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Abstract—Collaborative machine learning, especially Feder-
ated Learning (FL), is widely used to build high-quality Machine
Learning (ML) models in the Internet of Vehicles (IoV). In
this paper, we study the performance evaluation problem in
an inherently heterogeneous IoV, where the final models across
the network are not identical and are computed on different
standards. Previous studies assume that local agents are receiving
data from the same phenomenon, and a same final model is fitted
to them. However, this “one model fits all” approach leads to a
biased performance evaluation of individual agents. We propose
a general approach to measure the performance of individual
agents, where the common knowledge and correlation between
different agents are explored. Experimental results indicate that
our evaluation scheme is efficient in these settings.

Index Terms—Internet of Vehicles, Distributed algorithm,
Clustering, Similarity measurement

I. Introduction

IoV is gaining more and more attention for it has the
potential to improve driving comfort, traffic efficiency, and
road safety [1, 2, 3]. Those benefits rely on a service with
acceptable delay and reliable delivery of data. However, IoV
is usually characterized by unreliable and limited bandwidth,
which makes it a challenge to provide such a service under
these rigid constraints [4, 5]. In particular, such service is
crucial in some safety-related applications (i.e., traffic jam
warnings) [6]. Taking collision avoidance as an example, the
chances of having a collision are low if the altering of collision
avoidance service is informed on time.

Federated Learning, is widely used to build high-quality
ML models in the setting where many agents, each having
access to their own personal data, work in collaboration to
learn the desired ML models [7, 8]. This setting fits well with
the IoV, where the agents are distributed in space and they
work together towards the aforementioned benefits (i.e., road
safety). However, it assumes that a trusted party (i.e., data
sharing platform Ocean Protocol) [9]) aggregates data from

†† The corresponding author: Jing Qiu(qiujing@gzhu.edu.cn) and Zhi-
hong Tian (tianzhihong@gzhu.edu.cn)

those agents and distributes an updated ML model to each
agent. Note that the network is prone to high-communication
cost if it is orchestrated by a server or trusted third party [10].
Moreover, it is a challenge to find such a reliable and powerful
orchestrator in many practical applications [11].

To this end, we consider a decentralised FL framework for
heterogeneous networks and focus on clustering algorithms
as (a) the shortage of labeled data [12]; (b) complex models
can not be used on those agents for their high requirement
on computing [13]. Taking the deep learning computation as
an example, it requires high-performance computing resources
with GPUs, each of which is made up of thousands of core
processing units [14]. In contrast, clustering algorithms are
widely used in IoV for its efficiency and computational fast
benefits [15, 16].

Although there are many works concentrating on the dis-
tributed learning with clustering as methods to compute local
model [17, 18, 19, 20, 21], few works have considered the
performance aspects of ML models in an inherently distributed
network, especially when there are sub-groups of agents
receiving data from different phenomena.

Fig. 1: An toy example for network with multiple standards:
the left part shows that the basic network topology. The right
part shows the models received from neighbours (denoted with
purple color ) and models computed by agent itself (denoted
with blue color). At time stamp T5, multiple provisional
models are available to agent A2, A4 and A8.

At some timestamps Ti, some agents may have learned
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their provisional global models or received model from their
neighbours. This leads to a fact that agents across the network
calculated their models based on different standards (see figure
1). The diversity of models makes it a challenge to evaluate
the performance of ML models in such a distributed network.
The percentage of membership mismatch (PMM) is used to
measure the performance of ML models by comparing the as-
signment of data points with the centralised baseline [22, 23].
However, this method assumes that all agents are receiving
data from the same resource. When there are multiple patterns,
the correctness of how agents are put into the right pattern
poses a critical effect on the PMM.

It motivates us to find a new measurement that works even
there are multiple standards in the network. To the best of
our knowledge, there is no previous work that succeeds in
measuring the performance of networks with multiple patterns.
So, our question is, how to evaluate the performance of
a network with multiple patterns? In this paper, we pro-
posed three different methods to measure the performance of
heterogeneous network, where the common knowledge and
correlation between different agents are considered.

To better evaluate the efficiency of proposed methods, we
compute the accuracy of agent assignment, which measures
how correct the agents are put into the right pattern, as well
as PMM. Specially, we measure the number of patterns and
accuracy of agent assignment. Simply counting the number of
patterns is not enough, since agents may be assigned to the
wrong sub-patterns. Empirical experimental results show that
the new methods perform better in measuring the accuracy
against patterns. Moreover, we show that the right prediction
improves the accuracy against data points by as much as 9%.
The major contributions of this paper are summarized below:

1) We propose a privacy-preserving scheme to share infor-
mation with neighbours, where the summary description
of models, rather than the details, are shared.

2) We propose three different methods to measure the per-
formance of ML models in multiple-patterns vehicular
networks. These methods consider the common knowl-
edge and correlation between different agents.

3) Empirical results show that the accuracy of agents can be
improved by as much as 9%.

In the remainder of the paper, we survey related work in
the next section, we then define our methods, followed by the
experimental set-up, and finally we present and discuss the
results of the experiments.

II. related works

A. Federated and decentralised learning

FL aims to train a global model without centralising agents’
individual data [24]. Owing to the benefits of privacy and
security, FL has become the most prominent framework of
distributed learning [25]. It is widely used in Cyberattack
detection [26], Vehicular networks [27], Medical diagnosis
system [28] and 5G wireless networks [29, 30], and zhang
et al. [31] presented a comprehensive survey of various appli-
cations of FL.

However, traditional FL is orchestrated by a server or
trusted third party, which is impractical in most real-world
applications. This motivates the introduction of decentralised
Learning [32]. Decentralized learning assumes that a central
server does not exist and agents (i.e., edge devices) communi-
cate peer-to-peer during the learning steps [33]. The learning
process usually comprises: 1) a local learning step where each
agent defined a summary that best describes the locally learned
pattern; 2) an update step where each agent refines its local
estimation based on information received from neighbours;
and 3) a converge step where agents stop updating their
local estimation when certain conditions, for instance, a finite
number of iterations, are met.

For inferring the local model, K-means is widely used as
the clustering algorithm [23, 34, 35]. Each agent runs K-
means on its local data, and transmits a description of its
centroids and the number of data points associated with them
to its neighbours. Once an agent has received an update
from all of its neighbours, it proceeds to the next round.
However, the exchange of just centroids and counts also
discards information about the shape of the cluster. When
clusters have significantly different shapes, this may again
cause problems for convergence.

The weighted average method is a prominent way of updat-
ing the model [23, 34, 36]. Finally, agents stop updating the
local estimation whenever the change before and after updating
is below a predefined threshold or the maximum number of
iterations of updating approaches a fixed threshold.

B. Pattern detection in IoV

For the aforementioned benefits, IoV is explored in a wide
range of applications, including Safety-related applications,
comfort and infotainment, traffic efficiency and management,
and healthcare applications [37, 38, 39, 40]. Security is another
challenging issue in IoV. IoV is exposed to various types of
attacks and threats, and a vehicle, which is controlled by a
hacker, is more likely to cause a fatal traffic accident. Sharma
et al. presented an excellent survey on security requirements,
security challenges, and security attacks in IoV [41].

Clustering algorithms are widely used in IoV to identify
traffic patterns. Nezerenko et al. identified countries with
similar trends in the field of transportation and the main
reason lead to these identified trends. Data from Baltic Sea
Region (BSR) during the period 2004–2011 was used to
evaluate the performance of Hierarchical Cluster Analysis
(HCA) based methodology [15]. Ona et al. believed that
offering high-quality services are important for public trans-
port administrations, and they can be improved by cluster
analysis [16]. The taxi-cab trips with origins and destinations
in Beijing City were explored by a density-based clustering
method [42]. Zhu et al. proposed data mining methods to
model the dynamic traffic flow, which includes agglomerative
hierarchical clustering and the k-nearest neighbor method [43].

III. Framework

As we mentioned before, the learning process usually
comprises three main steps: computing local models, sharing
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models and updating the provision models. In this section,
we briefly describe the methods to learn the global models in
multiple-pattern networks first (Section III-A), followed by a
description of how to share the ML models in that network
(Section III-B). Then, the measurement is given (Section
III-C).

A. Learning the global models

When there are multiple patterns in the network, an agent
has to run two basic procedures: identify the sub-patterns and
compute the models.

1) Identify the sub-patterns: It has to run a similarity test
on the models whenever it is expected to combine multiple
models into one or more, or to update a model with some new
information. Based on the similarity measurement, it infers the
number of patterns and runs separate processes (i.e., clustering,
updating and sharing) for each pattern.

Note that the number of clusters inside the model learned
by different agents may be different, so the widely used L1-
norm and L2-norm Euclidean distance can no longer be used.
To address this problem, we propose an EMD-based distance
metric [44], named weighted EMD, to measure the similarity
between agents, which mitigates the high computation cost,
but preserves the advantages of EMD (i.e., robust to noise and
globally shape-aware). Then a similarity matrix is built on the
distance metric, and the hierarchical clustering is applied on
this similarity matrix. A cut-off value is carefully chosen to
split the agents into different groups 1.

2) Compute the models: After the identification of patterns,
agents have to compute the provisional global models for each
sub-patterns. For models in the same sub-patterns, models are
updated in a weighted averaged way.

Example 1. Suppose in a 10-agent network, datasets owned
by 5 agents A0, A2, A3, A4 and A8 are sampled from one
distribution (also known as a pattern) and the rest of agents are
sampled from another distribution. Figure 2 shows the hierar-
chical clustering result. The horizontal axis of the dendrogram
represents the objects and clusters, and the vertical axis repre-
sents the distance between clusters. The horizontal bar between
the two clusters is labeled with the distance (dissimilarity) of
these two clusters. It shows that the dissimilarity between the
new cluster C1 (merged by A0, A2, A3, A4 and A8) and new
cluster C2 (merged by A1, A5, A6, A7 and A9) is 4.95, more
than 2 times larger than its last merge 2.05. It suggests that C1
and C2 are dissimilar and they should not merge into a new
cluster. So the identified patterns in this network are:

[[A0, A2, A3, A4, A8], [A1, A5, A6, A7, A9]]

B. Sharing the ML models

If an agent has learned the number of patterns and inferred
the patterns, it has to decide how to share this information. To
respect the privacy, it may restrict shared information to just

1The details of this weighted EMD method could be found in another
concurrent paper. We only describe the basic procedure and main results here.

Fig. 2: Identification of patterns by Hierarchical clustering with
weighted EMD as similarity metrics

the number of patterns and corresponding summary descrip-
tion of each sub-pattern, or it could also tell its neighbours the
details of which particular sub-pattern every agent belongs to.
So two different requirements are assumed at the start (see
figure 3):
S 1: Each agent is told the number of patterns and summary

description of each pattern, but not the individual agent
assignments to the patterns.

S 2: Each agent is told the number of patterns, pattern descrip-
tion and details of the assignment of all agents.

Figure 3 shows the difference between these two schemes
by a toy example. Suppose that agent A4 and A2 learned the
global models (denoted as pink and blue circle, respectively).
Then these two models are shared with neighbours. If agents
share all details with neighbours, then all agents will learn
two different global models eventually. Agent A3, A4 and A5
learn the global model [[A1, A2], [A3, A4, A5]] and agent A2
learns a model as same as A1 ([[A1, A2, A3], [A4, A5]]). The
right part of figure shows the final models if the other strategy
S2 is applied. The final models are the same as the previous
scenario as long as they made the right prediction. Since a
wrong prediction is made, agent A5 learns a model [[A1], [A2,
A3, A4, A5]], which differs from the model produced by A4.

Although S 1 preserves some privacy for the agents, the
disadvantage is that agents have to infer which sub-pattern
they belong to based on their own computation. Note that
this computation may introduce errors that were not present
in the original inferred model that was communicated to the
network. If S 2 is applied, agents are told their assignment, but
its assignment is also known to other agents.

Next, we describe the sharing strategies and process steps
for scenario S 1 and S 2. When agents know the group as-
signment of all agents (S 2), both the basic description for
each pattern and the assignment of agents to patterns must be
shared. In this case, each agent simply reads its assignment.
If agents are not told the group assignment of all agents (S 1),
each agent must infer which sub-pattern it belongs to by:
V1: comparing its basic model with patterns received.

Weighted EMD is used to measure the difference between
agent and sub-patterns. Each agent chooses the pattern
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Fig. 3: The left part shows that agent A4 and A2 learned the global models at some timestamp ti. These two models are not
necessarily identical, so we denote them with different colours. If strategy S1 is applied, agent A3 and A5 received model from
A4 and agent A1’s model is produced by agent A2 (the central part). The right part of shows a different case if strategy S2 is
considered (different models are separated by colours).

with the smallest distance as its final assignment. Or
V2: comparing its raw data with patterns received. Similarly,

Standard EMD between raw data points and sub-patterns
is used to measure the difference. Each agent chooses the
pattern with the smallest distance as its final assignment.

C. Measurement

In this section, we introduce a general method to estimate
the performance of ML models. Especially, both known and
unknown assignment (S 1 and S 2) have been considered.

1) Accuracy against patterns with the known assignment
(R2): Accuracy against pattern is an important quota to
measure how accurately the algorithm puts agent into the right
groups against ground truth patterns. Note that predicting the
right number of patterns only is not enough. It is possible
that agents are put into the wrong sub-patterns, but the right
number of patterns has been preserved. When the agent knows
the details of the assignment of all agents (S 1), we can
compute the accuracy in a pair-wise way. The accuracy against
pattern is computed as:

Accp =

∑n
i=1(Accp

i)
n

(1)

Where Accp
i denotes the estimation by agent i. For each agent

i, it computes the estimation by comparing the inferred pattern
with the ground truth pattern directly, and it could be computed
by the following two methods:

Me1: For agent i and other agents in the same inferred group,
are they assigned in the same group as ground truth?
Count the number of pairs {i, j} ( j ∈ Gi and j , i) that
are assigned in the same group as ground truth 2, or

Me2: For all agents in the learned pattern, are they assigned
in the same group as ground truth? Count the number of
pairs {i, j} in sub-group Gm ( j ∈ Gm, i ∈ Gm and j , i)
that are in the same sub-group as ground truth.

The difference between these two methods is that Me1 only
considers an agent and its neighbours in agent’s group while

2Gi denotes the a sub-group where agent i is in.

all pairwise agents in the learned patterns are considered in
Me2.

Example 2. Suppose the pattern learned by A0 is
[[A0, A1, A2], [A3, A4]]. If Me1 method is used, all pairwise
agents in the first sub-group are considered:

[A0, A1], [A0, A2] and [A1, A2]

If Me2 is used instead, then all possible pairwise agents are
considered:

[A0, A1], [A0, A2], [A1, A2] and [A3, A4]

The pair [A3, A4] is not considered in measurement Me1 but
in Me2.

2) Accuracy against patterns without known assignment
(R1): When each agent only knows the number of patterns
and which sub-pattern it belongs to, how should we measure
the accuracy? It is a challenge since the prediction of the
assignment for agents may be based on different models.
Suppose that in a 5-agent network (Ai, A j, Ak, Al, An),
agent Ai and A j produced final models (mi and m j) at some
timestamp tr. Then these two different models are broadcasted
to the other agents.

When agents must finish with an identical model, the
centralising agent Ai may have put agent A j and Ak into the
same group, but agent Ak has put itself into a different group.
The accuracy measurement depends on which agent’s view is
used. Things are even worse when agents may finish with
different models. Agent Ak receives model mi, which puts
agent Ai, A j and Ak into a group G1, and agent Ak puts itself
in that group. Agent Al receives model m j, which had a group
G2 contains Ai, Al and An, and Al puts itself in that group.
Now the accuracy measurement depends on all centralising
agents’ views.

To address the problem, we propose three different potential
solutions to measure the accuracy against pattern:

1) Building a symmetric table based on agents’ prediction,
where agents who make the same prediction are grouped
together (denoted by MD1).
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2) Considering both the agents’ prediction and the cen-
tralised method to build an asymmetric table (denoted
by MD2).

3) Using the model produced by the centralised agent di-
rectly (denoted by MD3).

2.1) MD1: symmetric table. The first one is to build a
symmetric table based on agents’ predictions. It could be used
in scenario with an identical model or different models. Based
on the prediction, agents who make the same prediction are
grouped together. By this method, the common knowledge
of predictions is considered, and agents who make the same
prediction are grouped together.

Example 3. Figure 4 shows one example to build the
symmetric matrix in a 5-agent network. Agent A4 produced the
final model and broadcast its model to the rest of agents. Then
each agent makes a prediction based on the model received.
Agent A4 produced the model, so it knows which sub-pattern
it is in. Agent A2, A3 and A5 predict they are in sub-pattern
P2, so they are grouped together. Agent A1 predict it is in
sub-pattern P1, so it is alone. Thus, the final table is :

[[A1], [A2, A3, A5], [A4]]

Then, this table is compared to ground truth patterns:

[[A1], [A3, A4], [A2, A5]]

Fig. 4: Symmetric table built by agents’ prediction

2.2) MD2: asymmetric table. The first method is not work-
ing if it is further extended to the case when there are multiple
different models in the network, and it inspires us to propose
a new method. The second method is to build an asymmetric
table (denoted by MD2).

Algorithm 1 shows the algorithm to build an asymmetric
table. First, the actual sub-pattern s of patterns computed by
centralising agent where this agent i belongs to is obtained.
Then this index s is compared to the prediction p. If agent i
made a correct prediction (p = s), then agents that together
with and apart from this agent within model M are stored.
However, agent i may make the wrong prediction. In this case,
agent i is inserted to the pth sub-pattern of model M. Actually,
agent i is put in another sub-pattern p̄ by the centralising agent.

So agent i is removed from sub-pattern p̄. Again, the agents
that together with and apart from agent i are stored. Then the
asymmetric table is built when all agents find out who they
are together with and apart from.

Algorithm 1: Method to estimate the relationship with
other agents for individual agent

1 Input: Prediction p, Model received M;
2 Output: Ts: set of agents together with agent i, Ta: set

of agents apart from agent i ;
3 Find the index s of agent i in the received Model M;
4 if s == p then
5 Add agents that together with agent i to Ts ;
6 Add agents that apart from agent i to Ta;
7 else
8 Insert agent i in the pth pattern of model M;
9 Remove agent i in other patterns (not in pth

pattern) of model M;
10 Add agents that together with agent i to Ts ;
11 Add agents that apart from agent i to Ta;

By this method, the correlation between agents is ignored.
Two agents that made the same prediction based on some
models may have different estimations. However, different
from the symmetric table, both agent’s prediction and the
centralised method are considered. It is suitable for the case
that there are multiple different patterns in the network.

Example 4. Figure 5 shows one example to build an
asymmetric table. Agent A2 and A4 computed the final mode
m2 and m4. Then model m2 is sent to agent A1 and m4 is
sent to agent A3 and agent A5. Agent A1 predicts that it is
in the sub-pattern P1. Based on the centralised agent A2, the
prediction is right and the agents that together with and apart
from A1 should be consistent with that in model m2 (together
with [A3] and apart from [A2, A4, A5]). However, agent A3
made the wrong prediction: it predicts it is in second sub-
pattern, but actually it is in the third sub-pattern of model m4.
By inserting agent A3 to the predicted sub-pattern and deleting
the actual location of agent A3, now agent A3 is assumed to
together with [A2, A5] and apart from [A1, A4], which differs
significantly from the model m4.

Fig. 5: Asymmetric table built by agents’ prediction
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2.3) MD3: Table learned by centralised agent. The last
method compares the patterns learned by centralised agent
with the ground truth directly (denoted by MD2). By this
method, the errors introduced by a prediction by agents have
been avoided.

Example 5. Take agents in Figure 5 as an example, agents
A2 and A4 learned the global patterns

[[A1, A3], [A4], [A2, A5]]

and
[[A1], [A2, A5], [A3, A4]]

respectively. So we compare them with the ground truth:

[[A1], [A3, A4], [A2, A5]]

To evaluate how accurately the algorithm puts agents into
the same group as ground truth, methods MD1 and MD2 are
used.

IV. Experimental results

To simulate the operation of the algorithms on a Vehicular
Network, we implement an Asynchronous Message Delay
Simulator, based on [45]. This experiment is tested on a 10-
agent network and repeated for 20 runs. The 10-agent network
is described as a connected graph, where vertices could share
messages if they are connected. We assume that the message
delivery is reliable, but this may require re-transmissions on
failure, and so there is a message-specific delay for any
transmission, which is generated uniformly from the range
[0.5,1.0] [23]. Agents begin their work at a time randomly
selected in [0,0.1s]. The underlying datasets are generated
from fully symmetric Gaussians and K-means is used as the
clustering algorithm. The initial raw data is generated in k
clusters, sampled from a two-dimensional normal distribution,
scaled to the range [0,1] before being assigned randomly to
network agents. In the experiment, we only focus on two
different patterns of networks: two patterns (5:5, 7:3, 9:1) and
three patterns (5:3:2). Raw data of agents in the same sub-
pattern is generated from the same normal distribution [23].
Taking the division 7:3 as an example, the first 7 agents are
generated raw data (i.e., 5 cluster) from the corresponding 5
normal distributions.

To begin with, we measure the performance when the group
assignment is known. Then compare two different methods
to infer the group assignment when group assignment is
not told, followed by building the similarity tables in three
different ways. After that, we compare the performance of
the proposed method with the state-of-the-art method. The
notation is summarised in Table I.

Figure 6 shows the overall pipeline for performance evalu-
ation. The three proposed methods MD1, MD2 and MD3, are
measured over both the assignment is known and not known.
Then two different methods Me1 and Me2 are used to compute
the accuracy against patterns. After that the accuracy against
data points is measured, and it is compared to the PMM (see
table II).

V1 Compare its basic model with patterns received
V2 Compare its raw data with patterns received

Me1
Count the number of pairs that are assigned in the same

group as ground truth

Me2
Count the number of pairs in sub-groups that are in

the same sub-group as ground truth
MD1 Build a symmetric table based on agent’s prediction

MD2 Build an asymmetric table that agent go back to the models
received and check who it is together with and apart from

MD3 Compare the patterns learned by a centralised
agent with the ground truth directly

TABLE I: Notation of different methods and measurements

Fig. 6: The overview pipeline for performance evaluation

A. Evaluation with known assignment

In this section, we evaluate the performance of the matrix
with known assignments. We compare the proposed two
methods to measure how accurate the algorithm assigns agents
to the same group as ground truth. The figure on the left
of Figure 7 shows the results when the patterns are similar.
There are few differences between these two methods, and the
difference only occurs in the network with a split of 7:3, where
Me2 performs better than Me1. The most possible reason lies
in the fact that it is a challenge for the proposed algorithm to
predict the right group assignment when different patterns are
similar. When the patterns inside the network are different, Me2
outperforms Me1 in all cases. The accuracy against patterns
achieved by Me2 (right side of Figure 7) is higher (as much
as 10%). That is because it is not difficult for the proposed
algorithm to identify the group assignments for all agents if
the patterns are dissimilar.

Figure 8 shows the performance when an asymmetric table
is built to measure the similarity between agents. When the
patterns in the network are similar, Me2 outperforms Me1 by as
much as 14%. Again, the accuracy achieved by Me2 is higher
if the patterns are different. We expected that results since the
asymmetric table can describe the complex relationship be-
tween agents when there are multiple patterns in the network.



7

Fig. 7: Comparison results when the symmetric table is
employed

Fig. 8: Comparison results when the asymmetric table is
employed

B. Inferring the pattern with unknown assignment

In this section, we show the comparison result on the two
proposed methods (V1 and V2) to predict which sub-pattern
the agent belongs to if the group assignment is not available.
When agents are not told the group assignment of all agents,
agents have to compute the similarity between their own model
and the cluster model inside the patterns. It could compare
the cluster model with the cluster model of patterns (V1), or
compare the raw data points with the cluster model of patterns
(V2).

Fig. 9: Performance with symmetric tables (1)

Figure 9 shows the result when the ground truth distributions
to generate data points in different patterns are similar. In terms
of two patterns, there is little difference except in the case of
singleton agent (9:1), where V1 outperforms V2 (by as much
as 26%). When there are three patterns (5:3:2), the accuracy
is low (below 65%). The most possible reason is that it is a

challenge to predict the right group assignment if the patterns
are similar.

Fig. 10: Performance with symmetric tables (2)

Figure 10 shows the result when the ground truth distribu-
tions to generate data points in different patterns are dissimilar
instead. As before, the only difference occurs when there is
a singleton agent, where V1 outperforms V2. Again, method
V1 achieved higher accuracy than V2 when there are three
patterns. Since the patterns now are different, we expect a
higher accuracy than that with a similar pattern (see Figure
9). The accuracy reaches 74% when there are three patterns.

Note that when there is a singleton agent, the accuracy is
low even if the patterns in the network are different. That is
because most clustering algorithms prefer the large size of
clusters, and the predicted group assignment is wrong. But
still the V1 outperforms V2 in that case.

Figure 11 and 12 show the results when an asymmetric
table is built to measure the similarity between agents. Again,
V1 performs better than V2. If there is only one pattern
in the network and all agents infer the pattern assignment
based on the same model, we expected that accuracy achieved
by symmetric table is much more accurate. Since we only
consider network with multiple patterns, we expected a higher
accuracy. Compared to Figure 9, the accuracy against pattern,
except for singleton agent, in Figure 11 is much higher.

Fig. 11: Performance with asymmetric tables (1)
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TABLE II: Comparison of accuracy against data points
Method 5:5 7:3 9:1 5:3:2
PMM(S) 81.71 ± 1.34 86.06 ± 3.30 88.74 ± 3.79 88.14 ± 2.01
˜PMM(S ) 89.04 ± 3.63 91.27 ± 5.21 90.96 ± 4.18 95.8 ± 2.92

PMM(D) 94.69 ± 2.26 94.96 ± 2.52 91.25 ± 3.53 90.04 ± 2.71
˜PMM(D) 99.17 ± 0.61 99.49 ± 0.63 97.98 ± 1.86 99.18 ± 1.45

Fig. 12: Performance with asymmetric tables (2)

To summarise, when agents are not told the group assign-
ment of all agents and have to predict its group assignment,
measuring its cluster models (V1) with patterns received per-
forms better. In addition, there is little difference in these two
methods when there are only two patterns without a singleton
agent.

C. Evaluation with unknown assignment

In this section, we evaluate the performance of different
methods for predicting the group assignment if the group
assignment is not known. After the confirmation of prediction
of agents’ assignment, we count the number of pairs in sub-
groups that are in the same sub-group as ground truth (Me2)
and compute the final accuracy against patterns.

Figure 13 shows the performance when the patterns are
similar in the network. MD3 performs better than the other
methods. We expected this result since we compare the results,
produced by centralised agent, with the ground truth directly.
By this method, the prediction error has been avoided. Note
that there is little difference between MD2 and MD3, which
suggests that MD2 is also a potential method to measure the
accuracy of patterns. MD1 performs the worst, and that is
because we only consider networks with multiple patterns in
this experiment.

Figure 14 shows the performance when the patterns are
dissimilar in the network. Compared to the Figure 13, the
accuracy against pattern is higher. The most possible reason
lies in the fact that it is much easier for the proposed algorithm
to detect the patterns. Again, MD3 performs the best among
all methods and MD1 performs the worst.

Fig. 13: Performance evaluation with similar patterns

Fig. 14: Performance evaluation with dissimilar patterns

D. Comparison with the state-of-the-art

In this section, we measure the accuracy against data points,
which computes how accurate the algorithm puts data points
into the right clusters as ground truth, and compare the
accuracy achieved by our methods P̃MM with the state-of-
the-art method PMM. We consider two different types of
networks: similar patterns and different patterns (denoted by
the S and D in the bracket respectively). When there are
multiple patterns in the network, we expect a higher accuracy
against data points if the agents are put into the right patterns
as ground truth. Table II shows the accuracy achieved by
the proposed method P̃MM outperforms that by PMM in all
cases, by as much as 9%.
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V. Conclusion and future directions

In this paper, we assume that there are multiple different
patterns of data being observed by different subgroups of
vehicles of IoV. The aim is for vehicles to be able to identify
the different patterns and their associated clusters, rather than
combine the multiple patterns into a single description.

We proposed an evaluation matrix to measure the perfor-
mance of group assignments for agents. Experimental results
show that, the method where all possible pairs of agents are
considered (known as Me2) performs better in measuring the
performance of agents in scenarios with single and multiple
patterns. Moreover, measuring the cluster model achieves a
better performance in inferring the agent assignment even
the group assignment is not known in advance. Compared to
the state-of-the-art, the accuracy against data points can be
improved by as much as 9% if the group of agents is predicted
correctly.

For a more comprehensive conclusion, we will extend the
evaluation, to consider larger networks and different data
distributions. We will address the problems where the distribu-
tions change over time and the requirements for personalised
models are needed.
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[15] O. Nežerenko, O. Koppel, and T. Tuisk, “Cluster ap-
proach in organization of transportation in the baltic sea
region,” Transport, vol. 32, no. 2, pp. 167–179, 2017.
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