This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author’s version which has not been fully edited
and content may change prior to final publication. Citation information: DOI: 10.1109/TITS.2022.3183204 1

Modeling Driving Behavior
of Human Drivers for Trajectory Planning

Christoph Ziegler, Volker Willert and Jiirgen Adamy

Abstract—Extracted driving behavior of human driven vehicles
can benefit the development of various applications like trajectory
prediction or planning, abnormal driving detection, driving
behavior classification, traffic simulation modeling, etc. In this
paper, we focus on modeling human driving behavior in order to
find simplifications for trajectory planning. Using a time-discrete
kinematic bicycle model with the vehicle’s acceleration and
steering rate as inputs, we model the human driven trajectories of
an urban intersection drone dataset for different input sampling
times. While most planning algorithms are using input sampling
times below 0.33s, we are able to model 98.2 % of the human
driven trajectories of the investigated dataset with a sampling
time of 0.6s. Using longer input sampling times can result
in smoother trajectories and longer planning horizons, and
thus more efficient trajectories. In a next step, we analyze the
correlations between the input of our model and the current
state/last input. Such a priori knowledge could simplify common
planning algorithms like model predictive control or tree-search
based planners by limiting the action space of the ego-vehicle. We
propose nonlinear transformations for steering rate and steering
angle to represent correlations between speed, acceleration, steer-
ing angle and steering rate. In the transformed space the statistics
are very well modeled by multivariate Gaussian distributions.
Using a multivariate Gaussian, a fast usable behavior model is
extracted which is independent of the environment.

Index Terms—Driving behavior, sampling time, sampling rate,
automated vehicles, kinematic bicycle model, statistics, trajectory
planning, urban driving.

I. INTRODUCTION

Intelligent vehicles are a key component for the traffic of
today and the future. Understanding and modeling human
driving behavior can benefit the research and automotive
industry to improve such vehicles in various aspects. For
autonomous driving applications or advanced driver assistance
systems, knowledge of driving behavior helps the development
of intelligent systems or related tools (e. g. traffic simulator).
Fig. 1 shows an exemplary trajectory of a human driver per-
forming a right turn at an inner city intersection. The key
question here is how this and other trajectories of other traffic
participants can be represented in order to achieve a simple
yet accurate model of an average human driver.

The human driving behavior varies and depends on numer-
ous factors such as the driver’s skill and mood, the driven
vehicle, the culture, the current traffic flow and situation, the
weather conditions, etc. [2]. To improve safety functions, a lot
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Fig. 1: Exemplary trajectory (path and speed) of a human driver at
an inner city intersection. How can this trajectory be approximated
and simplified in order to utilize simpler planning? Data taken from
the inD dataset [1] (recording 28, track 64).

of research is focusing on the classification of discrete motion
models [3], [4] and driving styles (e.g. calm/aggressive) [5]-
[8]. Such knowledge can be used to e. g. detect risky behavior
of the current driver [9], [10]. While for such application it is
beneficial to distinguish between different driver models, other
applications (e. g. trajectory planning) prefer a universal driver
model.

Calculating a safe, comfortable, ecological and feasible
trajectory for an autonomous vehicle is one of the key elements
to establish autonomous driving in the future. Especially in
urban areas, for the task of trajectory planning, it is important
to look ahead, anticipate other traffic participants and plan
in a human-like fashion [11]. In order to plan human-like
trajectories, cost functions of the planning algorithm can be
learned from naturalistic human driving data [12], [13]. In
1985, Reif and Sharir [14] already analyzed the computational
complexity of a trajectory planning problem with moving
objects and proved that it is PSPACE-hard. Since this complex
task is not easy to solve, especially in real time, the idea is
to limit the action space of the autonomous vehicle during
the planning phase before the cost function is applied. Here,
physical limits of the vehicle as well as average human driving
behavior can be used to decrease the search space of the
planner.

In this paper, we combine the physical and human aspects
for planning limitations. For the physical part, the kinematic
bicycle model is used to represent the non-holonomic move-
ments of a car-like vehicle. Adding a probabilistic behav-
ioral model on top, the correlations between human actions
and their vehicle’s states can be taken into account. With
this, human driving behavior can be considered by limiting
the inputs of the kinematic model. In order to obtain an
environmental independent model, we solely consider the
trajectories of each human driven vehicle separately without
the surrounding road layout or traffic participants. We choose
to extract an environmental independent model, since in urban
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environments the number of possible situations and maneuvers
is so high that it is not possible to define and model all
of them with respect to the environment. Furthermore, to
benefit the complex task of planning, the model should be
fast as it must be executed often. Our extracted model can
then be used in various trajectory planning algorithms, e. g.
in a stochastic model predictive controller. For an overview
of planning algorithms, the reader is referred to [15]. Since
our area of application is trajectory planning, the focus of this
paper will be put on this topic, but the results presented here
can also be used in other applications.

A. Related Work

In the field of driving behavior models, most work focuses
on the classification of discrete driving styles [5]-[8]. Since
we are not interested in such discrete classifications, the
focus below is on continuous behavior models. In general,
the acceleration/deceleration (A/D) behavior of human driven
vehicles is often analyzed. Bokare and Maurya [16] model
the A/D behavior of multiple vehicle classes in India by
placing GPS-sensors on the vehicles. Through observation of
experiments on straight roads, they found out that for trucks,
diesel and petrol cars the acceleration depends exponentially
on the speed while for the deceleration there is no statistically
significance between an exponential and polynomial model.
Other work like Miyajima etal. [17] model the longitudinal
driving behavior with a Gaussian Mixture Model for gas and
brake pedal commands in order to identify the driver of the
vehicle. Wagner etal. [18] analyze the longitudinal motion
of car-following scenarios. Using the statistical measure of
the maximal information content, they found the dominant
correlation between the speed and distance to the vehicle in
front.

In the above mentioned work, only the longitudinal behavior
of vehicles is analyzed. The lateral movements (i. e. steering)
can also be taken into account. In Miyajima’s etal. [19] work,
the driver’s actions are categorized in risk groups based on the
acceleration, deceleration and steering of the vehicle. Utilizing
the knowledge of experts, three models (A/D and steering)
are derived to categorize risky driving behavior. Yokoyama
and Toyoda [10] analyzed the correlation between accidents
and driving behavior in a long-term study. In their work, A/D
and steering is again taken into account to improve the result
of their model. For all of the above mentioned literature, an
application specific classifier (e. g. risky behavior detection) is
the output of the derived model.

In the field of trajectory planning, data driven models are
a common choice as well. Here, the output can e.g. be a
cost function [13] or uncertainty based trajectories [20]. Using
deep-learning methods, Schulz etal. [21] derive an interaction-
aware probabilistic Markovian behavior model in order to
calculate Gaussian distributions of the next acceleration and
steering angle of the ego-vehicle dependent on the current
traffic situation. While the idea behind this model is similar to
our approach, it incorporates environmental data like the road-
layout and the state of other traffic participants. In contrast
to Schulz etal., our environment free model of an average

driver focuses on the internal states of the vehicle, uses the
acceleration and steering velocity as inputs and, because of
its simplicity, can be used as basis for further, more complex
approaches. Since no deep-learning methods are used, we can
rely purely on measured data and do not need to incorporate
artificially created data like in [21]. Our model can either be
used directly or, for specific applications like a safety check
for planned trajectories, the action limits can be extracted.

B. Paper Overview

The remainder of this paper is organized as follows: We
first introduce the kinematic bicycle model in Sec.II, which
is the basic movement model of a non-holonomic vehicle
which we use in our further examinations. In Sec.Ill we
analyze the input sampling time 7 of the time-discrete bicycle
model in order to appropriately describe the movements of
human drivers in a publicly available dataset. Finally, an
environmental independent behavioral model is presented in
Sec. IV before concluding the paper in Sec. V.

II. KINEMATIC BICYCLE MODEL

The kinematic bicycle model [22] is a simple but accurate
vehicle model which describes the non-holonomic movements
of a car-like, front-steered vehicle. It is well established in
the trajectory planning community and is a common choice
e.g. when planning with model predictive control [23]. Fur-
thermore, Polack etal. [24] presented that by limiting the
lateral acceleration to 0.54ug, the kinematic bicycle model
approximates the movement of a real vehicle sufficiently.
Thus, realistic physical planning with the bicycle model is
possible.

A. The Standard Bicycle Model

In the following, the kinematic bicycle model is shortly
presented. It consists of the state vector X5 = [EXref, EVrefs W] T
which describes the pose of the vehicle in an earth-fixed
coordinate system g.%. The input vector is us = [v, §]7,
whereas

EXref; EVref : POsition of the reference point in a given earth

coordinate frame,
v : orientation of the vehicle,
v : speed of the vehicle,

d : front wheel steering angle of the vehicle.

Further parameters of the model are

[ : wheelbase,
lief : length between rear axle and reference point,
B : sideslip angle.
The sideslip angle f is defined as the direction of movement

relative to the vehicle’s orientation y. A visualization of the
bicycle model’s states and parameters are given in Fig. 2.
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Fig. 2: Definition of states and parameters in the bicycle model.

For [ > 0, the motion of the vehicle is described by the
following non-linear ordinary differential equation (ODE)

Exref:VCOS(w+ﬁ)a (D
EYref = VSin(W"’ B) y 2)
- vcos[litanS’ 3)

with

liertan 5) . @

B= arctan( ;

The model assumes that the vehicle drives slip free (cf. (4)),
so the input of the model can either consist of the steering
angle & or the sideslip angle . From the sideslip angle, the
instantaneous curvature x of the reference point’s driven path

is derived:
o Sin (B) .

Lieg
Most trajectories are planned in a time-discrete fashion, i.e.
constant inputs between two discrete time points. For such
inputs, the resulting vehicle’s driven path consists of partially
constant curvatures. For larger input sampling times T;, of
the time-discrete model, it is harder to follow the resulting
unsteady paths. This is why the presented standard model is
extended in the following section.

®)

B. Extension of the Bicycle Model

To smoothen the calculated trajectory for a partially constant
input u, the input of the model is changed to the derivative of
the standard one. Therefore, the new input vector is defined
as u = [a, ®]T with

a : acceleration of the vehicle,

o : front wheel steering rate.

and the state vector is extended to X = [EXref, EVref; W, V, 6T,
This results in the following differential equations:

Elret = veos(y+ ), (6)
EVref = VSin(W+ ﬁ) , (N
L vcos[litan(S’ ®)
v=a, )
) = o, (10)
with
ﬁ:arctan(lreftlans). an

While the idea of extending the bicycle model already exists
in the literature (e.g. trajectory tracking controller with jerk
and steering velocity as inputs [25]), we want to emphasize
the importance of this extension. The sideslip angle § now
changes during a constant input u, resulting in non-constant
instantaneous curvatures. This enables the use of longer sam-
pling times as analyzed in the next section.

ITI. INPUT SAMPLING TIME OF HUMAN DRIVERS

Most planning algorithms are calculating trajectories with
discrete-time inputs. This means, that the input of the con-
tinuous models of Sec.Il can only change after a set time,
the input sampling time 7;,. The question now arises which
input sampling time can be used to reproduce human driven
trajectories like the one in Fig. 1.

By using a larger input sampling time, the planning problem
can be simplified since the next action needs to be calculated
less often. Thus, using the same computational effort, longer
trajectories can be calculated. This can also result in smoother
trajectories with fewer high frequency oscillations, especially
when using derivatives as an input like in the extended bicycle
model of Sec.II-B. However, when the input sampling time
is too large, the resulting trajectory is too inflexible in order
to handle all required traffic scenarios. Therefore, a trade-off
between simplicity of the planning problem and flexibility of
the result set needs to be made.

At this point, we want to distinguish between the input
sampling time 7j, and the refresh time ffesn Of a planning
algorithm. The refresh time is defined as the time between
the last and the next planned trajectory. In contrast to the
sampling time, which limits the state space, the refresh time
mainly influences the ability to react to other dynamic objects
in the environment. Both can be chosen independently of each
other, even though some algorithms can reuse intermediate
calculations if #efresh = Tin (€. . in search-trees). Therefore, if
the refresh time is chosen accordingly, a large input sampling
time 7j, does not result in the inability to react to time-critical
maneuvers.

In the following, we first present sampling times chosen in
the literature before analyzing the sampling time of human
drivers in urban scenarios.

A. Input Sampling Times in the Literature

To the best of the authors’ knowledge, there is no publi-
cation which discusses the choice of input sampling time of
human trajectories.

In planning, most publications focus on their concept of
solving the planning problem and mention their chosen sam-
pling time during the experiment description. Since we analyze
the sampling time, we neglect path planning approaches,
which optimize the velocity over the planned path in a second
step. In most of these approaches, a sampling distance for
the path planning is only mentioned. Tab.I shows the input
sampling time of recently published trajectory planners. Here,
the longest sampling time is 0.333s.
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TABLE I: Common values of the input sampling time 7;, for
trajectory planning algorithms in the literature.

Model

Reference Ty, in s

Seccamonte etal. [23]
Dixit etal. [26]
Gutjahr etal. [27]
Ziegler etal. [28]

MPC, bicycle model dependent on k 0.05
MPC, bicycle model with acceleration 0.1
MPC, linear bicycle model 0.2
Jerk free, continuous optimization 0.333

B. Analysis of the Input Sampling Time of Human Drivers

In order to analyze the input sampling time for human
drivers in urban scenarios, we use the drone dataset inD
[1] which captures trajectories of trucks, cars, bicycles and
pedestrians at four different intersections located in Aachen,
Germany. For each vehicle and time step, the dataset contains
extracted information like the vehicle’s pose in an earth-fixed
local coordinate system, the vehicle’s velocity, acceleration
and extent. Since the trajectory data is derived from drone
images, the data does not include information about the
vehicle’s steering angle. As any real-world dataset, it contains
measurement noise but according to [1] the positioning error
is typically less than 0.1 m. The dataset is divided in 33
different recordings, each recorded with a frequency of 25 Hz
and time lengths between 20-22 minutes. For all recordings,
we observe the trajectories of 7326 vehicles which results in
~2.5 Mio. data points. In the following we refer to this dataset
as ground truth data. For the analysis of the input sampling
time, we proceed as follows: First, the extended bicycle model
of Sec.II-B is fitted into the measurement data for different
input sampling times. Then, the result is interpreted.

To fit the data, we formulate the following constrained
optimization problem. Solving the continuous equations of (6)-
(11) with the Runge-Kutta method of fourth order in 25 Hz, we
receive m vehicle states for each input u; with m =T, -25Hz.
For each time-discrete action uy, the mean of the m squared
Euclidean distances between the position of the fitted bicycle
model gXefpm and of the inD dataset gXrefinp is minimized:

2

nll‘in J(ug) = < 1 ¢ |:Exref,bm(ukan):| _ l:Exref,?nD(n‘lel?]
K =m0 EVref,bom (Ui, 1) EVretinD (1 +mk) | ||,
(12)
subject to v >0, (13)
—6ms 2 < ap < 6ms”2, (14)
— arcsin (Kmax!) < & < arcsin (Kmax!) (15)
— mrads™! §(1)k§7rrads’17 (16)
(6)—(11). (17)

The maximum drivable curvature is defined t0 Kpax = 0.2m !,
which is a typical value for a small-sized car. Since Kpax only
decreases for larger vehicles, we assume this as a valid upper
limit. The optimization starts using the first value of the ground
truth data and is solved until the end of the trajectory Tj, is
reached.

Since the dataset only includes the length /iy, from the front
to the back of the extracted vehicles but not the wheelbase [,
37 vehicles of various brands and vehicle classes are analyzed.
From this, we assume the wheelbase / to be 60% of the
extracted vehicle length /i, and the position of the reference

TABLE II: Percentage of failed trajectories of the 7326 trajectories
as well as the mean and standard deviation of the distance d of the
fitted bicycle model to the ground truth data dependent on different
input sampling times 7j,. A trajectory is considered as failed if
the Euclidean distance d of one optimized trajectory point to the
corresponding ground truth point is larger than 0.3 m.

Tin 0.2s 04s 0.6s 0.8s 1.0s
Failed 0.3 % 0.1% 1.8% 55% 11.6 %
Mean(d) 6mm 6mm 13 mm 26 mm 49 mm
Std(d) 0.12mm | 0.02mm | 0.02mm | 0.04mm | 0.20mm

point /s is located at 28.9 % of the wheelbase. Limiting the
input and states of the bicycle model during optimization,
we assure that the corresponding movement of the vehicle is
physically feasible. Furthermore, in (12) only the positional
error of the vehicles is minimized for each time step n
since adding more terms (e. g. speed, orientation) to the cost
function decreased the convergence. With this cost function,
the speed of the vehicle is indirectly included due to the time
dependency.

In order to analyze the result of the optimization problem
in regard of different sampling times, the optimization results
are taken in the frequency of the ground truth data (25 Hz). An
optimization is declared as failed if the distance between any
points of the optimization result and the corresponding ground
truth point is larger than 0.3 m. With this limit, we consider
the measurement noise of the dataset and are still able to be
close to the original trajectory.

For a first analysis, consider again the trajectory presented
in Fig. 1. Here, the driver shortly stops before driving into the
intersection and performs a right turn. Fig. 3 shows the results
of the optimization problem. For different sampling times 7i,
between 0.2s and 1.0s, the traveled distance s, the speed v
as well as the Euclidean distance d to the ground truth data
are plotted. If the sampling time T;, is chosen too large, the
optimized trajectory begins to oscillate around the ground truth
trajectory and thus periodically increasing and decreasing the
error d. For larger sampling times, the effect of oscillation
increases and eventually leads to failed optimizations.

In Tab. II the results of all optimized trajectories for different
input sampling times between 0.2s and 1.0s are shown. By
increasing the sampling time 7j,, the number of failed trajecto-
ries and the mean and standard deviation of the positional error
increase as well. This can be explained with the above shown
increase of oscillating error d of the optimized trajectory.
Choosing a sampling time larger than 0.6s, the number of
failed trajectories reaches the 5% mark. We interpret these
sampling times with our chosen kinematic model as being too
large to generalize human driving and thus propose to choose
the sampling time less or equal to 0.6 s. For this sampling time
the oscillation of the optimized trajectory is still acceptable.

To further demonstrate the use of our results on trajectory
planners, we implemented a vanilla tree-search trajectory
planner based on the extended kinematic bicycle model (cf.
(6)—(11)). For each planning step, the planner can choose
between 7 different steering rates. As objective function, the
lateral distance and orientation difference to the center line as
well as the Euclidean distance to other objects are chosen. In
Fig. 4, an exemplary overtaking scenario of a parked vehicle
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Fig. 3: Optimization result for different input sampling times 7j, for one exemplary trajectory (recording 28, track 64). The traveled distance
s, the speed v and the Euclidean distance to the ground truth data d are plotted. Increasing T;, results in a less flexible trajectory. If Tj, is
chosen too large, the optimized trajectory will oscillate around the ground truth trajectory resulting in periodically changing errors d.

Yy in m

T in m

Fig. 4: Two planned trajectories for the ego vehicle (blue) with
different input sampling times. The vehicle tries to follow the
center line of the road (blue) while keeping a safe distance to the
parked vehicle (black). Even though the sampling time 7j, of the
red trajectory is doubled compared to the orange one, the planned
trajectory is almost the same.

is shown. Two trajectories were planned using the sampling
times 7i, = 0.3s (orange) and T;, = 0.6s (red). The planned
trajectories differ only slightly, although the sampling time has
been doubled.

IV. BEHAVIOR MODEL OF HUMAN DRIVERS

A behavior model describes possible movements of a vehi-
cle dependent on its current state. Such a model can be useful
for trajectory planning, e.g. when utilizing state correlations
of the model to reduce the complexity of the planner’s search
space. If the model is derived from human driving data,
planning with such correlations means that the search space is
reduced to only consider options a human would consider.
Therefore, our goal is to find such correlations in human
driving data to simplify the planner’s search space.

We use the results of the optimization (12) of the last sec-
tion, which allows further analysis of the driving behavior of
humans at urban intersections. By fitting the extended bicycle

o v

’/ IJ’ ’,’
. . .
, .

KBM KBM

— Xk+1 —*

Fig. 5: Transition model of the vehicle. The next state x;; of the
vehicle can be calculated according to the deterministic, extended
kinematic bicycle model (KBM) of (6) to (11) (solid lines). The
behavior model describes the correlations between the input u; of
the KBM dependent only on the current state x; as well as the last
input u;_, (dashed lines).

model into the data, approximations of human trajectories are
received. These approximations also contain information about
the steering angle as well as the time-discrete actions u; of
the vehicle.

Using the optimization results, the transition between the
vehicle’s states is defined as in the optimization by the
extended kinematic bicycle model according to (6) to (11),
shown in Fig.5 as the solid lines. The input u; is the control
variable which determines the future movements of the vehicle
(i.e. the next state xzy;) and needs to be determined by a
trajectory planner. This is where the behavior model is being
used: this model represents the correlations between the next
input u; and the current state x; as well as the last chosen
input uy_; (dashed lines in Fig.5). For a trajectory planner,
this model can be used to focus on inputs which are human-
like. For the input sampling time between two time points k
and k+ 1, we choose T;, = 0.6s as argued before in Sec. III.

As discussed in Sec.I, the behavior model is independent
from the current traffic scenery. This means that the vehicle
pose (i. €. gXref, EVref, ¥) and the surrounding environment (i. e.
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road layout, other traffic participants, etc.) are neglected during
our analysis. Hence, the state x contains only the speed v and
the steering angle & of the vehicle, whereas the input u is
composed of the acceleration a and the steering rate @ of
the vehicle. In a probabilistic sense, a planner is interested
in the conditional probability p(ag, @ | vk, O, ar—1, k1)
which can be calculated through marginalization of the overall
probability p(ag, O, vk, 8, ar—1, @—1). In the following, we
first transform the steering variables before describing the
extracted behavior model.

A. Transformation of the Steering Variables wy, &

First, we analyze the dependencies of the vehicle’s speed on
the steering rate. Fig. 6 shows a 2D histogramm of the current
front wheel steering rate @y plotted against the current speed
vi. The histogram reveals a nonlinear correlation between
these two random variables. The correlation is logical, since
with increasing speed the driver’s steering movements become
smaller to prevent greater lateral accelerations of the vehicle.
This correlation can also be seen in Fig.7, where data for
two exemplarily selected speed ranges of the steering rate
are shown. Here, the standard deviation for the speed range
3 —4m/s is 3.6 times larger compared to the speed range of
12 — 13 m/s. Furthermore, it is found that within a small speed
range, the data represents a Student’s ¢ distribution. For lower
speeds, this ¢ distribution approaches a normal distribution.
This is conclusive because at lower speed, vehicles at inter-
sections turn more often than at higher speeds resulting in
lighter tails.

In order to appropriately describe this correlation within
our behavior model, a nonlinear transformation is applied. By
using the 98.0 % quantile for each speed range, we extract the
exponential function

_ Yk

|wrnax,k(vk)| =pie 72

which represents the correlation between a speed

0<v, <15m/s and the maximum steering rate in rad/s.

The values of the parameters are p; = 0.6164, p, = 6.9401

and the resulting relation is shown in Fig. 6 as the red lines.
Applying the transformation

(18)

_ Wy
wk(Vk) |wmax,k(vk)| '
a transformed steering rate @y (vg) is received, which is
distributed equally over vy (cf. Fig. 9a).

Similar to the steering rate @y, the steering angle & is
dependent on the speed (cf. Fig. 8). This is given by the same
explanations as for wy. Limiting the lateral acceleration of the
vehicle, a nonlinear transformation is derived by extracting the
98.0 % quantile for each speed range:

<
| Omax, k (V)| = min (Smax, arcsin <alatvr;a>) , (20)

k

19)

_ 5
51{ Vk) = T 7~
) = [t )]
with the maximum steering angle Opax = 0.44rad, the max-
imum lateral acceleration djy, max = 2.96m/s” as well as the

2n

102
=
<2
3

108 &
=

10°

—0.5 0.0 0.5
wg in rad/s

Fig. 6: 2D histogram plots of wj in rad/s over v; in m/s with
a logarithmic scale. For larger speeds, the absolute values of the
steering rate decrease. The extracted transformation function (18) is
shown in red.
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Fig. 7: Density plots of @y in rad/s for two different speed ranges
Vi in m/s. The histogram of the ground truth data is shown in blue,
a fitted normal (orange) and Student’s 7 (red) distribution is plotted
as well. The black lines limit 98.0 % of the data which is used to
extract a speed dependent transformation function (18).

average wheelbase / =2.79m. For the remainder of this paper,
the transformed steering rate and the transformed steering
angle are used for the behavior model.

B. Behavior Model

After the transformation of the steering rate and an-
gle in the previous section, the extracted behavior model
is now presented. The behavior model represents the cor-
relations between the current state xi, the last input
up_; as well as the next input wuy; (cf. Fig.5). There-
fore, the state vector of the model is defined as xy =
[akfl, Ekfl(kal), 6k(vk), ay, Ek(vk)]T, whereas the speed of
the vehicle is only considered indirectly through the transfor-
mations in (19) and (21). We represent the data correlations

with a multivariate Gaussian distribution
My =N(xv |p,Z) (22)

with the vector of means p and the covariance matrix X.
Through the transformation, the nonlinearities of the steering
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Fig. 8: 2D histogram plots of & in rad over v; in m/s with a
logarithmic scale. For larger speeds, the absolute values of the
steering angle decrease. The extracted transformation function (20)
is shown in red.

variables are still considered even though the model consists
of a multivariate Gaussian distribution.

For a trajectory planner, this model can be used for calculat-
ing the conditional probability for the next input p(ax, @ (vk) |
Or(vi), ak—1, ®r_1(vi—1)). Then, dependent on the planning
algorithm, either the remaining distribution can be used di-
rectly or possible inputs can be sampled from the distribution.
In order to calculate the conditional probability, assume we
have a multivariate Gaussian distribution N(x | g, X) which
can be partitioned as follows:

2"ab

_ xa _ “a _ Zaa
= [xb:| K= |:“b] , I |:Zba be] ’ 23)

Then, the conditional probability p(x.|xs) = N(x | By, Zapp)
is again a Gaussian distribution and can be calculated with

Bop = Mo+ ZapZy, (X0 — By), (24)
2"a|b =X — Eabz;:bl Lpa- (25)

The conditional probabilities of our behavior model can be
calculated by only doing the matrix multiplications in (24)
and (25) and the model is therefore simple and fast.

Concluding, the ingenuity of the model lies within the
steering rate and angle transformations. Because of this, the
vehicle’s speed is only considered indirectly but the result-
ing data can be represented by a multivariate distribution.
Through the choice of a multivariate Gaussian distribution fast
marginalization and inference is possible and only a matter of
matrix multiplications. Furthermore, we want to underline that
the model was derived from real human driving data.

C. Model Analysis

After presenting the model in the last section we will now
analyze it with regards to the given dataset. Of all the model
variables xyj, a planner is most interested in the transformed
steering rate ®; and the acceleration a;. Being the control
inputs of the model in Fig.5, they define the future movement
of the vehicle. Since the overall data of @; and a; represent
a Student’s ¢ or approximated a Gaussian distribution, we not

TABLE III: Likelihood ratio LR(Mn;, Ms;)) of the marginalized multi-
variate Gaussian compared to the marginalized multivariate Student’s
t distribution evaluated on all sample points of the dataset. The
variables in the rows and columns of the table indicate the remaining
variables after marginalization, similar to the plotted quantile ellipses
in Fig. 9-10. A value larger 1 indicates that the data favors the mul-
tivariate Gaussian distribution. The overall likelihood ratio without
marginalization is 3.19.

LR(Mx, Ms;) S | ar | Wi
@ 276 | 273 | 274
[ 2.89 2.76 2.87

only fit a multivariate Gaussian My as in (22) into the data
but also a multivariate Student’s 7 distribution Mg, = St(x |
U, A, v) using the expectation maximization algorithm (EM)
[29].

In Fig. 9 and 10, the 39.35 %, 86.47 % and 98.89 % quantile
ellipses of the marginalized distributions are plotted as or-
ange (Gaussian) and red (Student’s ¢) lines. While the robust
Student’s ¢ distribution focuses more on the data peaks, the
orientation of the marginalized quantile ellipses can differ
compared to the orientation of the Gaussian distribution (e. g.
Fig. 9c) or Fig. 10d)). To compare the models, we use the like-
lihood ratio LR(Mn, Ms;), which is 3.19. Furthermore, Tab. III
shows the likelihood ratios for the plotted marginalizations
of the model. A likelihood ratio larger 1 indicates that the
samples of our dataset favors the Gaussian distribution. The
multivariate Gaussian performs slightly better and thus, is
chosen. Furthermore, the fast marginalization and inference
additionally favors this simple model. We are aware that not
all dependencies in the data (e. g. §; on a;) can be represented
by this model, but we give greater weight to fast usability
instead of an even more complex model. The parameters of
the final multivariate Gaussian model My are

Oy, 0.0224

o, , —0.0006
p=| o5 [=| 00009, (26)

O —0.0109

G, —0.0072
0.8332  0.0249  0.0192  0.5688 —0.0114
0.0249  0.0554 0.0170 —0.0116 —0.0317
=] 00192 00170 0.0315 0.0026 —0.0211
0.5688 —0.0116  0.0026  0.8190  0.0235
—0.0114 —0.0317 —0.0211  0.0235  0.0604
(27)

V. CONCLUSION

In this paper, we analyzed human driving data at urban
intersections in the context of trajectory planning. First, we
analyzed the choice of input sampling time of a time-discrete,
extended bicycle model with the vehicle’s acceleration a and
steering rate @ as inputs. By fitting the bicycle model into
the human driving data, we found out that human driven
trajectories can be represented with this model by an input
sampling time of 0.6s or less. Greater sampling times limit
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Fig. 9: Number of occurrences of the transformed front wheel steering rate @; dependent on a) the current speed v, b) the current transformed
front wheel steering angle &y, c) the last acceleration a;_; and d) the last transformed front wheel steering rate @y _;. The lines indicates
the 39.35 %, 86.47 % and 98.89 % quantile ellipses of the marginalized multivariate Gaussian (orange) and Student’s ¢ (red) distribution.

the possible movements of the vehicle so that more driven
trajectories cannot be represented (cf. Tab. II).

Most trajectory planners in the literature use input sam-
pling times of less than 0.333s (cf. Tab.I). With our gained
knowledge about the input sampling time of human driven
trajectories, we want to encourage other scientists to test the
use of longer sampling times in their planner. By increasing
the input sampling time, the search space and therefore the
complexity of the planning problem is reduced while addi-
tionally smoothening the planned trajectory. This also means
less flexibility which could result in not being able to find a
solution to the planning problem, but because of the analysis
design as well as the presented example planner we are
confident that this will not be an issue. Further advantages
include the enablement of longer planning horizons and thus
more efficient and foreseeing trajectories.

In a next step, we analyzed the action distributions (i.e.
acceleration and front wheel steering rate) of human drivers.
Here, the key points are the following: First, non-linear corre-
lations between the lateral movement (i. e. steering angle and
steering rate) and the longitudinal movement (i.e. speed) of
the vehicle exist. Second, accelerations highly depend on it’s
previous value since the process of accelerating is longer than
the sampling time. Third, while braking, the vehicle steers
only slightly. These points underline the need to combine
path and trajectory planning into one single step. Furthermore,

speed-dependent nonlinear transformations for the steering
rate and angle were introduced. In the transformed space, a
transition model dependent only on the last and current time
step is extracted. Here, the correlations can be modeled by a
multivariate Gaussian distribution. While this model does not
represent all detected data correlations, it is yet simple and
can be executed fast.

For the future, we want to extend our research by analyzing
the actions of human drivers dependent on the environment.
In a first step, we want to incorporate the relative pose of the
vehicle to the road as well as the road layout into our analysis.
Since driving on roads limits the actions of human drivers,
we hope to further reduce the action space of our model and
therefore the planning complexity.

Furthermore, we want to integrate the gained knowledge of
this publication into our trajectory planner to further reduce
complexity and achieve long-term planning in urban environ-
ments.
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