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Abstract—Autonomous driving of multi-lane vehicle platoons
have attracted significant attention in recent years due to their
potential to enhance the traffic-carrying capacity of the roads
and produce better safety for drivers and passengers. This paper
proposes a distributed motion planning algorithm to ensure safe
overtaking of autonomous vehicles in a dynamic environment
using the Artificial Potential Field method. Unlike the conven-
tional overtaking techniques, autonomous driving strategies can
be used to implement safe overtaking via formation control
of unmanned vehicles in a complex vehicle platoon in the
presence of human-operated vehicles. Firstly, we formulate the
overtaking problem of a group of autonomous vehicles into a
multi-target tracking problem, where the targets are dynamic.
To model a multi-vehicle system consisting of both autonomous
and human-operated vehicles, we introduce the notion of velocity
difference potential field and acceleration difference potential
field. We then analyze the stability of the multi-lane vehicle
platoon and propose an optimization-based algorithm for solving
the overtaking problem by placing a dynamic target in the
traditional artificial potential field. A simulation case study has
been performed to verify the feasibility and effectiveness of the
proposed distributed motion control strategy for safe overtaking
in a multi-lane vehicle platoon.

Index Terms—Motion planning, intelligent vehicles, artificial
potential field, autonomous overtaking, collision avoidance, dis-
tributed systems.

I. INTRODUCTION

As the number of private cars and rented vehicles increases
rapidly in all countries, traffic congestion, road safety and
environmental pollution are becoming critical issues [1]. The
autonomous driving and vehicle platooning strategies offer
potential and realistic solutions to these challenges [2], [3].
In addition to reducing human-caused traffic accidents [4],
autonomous driving and vehicle platooning may result in better
fuel economy [5], reduced traffic congestion [6], improved
traffic efficiency [7] and reduced environmental pollution.
Extensive research has been done on autonomous vehicle’s
perception, decision-making, motion control, motion plan-
ning, and traffic scheduling [8]–[12]. The current research
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trend, however, focuses mainly on the self-driving mechanism
of single-lane platoons. However, in the case of multi-lane
platoons, the vehicles may face conflicting situations while
operating at high speed and overtaking other vehicles due to
a lack of communication among the vehicles of the different
lanes. This hence affects both traffic safety and efficiency of
a large vehicle platoon.

With the advent of heterogeneous vehicle platooning tech-
niques, self-driving scheme has significantly improved the
carrying capacity of the lanes and the road safety [13].
Information exchange and sharing, collaborative sensing, joint
operation of the multi-vehicle system ensure the possibility
of cooperation among intelligent vehicles, thus improving the
overall driving quality and driving safety [14], [15]. For in-
stance, V2X communication in a multi-agent system connects
vehicles with the network of road facility agents. It enables
information exchange and coordinated operation among ve-
hicle agents, which significantly reduces traffic congestion in
complex roads [7]. A multi-vehicle system can also achieve a
specific formation, i.e., maintain the desired distance between
neighboring vehicles, increasing road capacity, reducing con-
gestion, and improving traffic efficiency [16], [17]. Moreover,
a multi-vehicle system may bring more positive possibilities
for road rescue, traffic command and other fields [18]. Despite
all these positive factors, no automotive companies have yet
deployed autonomous multi-vehicle scheme into practical use.

In recent years, much progress has been made in the study
of multi-vehicle systems, which includes unmanned vehicle
formations [19], [20], cooperative navigation of unmanned
vehicles [21], and multi-vehicle merging [22], [23]. Among
them, the cooperative adaptive cruise control of vehicles is
more relevant and will greatly improve the efficiency of
existing traffics. However, many research works on such multi-
vehicle platoon systems are still limited to the control of
vehicle motion in a single dimension, i.e., only the longitudinal
motion of the platoon can be controlled. This technique may
not fulfill the requirements in most real world applications as
longitudinal motion control alone cannot deal with the situa-
tion when there exist vehicles blocking the road. Therefore,
to handle unexpected scenarios in the road, safe autonomous
overtaking methods should be considered in the protocol
design of autonomous vehicles (AVs).

One of the most typical application scenarios of AVs is the
overtaking of multi-vehicle system in a dynamic environment
in which obstacles and vehicles have varying accelerations.
The multi-vehicle system’s overtaking is a highly complex
scenario, including various traffic scenarios, such as lane
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changing, obstacle avoidance, formation, and target tracking.
The overtaking of autonomous driving has always been a
challenging research topic. In [24]–[29], overtaking decisions,
planning, and control have all been studied in depth. Motion
planning is an integral part of the overtaking problem which
provides a state trajectory with time series for obstacle avoid-
ance, lane changing and overtaking [30]. Model predictive
control (MPC) plays a vital role in motion planning [24], [31],
[32]. All of these methods transform motion planning into a
finite-time quadratic programming problem. Thus, a trajectory
satisfying the specific constraints is obtained [33]. Then, using
some optimization techniques, a smoother motion trajectory
can be obtained [34]. Besides, the graph search-based method
[8], sampling-based method [35], and interpolation curve
method [36] are also used in motion planning for overtaking
scenarios of autonomous vehicles. Moreover, reinforcement
learning also provides a potential solution to the overtaking
behavior of autonomous driving [37]–[39]. Deep deterministic
strategy gradient method and deep Q-learning network become
the mainstream algorithm frameworks [40], [41]. However,
these studies of overtaking motion planning are all based on
a single vehicle system.

There are fewer research works on the motion planning of
the overtaking application of the autonomous multi-vehicle
system. The article [42] proposed an advanced graph-based
optimal solution for overtaking scenarios of multi-vehicles. On
this basis, [43] proposed another method of automatic vehicle
overtaking based on MPC. The graph optimization algorithm
based on that probability provides the path of obstacle avoid-
ance and overtaking. In [44], a unified approach to cooperative
path-planning based on nonlinear model predictive control was
proposed for overtaking application of multi-vehicle systems.
Subsequently, the trajectory prediction of the human driver
model was integrated into the framework, such that the behav-
iors of the other agents were affected by the human-operated
vehicles (HVs) [45]. In [46], a distributed control method
for coordinating multiple vehicles in the framework of an
automated valet parking system was introduced. The main
limitation of this approach is to rely on traffic infrastructure,
which poses a considerable challenge to the current traffic
facilities. The work presented in [47] proposed an integrated
route and motion planning approach by considering a set of
customer demands and road rules specified in temporal logic.
However, vehicles other than navigators cannot interact with
other existing vehicles during the overtaking.

This paper proposes a distributed multi-vehicle motion plan-
ning method motivated by the challenges mentioned above in
multi-vehicle overtaking. The method presented in this paper
is to transform the overtaking of the automatic driving fleet
into multiple dynamic target tracking problems by assigning a
virtual dynamic target for the leader of fleet. Firstly, a safe and
feasible trajectory is planned for the leader AV so as to achieve
tracking of the dynamic virtual target and obstacle avoidance
of the HVs and other AV fleet members. To solve a dynamic
target tracking problem, this paper introduces the artificial po-
tential field to carry out the motion planning of target tracking.
The position field, velocity field and acceleration field are
added between the leader AV and the dynamic virtual target to

realize the accurate tracking of the virtual target by the leader
AV. Simultaneously, the position and speed repulsion fields
are added between the leader AV, the HVs, and other AV fleet
members to realize the cooperative collision avoidance among
the AV fleet members and avoid the HVs in the environment.
Secondly, we design a bounded distributed control protocol
that can guarantee topology connectivity for the followers.
By using this distributed control protocol, the followers can
track the leader AV with varying acceleration. Meanwhile,
followers can also achieve obstacle avoidance with HVs, road
boundaries, and other AV fleet members, and achieve distance
stabilization between followers. By introducing velocity and
acceleration fields to achieve overtaking of dynamic HV, the
Artificial Potential Field (APF) method, which is widely used
for motion planning of a single mobile robot, can be applied to
solve the overtaking motion planning problem of multi-vehicle
systems. Furthermore, we introduce a bounded distributed
control protocol that achieves speed consistency across the
AV fleet and avoids collisions among the vehicles. To the best
of authors’ knowledge, such a APF-based motion planning
strategy has not been proposed in the literature.

The main contributions of this paper can be summarized as
follow:

• A distributed motion planning algorithm for the leader
AV based on the improved artificial potential field is
proposed, which enables the leader AV to complete the
overtaking of dynamic human-operated vehicles.

• We design a bounded distributed control protocol to
implement the follower’s safe tracking of the leader AV.
Moreover, we analyze the stability of the multi-vehicle
system with N followers and one leader AV. It is proved
that under this control protocol, the velocity of all the
followers will be synchronized with the leader AV, and
all the AVs will keep a safe distance between them.

• The effectiveness of the proposed strategy for use in
autonomous vehicle overtaking scenario is validated by a
realistic simulator, Unreal Engine™.

II. PROBLEM STATEMENT

We consider using the following double integral dynamical
system kinematics equation to approximate the motion of the
N vehicles in a 2D space:{

ṙi = vi

v̇i = ai,
(1)

where ri ∈ R2, vi ∈ R2 are, respectively, the position, velocity
vector of vehicle i. We use a time-varying directed graph
G(t) , (V, E(t)) to describe the network topology between
vehicles. where V , {V1, . . . ,VN , } is set of nodes. and
elements of E(t) ∈ N × N are denoted as (Vi,Vj) which
is termed an edge from Vi to Vj . A(t) = [aij ] ∈ RN×N is
the adjacency matrix of graph G(t). The initial connection of
the system is: E(0) = {(i, j)| ‖ri(0)− rj(0)‖ < ρc, i, j ∈ V},
where ρc is the communication range of the vehicles.

The AV fleet overtaking scenario can be summarized as a
dynamic multi-target tracking problem. We assume that the AV
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fleet consists of N followers and 1 leader AV. With Vehicle-
to-Vehicle (V2V) communication technology [48], vehicle ter-
minals exchange real-time state information directly with each
other without the need for forwarding through a base station.
AVs need to avoid other HVs actively in the environment;
meanwhile, the AVs also need to avoid collisions between
each other. We consider setting up one dynamic virtual node
which represent the target position. The motion parameters
of the virtual node need to be determined according to the
HVs. The virtual node should always be in front of the HVs
and have the same velocity and acceleration parameters as the
HVs. Therefore, overtaking task can be decoupled into three
tasks. Firstly, in a limited time, the leader AV must reach
the virtual node. Secondly, the followers in the AV fleet must
remain synchronous in the motion parameters with the leader
AV. Thirdly, all the AVs must avoid HVs and avoid collisions
with members of the AV fleet.

A. Basic Assumptions

• We assume that it takes time τ (τ > 0) seconds for the
platoon system to switch the connection topology each
time.

• In the current environment, there are N + 1 AVs and
M human-operated vehicles. Human-operated vehicles
appear randomly in the environment.

• The V2V communication function allows vehicles to
communicate their position, velocity, and acceleration
with each other. The communication range is limited.
When other vehicles enter the communication range of
vehicle i, vehicle i can receive the status information of
adjacent vehicles.

• During the overtaking, all vehicles are connected by
a communication network. The communication network
topology is shown in Fig. 1. The communication range
of each AV is ρc. We assume that the initial topology
G(0) is connected. The communication between AVs is
bidirectional, where AVs can access state information
from each other. Note that HVs do not communicate
with other vehicles and each HV’s state information is
obtained by the on-board sensors of nearby AVs. Since
the delays and errors can be minimized by the high-
performance sensors, this information flow can also be
viewed as a unidirectional communication system for an-
alytical purposes, where AVs can access state information
from HVs, but HVs will not use any information from
AVs.

• Without loss of generality, we assume that each HV has a
changing acceleration. The jerk of the vehicle is constant,...
r = J .

• Because of the differences in traffic laws between coun-
tries and regions, we assume that it is legal to overtake
on the left and the right.

B. A specific scenario

In this paper, we use the specific scenario shown in Fig. 2 to
carry out the experiments. Fig. 2 depicts a two-lane overtaking
scene of an AV fleet, where H1 denotes the human-operated

Fig. 1: The communication network amongst the autonomous
vehicles (indicated by Red circles) and human-operated vehi-
cles (indicated by Blue circles).

Fig. 2: A typical overtaking scenario of autonomous vehicles.
H1 denotes the human-operated vehicle, L1, F1, and F2,
respectively, denote the leader AV, first follower AV, and
second follower AV.

vehicle, L1, F1, and F2, respectively, denote the leader AV,
first follower AV, and second follower AV. Red cars are AVs
in a particular formation; blue car is the object to be overtaken,
grey cars represent the desired position of autonomous vehicles
fleet after overtaking. We consider the most common overtak-
ing scenario, in which the AV fleet changes lanes to overtake,
then needs to make a second lane change and return to the
initial lane. In this scenario, the road is a two-lane straight
road segment, and each lane has a fixed width. Additionally,
the human-operated vehicle’s acceleration in front of the AV
fleet is continuously changing during overtaking.

C. System architecture of automatic driving

This paper assumes that each AV fleet member has the most
commonly used autonomous driving system architecture, mak-
ing this paper’s method feasible in real autonomous vehicles.
Fig. 3 describes a general system architecture of automatic
driving function. The planning module will generate a position
trajectory with a time sequence in each control cycle. The
control module will track this trajectory accurately. Motion
Planning aims to plan a safe, comfortable, and derivable
trajectory for an autonomous vehicle according to the data
from the prediction, perception, localization, high definition
map (HD-Map) and routing module. In this paper, The AV fleet
members can obtain the position, velocity, and acceleration
of human-operated vehicles and the other AV fleet members
through the perception module. The prediction module will
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Fig. 3: Functional block diagram of an intelligent autopilot
scheme for autonomous vehicles.

predict the driving intention, position and velocity changes of
the human-operated vehicles and output the human-operated
vehicle’s predictive motion trajectory in the finite time domain.
In traditional single-vehicle autonomous driving, motion plan-
ning during overtaking considers the environment vehicles and
achieve overtaking and lane changing. While in multi-vehicle
autonomous driving, motion planning should also take into
account the risk of collisions between AV fleet members and
the specific formation requirements of the AV fleet. The main
objective of this paper is to develop algorithms in planning and
control blocks to achieve safe overtaking behaviors of the AV
fleet. This AV fleet constitutes a typical distributed system.
All individual agents in this distributed system are isomorphic
autonomous vehicles and use the same autonomous driving
system architecture shown in Fig. 3.

III. DISTRIBUTED MOTION PLANNING AND CONTROL
DESIGN

A. Motion planning of the navigator

The idea of using artificial potential field method for path
planning has a long history. The basic idea comes from
the concept of potential in physics. The obstacles in the
environment generate repulsive force to the robot, the target
points generate attraction to the robot, and the robot moves
along the direction of minimum potential energy under the
resultant force’s action. The artificial potential field method is
often applied in path planning and multi-agent motion control
in recent years [24]. The advantage of this method is that it
is simple to calculate and easy to realize real-time control.
The traditional artificial potential field method is based on the
distance difference between the robot and the target or obstacle
to generate the corresponding attractive and repulsive forces.
Following functions generate a typical attractive potential field
and repulsive potential field [49]:Uatt =

1

2
Kp d

2(r)

Fatt = −∇Uatt(r)
(2)

and Urep =
1

2
ηp

(
1

d(r)
− 1

D

)2

Frep = −∇Urep(r).

(3)

However, the traditional APF technique is mostly used for path
planning in a static environment and may not be effective in

a dynamic environment. Hence, it is necessary to modify the
traditional APF technique relying on the positional difference.

Let there be M human-operated vehicles in the current
scenario. The current position of the leader AV, the kth AV,
the jth HV, and the goal position of leader AV are denoted
by rl, rk, rj and rg respectively. Similarly, the velocities and
accelerations are denoted by vl, vk, vj , vg and al, ak, aj , ag ,
respectively. In addition, we define the following variables:
• d(rl, rk) is the geometric distance between the leader

AV and the kth AV. The relative velocity and relative
acceleration between the leader AV and the kth AV in
the fleet are symbolized as d(vl, vk) and d(al, ak);

• d(rl, rj) is the geometric distance between the leader
AV and the jth HV. The relative velocity and relative
acceleration between the leader AV and the jth HV are
symbolized as d(vl, vj) and d(al, aj);

• d(rl, rg) is the geometric distance between the leader AV
and the goal node. The modulus of relative velocity and
relative acceleration between the leader AV and the goal
node are denoted by d(vl, vg), and d(al, ag).
Hence, the goal node of leader AV is given by the routing
block when the decision-making level makes the decision
to overtake. This dynamic goal node will change with the
state of motion of the HV.

In order to achieve the leader AV’s tracking of the virtual
target, we define the following artificial potential field.

1) Attractive Quadratic Potential Fields: We define the
following Attractive Quadratic Potential Field (AQPF)

Uatt(r, v, a) =
1

2
Kpd

2 (rl, rg) +
1

2
Kvd

2 (vl, vg)

+
1

2
Kad

2 (al, ag)
(4)

between the leader autonomous vehicle and the virtual goal
(treated as a node). The attractive force produced by the
proposed AQPF technique is given by

Fatt(i) =−∇Uatt(r, v, a)

=− ∂Uatt(r, v, a)

∂r
− ∂Uatt(r, v, a)

∂v
− ∂Uatt(r, v, a)

∂a
=−Kpd (rl, rg)−Kvd (vl, vg)−Kad (al, ag)

=FattP + FattV + Fatta,
(5)

where Kp > 0, Kv > 0 and Ka > 0 denote respectively the
position, velocity, and acceleration gain coefficients. Fig. 4
shows the vector diagram for calculating the attractive force
between an leader AV and it’s goal node. The FattP aims to
make the autonomous vehicle track the position of the goal
node. The direction of the force is from the leader AV to the
goal node. The FattV aims to make the leader AV track the
velocity of the goal node, and its direction is the same as the
direction of vector (−→vg − −→vl ) . The Fatta aims to complete
the acceleration tracking, and its direction is the same as the
direction of vector (−→ag −−→al ).

2) Repulsive Potential Field generated by the HVs: Re-
garding the potential field of HVs, we also consider the
potential field caused by position and speed. The distance
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Fig. 4: The vector diagram has been used for calculating the
attractive force between the leader AV (red circle) and the its
goal node (grey circle).

factor ensures that an autonomous vehicle will not collide
with HVs. The speed factor can predict and avoid collisions
in advance. We define

−→
d (vl, vj) and

−→
d (rl, rj) the relative

velocity and position vectors of the leader and the HVs. When−→
d (vl, vj) ·

−→
d (rl, rj) > 0, it means that the leader AV will

have the risk of collision with the HVs, thus the HVs generate
the repulsive force to the leader AV. Hence, we establish the
following repulsive potential field:

Urep(lj)(r,v) =

1

2
ηp

(
1

d (rl, rj)
− 1

Dmax

)2

d(rl, rg) + ηvd (vl, vj),

1

2
ηp

(
1

d (rl, rj)
− 1

Dmax

)2

d(rl, rg),

0;

(6)

for 
d (rj , rl) ≤ Dmax and

−→
d (vl, vj) ·

−→
d (rl, rj) > 0;

d (rl, rj) ≤ Dmax and
−→
d (vl, vj) ·

−→
d (rl, rj) ≤ 0;

d (rl, rj) > Dmax.

where Dmax denotes the repulsive area defined by the follow-
ing elliptical equation:

(x− xj)2

a2
+

(y − yj)2

b2
= 1 (where a > b > 0). (7)

The elliptical action area allows the vehicle to avoid obstacles
in advance in the longitudinal direction. The region Dmax

defined by formula (7) is a variable value.

Dmax =

√
a2b2(1 + k2)

b2 + a2k2
, (8)

where k =
yi−yj

xi−xj
.

We define that the gradient of repulsive potential fields is

Fig. 5: Schematic diagram of repulsive force calculation be-
tween leader AV (red circle) and HV (blue circle).

the repulsive force

Frep(lj) =−∇Urep(lj)(r, v)

=−
∂Urep(lj)(r, v)

∂r
−
∂Urep(lj)(r, v)

∂v
=FrepP(lj) + Frepv(lj).

(9)

Fig. 5 describes the calculation process of repulsive force
between the leader AV and the jth HV. The repulsive force
FrepP(lj) generated by the position difference is directed from
the obstacle vehicle to the autonomous vehicle. This repulsion
trend the AV away from the obstacle vehicle. The repulsive
force Frepv(lj) due to the velocity difference is in the same
direction as the vector (−→vj −−→vl ). This repulsive force causes
the autonomous vehicle to slow down when approaching an
obstacle vehicle.

Frep(lj) =



ηp

(
1

d (rl, rj)
− 1

Dmax

)
d(rl, rg)

d2 (rl, rj)

+
1

2
ηp

(
1

d (rl, rj)
− 1

Dmax

)2

+ ηv,

ηp

(
1

d (rl, rj)
− 1

Dmax

)
d(rl, rg)

d2 (rl, rj)

+
1

2
ηp

(
1

d (rl, rj)
− 1

Dmax

)2

,

0,

(10)

for 
d (rl, rj) ≤ Dmax and

−→
d (vl, vj) ·

−→
d (rl, rj) > 0;

d (rl, rj) ≤ Dmax and
−→
d (vl, vj) ·

−→
d (rl, rj) ≤ 0;

d (ri, rj) > Dmax.

Hence, the total repulsive force of human-operated vehicles
to the leader AV is:

Frepj(l) =

M∑
j=1

Frep(lj). (11)

3) Repulsive Potential Field generated by the autonomous
vehicles: For the overtaking scenario in this paper, we should
consider avoiding human-operated vehicles and consider col-
lisions between members of the fleet. Similarly, the repulsion
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field is defined between vehicles within the AV fleet,

Frep(lk) =



ηp

(
1

d (rl, rk)
− 1

Dmax

)
d(rl, rg)

d2 (rl, rk)

+
1

2
ηp

(
1

d (rl, rk)
− 1

Dmax

)2

+ ηv,

ηp

(
1

d (rl, rk)
− 1

Dmax

)
d(rl, rg)

d2 (rl, rk)

+
1

2
ηp

(
1

d (rl, rk)
− 1

Dmax

)2

,

0,

(12)

for 
d (rl, rk) ≤ Dmax and

−→
d (vl, vk) ·

−→
d (rl, rk) > 0;

d (rl, rk) ≤ Dmax and
−→
d (vl, vk) ·

−→
d (rl, rk) ≤ 0;

d (rl, rk) > Dmax.

Moreover, the repulsive force calculation between the leader
AV and other members in the AV fleet is the same as shown in
Fig. 5. The total repulsive force exerted by the other members
in the fleet on the leader AV is given by:

Frepk(l) =

N−1∑
k=1

Frep(lk). (13)

4) Repulsive Potential Field generated due to road bound-
ary and the resultant force calculation: In order to make the
vehicle drive within a reasonable road range, we define the
potential field for the road boundary:

Urep(road) =


1

2
ηroad

(
1

d (rl, rroad)
− 1

)2

, d(rl, rroad) ≤ 1;

0, d(rl, rroad) > 1;
(14)

and

Frep(road) =


ηroad

(
1

d (rl, rroad)
− 1

)
× 1

d2 (rl, rroad)
, d(rl, rroad) ≤ 1;

0, d(rl, rroad) > 1,

(15)

where d(rl, rroad) represents the distance between the leader
AV and road boundary.

To sum up, the resultant force of the leader AV in the
environment is

Ftotal(l) = Fatt(l) + Frepj(l) + Frepk(l) + Frep(road). (16)

B. Steady-state analysis of leader AV

From the equations (10) and (12), the repulsive forces
generated by an human-operated vehicle have the same form as
those generated by other members of the AV fleet. Moreover,
the repulsive forces generated by the road boundary exist only
within a small range of the boundary, and their direction is
parallel to the lateral direction. When analyzing the steady
state and stability of the algorithm, we ignore this part of

repulsion. Therefore, we unify the repulsive force into the
following formula, which is called the interference term:

Q =
∑
f∈Nl

ηp

(
1

rl − rf
− 1

Dmax

)
rl − rg

(rl − rf )2

+
1

2
ηp

(
1

rl − rf
− 1

Dmax

)2

+ ηv,

(17)

where rf denotes the the position of vehicles which generate
the repulsive force to the leader AV. Considering a particle
dynamics, the following equation is obtained:

...
r l =

1

m
[−Kp(rl − rg)−Kv(ṙl − ṙg)

−Ka(r̈l − r̈g) +Q].
(18)

We define the difference between the position of the leader
AV and the virtual dynamic node as the control object:

e = rl − rg
ė = ṙl − ṙg
ë = r̈l − r̈g
...
e =

...
r l −

...
r g.

(19)

The closed loop dynamic model is updated to:

...
e =

1

m
[−Kpe−Kv ė−Kaë

+
∑
f∈Nl

ηp

(
1

e+ rg − rf
− 1

Dmax

)
e

(e+ rg − rf )2

+
1

2
ηp

(
1

e+ rg − rf
− 1

Dmax

)2

+ ηv]− ...
r g.

(20)

Defining Bf := rg − rf and the following equation can be
obtained:

...
e =

1

m
[−Kpe−Kv ė−Kaë

+
∑
f∈Nl

ηp

(
1

e+Bf
− 1

Dmax

)
e

(e+Bf )2

+
1

2
ηp

(
1

e+Bf
− 1

Dmax

)2

+ ηv]− ...
r g.

(21)

The equilibrium state of system is obtained by setting
...
e =

ë = ė = 0, which results in the following equations:

1

m
[−Kpe+

∑
f∈Nl

ηp

(
1

e+Bf
− 1

Dmax

)
e

(e+Bf )2

+
1

2
ηp

(
1

e+Bf
− 1

Dmax

)2

+ ηv]− ...
r g = 0.

(22)

The solution is as follows:

e = F (B1, B2, · · · , Bf ,
...
r g). (23)

Whether there are variables Bf depends on whether the
vehicle is subject to interference item. f is the number of ob-
stacles vehicles and other fleet members which are generating
repulsive force to the leader AV. Variable

...
r g is the jerk of
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the virtual target. Therefore, one of the necessary conditions
for the steady state of the system is that

...
r g is constant. This

is consistent with our previous basic assumption that dynamic
virtual targets have varying accelerations. In general, in the
case of small changes in acceleration, we can think about jerk
as zero. Therefore, the steady state of the system under the
disturbance term depends on the value of Bf . Therefore, when
Bf is also constant, the system is purely in steady state. In this
case, the vehicle is likely to enter a local steady state formed
by Bf , which prevents tracking of the virtual target node.
Its steady state value is given in (23). However, this does not
meet our requirements when modeling the overtaking problem.
We expect that the vehicle will not enter a steady state when
approaching the obstacle. To solve this problem, we randomly
add noise wf to the repulsive force field of obstacles, so that
the vehicle will not enter a steady state:

...
e =

1

m
[−Kpe−Kv ė−Kaë

+
∑
f∈Nl

ηp

(
1

e+ rg − rf
− 1

Dmax

)
e

(e+ rg − rf )2

+
1

2
ηp

(
1

e+ rg − rf
− 1

Dmax

)2

+ ηv + wf ]− ...
r g.

(24)

In addition, the addition of random noise follows the fol-
lowing rule: {

wf = 0 if Nl = ∅
wf 6= 0 if Nl 6= ∅

. (25)

Then (23) is updated to:

e = F (B1, B2, · · · , Bf , wf ,
...
r g). (26)

When the vehicle is affected by the interference term, it will
not enter the steady state because of the noise wf , but will
leave the repulsive region because of the repulsive force. The
vehicle will then enter a attractive field with no interference
terms. Essentially, according to (25), wf will be eliminated
when the vehicle is not affected by the interference term.
Thus, when the vehicle converges to the steady state without
disturbance terms, (24) is then updated to:

...
e =

1

m
[−Kpe−Kv ė−Kaë]−

...
r g. (27)

The steady state can be solved by the following equation:

...
r g +

1

m
Kp e = 0. (28)

The set of equilibrium states E is therefore obtained as

E =

{
ë, ė, e | e = −m

...
r g

Kp
, ë = ė = 0

}
. (29)

According to the above analysis, the velocity and acceler-
ation parameters of leader AV will converge to those of the
virtual target, and its position will converge to

(
rg − m

...
r g

Kp

)
.

Relying on the above analysis, we can conclude that an
autonomous vehicle can dynamically track a virtual target
following the proposed algorithm. However, the vehicle cannot

completely converge to the position of the virtual target. There
exist a positional difference between the them, the value of
which depends on the jerk of the virtual target

...
r g and the con-

stant parameters Kp,m. Therefore, the algorithm is suitable
for a dynamic target with a small jerk. However, this algorithm
is not useful for the dynamic targets whose acceleration varies
significantly. In a real-world scenario, due to the unpredictable
road conditions, obstacles and nonuniformities of the vehicles,
different driving styles of the human drivers lead to frequent
acceleration changes. Hence, the previous algorithm needs to
be modified to enable a vehicle to track unforeseen circum-
stances (modelled as dynamic targets/obstacles) during the
course of motion. In order to eliminate the influence of the
jerk of the target node on the steady-state error of the position,
we consider introducing the jerk of the target node into the
closed-loop control:

Fatt(l) =−Kp

(
rl − rg −

m
...
r g

Kp

)
−Kv(ṙl − ṙg)

−Ka(r̈l − r̈g).

(30)

We will now use the same analysis to obtain the third-order
system model of an autonomous vehicle as follows:

...
e =

1

m

[
−Kp

(
e− m

...
rg
Kp

)
−Kv ė−Kaë

+
∑
f∈Nl

ηp

(
1

e+ rg − rf
− 1

Dmax

)
e

(e+ rg − rf )2

+
1

2
ηp

(
1

e+ rg − rf
− 1

Dmax

)2

+ ηv + wf

]
− ...
r g.

(31)

Without being affected by the interference term, the state
space expression of the closed-loop control system can be
expressed as ėë...

e

 =

 0 1 0
0 0 1

−Kp

m −Kv

m −Ka

m

eė
ë

 . (32)

The set of steady-state operating points of the above system
is obtained as

E = {ë, ė, e | ë = ė = e = 0} . (33)

The set E signifies that the position, velocity and accel-
eration of leader AV converges to the motion parameters
corresponding to the virtual target. Stability of closed-loop
control systems can be determined by A matrix, where

A =

 0 1 0
0 0 1

−Kp

m −Kv

m −Ka

m

 . (34)

Let |λE −A| = 0, Characteristic equation is:

λ3 +
Ka

m
λ2 +

Kv

m
λ+

Kp

m
= 0, (35)

where Kp

m > 0, Kv

m > 0, Ka

m > 0. It’s easy to conclude that the
characteristic equation has no solution greater than or equal
to zero. Therefore, the matrix A must be negative definite or
semi-negative definite. In conclusion, the closed-loop control
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system is Lyapunov stable or Lyapunov asymptotically stable.

C. Trajectory generation and optimization

1) Trajectory generation: On the premise of not affecting
the algorithm itself, we consider using a particle dynamics
model for trajectory prediction. Select state vector S:

Sl =

 rl
vl
al

 , (36)

and equation of state for the system:

Ṡl = ASl +BUl, (37)

where,

A =

 0 1 0
0 0 1
0 0 0

 , B =

 0
0
1
m

 .
Use the forward Euler method to discretize the equation of

state:

Ṡl ≈
Sl(t+ 1)− Sl(t)

T
= ASl(t) +BUl(t), (38)

where T is the control period. The equation of state after
discretization is

Sl(t+ 1) = (I + TA)Sl(t) + TBUl(t)

= ASl(t) +BUl(t),
(39)

where

A =

 1 T 0
0 1 T
0 0 1

 , B =

 0
0
T
m

 .
In the finite time domain, the predicted trajectory and state

of the vehicle can be obtained by:

Ul(t) =mJg(t)−Kp(rl(t)− rg(t))

−Kv(vl(t)− vg(t))−Ka(al(t)− ag(t)),
(40)

where Jg(t) is the jerk of target node. Ul(t) is a discrete-time
signal where t = 0, 1, 2, . . . denotes the discrete time instants.

In addition, the traffic speed limit and the power limit of
the vehicle are also taken into account. The acceleration and
velocity constraints are defined as

al(t+ 1) =


al(t) +

T

m
Ul(t),

∣∣∣∣al(t) +
T

m
Ul(t)

∣∣∣∣ < amax

amax,

∣∣∣∣al(t) +
T

m
Ul(t)

∣∣∣∣ ≥ amax

(41)
and

vl(t+ 1) =

{
vl(t) + Tal(t), |vl(t) + Tal(t)| < vmax

vmax, |vl(t) + Tal(t)| ≥ vmax

.

(42)
2) Trajectory optimization: The trajectory generated by

the APF technique satisfies the vehicle’s barrier avoidance
constraints and the motion tracking of the target point. How-
ever, the resulting trajectory does not guarantee sufficient
smoothness in the event of curvature changes and acceleration
changes. In the literature, there are a variety of local trajectory

optimization techniques. For instance, the idea of optimal
control for local rolling optimization is often considered. In
the longitudinal direction, to minimize the jerk and thereby
increasing the passengers’ comfort, the following optimization
problem

min
jx(t)

Jx =

∫ t+q

t

1

2
j2
x(t)dt

such that ẋ(t) = vx(t), v̇x(t) = ax(t), ȧx(t) = jx(t).

(43)

can be solved taking the inspiration from [50]. According
to Pontryagin’s maximum principle, the optimal longitudinal
displacement trajectory x(t) can be obtained. In (43), the
position constraint must be added to meet the obstacle avoid-
ance requirements. Meanwhile, the velocity and acceleration
constraints at the endpoints needs to be introduced to ensure
the smoothness of the generated trajectories. Similarly, in
the lateral direction, the objection function is established as
followed [50]:

min
jy(t)

Jy =

∫ t+q

t

1

2
j2
y(t)dt

such that ẏ(t) = vy(t), v̇y(t) = ay(t), ȧy(t) = jy(t).

(44)

The two optimal problems above end up with two high-order
curves, which ensures the requirement of avoiding obstacles
and the smoothness of the acceleration change.

Another local optimization method, high-order Bessel curve
fitting [51], is also adopted in this paper. It can obtain locally
smoother trajectories but may not obtain the optimal solution.
We consider using the fifth-order Bessel curve to carry out
rolling optimization on the obtained trajectory to obtain a
trajectory that is as smooth as possible in the finite time
domain.

Given (n + 1) space vectors Pi ∈ R3, where i ∈
{0, 1, 2, . . . , n}, the n-th Bessel curve can be defined as

P (t) =

n∑
i=0

PiB
n
i (t) ∀t ∈ [0, 1], (45)

where Pi are the control points and Bn
i (t) is given by:

Bn
i (t) = Ci

nt
i(1− t)n−i ∀i ∈ {0, 1, . . . , n}. (46)

The fifth-order Bessel curve has a very smooth curvature
and the corresponding changes in the turning angle and angular
velocity are relatively gentle. In the terminology of vehicular
control, this signifies that the curvature of turning of a vehicle
will be smoother.

3) Motion planning algorithm: After the decision of over-
taking is made by the leader AV of multi-vehicle system, the
leader needs to generate virtual target node. Virtual target node
are generated according to Algorithm 1. Let Sj = [rj , vj , aj ]

T

and Sg = [rg, vg, ag]T ∈ R3 represent the state vector of
the jth HV and the goal node, respectively. Note that this
static coupling can be described as Sg = Sj + ∆d, where
∆d = [C + µ, 0, 0]T , C is the platoon length and µ is the
desired distance between HV and the platoon. Sl(p) in this
algorithm represents the leader AV’s state vector at time step p,
which include position, velocity and acceleration. In the actual
self-driving vehicle, the motion planning needs to be updated
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in real-time and sent to the control module. Algorithm 2
provides a reference trajectory for the leader AV to avoid
the dynamic vehicle. The algorithm is updated dynamically
in real-time, each update calculates the motion trajectory in
the finite time domain.

Algorithm 1 Virtual target node generation algorithm

Input: The current state variables of autonomous vehicle fleet
members, human-operated vehicles Sl(p), Sj(p). Predic-
tion state of human-operated vehicles in p time domain,
Sj(p), Sj(p+ 1), · · · , Sj(p+ q).

Output: The target node’s lane number Lg and the target
node’s motion parameters Sg .

1: Initialize basic parameters, control period T , and predic-
tion time domain q.

2: for each control cycle.
3: Leader AV receives the lane number of itself, Ll.
4: Leader AV receives the predictive states Sj(p + 1),
· · · , Sj(p+ q) from prediction module.

5: Find vehicle HVg with max(Sj).
6: Lg = Ll;
7: Sg=max(Sj) + ∆d.
8: Leader AV calculates the state of the virtual target

node in proactive time domain.
9: End for

10: Return Sg(p), Sg(p+ 1), · · · , Sg(p+ q).

Algorithm 2 Overtaking motion planning algorithm for au-
tonomous vehicles in a dynamic environment

Input: The current state variables of leader AV, human-
operated vehicles, and, goal node, Sl(p), Sj(p), Sg(p).
Prediction state of human-operated vehicles and goal
nodes in p time domain, Sj(p), Sj(p+ 1), · · · , Sj(p+ q),
Sg(p), Sg(p+ 1), · · · , Sg(p+ q).

Output: Sl(p), Sl(p+ 1), · · · , Sl(p+ q).
1: Initialize basic parameters, control period T , and predic-

tion time domain q.
2: While |d(Sl(p), Sg(p))| > threshold value
3: Receive the current position and velocity Sl(p),
Sj(p),Sg(p).

4: Receive the predictive states Sj(p+1), · · · , Sj(p+q)
from prediction module.

5: For each predictive time sequence ∈ q
6: Calculate the artificial potential force Ul(p).
7: Calculate and save the next state Sl(p + 1) of

autonomous vehicle relying on (39).
8: End for
9: Return Sl(p), Sl(p+ 1), · · · , Sl(p+ q).

10: Use the high-order Bessel curve for trajectory op-
timization based on (45). Or use optimal control for
trajectory optimization based on (43) and (44).

11: Send the optimized trajectory sequence Sl(p), Sl(p+
1), · · · , Sl(p+ q) to control module.

12: End while

D. Distributed control protocol for followers

In practical applications, due to the large size of the vehicle
structure, we expect that the vehicle can achieve one-to-one
following, which is more conducive to the AV fleet to overtake
on the road with limited width, and will not occupy too much
road resources. Hence, we define a new control connection
topology G(t) =

(
V̄, Ē(t)

)
. Ā(t) = [āij ] ∈ RN×N is the

adjacency matrix of graph G(t). Define for each i node a
neighbor:

N̄i =

{
j ∈ N : ‖ri(t)− rj(t)‖ ≤ Rj ,Min ‖ri(t)− rj(t)‖ ,
rj(t) ≥ ri(t)

}
.

We consider using a leader AV to guide the cluster movement
of the AV fleet. Define rl, vl as, respectively, the position,
velocity vector of leader AV. We define two classes of bounded
potential field functions Vij , Vil, Vik and Ven, where Vij and
Vil are the same type of potential field function, Vik and Ven
are the other one type of potential field function.

• Vij is a bounded potential field function between vehicles,
which mainly solve the following problems: Collision
avoidance, distance stabilization, connectivity keeping.

• Vil is the bounded potential field function between fol-
lowers and leader AV, which ensures that the follower
can continuously follow the leader AV.

• Vik is the potential field between the followers and
human-operated vehicle k, which ensures there is a safe
distance between AV and human-operated vehicle.

• Ven is the potential field formed by the structured road
environment, which ensures that the vehicle travels within
the desired road range.

Inspired by reference [52], the control protocol we designed
is as follows:

ai =−
∑
j∈N̄i

∇riV (‖rij‖)− hi∇riV (‖ril‖)

−∇riV (‖ren‖)−
∑
k∈N̄i

∇riV (‖rik‖)

− α
∑
j∈N̄i

āij

sgn


∑
p∈N̄i

āip(vi − vj)

+ hi(vi − vl)




+ α
∑
j∈N̄i

āij

sgn


∑
p∈N̄j

ājp(vj − vp)

+ hj(vj − vl)


 ,

(47)

where hi(t) =

{
1 i ∈ Nl(t)

0 others
, α is control gain.
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Define a semi-positive definite energy function:

Q(x, v, rl, vl) =

N∑
i=1

(
∑
j∈N̄i

V (‖rij‖) + hiV (‖ril‖)

+ V (‖ren‖) +
∑
k∈N̄i

V (‖rik‖))

+
1

2

N∑
i=1

(vi − vl)T (vi − vl).

(48)

Based on this energy function, we define a maximum of the
energy function Qmax:

Qmax =
N(N − 1)

2
Vmax(‖rij‖) +MNVmax(‖rik‖)

+NVmax(‖ren‖) +NVmax(‖ril‖))

+
1

2

N∑
i=1

(vi(0)− vl(0))T (vi(0)− vl(0)).

(49)

In order to ensure the boundedness of the control input,
realize collision avoidance, and maintain connectivity, we
adopt the following interaction potential function [53]:

Vij(‖rij‖) =
(‖rij‖ − d)2(Rj − ‖rij‖)
‖rij‖+

d2(Rj−‖rij‖)
c1+Qmax

+
‖rij‖ (‖rij‖ − d)2

(Rj − ‖rij‖) +
‖rij‖(Rj−d)2

c2+Qmax

,

(50)

where d is the desired distance between vehicles, and Rj is
the communication range of vehicle j.

In addition, in order to ensure that the vehicle is always in
the road boundary, while being able to avoid human-operated
vehicles in the environment. Vik(‖rik‖) and Ven(‖ren‖)
should satisfy the following conditions: Vik(‖rik‖) and
Ven(‖ren‖) are continuous, differentiable, monotonically de-
creasing over the interval ‖rik‖ , ‖ren‖ ∈ (0, dek], where dek
denotes the minimum distance allowed between the vehicle i
and the road boundary or human-operated vehicles. Addition-
ally, these two interaction potential fields also need to meet
the following conditions:

Vik(0) = c3 +Qmax,

Ven(0) = c4 +Qmax,

Vik(dek) = 0,

Ven(dek) = 0.

(51)

Vik and Ven are also potential field functions of the form (50).
Their parameters will be adjusted according to the actual
application. Moreover, this two interaction potential functions
only work on the interval (0, dek]. This is because the human-
operated vehicles and the road boundary exert only repulsive
forces on the AV fleet members.

E. Stability analysis

To consider a multi-vehicle system consisting of N follower
vehicles and one leader AV, the dynamics models of both
the leader AV and the followers satisfy (1), we design the

control protocol (47) for all follower vehicles. We assume
that the lateral and longitudinal accelerations of all vehicles
have maximum values, and ‖v̇l‖1 ≤ amax. When the initial
connection topology G(0) is connected, and the initial energy
Q(0) is limited, if the control gain α > amax

2 , the connection
of the whole multi-vehicle system will be kept, all followers
will gradually synchronize velocity with the leader AV and
achieve obstacle avoidance.

Define a position difference vector r̃i = ri−rl and velocity
difference vector ṽi = vi−vl between the vehicle i and leader
AV. We can get the following equations:

˙̃ri = ṽi

˙̃vi =−
∑
j∈N̄i

∇r̃iV (‖rij‖)− hi∇r̃iV (‖ril‖)

−∇r̃iV (‖ren‖)−
∑
k∈N̄i

∇r̃iV (‖rik‖)− v̇l

− α
∑
j∈N̄i

āij

sgn


∑
p∈N̄i

āip(ṽi − ṽp)

+ hiṽi




+ α
∑
j∈N̄i

āij

sgn


∑
p∈N̄j

ājp(ṽj − ṽp)

+ hj ṽj


 .

(52)

Energy function (48) can be redefined as:

Q(r̃, ṽ) =

N∑
i=1

(
∑
j∈N̄i

V (‖rij‖) + hiV (‖ril‖)

+ V (‖ren‖) +
∑
k∈N̄i

V (‖rik‖))

+
1

2

N∑
i=1

ṽTi ṽi.

(53)

In the interval [t0, t1) , control connection topology G(t)
will not update. We take the first derivative of the energy
function (53) with respect to time:

Q̇(r̃, ṽ) =

N∑
i=1

(
∑
j∈N̄i

vi∇r̃iV (‖rij‖) + hivi∇r̃iV (‖ril‖)

+ vi∇r̃iV (‖ren‖) +
∑
k∈N̄i

vi∇r̃iV (‖rik‖))

+

N∑
i=1

ṽi ˙̃vi.

(54)

Substituting (52), (55) can be obtained, where H(t0) =
diag {h1, h2, . . . , hN}. By the definition of the Laplace ma-
trix, L̄(t) = D̄(t) − Ā(t). D̄ = diag {di}, where di is
the in-degree of the node i. For the control connection
topology G(t), min(di) = 1. Since the initial topology of
a multi-vehicle system is connected, ∃hi = 1 . Hence,
min

∥∥L̄(t0) +H(t0)
∥∥

1
= 2. According to the assumption
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α > amax

2 , Equation (55) can be transformed into:

Q̇(r̃, ṽ) ≤ (amax − 2α) ‖ṽ‖1
≤ 0,∀t ∈ [t0, t1) .

(56)

The Equation (56) indicates that Q(t) ≤ Q(t0) <
Qmax,∀t ∈ [t0, t1), which means:

• The distance between vehicle i and road boundary will
not be zero.

• The distance between vehicle i and human-operated ve-
hicles will not be zero.

• the length of communication connection between vehicle
i and vehicle j will not be zero and will not equal Rj .

Therefore, ∀t ∈ [t0, t1), the vehicle will not reach the road
boundary, and will not lose the communication connection
with other vehicles. Meanwhile, the multi-vehicle system will
not collide, nor will it collide with human-operated vehicles.

Without loss of generality, we assume that the control
connection topology switches at tn−1. The newly formed
connection topology consists of Nf follower-follower connec-
tions, and Nl follower-leader connections. According to the
definition of G(t), it follows that:

1 ≤ Nl ≤ N

N − 1 ≤ Nf ≤
N(N − 1)

2
.

(57)

Therefore,

Q(tn−1) ≤ NfVmax(‖rij‖) +MNVmax(‖rik‖)
+NVmax(‖ren‖) +NlVmax(‖ril‖))

+
1

2

N∑
i=1

(vi(0)− vl(0))T (vi(0)− vl(0))

≤ Qmax.

(58)

In the interval [tn−1, tn) ,taking the first derivative of the
energy function with respect to time:

Q̇ ≤ (amax − α
∥∥L̄(tn−1) +H(tn−1)

∥∥
1
) ‖ṽ‖1

≤ (amax − α ·min
∥∥L̄(tn−1) +H(tn−1)

∥∥
1
) ‖ṽ‖1

≤ (amax − 2α) ‖ṽ‖1
≤ 0,∀t ∈ [tn−1, tn) .

(59)

Hence, ∀t ∈ [tn−1, tn), the energy function follows that:

Q(tn) ≤ Q(tn−1) ≤ Qmax, (60)

which means that when the multi-vehicle system switches
the network topology, the control protocol can still ensure
that there will be no collision. Hence, the vehicle will not
exceed the road boundary and will not collide with the HVs.
In addition, according to the definition of control connection
topology G(t), when the system switches the control connec-
tion topology, although the original control connections may
disappear, new control connections will be generated to ensure
the connectivity of the whole system.

Similarly, at any time tn of control connection topology
switching, the number of control connections in the new
topology G(tn) is always limited, and the range of its number
also satisfies (57). We define a following set:

S =
{
r̃ ∈ D1, ṽ ∈ R2N |Q(r̃, ṽ) ≤ Qmax

}
, (61)

where D1 =

{
r̃ = RN2

| ‖r̃i − r̃j‖2 ∈
[
0, V −1

ij (Qmax)
]

∀(i, j) ∈ G(tn)

}
.

According to LaSalle’s invariance principle, state trajectory
of this multi-vehicles system will converge to the following
set:

Send =
{
r̃ ∈ D1, ṽ ∈ R2N |Q̇(r̃, ṽ) = 0

}
. (62)

Therefore, when the multi-vehicle system enters steady state,
we can get Q̇(r̃, ṽ) = 0. According to the (59), we can
calculate : ‖ṽ‖1 = 0, which means the velocity of the
follower vehicles will eventually synchronize with the leader
AV. Moreover, for each G(tn), all the follower vehicles will
form a connected traffic flow with the leader AV.

IV. EXPERIMENTS

In this section, we verify the effectiveness of the proposed
algorithm through a very representative overtaking scenario.
Unreal Engine and Matlab are used in the simulation exper-
iments. Unreal Engine is a powerful game physics engine
that can be used to build very realistic autopilot scenarios
that are closer to real-world driving environments. Matlab
is used for algorithm development. Through the combination
of Unreal Engine and Matlab, the overtaking scene of the
autonomous driving team can be simulated more realistically
and the overtaking process can be observed more intuitively.

A. Parameters and variables setting
As for the motion planning algorithm of leader AV, we set

the following experimental parameters and variables (shown
as Table I).

Q̇(r̃, ṽ) =

N∑
i=1

ṽTi α
∑
j∈N̄i

āij

{
sgn

[ ∑
p∈N̄j

ājp(ṽj − ṽp) + hj ṽj

]}

−
N∑
i=1

ṽTi α
∑
j∈N̄i

āij

{
sgn

[ ∑
p∈N̄i

āip(ṽi − ṽp) + hiṽi

]}
−

N∑
i=1

ṽTi ˙̃vl

= −αṽT (L̄(t0) +H(t0))sgn
[
L̄(t0) +H(t0)ṽ

]
−

N∑
i=1

ṽTi ˙̃vl ≤ ‖v̇l‖1 ‖ṽ‖1 − α
∥∥L̄(t0) +H(t0)

∥∥
1
‖ṽ‖1

≤ (amax − α
∥∥L̄(t0) +H(t0)

∥∥
1
) ‖ṽ‖1 ≤ (amax − α ·min

∥∥L̄(t0) +H(t0)
∥∥

1
) ‖ṽ‖1 .

(55)
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TABLE I: Simulation parameters and variables of motion
planning algorithm of leader AV

Parameter and variable names Value
Initial position of Leader (12, -2.875) m
Initial velocity of Leader 5 m/s
Initial acceleration of Leader 0 m/s2

Initial position of human-operated vehicle (32, -3) m
Initial velocity of human-operated vehicle 10 m/s
Initial acceleration of human-operated vehicle 0.1 m/s2

The jerk of human-operated vehicle 0.01 m/s3

Attractive force gain (Kp,Kv,Ka) (500,2000,2000)
Repulsive force gain of vehicles (ηp, ηv) (100, 200)
Repulsive force gain of road boundary 4000
Mass of Leader 1000 kg
Sampling time 0.1 s
Maximum velocity in longitudinal 33 m/s
Maximum velocity in lateral 5 m/s
Maximum acceleration in longitudinal 5 m/s2

Maximum acceleration in lateral 1.3 m/s2

For the distributed control topology, We set the following
simulation conditions:
• Assume that the velocity of all vehicles are randomly

selected in [0, 33] m/s .
• In order to reflect the complete lane change and overtak-

ing process, we assume that the AV fleet and the human-
operated vehicle are in the same initial lane.

• The maximum acceleration of the vehicle is 5 m/s2. Ac-
cording to the conditions of distributed control protocol,
we set control gain α = 5 > amax

2 .
• Vehicle-to-vehicle topology connection communication

range is 8 m.
• The desired distance of the vehicle in the longitudinal

direction and lateral direction are, respectively, 6 m and
0 m .

• The minimum distance allowed between the vehicle i and
the road boundary or obstacles dek = 1.

We add an additive hysteresis constant ε0 to all potential field
functions to prevent vehicle connection topology disconnec-
tion in discrete time domain. Hence, Vmax(‖rij‖) = Vrij (R−
ε0). Vmax(‖rik‖) = Vrik(ε0). Vmax(‖ren‖) = Vren(ε0).
Vmax(‖ril‖) = Vril(Rl − ε0). According to (49), Qmax can
be calculated as:

Qmax ≤
N(N − 1)

2
Vrij (R− ε0) +MNVmaxVrik(ε0)

+NVren(ε0) +NVril(Rl − ε0)

+
N

2
(vTmaxvmax).

(63)

Here, we set N = 2, and ε0 = 0.5. Qmax can be determined
by the upper bound of the vehicle velocity. It is calculated
that: Qmax ≤ 1153. c1 = c2 = c3 = c4 = 50. Substituting the
parameters into (50), we can obtain the specific form of the
interaction potential function.

B. Results and analysis

1) Overtaking performance: In this scenario, the leader AV
needs to complete the planning of overtaking trajectory and

(a) t = 2 s (b) t = 6 s

(c) t = 8 s (d) t = 9 s

(e) t = 10 s (f) t = 11 s

(g) t = 14 s (h) t = 20 s

Fig. 6: The process of lane changing and overtaking in Unreal
Engine. H1 denotes the human-operated vehicle. L1, F1, and
F2, respectively, denote the leader AV, first follower AV, and
second follower AV.

lead the follower AVs to complete the overtaking of human-
driven vehicles in front. The follower AVs need to track the
leader AV and maintain a safe distance from other vehicles.
We simulated the overtaking scenario with Unreal Engine. In
this engine, we can clearly observe the detailed process of
the overtaking of the AV fleet . Fig. 6 shows the process of
autonomous overtaking and lane changing of the AV fleet. At
t = 2 s, the AV fleet and the H1 were in the same lane. When
t = 6 s, the AV fleet was in the process of lane changing, from
the right lane to the left lane. After the AV fleet finished lane
changing, it began to approach and overtook the H1 (as shown
in Fig. 6(c)). At t = 9 s, the AV fleet began to accelerate to
overtake the H1 on the right lane. By t = 10 s, the L1 and F1
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(a) t = 2.2-4.4 s (b) t = 4.4-6.6 s

(c) t = 6.6-8.8 s (d) t = 8.8-11 s

(e) t = 11-13.2 s (f) t = 13.2-15.4 s

Fig. 7: Detailed autonomous overtaking process of au-
tonomous vehicles fleet with one leader AV

completely overtook the H1. In Fig. 6(f), the whole AV fleet
completed the overtaking and began to switch to the initial
lane. Then, the vehicle returned to the initial lane at t = 20 s
and the overtaking and lane changing process were finished.
During the whole overtaking process, there was no collision
and no driving out of the road boundary. The corresponding
motion trajectory can be clearly shown in Fig. 7. It can be
seen that in the process of overtaking and lane changing, the
trajectories of the all AVs are smooth. In particular, in Fig. 7(d)
and (e), the trajectories of F1 and F2 show lateral fluctuations,
which is the obstacle avoidance behavior of vehicles. After
completing obstacle avoidance, F1 and F2 can still follow the
leader AV. It shows that in the control protocol designed in this
paper, human-operated vehicle will not cut off the connection
topology of the AV fleet.

We discuss the leader VA’s motion planning algorithm in
this paper independently. Fig. 8 is the position and velocity
curve of the leader AV. As can be seen from the figure,
the lateral and longitudinal velocity of the vehicle converge
to the same value as the velocity of the HV. The position
difference between the leader AV and the HV converges to
a constant value. This constant position difference is given
by the vehicle’s decision module, and this constant position

(a) Longitudinal displacement (b) Lateral displacement

(c) Longitudinal velocity (d) Lateral velocity

Fig. 8: The displacement and velocity curves of leader AV and
human-operated vehicle

difference will be adjusted according to the size of the fleet.
Fig. 9 and Fig. 10, respectively, represent the position dif-

ference and speed difference curves between AV fleet member
F1, F2, and L1. In the longitudinal direction, the distance
between vehicles fluctuate greatly in the process of overtaking.
However, this fluctuation does not cause collisions between
vehicles, nor does it sever the topological connection between
vehicles. After overtaking, the distance between vehicles con-
verges to an expected value. In the lateral direction, similar
results can be achieved. As for the velocity difference, in
the process of lane changing and overtaking, the velocity
difference between vehicles changes dramatically. This is
caused by the AV’s autonomous obstacle avoidance. After
overtaking, the velocity difference between vehicles converges
to zero, which means that the velocity of the whole AV fleet
is synchronized.

2) Robustness verification: We verify the robustness of
the algorithm by randomly setting the speed of H1 and
the initial speed of the AV fleet members. The rest of the
simulation settings remain the same as Table I. Therefore,
we defined three different cases, including Case-1 where the
initial velocities of F1, F2, L1, and H1 are 1 m/s, 2 m/s,
5 m/s, and 10 m/s, Case-2 where the initial velocities of
F1, F2, L1, and H1 are 1 m/s, 2 m/s, 4 m/s, and 7 m/s,
and Case-3 where the initial velocities of F1, F2, L1, and
H1 are 2 m/s, 3 m/s, 6 m/s, and 9 m/s. As illustrated in
Fig. 11, the automatic overtaking was completed at different
initial speeds for both AVs and H1. Additionally, in real-
world applications, the information obtained via V2V is not
completely accurate. Similar to [54], we assume that both the
position, velocity and acceleration information obtained from
each V2V communication is subject to a random error which
ranges from -3% to 3%. We additionally run the simulation
experiment with simulation settings in Table I and obtain the
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(a) Longitudinal distance

(b) Lateral distance

Fig. 9: The displacement distance curve between the members
of the autonomous vehicles fleet

(a) Longitudinal velocity difference

(b) Lateral velocity difference

Fig. 10: The velocity difference curve between the members
of the autonomous vehicle fleet

results considering V2V communication errors. As depicted
in Fig. 12, after adding the random communication error, the
trajectory of the AV fleet shifts slightly compared to Fig. 11(a).
As a result, the overtaking and lane changing are completed
safely, which shows that the proposed algorithm is robust in
the presence of communication errors.

3) Comparison: There are many studies on overtaking of
AV, e.g., [42] proposes a probability-based approach in the
background of the graph-based route selection optimization,

(a) Case1: the initial velocities of F1, F2, L1, and H1 are 1 m/s, 2 m/s, 5 m/s,
and 10 m/s, respectively.

(b) Case2: the initial velocities of F1, F2, L1, and H1 are 1 m/s, 2 m/s, 4 m/s,
and 7 m/s, respectively.

(c) Case3: the initial velocities of F1, F2, L1, and H1 are 2 m/s, 3 m/s, 6 m/s,
and 9 m/s, respectively.

Fig. 11: The process of overtaking and changing lanes of AV
fleet in different cases.

Fig. 12: The result shows the trajectory of the AV fleet when
V2V communication has a random error of 3%. The initial
velocities of F1, F2, L1, and H1 are 1 m/s, 2 m/s, 5 m/s, and
10 m/s, respectively.

with which the motions of the HVs are predicted. This study
considers HVs and aims to search for an overtaking path
with the lowest collision probability through the probability
distribution of vehicle speed and acceleration. However, this
method is only applicable to individual vehicle overtaking
and not to multi-vehicle systems, as the method does not
require cooperative control between AVs. In our proposed
control strategy, not only HVs are considered, but also a
cooperative control protocol is designed to ensure a multi-
vehicle system with good group performance. In [29], a
novel swarm intelligence-based algorithm is proposed for
producing the multi-objective optimal overtaking trajectory of
autonomous ground vehicles, which obtains good overtaking
and obstacle avoidance trajectories. However, this approach is
still not applicable to multi-vehicle systems. Moreover, in this
study, the object to be overtaken is modeled as a static obstacle.
Therefore the validity of the method for dynamic HVs is not
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(a) Longitudinal velocity

(b) Lateral velocity

Fig. 13: Velocity curves of AV fleet members and target node

guaranteed. In our overtaking control strategy, we consider
HVs while focusing on the cooperative control of multi-vehicle
systems, which enables the vehicle platoon to complete safe
overtaking while ensuring the stability of the platoon. In this
paper, the overtaking problem of multi-vehicle system is trans-
formed into a dynamic target tracking problem of multi-agent
system. A similar study has also conducted in [55], which
a distributed control framework is used to dynamically track
wildfire spreading by drones. However, based on this strategy,
the speeds of drones cannot be synchronized with the spread
of dynamic wildfires. In our study, speed synchronization of
multi-agent with dynamic target is realized. In Fig. 13, velocity
curves for target node and all AV fleet members are displayed.
For a dynamic target node with varying acceleration, the leader
AV and the followers can accurately track the dynamic target
node and achieve speed synchronization. This is due to the
utilization of the proposed control strategy, where the leader
AV uses a separate motion planning algorithm and the rest
of the followers use a distributed cluster control. Under this
strategy, each follower does not need to be equipped with an
acceleration sensor. It is only the leader AV which gets the
acceleration information of the HV. This greatly reduces the
cost of hardware implementation and communication. As the
bounded distributed control protocol is used in this paper, the
control output of the follower vehicle is bounded, which is
very beneficial to the application of the algorithm in real-world
scenarios.

V. CONCLUSION

This paper addresses the distributed motion control problem
of autonomous vehicles operating in a complex multi-lane,
heterogeneous vehicle platoon. The proposed algorithm also
includes an effective mechanism for safe autonomous over-
taking when the platoon consists of autonomous and human-

operated vehicles. This paper introduces the Velocity Dif-
ference Potential Field (VDPF) and Acceleration Difference
Potential Field (ADPF) techniques, which are the improved
versions of the conventional Artificial Potential Field (APF)
method. The overtaking problem of the unmanned vehicles
in a multi-lane platoon has been formulated as a formation
tracking problem, in which the human-operated vehicles are
set as targets. The proposed technique can effectively handle
situations where the acceleration of a leader vehicle changes
suddenly due to approaching an obstacle or the neighboring
vehicles. It also ensures that the follower unmanned vehicles
achieve speed synchronization with the leader vehicle having
variable acceleration. In addition, the follower vehicles of the
platoon also avoid obstacles while complying with the desired
formation tracking objectives. The paper has used Matlab
and Unreal Engine software simulation platforms to test the
usefulness and feasibility of the proposed algorithm. The
simulation results show that a group of autonomous vehicles
operate safely in a complex, heterogeneous multi-lane platoon,
exhibiting safe overtaking, changing lanes, obstacle avoidance
and dynamic target tracking. To further increase the comfort
of the proposed method, optimization-based techniques may
need to be integrated in the protocol design, which will be
explored in our future works.
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