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Robust Vehicle Positioning based on Multi-Epoch
and Multi-Antenna TOAs in Harsh Environments
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Abstract—For radio-based time-of-arrival (TOA) positioning
systems applied in harsh environments, obstacles in the sur-
roundings and on the vehicle itself will block the signals from
the anchors, reduce the number of available TOA measurements
and thus degrade the localization performance. Conventional
multi-antenna positioning technique requires a good initialization
to avoid local minima, and suffers from location ambiguity
due to insufficient number of TOA measurements and/or poor
geometry of anchors at a single epoch. In this paper, taking
advantage of the multi-epoch and multi-antenna (MEMA) TOA
measurements bridged by inter-epoch constraints to utilize more
information and improve the geometry of visible anchors, we
propose a new positioning method, namely MEMA-TOA method.
A new initialization method based on semidefinite programming
(SDP), namely MEMA-SDP, is first designed to address the
initialization problem of the MEMA-TOA method. Then, an
iterative refinement step is developed to obtain the optimal
positioning result based on the MEMA-SDP initialization. We
derive the Cramér-Rao lower bound (CRLB) to analyze the
accuracy of the new MEMA-TOA method theoretically, and
show its superior positioning performance over the conventional
single-epoch and multi-antenna (SEMA) localization method.
Simulation results in harsh environments demonstrate that i) the
new MEMA-SDP provides an initial estimation that is close to
the real location, and empirically guarantees the global optimality
of the final refined positioning solution, and ii) compared with
the conventional SEMA method, the new MEMA-TOA method
has higher positioning accuracy without location ambiguity,
consistent with the theoretical analysis.

Index Terms—time-of-arrival (TOA), positioning, location am-
biguity, multi-epoch and multi-antenna (MEMA), semidefinite
programming (SDP).

I. INTRODUCTION

REAL-time, continuous and accurate positions of the
vehicles are pervasively needed in the intelligent trans-

portation systems (ITS). In addition to the traditional guidance
methods based on the prearranged markers on fixed routes,
[1]–[3], more advanced positioning techniques, such as inertial
[4]–[6], visual [7], laser [8]–[10] and radio based system are
applied to ITS to realize vehicle guidance with easy route
customization and low maintenance cost.
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Due to high positioning accuracy, simple infrastructure,
flexible deployment and independence of the navigation routes,
radio-based positioning systems have been widely studied and
applied [11]. Measurements at the receiving antennas installed
on the vehicle with respect to multiple anchors are used
to estimate the location of the vehicle. These measurements
include received signal strength (RSS), direction-of-arrival
(DOA), time-of-flight (TOF), and time-of-arrival (TOA) [12]–
[14]. The TOA-based technology has been used in the global
navigation satellite systems (GNSSs) [15]–[17], and also in
many positioning systems and applications based on ultra-wide
band (UWB) signal [18]–[23].

The number and quality of TOA measurements of the line-
of-sight (LOS) paths are decisive factors for accuracy and
availability of a TOA-based positioning system. In open areas
or environments with few obstacles, the receiver with a single
antenna can obtain sufficient TOA measurements with a high
quality and a uniform anchor geometry, which ensure a good
positioning performance.

However, in a number of practical ITS applications such as
urban automated guided vehicles, unmanned cargo ports and
intelligent warehouses, there will be obstacles such as hoisting
facilities, buildings and containers that may seriously impact
the signal transmission and reception [24]. The vehicle body
itself will also affect the signal reception. For example, the
intelligent transport vehicles at a modern cargo port usually
have no cab and adopts a flat structure to load a large volume
of goods. Thereby, the receiving antenna cannot be installed
at the highest point of the vehicle, nor placed on top of a
high-rise pole, which may swing when the vehicle moves and
degrade the positioning accuracy. As a result, the receiving
antenna can only be placed on the flat body of the vehicle,
leading to severe signal blockage by the goods and the vehicle
body. In such cases, the traditional single antenna positioning
technique cannot guarantee the availability and accuracy of
the positioning due to limited quality and quantity of available
TOA measurements [25], [26].

Aiming to solve the problem of insufficient measurements,
multi-user collaborative positioning has become popular in
recent years [27], [28]. This technology relies on the stable
operation of the inter-user wireless communication link [29],
which requires a complex communication protocol and is
susceptible to harsh environments such as a cargo port. In
addition to the collaborative positioning system, a multi-
antenna positioning system is proposed in [30]. Taking the
advantage of the spatial diversity between multiple antennas,
the availability and accuracy of the positioning system are im-
proved. However, the cost function of the maximum likelihood
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estimator (MLE) to this multi-antenna positioning problem is
nonlinear and non-convex, similar to the single-antenna case.
The iterative algorithm to solve this problem may not converge
or may be trapped at a local minimum if it has an inaccurate
initial guess [31]. In addition, location ambiguities may appear
and lead to unacceptable errors when there are insufficient
measurements and/or a poor geometry of anchors [32]–[34].

Some studies in the literature about rigid body localiza-
tion also discussed similar positioning problem by using the
measurements from multiple sensors (or antennas) at different
positions on the target to be localized [35]–[37]. However,
in the harsh environment described above, these methods
are not applicable due to insufficient number of available
measurements at a single epoch. Furthermore, their techniques
adopt the distance or TOF measurements without the clock
bias. The measurements with clock bias were handled in
[38], in which the position and attitude were simultaneously
estimated by relaxing the original problem using semidefinite
relaxation (SDR). However, it still suffers from the problem
of lacking measurements in harsh environments. Moreover, the
result is sub-optimal to the original problem, and cannot be
directly used for high-precision positioning applications.

In order to position in harsh environments with frequent
blockages, some researchers developed positioning techniques
based on multi-system integration, such as combining the radio
positioning system with one or several sensors to improve
the positioning performance [39]–[43]. To fuse the data from
different systems such as GNSS and inertial navigation system
(INS), a group of filtering methods, such as the extended
Kalman filter (EKF) among the others, are frequently-used in
these studies. Utilizing the information of previous epochs, the
average positioning accuracy is improved in these integrated
systems. In order to mitigate the accuracy degradation caused
by outliers in the measurements, additional methods or robust
filters [44], [45] that can detect or eliminate the outliers
are needed to ensure the accuracy and robustness of such
systems. Another way to use fused data for localization is to
solve a nonlinear optimization problem by utilizing multiple
past measurements to estimate the state at the current epoch
[46], [47]. However, whether iterative method or filtering
method is used, it may suffer from the problem of inaccurate
initialization.

In this paper, we propose a new positioning method based
on multi-epoch and multi-antenna (MEMA) TOA measure-
ments, namely MEMA-TOA method, for vehicle position-
ing in harsh environments. Different from the conventional
localization methods, which adopt only single-epoch TOA
measurements, we utilize TOAs from multiple recent epochs
by introducing inter-epoch constraints on the changes of
position and attitude. In this way, we are able to remove the
location ambiguity and improve the geometry of the observed
anchors. In the new MEMA-TOA method, we develop an ini-
tialization method based on semidefinite programming (SDP),
called MEMA-SDP. In MEMA-SDP, the original positioning
problem is approximated by a convex problem, which has
a global optimal solution. Moreover, we develop a refine-
ment method to obtain the optimal solution iteratively from
the initial position from the MEMA-SDP. To analyze the

positioning accuracy of the new MEMA-TOA method, we
derive the Cramér-Rao lower bound (CRLB) and show its
superior accuracy over the conventional single-epoch method.
We conduct numerical simulations to evaluate the performance
of the proposed method in harsh environments. Simulation
results demonstrate that the new MEMA-SDP provides the
initial values that are close to the real locations, and ensures the
accuracy of the final refined positioning solution. Compared
with the conventional single-epoch method, the new MEMA-
TOA method successfully removes the location ambiguity and
improves the positioning accuracy and robustness, consistent
with the theoretical analysis.

The main contributions of this paper are summarized as
follows:

1) TOA measurements from MEMA and inter-epoch con-
straints are introduced to solve the location ambiguity caused
by insufficient measurements at a single epoch for vehicle
positioning under harsh environments.

2) The proposed MEMA-TOA method estimates the high-
precision position and attitude of the vehicle through SDR-
based initialization and iterative refinement, without requiring
a priori initial value.

The remainder of the article is organized as follows. Section
II gives the scenario and formulation of the vehicle positioning
problem. The proposed method is developed in Section III.
Section IV elaborates the performance of the multi-epoch
and multi-antenna positioning by deriving the corresponding
CRLB. Section V presents the simulation results. And finally,
the last section concludes the paper.

Main notations are summarized in Table I.

II. PROBLEM FORMULATION

A. System Settings

Fig. 1 illustrates a typical vehicle localization scenario in
an unmanned cargo port. The vehicles transporting goods are
navigated with the help of the radio positioning system. There
are hoisting facilities and containers in the port as well as
goods loaded on the vehicle, which may block the propagation
of the positioning signals. Anchors with fix positions are
synchronized to a common clock source in various ways, such
as wired connections between anchor nodes and wireless syn-
chronization schemes [19], [20], [48], [49]. Multiple receiving
antennas with known local positions relative to the origin of
the body frame are mounted on the vehicle. The antennas have
the same timing source, hence they have the same clock bias
with respect to the anchors. In addition, an auxiliary sensor
is installed on the body to provide the changes of the vehicle
position and attitude between successive epochs.

There are M anchors and N antennas in this positioning
system. We take the output time of each set of TOA mea-
surements at the antennas as an epoch. Let N be the set of
antennas with card(N ) = N , M be the set of anchors with
card(M) = M , and Mi(k) be the set of visible anchors
of antenna i at epoch k with card

(
Mi(k)

)
= Mi(k) ,

Mi(k) ⊆M.
Without loss of generality, we assume that the vehicle runs

on a flat area without changing the height, roll angle and pitch
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TABLE I
NOTATION LIST

lowercase x scalar
bold lowercase x vector
bold uppercase X matrix
x̂, x̂ estimate of a variable
x̃, x̃ noisy version of a variable
x̄, x̄ approximation of a variable
‖x‖ Euclidean norm of a vector
XT , X−1 matrix transpose and inverse, respectively
diag(·) diagonal matrix with the elements inside

along the diagonal
blkdiag(·) block diagonal matrix with the matrices

inside along the diagonal
tr(·), det(·), rank(·) trace, determinant and rank of a matrix,

respectively
Xm×n matrix with m rows and n columns
[X]m,n element at the m-th row and n-th column

of a matrix
[x]m:n the m-th to n-th elements of a vector
[x]m the m-th element of vector x
vec(X) the vectorization of a matrix
⊗ Kronecker product
M number of anchors
N number of antennas
K number of epochs
i, j, k indices of antennas, anchors and epochs,

respectively
IM M ×M identity matrix
0M×N M ×N zero matrix
1M M -element vector with all-one elements
θ, Θ parameter vector and the collective form
b(k) body frame at epoch k
n navigation frame
R(k) rotation matrix of transformation from

frame b(k) to frame n
pi(k) unknown position vector of antenna i
p
(j)
(k)

known position vector of anchor j
pc(k) unknown position vector of the vehicle
δt(k) clock bias between antennas and anchor

system
ρ
(j)
i(k)

TOA measurement for antenna i from the
j-th visible anchor at epoch k

r
(j)
i(k)

distance from antenna i to its j-th visible
anchor at epoch k

h height of the vehicle
φ, γ, ψ pitch, roll and yaw angle of the body, re-

spectively
sφ, sγ , sψ , cφ, cγ , cψ sinφ, sin γ, sinψ, cosφ, cos γ and cosψ,

respectively
card(B) cardinal number of elements in set B
F Fisher information matrix (FIM)
J cost function of the optimization problem

angle. Therefore, the height h, roll angle γ and pitch angle φ
are regarded as known constants.

B. Reference Frame

The known positions of the anchors and the unknown
position of the vehicle are all expressed in the navigation
frame, denoted by frame n. We define the body frame with the
center of the vehicle platform as the origin, denoted by frame
b, which changes with the movement of the vehicle and is
expressed as b(k) at epoch k.

We denote the unknown position of the reference point on
the vehicle by pc(k), the unknown position of antenna i by
pi(k), and the known position of anchor j by p(j)

(k), respectively

Anchor

Container

AntennaGoods 

Vehicle

Gantry crane

Fig. 1. A typical vehicle localization scenario in an unmanned cargo port.
The blue, flat and long cuboid represents the intelligent transport vehicle to be
located, and the wooden cuboid represents the loaded goods. The gray cuboids
are the anchors that transmit positioning signals. The receiving antennas are
mounted on the edges of the vehicle. The containers, gantry cranes and goods
may block the propagation of signals. The red solid line indicates the signal
that can be received, while the red dotted line indicates the blocked signal.

in frame n. The subscript “(k)” represents the epoch index k.
For simplicity, we do not specify frame n in the notations.
Since the known local positions of the antennas in frame b(k)

do not change when the vehicle moves, we denote it by li
without specifying frame b and epoch k.

The relation between the antenna position pi(k) in frame
n, the position of the reference point of the vehicle pc(k) in
frame n, and the antenna position li in frame b is [39]

pi(k) = pc(k) +R(k)li, i ∈ N , (1)

where R(k) is the rotation matrix from frame b(k) to frame
n. See Appendix A for the detailed definition of the rotation
matrix.

In this two-dimensional (2D) case, R(k) is a function of the
yaw angle, denoted by ψ(k), and pc(k) =

[
x(k), y(k), h

]T
.

The parameter to be estimated, denoted by θ(k), is

θ(k) =
[
x(k), y(k), ψ(k)

]T
.

C. TOA Measurement

In this paper, we consider only the TOA measurements from
LOS paths and ignore the non-LOS measurements, which can
be identified and eliminated [50]–[53]. Following the model
of the singe-epoch and single-antenna TOA measurement in
[32], we extend it to the multi-epoch and multi-antenna case
as

ρ
(j)
i(k) = ‖p(j)

(k)−pi(k)‖+δt(k)+ε
(j)
i(k), i ∈ N , j ∈Mi(k), (2)

where ρ(j)
i(k) is the TOA measurement for antenna i from its

j-th visible anchor at epoch k, δt(k) is the common clock bias
between all the synchronous antennas and all the synchronous
anchors at epoch k, and ε

(j)
i(k) is the measurement noise,

which is independent and identically distributed Gaussian
white noise, i.e., ε(j)

i(k) ∼ N(0, σ2).

D. Inter-epoch Position and Attitude Change Constraint

The changes of the vehicle position and attitude relative
to the previous epochs can be measured by sensors such as
the inertial measurement unit (IMU) and odometer in practice
[3]. We employ this information as a constraint for the vehicle
position.
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We model the inter-epoch position and attitude change
constraint as

∆θ̃
b(k−1)

(k,k−1) = ∆θ
b(k−1)

(k,k−1) + εIP(k), (3)

where ∆θ
b(k−1)

(k,k−1) =
[
∆x

b(k−1)

(k,k−1), ∆y
b(k−1)

(k,k−1), ∆ψ
b(k−1)

(k,k−1)

]T
is the position and attitude change at epoch k relative to
epoch (k − 1) in frame b(k−1), ∆θ̃

b(k−1)

(k,k−1) is the measure-

ment of ∆θ
b(k−1)

(k,k−1). A number of sensors such as odometer,
magnetometer or encoder disk can be adopted to provide
the measurements of inter-epoch position and attitude change
constraint. We model the measurement errors as Gaussian
noises since we do not specify any particular sensor and the
characteristics of the sensor are not exactly known. εIP(k) =[
εx(k)

, εy(k)
, εψ(k)

]T
denotes the noise vector, in which the

noises of the inter-epoch position change are modeled as inde-
pendent and identically distributed Gaussian random variables
as εx(k)

, εy(k)
∼ N(0, σ2

p), and the inter-epoch yaw angle
change noise is modeled as a Gaussian random variable as
εψ(k)

∼ N(0, σ2
ψ) [54].

E. Positioning Problem

The positioning problem is to estimate θ(k) at each epoch
by using the multi-epoch and multi-antenna TOA and inter-
epoch constraints. The difficulties of solving this problem lie
in the initialization and the location ambiguity removal.

Firstly, the positioning problem is a nonlinear and non-
convex optimization problem. Solving this problem based on
the iterative MLE achieves the asymptotic optimality, on the
condition that it has an accurate initial guess to start the
iteration. Otherwise, the iteration may not converge or will
be trapped at a local minimum [31], [37].

In addition, ambiguity of locations may appear when the
number of TOA measurements is insufficient or the geometry
of the observed anchors is inappropriate in harsh environments.
These ambiguous solutions are also feasible solutions to the
problem, but will lead to unacceptable errors if they are
mistaken as the positioning results. For a regional positioning
system, the difference between feasible solutions may be very
small, sometimes only at meter level or even decimeter level.
Therefore, it is difficult to identify the wrong solutions [33],
[34].

Fig. 2 gives an example of location ambiguity. Four ambigu-
ous but feasible solutions for the position of the center of the
rectangle can be obtained by using the 6 TOA measurements
from 4 anchors obtained by 3 antennas. As we can see in
Fig. 2, the 4 solutions are so close to each other that it is
difficult to identify the correct one without extra information.
Therefore, we introduce measurements of multiple epochs
to solve this problem, such that a unique solution can be
determined without increasing the number of anchors.

To tackle the initialization and location ambiguity issue
in the position determination problem, a new MEMA-TOA
method, which estimates the parameter θ(k) using the MEMA
TOA along with inter-epoch constraints, is proposed in the
next section.
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Fig. 2. An example of location ambiguity in a multi-anchor and multi-
antenna scenario. The green lines represent the TOA measurements between
the antennas and their visible anchors. The red square and red stars represent
the real locations of the vehicle center and its antennas, while the brown ones
are the ambiguous solutions. These ambiguous location solutions are caused
by the poor relative geometry between the antennas and their visible anchors.

III. NEW MEMA-TOA POSITIONING METHOD

We develop a new positioning method, namely MEMA-
TOA, based on multi-epoch and multi-antenna TOAs, in this
section. We first derive the cost function of the positioning
problem. Then, we develop the two steps of the MEMA-TOA
method.

A. Cost Function

We first eliminate the influence of clock bias, by selecting
one of the TOA measurements as reference for each epoch
(e.g., the measurement between the 1st antenna and its 1st
visible anchor is chosen as the reference here, without loss of
generality). We subtract (2) plugged with i = 1 and j = 1,
from (2) with other i and j, and come to the time difference
of arrival (TDOA) measurement with respect to this reference
as written by

∆ρ
(j1)
i1(k) = ρ

(j)
i(k) − ρ

(1)
1(k)

= ‖p(j)
(k) − pi(k)‖ − ‖p

(1)
(k) − p1(k)‖+ ∆ε

(j1)
i1(k), (4)

where ∆ρ
(j1)
i1(k) is the TDOA measurement and the noise term

∆ε
(j1)
i1(k) = ε

(j)
i(k) − ε

(1)
1(k).

All measurement equations of epoch k as given by (4) are
written in the collective form as

∆ρ(k) = g(k)

(
θ(k)

)
+ ∆ε(k), (5)

where

∆ρ(k) =

[
∆ρ

(21)
11(k), · · · , ∆ρ

(M1(k)1)
11(k) , ∆ρ

(11)
21(k), · · · ,

∆ρ
(M2(k)1)
21(k) , · · · , ∆ρ

(11)
N1(k), · · · , ∆ρ

(MN(k)1)
N1(k)

]T
,

and g(k)

(
θ(k)

)
and ∆ε(k) are the corresponding vectors

of the TDOA measurement function and noise at epoch k,
respectively. The covariance matrix of ∆ε(k) is Q∆ε(k)

=

E(k)

(
σ2IL(k)+1

)
ET

(k), where E(k) =
[
−1L(k)

, IL(k)

]
,
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L(k) =
∑N
i=1Mi(k) − 1 is the total number of TDOA

measurements for N antennas at epoch k, 1L(k)
is an L(k)-

element column vector with all-one elements, and IL(k)
is an

L(k) × L(k) identity matrix.
In order to employ the inter-epoch position and attitude

change constraint, we conduct the transformation from frame
n to frame b for the vehicle position change as given by

∆p
b(k−1)

(k,k−1) = p
b(k−1)

c(k) − pb(k−1)

c(k−1)

= RT
(k−1)

(
pc(k) − pc(k−1)

)
. (6)

By plugging (6), the inter-epoch constraints given by (3)
are then rewritten as

∆x̃
b(k−1)

(k,k−1) =
[
RT

(k−1)

(
pc(k) − pc(k−1)

)]
1

+ εx(k)
,

∆ỹ
b(k−1)

(k,k−1) =
[
RT

(k−1)

(
pc(k) − pc(k−1)

)]
2

+ εy(k)
,

∆ψ̃
b(k−1)

(k,k−1) =ψ(k) − ψ(k−1) + εψ(k)
.

(7)

To simplify the expression, we rewrite (7) into the collective
form as

∆θ̃
b(k−1)

(k,k−1) = gIP(k)

(
θ(k),θ(k−1)

)
+ εIP(k), (8)

where the subscript “IP” stands for inter-epoch constraints,
gIP(k) is a vector of the functions of θ(k) and θ(k−1) as
presented in (7), ∆θ̃

b(k−1)

(k,k−1) and εIP(k) are the vectors of
the inter-epoch constraints and the corresponding noise at
epoch k, respectively, and the covariance matrix of εIP(k) is
QεIP(k)

= diag
(
σ2
p, σ

2
p, σ

2
ψ

)
.

As shown in Fig. 3, the MEMA-TOA method utilizes
TOAs from multiple recent epochs by introducing the inter-
epoch constraints on the changes of position and attitude. The
measurements of K epochs and their inter-epoch constraints
are collected, resembling a K-length sliding window moving
forward one epoch at a time.

For K epochs, we denote the parameters to be estimated by

Θ =
[
θT(1), · · · , θ

T
(K)

]T
. (9)

We then construct the MLE for the MEMA problem, uti-
lizing the TOA measurements (5) and inter-epoch constraints
(8), as

Θ̂ = arg min
Θ

J, (10)

where the cost function J for K epochs is given by (11), in
which WTOA(k) and WIP(k) are the weights for the TOA
measurements and inter-epoch constraints, respectively, and

both are determined by their noise covariance as WTOA(k) =
Q−1

∆ε(k)
and WIP(k) = Q−1

εIP(k)
.

Note that the cost function J consists of two parts: JTOA

relating to the TOA measurements and JIP relating to the
inter-epoch constraints, corresponding to the two summation
terms in (11). Different N and K correspond to different cases.
When K = 1 and N = 1, JIP vanishes, and the positioning
problem then degenerates to the traditional case, which uses
only the single-epoch and single-antenna measurements. This
type of positioning problem is suitable for the application with
sufficient measurements and no demand on attitude estimate,
and has already been covered extensively in many researches
such as [32], [55], [56]. When K = 1 and N > 1, JIP also
vanishes. It is a positioning problem based on single-epoch
and multi-antenna TOA measurements, and was discussed
in [30]. Finally, when K > 1 and N > 1, the MEMA
TOA measurements and inter-epoch constraints are used for
positioning, and the corresponding problem is studied in this
paper.

The proposed MEMA-TOA method is divided into two
steps. Firstly, we develop an initialization method, namely
MEMA-SDP, to obtain an initial guess. Secondly, we develop
an iterative algorithm to refine the estimates based on the
initial guess.

B. Step 1: MEMA-SDP Initialization

Due to the non-convexity of the original optimization prob-
lem in (10), finding the exactly optimal solution is challenging.
In general, although an MLE is asymptotically efficient and
does not depend on the initial guess, its iterative implemen-
tation for this positioning problem requires an accurate initial
guess to avoid being trapped at a local minimum [31], [37],
[57].

SDP can achieve the global optimal solution of an ap-
proximate convex problem [31], [38], [58], [59], which is
transformed from the original positioning problem by SDR
and other approximations. To obtain a proper initialization, we
transform and relax JTOA and JIP to form an SDP problem
and then achieve the global optimal solution as an initial guess
for the next step.

1) Relaxation for TOA Cost Function: We relax the non-
convex cost function JTOA to a convex function with convex
constraints by transformations and parameter substitutions.

J =

K∑
k=1

(
∆ρ(k) − g(k)

(
θ(k)

))T
WTOA(k)

(
∆ρ(k) − g(k)

(
θ(k)

))
︸ ︷︷ ︸

JTOA

(11)

+

K∑
k=2

(
∆θ̃

b(k−1)

(k,k−1) − gIP

(
θ(k),θ(k−1)

))T
WIP(k)

(
∆θ̃

b(k−1)

(k,k−1) − gIP

(
θ(k),θ(k−1)

))
︸ ︷︷ ︸

JIP
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Epoch
1             ……                                     2        4

Inter-epoch position and 
attitude change 

3

TOA

Inter-epoch constraints

Fig. 3. Measurements and constraints involved in the new MEMA-TOA
method. The TOAs given by (2) along with the inter-epoch constraints given
by (3) within the recent K epochs are adopted for vehicle positioning.

For each TDOA measurement in (11), we go back to its
original form in (4). Rewrite (4) as

∆ρ
(j1)
i1(k)+

∥∥∥p(1)
(k) −

(
R(k)l1 + pc(k)

)∥∥∥ (12)

=
∥∥∥p(j)

(k) −
(
R(k)li + pc(k)

)∥∥∥+ ∆ε
(j1)
i1(k).

Squaring both sides of (12), ignoring the second-order noise
term and rearranging the equation, we have(

∆ρ
(j1)
i1(k)

)2

− p(j)T
(k) p

(j)
(k) + p

(1)T
(k) p

(1)
(k) + lT1 l1 − lTi li

=− 2∆ρ
(j1)
i1(k)r

(1)
1(k) + 2

(
p

(1)
(k) − p

(j)
(k)

)T
pc(k)

+ 2p
(1)T
(k) R(k)l1 − 2p

(j)T
(k) R(k)li (13)

+ 2pTc(k)R(k) (li − l1) + 2r
(j)
i(k)∆ε

(j1)
i1(k),

where r(j)
i(k) =

∥∥∥p(j)
(k) − pi(k)

∥∥∥ is the distance between antenna
i and its j-th visible anchor at epoch k.

In order to convert (13) to a linear and convex relation, we
first vectorize R(k) as vec

(
R(k)

)
= α+ Γu(k), in which

u(k) =
[
sψ(k)

, cψ(k)

]T
,

Γ =

[
0 cγ 0 cφ sγsφ 0 −sφ sγcφ 0
cγ 0 0 sγsφ −cφ 0 sγcφ sφ 0

]T
,

α = [0, 0, sγ , 0, 0, −cγsφ, 0, 0, −cγcφ]
T
.

More details on vectorization are presented in Appendix A.
Then, with the above vectorization of matrix R(k),

p
(j)T
(k) R(k)li in (13) becomes [60]

p
(j)T
(k) R(k)li =

(
lTi ⊗ p

(j)T
(k)

)
· vec

(
R(k)

)
. (14)

We then plug (14) into (13) and employ a new parameter

f(k) =
[
uT(k), x(k), y(k), r

(1)
1(k), p

T
c(k)R(k)

]T
.

Thus, (13) becomes

m(k) = G(k)f(k) +B(k)E(k)∆ε(k), (15)

where

m(k) =
[
mT

1(k), m
T
2(k), · · · , m

T
N(k)

]T
,

G(k) =
[
GT

1(k), G
T
2(k), · · · , G

T
N(k)

]T
,

B(k) =2 diag

(
r

(2)
1(k), · · · , r

(M1(k))
1(k) , r

(1)
2(k), · · · ,

r
(M2(k))
2(k) , · · · , r(1)

N(k), · · · , r
(MN(k))
N(k)

)
,

mi(k) and Gi(k), i = 1, · · · , N are given by (16), in which
∆p

(j)
(k) , p

(1)
(k)−p

(j)
(k), and h is a constant denoting the known

height.
Note that B(k) in (15) indicates the contribution of each

m(k) in the cost function and contains the true distances r
between antennas and their visible anchors. We are not able
to know r when the position results of the antennas are not
obtained yet. We can determine B(k) in the two practical
cases, i.e., with and without clock bias knowledge. If there
is prior knowledge on the clock bias, such as the clock bias
estimate from the previous epoch, we can subtract the clock
bias from the TOA to approximate r. If there is no prior
knowledge on clock bias, we have to approximate r using the
TOA measurements directly. When the clock bias is large, the
elements in B(k) are approximately the same, indicating equal
weights for m(k), as we will do in the numerical simulation
in Section V. Although it may introduce some errors in the
SDP results, the subsequent step will refine it iteratively.

At this stage, the approximated cost function relating to
TOA measurements at epoch k becomes

J̄TOA(k) = (17)(
m(k) −G(k)f(k)

)T
W(k)

(
m(k) −G(k)f(k)

)
,

where W(k) = B−1
(k)Q

−1
∆ε(k)

B−1
(k). It is convex, but is nonlinear

in the parameters to be estimated, and thus not a standard form
of SDP [61]. Furthermore, we notice that R(k), included in the
parameter f(k) to be optimized, has the non-convex constraints
[39]

RT
(k)R(k) = I3, det

(
R(k)

)
= 1. (18)

The TOA-related minimization problem becomes

min
f(1),...,f(k)

K∑
k=1

J̄TOA(k) (19)

s.t. (18).

Note that (19) is non-convex. To obtain the standard-form SDP
and transform the constraints to convex ones, we introduce a
new parameter F(k) = f(k)f

T
(k).

Utilizing F(k) and the fact xTWx = tr
(
WxxT

)
for a

vector x, we then have(
m(k) −G(k)f(k)

)T
W(k)

(
m(k) −G(k)f(k)

)
=

tr
{
W(k)

(
mT

(k)m(k) − 2G(k)f(k)m
T
(k) +G(k)F(k)G

T
(k)

)}
,
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where tr{·} is the trace of a matrix. We drop the constant term
mT

(k)m(k) to simplify the expression of the cost function as

J̄TOA(k) = (20)

tr
{
W(k)

(
−2G(k)f(k)m

T
(k) +G(k)F(k)G

T
(k)

)}
,

where the parameters to be optimized are f(k) and F(k).
We then adopt the SDR method to relax the constraints in

(18) and in F(k) = f(k)f
T
(k) by transforming the original ones

and dropping the non-convex parts as follows [37], [38].
With the known φ and γ as well as F(k) = f(k)f

T
(k), the

non-convex constraint RT
(k)R(k) = I3 in (18) is re-written as

a convex one by

tr
([
F(k)

]
1:2,1:2

)
= 1. (21)

Utilizing the fact that [60]

F(k) = f(k)f
T
(k) ⇔

[
F(k) f(k)

fT(k) 1

]
� 09×9, rank

(
F(k)

)
= 1,

(22)
the convex constraints for the TOA part at epoch k are then
(21) and [

F(k) f(k)

fT(k) 1

]
� 09×9. (23)

The non-convex constraints rank
(
F(k)

)
= 1 and

det
(
R(k)

)
= 1 are dropped.

Furthermore, since r(1)
1(k) =

∥∥∥p(1)
(k) −

(
R(k)l1 + pc(k)

)∥∥∥, we
have(

r
(1)
1(k)

)2

= [F(k)]5,5 (24)

= p
(1)T
(k) p

(1)
(k) + lT1 l1 + tr

{[
F(k)

]
3:4,3:4

}
+ h2

− 2
[
p

(1)
(k)

]T
1:2

[f(k)]3:4 − 2
[
p

(1)
(k)

]T
3
h

− 2
(
lT1 ⊗ p

(1)T
(k)

) (
α+ Γ

[
f(k)

]
1:2

)
+ 2lT1R

T
(k)pc(k),

where RT
(k)pc(k) can be replaced by[

RT
(k)pc(k)

]
1

=cγ
[
F(k)

]
2,3

+ cγ
[
F(k)

]
1,4

+ hsγ ,[
RT

(k)pc(k)

]
2

=cφ[F(k)]1,3 + sγsφ[F(k)]2,3 − cφ[F(k)]2,4

+ sγsφ[F(k)]1,4 − hcγsφ,[
RT

(k)pc(k)

]
3

=− sφ[F(k)]1,3 + sγcφ[F(k)]2,3 + sφ[F(k)]2,4

+ sγcφ[F(k)]1,4 − hcγcφ.

Equation (24) provides a constraint on f(k) and F(k), and
improves the estimation accuracy.

To sum up, for the TOA-related part in (11), the optimaza-
tion problem becomes an SDP as

min
X1

K∑
k=1

J̄TOA(k) (25)

s.t. (21), (23), and (24),

mi(k) =


(

∆ρ
(21)
11(k)

)2

− p(2)T
(k) p

(2)
(k) + p

(1)T
(k) p

(1)
(k) − 2

[
∆p

(2)
(k)

]
3
h− 2

(
lT ⊗ p(1)T

(k) − l
T
1 ⊗ p

(2)T
(k)

)
α

...(
∆ρ

(M1(k)1)
11(k)

)2

− p(M1(k))T
(k) p

(M1(k))
(k) + p

(1)T
(k) p

(1)
(k) − 2

[
∆p

(M1(k))
(k)

]
3

h− 2

(
lT1 ⊗ p

(1)T
(k) − l

T
1 ⊗ p

(Ml(k))T
(k)

)
α

 , i = 1,


(

∆ρ
(11)
i1(k)

)2

− p(1)T
(k) p

(1)
(k) + p

(1)T
(k) p

(1)
(k) + lT1 l1 − lTi li − 2

[
∆p

(1)
(k)

]
3
h− 2

(
lT1 ⊗ p

(1)T
(k) − l

T
i ⊗ p

(1)T
(k)

)
α

...(
∆ρ

(Mi(k)1)
i1(k)

)2

− p(Mi)T
(k) p

(Mi(k))
(k) + p

(1)T
(k) p

(1)
(k) + lT1 l1 − lTi li − 2

[
∆p

(Mi(k))
(k)

]
3

h− 2

(
lT1 ⊗ p

(1)T
(k) − l

T
i ⊗ p

(Mi(k))T
(k)

)
α

 ,
i = 2, . . . , N ,

Gi(k) =



2


(
lT1 ⊗ p

(1)T
(k) − l

T
1 ⊗ p

(2)T
(k)

)
Γ

[
∆p

(2)
(k)

]T
1:2

−∆ρ
(21)
11(k) 0

...
...

...
...(

lT1 ⊗ p
(1)T
(k) − l

T
1 ⊗ p

(M1(k))T
(k)

)
Γ

[
∆p

(M1(k))
(k)

]T
1:2

−∆ρ
(M1(k)1)
11(k) 0

 , i = 1,

2


(
lT1 ⊗ p

(1)T
(k) − l

T
i ⊗ p

(1)T
(k)

)
Γ

[
∆p

(1)
(k)

]T
1:2

−∆ρ
(11)
i1(k) (li − l1)

T

...
...

...
...(

lT1 ⊗ p
(1)T
(k) − l

T
i ⊗ p

(Mi(k))T
(k)

)
Γ

[
∆p

(Mi(k))
(k)

]T
1:2

−∆ρ
(Mi(k)1)
i1(k) (li − l1)

T

 , i = 2, . . . , N .

(16)
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where X1 =
{
F(k),f(k)

}
, k = 1, . . . ,K.

2) Relaxation for Inter-epoch Cost Function: In this sub-
section, we convert the cost function JIP to a convex one and
develop the corresponding constraints.

For each inter-epoch position constraints in (11), we go back
to the relationship in (6). Pre-multiplying both sides of (6) by
R(k−1) and utilizing the characteristic of rotation matrix that
R(k−1)R

T
(k−1) = I3, it becomes

R(k−1)∆p̃
b(k−1)

(k,k−1) = pc(k) − pc(k−1). (26)

Utilizing the vectorization of R(k−1) and arranging the
unknowns to the right side, we then have((

∆p̃
b(k−1)

(k,k−1)

)T
⊗ I3

)
α (27)

= pc(k) − pc(k−1) −
((

∆p̃
b(k−1)

(k,k−1)

)T
⊗ I3

)
Γu(k−1).

For two-dimensional positioning, we take the noises of the
inter-epoch position change into account and rearrange (27)
as

mp(k)
= Sp(k)

op(k)
+ εp(k), (28)

where

S(k) =

[
I2 −

[(
∆p̃

b(k−1)

(k,k−1)

)T
⊗ I3

]
1:2,:

Γ −I2

]
,

mp(k)
=

[(
∆p̃

b(k−1)

(k,k−1)

)T
⊗ I3

]
1:2,:

α,

op(k)
=

 [f(k)]3:4

[f(k−1)]1:2

[f(k−1)]3:4

 ,

and εp(k) =
[
εx(k), εy(k)

]T
is the noise of the position change

constraint with the covariance matrix σ2
pI2.

We then come to the yaw angle change constraints in (11).
According to the original form in (7), the yaw angle change
is rewritten as

mψ(k)
= Sψ(k)

oψ(k)
+ εψ(k)

, (29)

where

mψ(k)
= ∆ψ̃(k,k−1),

Sψ(k)
= [1, −1] ,

oψ(k)
=
[
ψ(k), ψ(k−1)

]T
.

We denote Op(k)
= op(k)

oTp(k)
and Oψ(k)

= oψ(k)
oTψ(k)

.
Utilizing (28) and (29), we can construct a function which is
equivalent to the original cost function relating to the inter-
epoch constraint at epoch k in (11). Taking advantage of the
fact that xTWx = tr

(
WxxT

)
, the cost function becomes

JIP(k) = σ−2
p tr

(
−2Sp(k)

op(k)
mT
p(k)

+ Sp(k)
Op(k)

STp(k)

)
+ σ−2

ψ tr
(
−2Sψ(k)

oψ(k)
mT
ψ(k)

+ Sψ(k)
Oψ(k)

STψ(k)

)
. (30)

The parameters to be optimized are op(k)
, Op(k)

, oψ(k)
and

Oψ(k)
.

Similar to the TOA constraint in (22), we obtain the positive
semidefinite constraints as[

Op(k)
op(k)

oTp(k)
1

]
� 07×7 k = 2, . . . ,K, (31)[

Oψ(k)
oψ(k)

oTψ(k)
1

]
� 03×3 k = 2, . . . ,K. (32)

Furthermore, according to the definition of oψ(k)
, the con-

straint [
oψ(k)

]
2

=
[
oψ(k−1)

]
1

(33)

is added to improve the accuracy.
For the inter-epoch constraint part, the optimization problem

becomes

min
X2

K∑
k=2

JIP(k) (34)

s.t. (31), (32), and (33),

where X2 =
{
op(k)

,Op(k)
,oψ(k)

,Oψ(k)

}
, k = 2, . . . ,K.

3) Semidefinite Programming for MEMA problem: Based
on the above deduction, we combine the cost functions J̄TOA

and JIP as well as the corresponding constraints to construct
a convex optimization problem as

min
X1,X2

K∑
k=1

J̄TOA(k) +

K∑
k=2

JIP(k) (35)

s.t. (21), (23), (24), (31), (32), and (33).

Once we solve the SDP problem, the global optimization
of the problem (35) can be obtained.

The problem (35) is not equivalent to the original problem
(10) due to the relaxation and approximation, and there
are errors between the SDP solution and the real solution.
Therefore, we use it as the initialization and need to refine it
to obtain the final positioning result.

C. Step 2: Solution Refinement

In this step, we refine the positioning results from the pre-
vious SDP step based on the multi-epoch TOA measurements
and the inter-epoch constraints.

For K epochs, the parameters to be estimated are Θ defined
in (9). The positioning problem for K epochs is the problem
(10) with K > 1 and N > 1.

The problem can be solved via iterative algorithms, such
as the Gauss-Newton iterative method [62]. The equations of
TDOA measurements (4) and inter-epoch constraints (7) are
linearized in the collective form as

δz = H · δΘ + ε, (36)

where

H =
[
HT

TOA, H
T
IP

]T
,

δz =
[
δzTTOA, δz

T
IP

]T
,

and the covariance matrix Qε is blkdiag (QεTOA ,QεIP).
HTOA,HIP, δzTOA, δzIP,QεTOA ,QεIP as well as the details
of linearization are derived in Appendix B.
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The cost function (11) becomes

JRE = (δz −H · δΘ)
T
Q−1
ε (δz −H · δΘ) , (37)

where the subscript “RE” stands for refinement.
The estimate of the increment is

δΘ̂ =
(
HTQ−1

ε H
)−1

HTQ−1
ε · δz. (38)

Taking the estimated results of MEMA-SDP as the initial
values and using (38), the refined position and attitude can be
obtained through multi-step iteration.

In reality, when there are limited computing resources
but sufficient number of measurements in a single epoch,
the iterative refinement step is reduced to the conventional
method based on single-epoch TOA measurements, which
has less computational complexity. However, for complex
environments with insufficient measurements at a single epoch,
the refinement with MEMA TOA measurements and inter-
epoch constraints provides better accuracy and robustness at
the cost of higher complexity.

Furthermore, it is worth mentioning that the proposed
MEMA-TOA method conducts vehicle positioning, and solves
the problem of location ambiguity caused by the insufficiency
of TOAs at a single epoch. The high-precision positioning
results can be obtained without a prior information of the
initial value. Therefore, this new method can be used not only
as a stand-alone positioning method but also as a position
initialization for other positioning methods such as the EKF.

IV. PERFORMANCE ANALYSIS OF MEMA-TOA METHOD

In this section, we evaluate the performance of the proposed
MEMA-TOA method by theoretically analyzing the accuracy
and computational complexity.

A. Accuracy

We derive the Fisher information matrix for the new
MEMA-TOA method. We compare it with the conventional
single-epoch and multi-antenna TOA method (SEMA) [30]
to show the superior positioning performance of the new
method. The attainable error variance, the CRLB and Fisher
information matrix has a relation as [57]

var
(

[θ̂]v

)
> CRLB

(
[θ̂]v

)
=
[
F−1(θ)

]
v,v
, (39)

where F is the Fisher information matrix, and the subscript
“v” is the index. The diagonal element of F−1 is the mini-
mal variance that can be achieved theoretically in unbiased
estimation.

When we estimate the position based on the TOA measure-
ments of K epochs from N antennas along with the inter-
epoch constraints, the Fisher information matrix is

FMEMA = FMEMA,TOA +HT
IPWIPHIP, (40)

where the subscript “MEMA” stands for multi-epoch and
multi-antenna, FMEMA,TOA is the Fisher information matrix
derived by using only MEMA TOA measurements. Details of
FMEMA are given in Appendix C.

The diagonal element of F−1
MEMA is the minimal squared

error that can be achieved in unbiased estimation for the

MEMA problem. It is affected by the noises of TOA and inter-
epoch position and attitude change constraints, the number of
epochs and the number and geometry of visible anchors in
each epoch.

Furthermore, if there is no inter-epoch constraint, FMEMA =
FMEMA,TOA according to (40). The CRLB at epoch k is equal
to the corresponding CRLB of the conventional case using
single-epoch TOAs.

We also derive the Fisher information matrix for the conven-
tional SEMA method [30] for comparison. For epoch k, the
parameters to be estimated are θ(k) =

[
x(k), y(k), ψ(k)

]T
.

The Fisher information matrix is [57]

FSEMA(k) = HT
(k)WTOA(k)H(k), (41)

where the subscript “SEMA” represents the conventional
SEMA method, WTOA(k) is the inverse of the covariance
matrix of the TDOA measurement vector as defined in (5).
The details of H(k) is shown in Appendix B.

When MEMA TOA measurements and inter-epoch con-
straints are adopted, the CRLB of [Θ]v has the relation

CRLBMEMA,v 6 CRLBSEMA,v , (42)

as derived in Appendix C.
Remark 1: The theoretical estimation error of the new

MEMA-TOA method is smaller that of the conventional
SEMA method, showing the superior positioning accuracy of
the new method.

B. Computational Complexity

We study the computational complexity of the proposed
method. The complexity is shown in big O expressions with
respect to the number of anchors M , the number of antennas
N , the number of epochs involved K and the localization
dimension η = 2 . To investigate the worst case, it is assumed
that all N antennas can each receive all M anchor signals,
although this situation is unlikely to occur due to the obstacles.

In the first step, MEMA-SDP initialization, solving the
SDP in (35) dominates the computation cost. We analyze
the complexity of MEMA-SDP following the method in [37],
[58] and [63]. For each iteration in the inner-point algorithm
utilized in SDP solving, the worst case complexity is about

α3 + α2

ξ∑
ι=1

β2
ι + α

ξ∑
ι=1

β3
ι , (43)

where α is the number of variables, ξ is the number of
constraints, and β is the size of the constraint. According to
(35), in the proposed MEMA-SDP, the number of variables is
α = (4η2 + 18η + 24) ·K − 2η2 − 7η − 10, where K is the
number of epochs involved. There are 6 types of constraints
corresponding to (21),(23), (24), (31), (32) and (33). The total
number of constraints is ξ = 6K − 3. Calculating α, βι and ξ
and substituting them into (43), the complexity of one iteration
is on the order of O(η6K3), and the iteration count is usually
between 20 and 30 [64].

In the second step, the iterative algorithm is executed based
on the results of Step 1 and the estimate of the increment
(38). The major computation for each iteration lies in the two
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Fig. 4. A typical 2D vehicle positioning scene with four anchors. The
ambiguous location appears in the conventional SEMA method since the
fake TOA (blue-dashed line) may be mistaken as the true TOA measurement
between A1 and antenna 3.

inverse operations of the Qε in (38), which is O(2$3) [65],
where $ = K(MN − 1) + 3(K − 1).

V. NUMERICAL SIMULATIONS

We first design an extreme scene, in which there are only
four anchors, and the number of visible anchors at each epoch
is very limited. In this scene, we verify that our method
successfully removes the ambiguous locations and achieves
the theoretical accuracy. We then design a more practical
scene, which simulates an unmanned cargo port. In this scene,
we plan a path for the vehicle to be located and simulate
the visible anchors at each epoch according to the vehicle
position, attitude and the obstacles in the environment to test
the performance of our method.

To the best of the authors’ knowledge, there is no other
method in the literature, utilizing MEMA TOAs and inter-
epoch constraints to deal with the vehicle positioning problem
under the dense obstacle environment. Therefore, we compare
the new MEMA-TOA method with the conventional SEMA
method [30] to show the outstanding performance of our
proposed method.

A. Positioning in an Extreme Case with Minimum Number of
Anchors

1) Scene Setting: We setup an extreme scene as shown in
Fig. 4, in which there are only 4 anchors forming an area of
80 m × 80 m. The anchors have known positions and are
synchronized to a common clock source. The center of the
vehicle body is the reference point and the origin of the body
frame. The coordinates of the three on-board antennas in frame
b are [4,−2]T m, [4, 2]T m and [−4, 0]T m, respectively. The
coordinates of the four anchors in frame n are [40,−40]T m,
[40, 40]T m, [−40, 40]T m and [−40,−40]T m, respectively.
The clock bias between the receiver and the anchors is set to
149.90 m. Both the TOA measurements and the inter-epoch
change constraints are updated at a 1-Hz rate.

We simulate the case that antennas can not receive the
signals from all the anchors. As shown in Fig. 4, there are only

6 TOAs for this epoch. And the antennas at the ambiguous
location illustrated by the brown squares in the figure can
receive almost the same set of TOAs (the fake TOA is mistaken
as the true TOA since it is almost identical with the true TOA
between A1 and antenna 3 in the figure). Thus, utilizing the
TOAs of this single epoch, the position results may fall into
multiple locations as shown by the ambiguous location in the
figure.

TABLE II
SIMULATED POSITIONS AND YAW ANGLES OF THE VEHICLE AND VISIBLE

ANCHORS AT EACH EPOCH.

Epoch Position (m) Yaw (rad) Visible anchors

1 [11.24,−9.29]T 0.74 {2, 4}, {1, 3, 4}, {1}
2 [12.46,−9.05]T 0.65 {2, 4}, {3}, {1, 2, 3, 4}
3 [13.78,−9.07]T 0.54 {1, 2, 3, 4}, {1, 2, 3}, {2, 3, 4}
4 [15.12,−9.26]T 0.41 {1, 4}, {3}, {2, 3, 4}

Note: The numbers in the {} in the last column are the visible anchor numbers
for each antenna.

We set 4 epochs for this scene, the details of the simulated
positions and yaw angles of the vehicle, and the visible anchors
at each epoch are shown in Table II. Based on the above
configuration, we conduct 500 Monte Carlo simulations.

2) Simulation Results: We first apply our MEMA-SDP
method to obtain the initial position guess, and the results
with different numbers of epochs, i.e., K = 2, 3 and 4 are
presented in Fig. 5 (a), (b) and (c), respectively. The standard
deviations of the noises for the TOA measurement, the inter-
epoch position and attitude constraints are set to σ = 0.1 m,
σp = 0.1 m and σψ = 0.1 rad, respectively. As illustrated in
Fig. 5 (a), the results of MEMA-SDP with 2 epochs are not all
close to the real location, and more than 52% of the estimates
are more than 0.3 m away from the real location. Both the
initial guess results from MEMA-SDP with 3 epochs and 4
epochs are closer to the real location than those from the case
with 2 epochs, as shown in Fig. 5 (b) and (c). About 90.6% and
91.2% of the estimates are inside the circle, respectively. This
result shows that with more measurements from more epochs,
the MEMA-SDP obtains a more accurate initial position. For
comparison, we depict the results of the conventional SEMA
method [30] in Fig. 5 (d). The SEMA is initialized with a
random location, which is drawn from uniformly distributed
random coordinates in the area formed by the anchors. We
can see that the results cluster into two groups. One group is
around the real location, and the other group far apart indicates
the ambiguous solution. It shows that the new MEMA-SDP
can effectively remove the location ambiguity, and obtains an
initial position close to the real location, compared with the
conventional SEMA method.

After initialization by the MEMA-SDP, we apply the pro-
posed refinement step to the initial position. The positioning
root-mean-square error (RMSE) of the proposed MEMA-TOA
method from 500 Monte Carlo simulation tests are calculated
and compared to the CRLB computed based on (39), (40) and
(41).

The positioning RMSEs and the theoretical CRLBs with
different standard deviation of TOA noise are shown in Fig.
6 with the inter-epoch constraint noise σp = 0.1 m and σψ =
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Fig. 5. Position results of the new MEMA-SDP (with TOAs from different
numbers of epochs) and the conventional SEMA. (a) MEMA-SDP with 2
epochs: Over 52% of the position estimates are outside the 0.3 m circle
centered at the real location. (b) MEMA-SDP with 3 epochs: 90.6% of
the position results are inside the circle. (c) MEMA-SDP with 4 epochs:
91.2% of the position results are inside the circle. (d) Conventional SEMA:
The two separate groups represent the correct and the ambiguous locations,
respectively. The new MEMA-SDP has higher position accuracy with more
epochs of TOAs, and outperforms the conventional SEMA.
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Fig. 6. Position and yaw RMSEs vs. TOA measurement noise. Results
are from 500 Monte-Carlo simulations. The position and yaw estimation
accuracies of the new MEMA-TOA method reach the CRLBs, and are higher
than those of the conventional SEMA.
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Fig. 7. Position and yaw RMSE results from the MEMA-TOA method with
different noise of the inter-epoch constraints. The inter-epoch position change
noise σp varies from 0.05 m to 0.5 m, and the yaw change noise σψ is set
to 0.1 rad and 0.5 rad. The estimation accuracy in different cases reaches the
CRLB, and decreases with the increasing noise of the inter-epoch constraint.

0.1 rad, respectively. It can be seen from the figure that our
MEMA-TOA method can achieve the theoretical CRLB. We
show that the RMSE of the new MEMA-TOA is lower that
that of SEMA. It verifies that the estimation error of the new
MEMA-TOA method is lower that of the conventional SEMA
method, consistent with the analysis in Section IV.

We further investigate the positioning performance of the
new MEMA-TOA method with different noises of inter-epoch
constraints. We fix the TOA noise as σ = 0.1 m and vary the
standard deviation of inter-epoch position and attitude change
noises. The position and yaw estimation RMSEs are shown
in Fig. 7. As illustrated in the figure, the estimation accuracy
decreases with the increase of the inter-epoch constraint noise.
With the same inter-epoch position noise σp, lager inter-epoch
yaw noise σψ leads to larger estimation error. The estimation
accuracy reaches the CRLB, showing the optimality of the
new method.

All the simulations are implemented using Matlab 2017a
on a personal computer with a 2.5-GHz i7-6500U CPU and
8GB RAM. The MEMA-SDP step is realized using the Matlab
toolbox CVX [66] with the solver SeDuMi [67] with default
precision. We record the computation time of 500 simulation
runs for our MEMA-TOA method. The average run time is
987.0 ms, and the number of iterations in Step 2 of MEMA-
TOA is about 8. The average run time of the conventional
SEMA method is 1.3 ms, which is lower than that of the
MEMA-TOA method, since the SEMA executes only the iter-
ative algorithm based on the single-epoch and multi-antenna
TOAs. Also note that the CVX we use to solve the SDP is a
universal solver, which is not specially designed for an efficient
solution to this specific problem.

B. Positioning in a Practical Harsh Environment: Unmanned
Cargo Port

1) Scene Setting: As shown in Fig. 8, we construct a
simulation scene to simulate an unmanned cargo port. There
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Fig. 8. Simulation scene for an unmanned cargo port. Due to the obstacles
in the environment and on the vehicle, the fixed antennas on the vehicle can
only receive the signals from a few anchors.

are several containers represented by the gray cuboids stacked
on the port. The vehicle to be located is moving along the
roads between the containers. Considering the limitation of
gantry cranes in the port environment, the heights of anchors
are limited to a certain extent. Consequently, the roadside
containers and goods on the vehicle will block the signals
from the anchors. Three synchronized receiving antennas are
mounted on the vehicle to receive more signals.

The vehicle is 8 m long, 4 m wide and 2 m high. It
moves on the 16 m wide roadway. The goods with 7 m in
length, 3 m in width and 2.8 m in height are loaded on
the vehicle. Three antennas are installed on the plate of the
vehicle. The coordinates of the three antennas in frame b are
[4, 2,−0.15]T m, [4,−2,−0.15]T m and[−4, 0,−0.15]T m,
respectively. Considering the height limitation of gantry cranes
in the port environment, we set the height of the anchors to 8
m, and the east and north coordinates of the anchors in frame
n are presented in Table III with the unit of meter.

TABLE III
COORDINATES OF ANCHORS IN THE SIMULATED SCENE OF

UNMANNED CARGO PORT (FRAME n).

Anchor No. East North Anchor No. East North
1 150 72 10 100 53
2 -4 26 11 84 26
3 -19.5 -36 12 84 -28
4 60 70.5 13 100 10
5 154.5 10 14 20 29.5
6 137.5 36.5 15 -20 53
7 138 -28 16 20 -24.5
8 100 -44 17 60 6.5
9 84 90

In this simulation scene, we set M = 17 and N = 3
for problem (10). As shown by the red line in Fig. 8, the
vehicle moves along a trajectory on the road for 290 s, i.e.,
the number of total epochs is 290. The clock bias between
the receiver and the anchors is set to 149.90 m. Both the
TOA measurements and the inter-epoch change constraints
are updated at a 1-Hz rate. The standard deviations of the
noises for the TOA measurement, the inter-epoch position
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Fig. 9. Number of visible anchors at different antennas in the unmanned port
simulation scene. Position and attitude results cannot be obtained using only
a single antenna, since the number of visible anchors for a single antenna
often falls below 4.

and attitude constraints are set to σ = 0.1 m, σp = 0.1
m and σψ = 0.1 rad, respectively. The measurements for
each antenna at each epoch are generated according to the
the specifications of the commercial off-the-shelf UWB chip,
IMU and the characteristics of the real-world implemented
system based on it [22], [54], [68], [69]. Due to the change
of the relative position between the vehicle and the anchors
and containers, each epoch has a different geometry of the
anchors and represents different situations. The numberMi(k)

of visible anchors for antenna i at epoch k varies with the
motion of the vehicle, as shown in Fig. 9. We can see that
with multiple antennas, the total number of visible anchors is
increased compared with the single-antenna cases.

2) Simulation Results: For this scene, our MEMA-TOA
method with K = 3 epochs and the conventional SEMA are
applied to estimate the position and attitude of the vehicle
for each epoch. We initialize the conventional SEMA with
a uniformly distributed random guess for the east and north
coordinates from the entire area formed by the anchors.
The trajectories estimated by the new MEMA-TOA and the
conventional SEMA are shown in Fig. 10. The real trajectory
is represented by the red line. The trajectory estimated by the
conventional SEMA has some spikes, which indicate that the
SEMA converges to erroneous results or ambiguous locations
at some epochs. For the areas near the edges and corners where
it is difficult to have an evenly distributed anchor geometry, the
new MEMA-TOA method achieves good positioning results
compared with the conventional SEMA, as shown by the
figure. As shown by Fig. 10, the trajectory estimated by
MEMA-TOA is very close to the real one, such that they
can hardly be distinguished in the figure. This result shows
that the new MEMA-TOA method successfully eliminates the
ambiguous locations and achieves high-precision positioning
results.

Fig. 11 shows the estimation error from the new MEMA-
TOA method throughout all epochs. The errors of the convec-
tional SEMA method are also depicted for comparison. For
the conventional SEMA method, the errors at 25 epochs are
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Fig. 11. Position and yaw angle estimation error of the new MEMA-TOA
method in the unmanned port simulation scene. The estimation error of the
new MEMA-TOA method is at decimeter level for the position and lower
than 0.05 rad for the yaw angle, both smaller than that of the conventional
SEMA method.

far greater than that of the new MEMA-TOA method as shown
in the figure. They are caused by the ambiguous location
results. In addition, there are another 6 epochs, at which the
conventional iterative SEMA method does not converge since
the initial guess is far from the real position. As presented
in the figure, compared with the conventional SEMA method,
the new MEMA-TOA method provides accurate and robust
positioning results for the whole trajectory, in which the east
position, north position and yaw angle errors are lower than
0.3 m, 0.3 m and 0.05 rad, respectively.

In addition, it should be noted that although three antennas
are employed in this simulation, our method is not limited
to this number. In practice, the number of antennas can be
selected according to the environment and the deployment of
anchors.

VI. CONCLUSION

Autonomous high-precision and robust positioning for ve-
hicles are desperately needed in unmanned warehouses, cargo
ports, and similar environments, in which radio broadcast
positioning systems are widely employed. However, obstacles
in the environments and on the vehicle itself may reduce the
number of available signals, and thus degrade the positioning
accuracy and robustness. The conventional SEMA method
only utilizes measurements from a single epoch, and has the
problems of parameter initialization and location ambiguity.

In this article, we propose a new MEMA-TOA method. We
first develop a new MEMA-SDP to obtain a good initialization.
MEMA-SDP provides a global optimum to the approximated
convex problem of the original MEMA positioning problem.
We then refine the initial positioning result from MEMA-
SDP with an iterative algorithm. We take advantage of the
MEMA TOAs bridged by inter-epoch constraints, which bring
sufficient measurements and improve the geometry of the
observed anchors to remove the location ambiguity. In brief,
the proposed MEMA-TOA method can obtain high-precision
positioning results without a priori information of the initial
value. Therefore, it can be used not only as a stand-alone
positioning method but also as an initialization, after which
other methods such as the EKF can then be adopted in the
subsequent epochs. In addition, we derive the CRLB of the
MEMA positioning problem and theoretically show that the
estimation accuracy of the new MEMA-TOA method is higher
than that of the conventional SEMA method.

Simulation results demonstrate that the MEMA-SDP
method successfully provides a good initialization without
location ambiguity, and the new MEMA-TOA method has
higher position and attitude estimation accuracy and robustness
than the conventional SEMA method in harsh environments.
All the numerical results are consistent with the theoretical
analysis and show the feasibility of the new MEMA-TOA
method in real-world intelligent transportation systems and
applications.

APPENDIX A
VECTORIZATION OF ROTATION MATRIX

The rotation matrix from frame b to frame n is [39]

R =

cψcγ sψcφ + cψsγsφ −sψsφ + cψsγcφ
sψcγ −cψcφ + sψsγsφ cψsφ + sψsγcφ
sγ −cγsφ −cγcφ

 , (44)

where γ, φ and ψ are the known roll angle, the known pitch
angle and the unknown yaw angle, respectively. sφ, sγ , sψ , cφ,
cγ and cψ represent sinφ, sin γ, sinψ, cosφ, cos γ and cosψ,
respectively.
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For epoch k, R(k) is a function of ψ(k), and can be
vectorized as

vec
(
R(k)

)
=



cψ(k)
cγ

sψ(k)
cγ

sγ
sψ(k)

cφ + cψ(k)
sγsφ

−cψ(k)
cφ + sψ(k)

sγsφ
−cγsφ

−sψ(k)
sφ + cψ(k)

sγcφ
cψ(k)

sφ + sψ(k)
sγcφ

−cγcφ


. (45)

Utilizing u(k), Γ and α defined in Section III-B1, we then
have

vec(R(k)) = α+ Γu(k). (46)

APPENDIX B
LINEARIZATION IN STEP 2

We conduct Taylor series expansion of the TDOA equation
in (4) at Θ̂, ignore the higher-order terms, and come to a
collective form of the linearized K-epoch TDOA equation as

δzTOA = HTOA · δΘ + εTOA, (47)

where the increment δΘ = Θ− Θ̂,

δzTOA =
[
δzT(1), · · · , δz

T
(K)

]T
,

HTOA = blkdiag
(
H(1), . . . ,H(K)

)
,

QεTOA
= blkdiag

(
Q∆ε(1) , . . . ,Q∆ε(K)

)
,

where δz(k) = ∆ρ(k)−‖p
(j)
(k)−pi(k)‖−‖p

(1)
(k)−p1(k)‖, Q∆ε(k)

is derived in (5), and H(k) =
∂g(k)(θ(k))

∂θ(k)

∣∣∣
θ̂(k)

, in which g(k)

is defined in (5).
For the inter-epoch change constraints, we expand the

equation in (7) at Θ̂, eliminate the higher-order term, and
have the K-epoch inter-epoch constraint equation as

δzIP = HIP · δΘ + εIP, (48)

where

HIP =
[
HT

IP(2), · · · , H
T
IP(K)

]T
,

δzIP =
[
δzTIP(2), · · · , δz

T
IP(K)

]T
,

QεIP = blkdiag
(
QεIP(2)

, · · · ,QεIP(K)

)
,

where δzIP(k) = ∆θ̃
b(k−1)

(k,k−1) − gIP(k)

(
θ(k),θ(k−1)

)
, the co-

variance matrix QεIP(k)
is diag

(
σ2
p, σ

2
p, σ

2
ψ

)
, and

HIP(k)

=

[
03×3 . . .

∂gIP(k)

∂θ(k−1)

∣∣∣
θ̂(k−1)

∂gIP(k)

∂θ(k)

∣∣∣
θ̂(k)

· · · 03×3

]
︸ ︷︷ ︸

3×3K

,

in which, gIP(k) is defined in (8).

APPENDIX C
CRLB FOR MEMA PROBLEM

We derive the CRLB of the MEMA-TOA positioning prob-
lem.

According to the noise model given by (2) and (3), all
the noises of MEMA TOA measurements and the inter-epoch
change constraints are independent Gaussian noises. Utilizing
the linearized equations (47) and (48) in Appendix B, the
Fisher information matrix for MEMA problem is

FMEMA =HT
TOAWTDOAHTOA +HT

IPWIPHIP

=FMEMA,TOA +HT
IPWIPHIP, (49)

where WTOA = Q−1
εTOA

, WIP = Q−1
εIP , and FMEMA,TOA

is the Fisher information matrix derived without inter-epoch
constraints.

Utilizing the knowledge of matrix analysis [60], we have

F−1
MEMA =

(
FMEMA,TOA +HT

IPWIPHIP

)−1
(50)

=F−1
MEMA,TOA

− F−1
MEMA,TOAH

T
IPΞHIPF

−1
MEMA,TOA,

where Ξ ,W−1
IP +HIPF

−1
MEMA,TOAH

T
IP.

According to the definition of FMEMA,TOA, it is a block
diagonal matrix. Each block of FMEMA,TOA is a symmetric
positive definite matrix, and so is F−1

MEMA,TOA. We conduct
eigenvalue decomposition on F−1

MEMA,TOA as

F−1
MEMA,TDOA = ZTΛZ, (51)

in which Λ = diag (λ1, · · · , λ3K) is the diagonal matrix
constructed by the positive eigenvalues of F−1

MEMA,TOA, and
Z is the corresponding orthogonal matrix.

Let HIPZ
T = [a1, . . . , a3K ], in which al (l =

1, . . . , 3K) are column vectors. Then,

HIPF
−1
MEMA,TOAH

T
IP = HIPZ

TΛZHT
IP

=

3K∑
l=1

λlala
T
l (52)

indicates that HIPF
−1
MEMA,TOAH

T
IP is a symmetric positive

semidefinite matrix.
Conduct the eigenvalue decomposition(

HIPF
−1
MEMA,TOAH

T
IP

)−1

= MT
1 Λ1M1, (53)

where Λ1 = diag (λ1,1, · · · , λ1,LK
) is constructed by the

non-negative eigenvalues, M1 is the corresponding orthogonal
matrix, LK is the number of TDOA measurements for K
epochs, where LK =

∑K
k=1 L(k) and L(k) =

∑N
n=1Mi(k)−1.

Consequently,

Ξ = MT
1 (Λ2 + Λ1)

−1
M1, (54)

where Λ2 = diag (λ2,1, · · · , λ2,LK
) is constructed by the

negative eigenvalues of WIP.
Let

A = F−1
MEMA,TOAH

T
IPΞHIPF−1

MEMA,TOA, (55)
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we have

F−1
MEMA = F−1

MEMA,TOA −A. (56)

Substituting (54) into A gives

A = (57)

F−1
MEMA,TOAH

T
IPM

T
1 (Λ2 + Λ1)

−1
M1HIPF

−1
MEMA,TOA.

Let

F−1
MEMA,TOAH

T
IPM

T
1 = [b1, · · · , bLK

] . (58)

Similar to (52), A can be rewritten as

A =

LK∑
l=1

(λ2,l + λ1,l)
−1
blb

T
l . (59)

According to the definition of WIP and Λ2, λ2,l > 0.
Moreover, since λ1,l > 0, A is also a symmetric positive
semidefinite matrix, in which the diagonal elements are non-
negative.

We denote the v-th diagonal element of FMEMA,
FMEMA,TOA and A by dMEMA,v , dMEMA,TOA,v and dA,v .
According to the properties of the positive semidefinite matrix,
the diagonal elements are all non-negative. Therefore, based
on (56), we obtain the inequality as

dMEMA,v = dMEMA,TOA,v − dA,v 6 dMEMA,TOA,v . (60)

According to (39), we have

CRLBMEMA,v 6 CRLBMEMA,TOA,v . (61)

Note that according to the definition of FMEMA,TOA in (49)
and FSEMA(k) in (41), we have

FMEMA,TOA = blkdiag
(
FSEMA(1), · · · , FSEMA(K)

)
. (62)

FMEMA,TOA is a block diagonal matrix and its inverse is equal
to the block diagonal matrix formed by the inverse of each
blocks. Consequently,

CRLBMEMA,v 6 CRLBSEMA,v . (63)

The theoretical estimation error of the new MEMA-TOA
is lower than that of the conventional SEMA, i.e. a higher
positioning accuracy can be achieved by the new MEMA-TOA
method.
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