the DFST method proposed in [13]. Based on DFST,
the first algorithm is the iDFST presented in Section III-B. The
MCC algorithm has been explained in Section III-C, which
applies a heuristic algorithm to solve the MCC problem.

Example 2 (A case study of 30 CAVs): The traffic scenario
remains the same as shown in Fig 1(b). A total number of
30 vehicles arrive at the intersection with λ = 3 Poisson
distribution. The vehicle arrivals are generated randomly and
remain identical among the three algorithms.

As mentioned before, CDG and CUG are employed to
describe the conflict relationship of the vehicles. The CDG
is plotted in Fig. 7(a) as explained in Definition 3. The
red dashed edges are the crossing conflicts and converging
conflicts, whereas the black solid edges are the diverging and
reachability conflicts. Fig. 7(b) depicts the CUG defined in
Definition 4, which is the complement graph of the CDG.
The edges are the coexisting relationships, i.e., the conflict-
free vehicles.

Although identical vehicle arrivals are set for the three
algorithms, different spanning trees, i.e., passing order so-
lutions, are obtained. The spanning trees are carried out
by scheduling the vehicles in the same layer to pass the
intersection simultaneously. Thus, the overall depth dall of the
spanning tree represents the evacuation time of the solution.
First, the spanning trees of the DFST and iDFST methods
are shown in Fig 7(c) and Fig. 7(d), which are derived from
Fig. 7(a). Both the DFST and iDFST methods are based on
the FIFO principle, i.e., obtaining the spanning tree vehicle by
vehicle. Because the DFST has limited optimization of vehicle
scheduling, it is a feasible solution with dall = 14. In contrast,
iDFST separates the conflict types to find the optimal place
for each vehicle and obtains a locally optimal solution. Hence,
the overall depth of the iDFST method is dall = 11. Note that
the red nodes are the vehicles that are brought forward when
compared with the DFST method. Fig 7(e) depicts the solution

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 14, NO. 8, APRIL 2022 12

TABLE IV: Key Parameters.

Types Parameter Symbol Value

Simulation Parameters
Simulation step - 0.1 s
Initial vehicle speed - 15 m/s
Control zone length Lctrl 900 m

Controller Parameters

Feedback gain of distance error kp 0.1
Feedback gain of velocity error kv 0.3
Desired velocity of the virtual leading vehicle vp 10 m/s
Desired car-following distance of the virtual platoon Ddes 30 m
Maximum acceleration umax 5 m/s2

Minimum acceleration umin -6 m/s2
Maximum velocity vmax 15 m/s
Minimum velocity vmin 0 m/s

derived from Fig. 7(b) by using the MCC method. The nodes
of the same color represent the vehicles in the same clique, i.e.,
the vehicles that are scheduled to pass the intersection at the
same time. The same cliques and the corresponding colors are
drawn in Fig. 7(b) to show the MCC result with dall = 10.
Moreover, it is observed that MCC generates a spanning tree
much balanced than iDFST. In the following simulations, we
found that even if evacuation time and ATTD are not of
much difference in iDFST and MCC, the distribution of the
vehicle nodes influences the fuel consumption performance
significantly.

Remark 5: Note that these algorithms run in a dynamic
process in real-scenario implementations. When CAVs enter
the control zone or reach the stopping line, CDG, CUG,
and spanning trees in Fig. 7 change dynamically. It means
that Fig. 7 is the intermediate state where the spanning trees
grow into maximum depth dall. For DFST/iDFST, CDG and
spanning tree are calculated vehicle by vehicle. Therefore,
as the CAVs gradually approach from 1 to N , CDG and
spanning tree gradually grow to Fig. 7. In other words, the
arrival plan of k vehicles is calculated based on the arrival
plan of k − 1 vehicles. For MCC, since the spanning tree is
calculated in global optimal, the spanning tree of k vehicles
is not directly related to the spanning tree of k − 1 vehicles.
In other words, the arrival plan is re-calculated as the new
CAV comes. To further clarify the dynamic process, we
upload the complete simulation GIF which is available at
https://github.com/CeroChen/GraphBashedCoordination.

C. Algorithm Validation with Small Number of Vehicles

Next, we focus on the optimality of the three algorithms
in general cases. In this section, we introduce the MCC-
BruteForce algorithm. It enumerates all the possible combi-
nations of the cliques, i.e., solves the MCC problem by using
the brute force method. Although MCC-BruteForce provides
us the theoretical global optimal solution, the huge calculation
burden makes it impossible to apply it to a large number of
vehicles. In our simulation, MCC-BruteForce computation of
11 vehicles requires more than 32GB RAM, which exceeds
the maximum RAM of our computer. Thus, 10 is set as the
number of input vehicles.

Because the vehicle scheduling problem is strongly related
to the vehicle arrival time, conducting a small number of simu-
lations is insufficient. Hence, 100 repetitions of the simulation

were conducted for each algorithm. It is worth mentioning
that these 100 instances of vehicle arrival input are randomly
generated by Poisson distribution, as shown in (22), and they
are identical across all four algorithms.

We use the box plot to illustrate the maximum depth
of the spanning tree, i.e., the overall traffic efficiency, as
shown in Fig. 8(a). The red lines are the median values
of the corresponding simulation results, whereas the green
triangles represent the average values. Compared with the
DFST method, both the iDFST and MCC algorithms can
reduce the maximum depth. The first quartile value, median
value, and third quartile value are 4, 4, 5, respectively. How-
ever, the average values of the results are not the same. The
iDFST method attained an average value of 4.47, whereas the
average value in the MCC method was 4.41 and that of MCC-
BruteForce was 4.35. Recall that the vehicle arrivals were
identical for these algorithms; therefore, it can be inferred
that the MCC-BruteForce method obtains the global optimal
solution. Because of the heuristic MCC method introduced
in Section III-C, the MCC method cannot obtain the global
optimal solution. Nevertheless, it achieves a better result than
the iDFST method, which obtains the locally optimal solution.
The computational time comparison is shown in Fig. 8(b). As
vehicle number increases, the computational time of MCC-
BruteForce method increases exponentially. For 10 CAVs,
computational time exceeds 1s, which does not meet the real
scenario deployment requirement. The standard deviation of
MCC-BruteForce method also increases with vehicle number.
It implies that the computational time of MCC-BruteForce
method is strongly-related to vehicle distribution. By contrast,
the computational time of the other three methods remains be-
low 0.03s and has a low standard deviation. The computational
time of more vehicles is discussed in Section IV-D.

D. Simulation Results for Various Numbers of Input Vehicles
For conducting the simulation on a larger scale, we extended

the number of input vehicles from 10 to 50 and further
compared the algorithms. λ = 3 was set as the input for
the Poisson distribution of the vehicle arrival. As shown in
Fig 9, the red lines in the box plot are the median value and
the triangles are the average values. Ten repetitions of the
simulation were conducted for each number of vehicles, and
the vehicle arrivals were identical across the three algorithms.

In terms of the overall traffic efficiency performance, both
the iDFST and MCC methods reduce the evacuation time

https://github.com/CeroChen/GraphBashedCoordination

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 14, NO. 8, APRIL 2022 13

(a) Conflict Directed Graph (b) Coexisting Undirected Graph

Layer 1

Layer 5

Layer 10

Layer 14

(c) DFST Method Spanning Tree

Layer 1

Layer 5

Layer 10

Layer 11

(d) iDFST Method Spanning Tree

Layer 1

Layer 5

Layer 10

(e) MCC Method Spanning Tree

Fig. 7: A case study of 30 CAVs. CDG and CUG are presented in Fig. 7(a) and Fig. 7(b), respectively, to describe the
conflict and coexistence relationship of the CAVs. DFST arranges the CAVs as shown in Fig .7(c) with the maximum layer of
dall = 14. iDFST, which is an improvement of DFST, utilizes some nodes (red ones) to optimize the overall depth, as shown
in Fig. 7(d), resulting in dall = 11. The MCC method finds the minimum group of CAVs that can pass through the intersection
simultaneously (nodes of the same color), resulting in dall = 10, as shown in Fig. 7(e).

significantly when compared with DFST. As shown in Fig 9(a),
the average value of the evacuation time in DFST for the
number of input vehicles of 50 is 69.9 s, whereas those in
iDFST and MCC are 46.2 s and 46.05 s, respectively. The
two proposed algorithms save approximately 33% of the
evacuation time because of the improved scheduling method.
Similar results are observed in the ATTD in Fig. 9(b), where
iDFST and MCC save approximately 18% of the ATTD for
50 input vehicles. Although the MCC method prioritizes the
overall efficiency, i.e., the evacuation time in the scheduling,

the re-ordering of the cliques minimizes the ATTD (line 6
in the MCC algorithm). In other words, the MCC method
heuristically finds the MCC groups to minimize the evacuation
time. Then, it obtains a spanning tree from the MCC groups
to minimize the ATTD. In MCC, the vehicle is scheduled to
its near-globally optimal position which is not necessary to
be the best position for itself (layer as smallest as possible).
Therefore, more vehicles in MCC run in smooth speed trajec-
tories instead of a harsh acceleration/deceleration in driving
into their own best position in iDFST. As shown in Fig. 9(c),

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 14, NO. 8, APRIL 2022 14

3 4 5 6 7 8 9 10
Maximum Depth

MCC

MCC-
BruteForce

iDFST

DFST

(a) Maximum depth of the spanning tree generated by different algorithms

4 5 6 7 8 9 10
Vehicle Number (veh)

0.001

0.01

0.1

1

10

C
om

pu
ta

tio
na

l T
im

e
(s

)

DFST
iDFST

MCC
MCC-BruteForce

(b) Computational time of different algorithms

Fig. 8: The maximum depth of the spanning tree obtained by different algorithms is shown in Fig. 8(a). Simulation is conducted
100 times for each algorithm and 10 vehicles are generated randomly in each simulation. The orange lines are the median
values of the results and the green triangles are the average values. The corresponding computational time is shown in Fig. 8(b)

the better vehicle distribution helps to avoid the deceleration
and idling of the CAVs in the control zone. iDFST and MCC
saves 20% and 27% of the fuel consumption, respectively, for
50 input vehicles.

In terms of computational time, the calculation time of
different vehicle numbers is summed up in Table V. In the
comparison of the three algorithms, the computational time of
MCC is slightly larger (1%-2%) than the other two algorithms.
We infer that this is because of the constant time graph-
based procedures in MCC algorithm. We have interpreted
in Section III-B and III-C that all of these algorithms have
computational complexity of O(N). The simulation results
validate this conclusion, where computational time approxi-
mately linearly increases with vehicle number.

TABLE V: Average value of computational time (seconds)
comparison.

Algorithm

Vehicle
Number 10 20 30 40 50

DFST 0.022 0.092 0.209 0.369 0.575

iDFST 0.023 0.094 0.211 0.377 0.578

MCC 0.025 0.097 0.217 0.386 0.590

E. Simulation Results at Various Traffic Volumes

The previous simulations were conducted with λ = 3, i.e.,
a constant Poisson distribution. In the last simulation, we
examined the influence of the traffic volume on the algorithm
performance. Because the vehicle arrival follows the Poisson
distribution as shown in (22), we varied the λ value to change

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 14, NO. 8, APRIL 2022 15

10 20 30 40 50
Vehicle Number (veh)

20

40

60

80
Ev

ac
ua

tio
n

Ti
m

e
(s

)

DFST
iDFST
MCC

(a) Evacuation time

10 20 30 40 50
Vehicle Number (veh)

25

30

35

40

45

50

55

60

A
ve

ra
ge

 T
ra

ve
l T

im
e

D
el

ay
 (s

)

DFST
iDFST
MCC

(b) Average travel time delay

10 20 30 40 50
Vehicle Number (veh)

4

5

6

7

8

9

10

11

Fu
el

 C
on

su
m

pt
io

n
(L

/1
00

km
)

DFST
iDFST
MCC

(c) Fuel consumption

Fig. 9: Comparison of traffic efficiency and fuel consumption of three algorithms for various numbers of input vehicles. For
each algorithm, ten repetitions of the simulation were conducted for each number of input vehicles. The red lines are the
median values and the triangles are the average values. As the number of vehicles increases, MCC shows better performance
than the other two algorithms in improving the traffic efficiency and reducing the fuel consumption.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 14, NO. 8, APRIL 2022 16

1.0 2.0 3.0 4.0 5.0
Lambda

20

25

30

35

40

45

50

55

Ev
ac

ua
tio

n
Ti

m
e

(s
)

DFST
iDFST
MCC

(a) Evacuation time

1.0 2.0 3.0 4.0 5.0
Lambda

55

60

65

70

75

A
ve

ra
ge

 T
ra

ve
l T

im
e

D
el

ay
 (s

)

DFST
iDFST
MCC

(b) Average travel time delay

1.0 2.0 3.0 4.0 5.0
Lambda

5

6

7

8

9

Fu
el

 C
on

su
m

pt
io

n
(L

/1
00

km
)

DFST
iDFST
MCC

(c) Fuel consumption

Fig. 10: Comparison of traffic efficiency and fuel consumption of three algorithms for various vehicle volumes. Ten repetitions
of the simulation were conducted for each vehicle volume number. The red lines are the median values and the triangles are
the average values. MCC shows better performance than the other two algorithms, especially when the intersection is rather
crowded, i.e., λ < 3.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 14, NO. 8, APRIL 2022 17

TABLE VI: Standard deviation of computational time (sec-
onds) comparison.

Algorithm

Vehicle
Number 10 20 30 40 50

DFST 0.007 0.012 0.021 0.031 0.048

iDFST 0.008 0.012 0.019 0.031 0.048

MCC 0.008 0.012 0.018 0.027 0.045

the traffic volumes on each lane. As before, 10 repetitions of
the simulation were conducted for each number of vehicles,
and the vehicle arrivals were identical across the three algo-
rithms. The simulation results are plotted in Fig 10.
λ is the expected value of the Poisson distribution, which

represents the average gap in the vehicle arrival time on
each lane. As shown in Fig. 10(a), the evacuation times
obtained with the three algorithms show limited fluctuations
with increase in λ. The proposed two algorithms, i.e., iDFST
and MCC, reduce the evacuation time obtained with DFST by
approximately 30%. Note that MCC has better performance
when λ < 3. Recall that in Table IV, we designed the car
following distance of the virtual platoon as Ddes = 30m and
the speed of the virtual leading vehicle as vp = 10m/s.
Thus, the theoretical vehicle output of the intersection is
bounded as Ddes/vp = 3 s per layer. In other words, if
the average input vehicle gap λ < 3, the accumulation and
queuing of the vehicles is inevitable. Under this circumstance,
MCC shows better performance than iDFST because of its
better usage of the intersection space. Fig. 10(b) shows the
ATTD performance of the algorithms. As the traffic volume
increases, the vehicle is more likely to be stuck behind other
preceding vehicles. Thus, the vehicle travel time is positively
correlated with the traffic volume, i.e., the ATTD decreases
as the vehicle arrival gap increases. Similar to the evacuation
time, MCC shows better performance when λ < 3. Because
of the aforementioned reason for the MCC to show better
utilization of the intersection space, idling behavior and fuel
consumption performance are greatly improved. As shown in
Fig. 10(c), iDFST saves at most 15% and MCC saves 26% of
the fuel consumption when compared with DFST.

V. CONCLUSION

In this paper, a graph-based cooperation method was pro-
posed to formulate the conflict-free scheduling problem at
unsignalized intersections. Based on the graphical description
of the conflict relationships among the CAVs, an iDFST
method was introduced to obtain the local optimal solution.
After concise and rigid graphical analysis, we reduced the
CAV scheduling problem to the MCC problem, which yielded
the global optimal solution. MCC problem was proven to be an
NP-hard problem, therefore brute-force method to solve MCC
is unrealistic in real-world deployments. To solve the problem,
a heuristic method was proposed to solve MCC problem with
low computation complexity in the case of a large number
of vehicles. Furthermore, a distributed control framework and
communication topology were designed to realize the conflict-
free cooperation of the vehicles. Traffic simulations proved the

effectiveness of the proposed algorithms, where iDFST and
MCC algorithms outperform the original DFST method. In the
trade-off between scheduling optimality and computation effi-
ciency, although iDFST and MCC cannot guarantee the global
optimal solution, they generate rather good CAV arrival plans
and have a low computational complexity of O(N). Thus,
both of them are qualified to schedule dozens of CAVs in real
intersection scenario deployment. Note that these proposed
scheduling algorithms can be applied to intersections with any
geometrical structures, which proves the generalization ability
of our algorithm.

A future direction of our research is to permit the lane-
changing behavior, i.e., the CAVs are allowed to change lanes
while approaching the intersection. Several practical meth-
ods [42], [43] have been proposed to apply the lane changing
behavior of multiple CAVs. It is interesting to combine these
works to further extend the single intersection into multiple
intersection cooperation, which will be considered in our
future research. Another interesting topic is the communication
topology of the virtual platoon. In this study, we designed a
PLF communication topology to realize the scheduling plan.
The problem of identifying the best topology is yet to be
addressed. Finally, field experiments are needed for algorithm
validation, where more realistic vehicle dynamic model and
vehicle trajectory planning in the conflict zone should be
further considered.

REFERENCES

[1] Q. Xu, M. Cai, K. Li, B. Xu, J. Wang, and X. Wu, “Coordinated
formation control for intelligent and connected vehicles in multiple
traffic scenarios,” IET Intelligent Transport Systems, vol. 15, no. 1, pp.
159–173, 2021.

[2] R. Azimi, G. Bhatia, R. R. Rajkumar, and P. Mudalige, “Stip: Spatio-
temporal intersection protocols for autonomous vehicles,” in 2014
ACM/IEEE international conference on cyber-physical systems (ICCPS).
IEEE, 2014, pp. 1–12.

[3] J. Contreras-Castillo, S. Zeadally, and J. A. Guerrero-Ibañez, “Internet of
vehicles: architecture, protocols, and security,” IEEE Internet of Things
Journal, vol. 5, no. 5, pp. 3701–3709, 2017.

[4] Y. Zheng, J. Wang, and K. Li, “Smoothing traffic flow via control of
autonomous vehicles,” IEEE Internet of Things Journal, vol. 7, no. 5,
pp. 3882–3896, 2020.

[5] C. Chen, J. Wang, Q. Xu, J. Wang, and K. Li, “Mixed platoon control
of automated and human-driven vehicles at a signalized intersection:
dynamical analysis and optimal control,” Transportation Research Part
C: Emerging Technologies, vol. 127, p. 103138, 2021.

[6] B. Xu, X. J. Ban, Y. Bian, J. Wang, and K. Li, “V2I based cooperation
between traffic signal and approaching automated vehicles,” in 2017
IEEE Intelligent Vehicles Symposium (IV). California, USA: IEEE,
2017, pp. 1658–1664.

[7] V. Milanés, J. Pérez, E. Onieva, and C. González, “Controller for urban
intersections based on wireless communications and fuzzy logic,” IEEE
Transactions on Intelligent Transportation Systems, vol. 11, no. 1, pp.
243–248, 2009.

[8] E. Onieva, V. Milanés, J. Villagra, J. Pérez, and J. Godoy, “Genetic
optimization of a vehicle fuzzy decision system for intersections,” Expert
Systems with Applications, vol. 39, no. 18, pp. 13 148–13 157, 2012.

[9] Z. Du, B. HomChaudhuri, and P. Pisu, “Hierarchical distributed co-
ordination strategy of connected and automated vehicles at multiple
intersections,” Journal of Intelligent Transportation Systems, vol. 22,
no. 2, pp. 144–158, 2018.

[10] X. He, H. X. Liu, and X. Liu, “Optimal vehicle speed trajectory on a
signalized arterial with consideration of queue,” Transportation Research
Part C: Emerging Technologies, vol. 61, pp. 106–120, 2015.

[11] A. A. Malikopoulos, C. G. Cassandras, and Y. J. Zhang, “A decentralized
energy-optimal control framework for connected automated vehicles at
signal-free intersections,” Automatica, vol. 93, pp. 244–256, 2018.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 14, NO. 8, APRIL 2022 18

[12] Y. Zhang, A. A. Malikopoulos, and C. G. Cassandras, “Decentralized
optimal control for connected automated vehicles at intersections in-
cluding left and right turns,” in 2017 IEEE 56th Annual Conference on
Decision and Control (CDC). Melbourne, Australia: IEEE, 2017, pp.
4428–4433.

[13] B. Xu, S. E. Li, Y. Bian, S. Li, X. J. Ban, J. Wang, and K. Li, “Distributed
conflict-free cooperation for multiple connected vehicles at unsignalized
intersections,” Transportation Research Part C: Emerging Technologies,
vol. 93, pp. 322–334, 2018.

[14] K. Chavoshi, A. Genser, and A. Kouvelas, “A pairing algorithm for
conflict-free crossings of automated vehicles at lightless intersections,”
Electronics, vol. 10, no. 14, p. 1702, 2021.

[15] Y. Zheng, S. E. Li, K. Li, and L.-Y. Wang, “Stability margin im-
provement of vehicular platoon considering undirected topology and
asymmetric control,” IEEE Transactions on Control Systems Technology,
vol. 24, no. 4, pp. 1253–1265, 2015.

[16] L. Li and F.-Y. Wang, “Cooperative driving at blind crossings using in-
tervehicle communication,” IEEE Transactions on Vehicular technology,
vol. 55, no. 6, pp. 1712–1724, 2006.

[17] Y. Meng, L. Li, F.-Y. Wang, K. Li, and Z. Li, “Analysis of cooperative
driving strategies for nonsignalized intersections,” IEEE Transactions on
Vehicular Technology, vol. 67, no. 4, pp. 2900–2911, 2017.

[18] K. Dresner and P. Stone, “Multiagent traffic management: A reservation-
based intersection control mechanism,” in Autonomous Agents and
Multiagent Systems, International Joint Conference on, vol. 3. IEEE
Computer Society, 2004, pp. 530–537.

[19] K. Dresner and P. Stone, “A multiagent approach to autonomous
intersection management,” Journal of artificial intelligence research,
vol. 31, pp. 591–656, 2008.

[20] R. Tachet, P. Santi, S. Sobolevsky, L. I. Reyes-Castro, E. Frazzoli,
D. Helbing, and C. Ratti, “Revisiting street intersections using slot-based
systems,” PloS one, vol. 11, no. 3, p. e0149607, 2016.

[21] A. Mirheli, M. Tajalli, L. Hajibabai, and A. Hajbabaie, “A consensus-
based distributed trajectory control in a signal-free intersection,” Trans-
portation research part C: emerging technologies, vol. 100, pp. 161–176,
2019.

[22] H. Xu, Y. Zhang, L. Li, and W. Li, “Cooperative driving at unsignal-
ized intersections using tree search,” IEEE Transactions on Intelligent
Transportation Systems, vol. 21, no. 11, pp. 4563–4571, 2019.

[23] F. Yan, M. Dridi, and A. El Moudni, “Autonomous vehicle sequencing
algorithm at isolated intersections,” in 2009 12th International IEEE
conference on intelligent transportation systems. IEEE, 2009, pp. 1–6.

[24] K. Pandit, D. Ghosal, H. M. Zhang, and C.-N. Chuah, “Adaptive traffic
signal control with vehicular ad hoc networks,” IEEE Transactions on
Vehicular Technology, vol. 62, no. 4, pp. 1459–1471, 2013.

[25] A. Dey and A. Pal, “Fuzzy graph coloring technique to classify the
accidental zone of a traffic control,” Annals of Pure and Applied
Mathematics, vol. 3, no. 2, pp. 169–178, 2013.

[26] Y.-T. Lin, H. Hsu, S.-C. Lin, C.-W. Lin, I. H.-R. Jiang, and C. Liu,
“Graph-based modeling, scheduling, and verification for intersection
management of intelligent vehicles,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 18, no. 5s, pp. 1–21, 2019.

[27] Z. Deng, Y. Shi, Q. Han, L. Lv, and W. Shen, “A conflict duration
graph-based coordination method for connected and automated vehicles
at signal-free intersections,” Applied Sciences, vol. 10, no. 18, p. 6223,
2020.

[28] H. Ahn and D. Del Vecchio, “Safety verification and control for colli-
sion avoidance at road intersections,” IEEE Transactions on Automatic
Control, vol. 63, no. 3, pp. 630–642, 2017.

[29] H. Ahn and A. Colombo, “Abstraction-based safety verification and
control of cooperative vehicles at road intersections,” IEEE Transactions
on Automatic Control, 2019.

[30] D. Miculescu and S. Karaman, “Polling-systems-based autonomous
vehicle coordination in traffic intersections with no traffic signals,” IEEE
Transactions on Automatic Control, vol. 65, no. 2, pp. 680–694, 2019.

[31] M. Gerla, E.-K. Lee, G. Pau, and U. Lee, “Internet of vehicles: From
intelligent grid to autonomous cars and vehicular clouds,” in 2014 IEEE
world forum on internet of things (WF-IoT). IEEE, 2014, pp. 241–246.

[32] R. P. Roess, E. S. Prassas, and W. R. McShane, Traffic engineering.
Pearson/Prentice Hall, 2004.

[33] K. Li and X. Cheng, “Design of a conflict prediction algorithm for indus-
trial robot automatic cooperation,” Mobile Networks and Applications,
pp. 1–12, 2021.

[34] S. Li, X. Cheng, X. Huang, S. A. Otaibi, and H. Wang, “Cooperative
conflict detection and resolution and safety assessment for 6g enabled
unmanned aerial vehicles,” IEEE Transactions on Intelligent Transporta-
tion Systems, 2022.

[35] R. D. Luce and A. D. Perry, “A method of matrix analysis of group
structure,” Psychometrika, vol. 14, no. 2, pp. 95–116, 1949.

[36] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of computer computations. Springer, 1972, pp. 85–103.

[37] C. Chen, Q. Xu, M. Cai, J. Wang, B. Xu, X. Wu, J. Wang, K. Li,
and C. Qi, “A graph-based conflict-free cooperation method for in-
telligent electric vehicles at unsignalized intersections,” arXiv preprint
arXiv:2103.14290, 2021.

[38] M. R. Garey, “A guide to the theory of np-completeness,” Computers
and intractability, 1979.

[39] Y. Zheng, S. E. Li, J. Wang, D. Cao, and K. Li, “Stability and scalability
of homogeneous vehicular platoon: Study on the influence of informa-
tion flow topologies,” IEEE Transactions on intelligent transportation
systems, vol. 17, no. 1, pp. 14–26, 2015.

[40] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner,
“Microscopic traffic simulation using sumo,” in 2018 21st International
Conference on Intelligent Transportation Systems (ITSC). IEEE, 2018,
pp. 2575–2582.

[41] M. Keller, S. Hausberger, C. Matzer, P. Wüthrich, and B. Notter,
“Handbook of emission factors for road transport (hbefa) 3.1,” quick
reference. Technical report, INFRAS, Tech. Rep., 2010.

[42] M. Cai, C. Chen, J. Wang, Q. Xu, K. Li, J. Wang, and X. Wu, “Formation
control with lane preference for connected and automated vehicles in
multi-lane scenarios,” arXiv preprint arXiv:2106.11763, 2021.

[43] A. P. Chouhan, G. Banda, and K. Jothibasu, “A cooperative algorithm for
lane sorting of autonomous vehicles,” IEEE Access, vol. 8, pp. 88 759–
88 768, 2020.

Chaoyi Chen (Graduate Student Member, IEEE)
received the B.E. degree from Tsinghua Univer-
sity, Beijing, China, in 2016, and the M.S. from
Tsinghua University, Beijing, China, and RWTH
Aachen University, Aachen, Germany in 2019. He is
currently a Ph.D. student in mechanical engineering
with the School of Vehicle and Mobility, Tsinghua
University. He was a recipient of the Scholarship of
Strategic Partnership RWTH Aachen University and
Tsinghua University. His research interests include
vehicular networks, control theory, and cooperative

control.

Qing Xu received his B.S. and M.S. degrees in
automotive engineering from Beihang University,
Beijing, China, in 2006 and 2008, respectively, and
the Ph.D. degree in automotive engineering from
Beihang University in 2014.

During his Ph.D. research, he worked as a Vis-
iting Scholar with the Department of Mechanical
Science and Engineering, University of Illinois at
Urbana–Champaign. From 2014 to 2016, he had his
postdoctoral research at Tsinghua University. He is
currently working as an Assistant Research Professor

with the School of Vehicle and Mobility, Tsinghua University. His main
research interests include decision and control of intelligent vehicles.

Mengchi Cai (Graduate Student Member, IEEE)
received the B.E. degree from Tsinghua Univer-
sity, Beijing, China, in 2018. He is currently a
Ph.D. candidate in mechanical engineering with the
School of Vehicle and Mobility, Tsinghua Univer-
sity. His research interests include connected and
automated vehicles, multi-vehicle formation control,
and unsignalized intersection cooperation.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 14, NO. 8, APRIL 2022 19

Jiawei Wang (Graduate Student Member, IEEE)
received the B.E. degree from Tsinghua University,
Beijing, China, in 2018. He is currently a Ph.D.
student in mechanical engineering with the School
of Vehicle and Mobility, Tsinghua University. His
research interests include connected automated vehi-
cles, distributed control and optimization, and data-
driven control. He was a recipient of the National
Scholarship in Tsinghua University. He received the
Best Paper Award at the 18th COTA International
Conference of Transportation Professionals.

Jianqiang Wang received the B. Tech. and
M.S. degrees from Jilin University of Technol-
ogy, Changchun, China, in 1994 and 1997, respec-
tively, and the Ph.D. degree from Jilin University,
Changchun, in 2002. He is currently a Professor
with the School of Vehicle and Mobility, Tsinghua
University, Beijing, China.

He has authored over 150 papers and is a co-
inventor of 99 patent applications. He was involved
in over 10 sponsored projects. His active research in-
terests include intelligent vehicles, driving assistance

systems, and driver behavior. He was a recipient of the Best Paper Award in the
2014 IEEE Intelligent Vehicle Symposium, the Best Paper Award in the 14th
ITS Asia Pacific Forum, the Best Paper Award in the 2017 IEEE Intelligent
Vehicle Symposium, the Changjiang Scholar Program Professor in 2017, the
Distinguished Young Scientists of NSF China in 2016, and the New Century
Excellent Talents in 2008.

Keqiang Li received the B.Tech. degree from Ts-
inghua University of China, Beijing, China, in 1985,
and the M.S. and Ph.D. degrees in mechanical en-
gineering from the Chongqing University of China,
Chongqing, China, in 1988 and 1995, respectively.

He is currently a Professor with the School of
Vehicle and Mobility, Tsinghua University. His main
research areas include automotive control system,
driver assistance system, and networked dynamics
and control, and is leading the national key project
on CAVs (Intelligent and Connected Vehicles) in

China. Dr. Li has authored more than 200 papers and is a co-inventor of
over 80 patents in China and Japan.

Dr. Li has served as a Fellow Member of Society of Automotive Engineers
of China, editorial boards of the International Journal of Vehicle Autonomous
Systems, Chairperson of Expert Committee of the China Industrial Technology
Innovation Strategic Alliance for CAVs (CACAV), and CTO of China CAV
Research Institute Company Ltd. (CCAV). He has been a recipient of
Changjiang Scholar Program Professor, National Award for Technological
Invention in China, etc.

	I INTRODUCTION
	II Problem Statement
	III Methodology
	III-A Conflict Analysis
	III-B Improved DFST Method
	III-C Minimum Clique Covering Method
	III-D Distributed Control
	III-D1 Geometric Topology
	III-D2 Communication Topology
	III-D3 Controller Design

	IV Simulation
	IV-A Simulation Environment and Performance Index
	IV-B Case Study of Algorithm Comparison
	IV-C Algorithm Validation with Small Number of Vehicles
	IV-D Simulation Results for Various Numbers of Input Vehicles
	IV-E Simulation Results at Various Traffic Volumes

	V Conclusion
	References
	Biographies
	Chaoyi Chen
	Qing Xu
	Mengchi Cai
	Jiawei Wang
	Jianqiang Wang
	Keqiang Li

