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Abstract—Today, vehicles use smart sensors to collect
data from the road environment. This data is often
processed onboard of the vehicles, using expensive hard-
ware. Such onboard processing increases the vehicle’s
cost, quickly drains its battery, and exhausts its comput-
ing resources. Therefore, offloading tasks onto the cloud
is required. Still, data offloading is challenging due to
low latency requirements for safe and reliable vehicle
driving decisions. Moreover, age of processing was not
considered in prior research dealing with low-latency
offloading for autonomous vehicles. This paper proposes
an age of processing-based offloading approach for
autonomous vehicles using unsupervised machine learn-
ing, Multi-Radio Access Technologies (multi-RATs),
and Edge Computing in Open Radio Access Network
(O-RAN). We design a collaboration space of edge
clouds to process data in proximity to autonomous
vehicles. To reduce the variation in offloading delay, we
propose a new communication planning approach that
enables the vehicle to optimally preselect the available
RATs such as Wi-Fi, LTE, or 5G to offload tasks to
edge clouds when its local resources are insufficient.
We formulate an optimization problem for age-based
offloading that minimizes elapsed time from generating
tasks and receiving computation output. To handle this
non-convex problem, we develop a surrogate problem.
Then, we use the Lagrangian method to transform
the surrogate problem to unconstrained optimization
problem and apply the dual decomposition method. The
simulation results show that our approach significantly
minimizes the age of processing in data offloading with
90.34% improvement over similar method.

Index Terms—Autonomous Vehicle, Edge Computing,
Age of Processing, Open RAN, C-V2X, 5G

I. Introduction

CELLULAR vehicle-to-everything (C-V2X) has re-
cently been introduced in 5G to enable low-latency

and high-reliability vehicular communications, ultimately
supporting autonomous driving. C-V2X integrates V2V
(Vehicle-to-Vehicle), V2I (Vehicle-to-Infrastructure), V2P
(Vehicle-to-Pedestrian), and V2N (Vehicle-to-Network)
by leveraging cellular network infrastructure [1]. At the
same time, in cellular network, to support lower latency
communication in Radio Access Network (RAT), the Open
Radio Access Network (O-RAN) architecture has recently
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been proposed [2]. The O-RAN architecture enables the
intelligence and openness of RAN, and it can achieve nearly
real-time optimization of RAN resources using Machine
Learning (ML) algorithms implemented in the Near Real-
Time RAN Intelligent Controller (Near-RT RIC). O-RAN
architecture enables collecting and accessing historical
traffic and handover data in Near-RT RIC. Near-RT RIC
can use ML to detect the network and handover anomalies
and ensure continuous and reliable connectivity for au-
tonomous driving. The Near- RT RIC is interfaced with O-
RAN Central Unit Control Plane (O-CU-CP) and O-RAN
Central Unit User Plane (O-CU-UP) at edge cloud called
“Open Cloud (O-Cloud)”. Also, in O-RAN, Non-Real-Time
RAN Intelligent Controller (Non-RT RIC) enables ML
functionalities for policy-based guidance of applications and
features. Therefore, we consider O-RAN and C-V2X as key
enabling communication technologies toward low-latency
communications for autonomous driving. Furthermore, to
enable lower latency in the presence of multiple Radio
Access Technologies (multi-RATs) such as Wi-Fi, LTE,
or 5G, the 3rd Generation Partnership Project (3GPP)
proposed a Non-3GPP Interworking Function (N3IWF).
N3IWF allows controlling various RATs in a unified manner
in 5G core. Also, the 3GPP defines Access Traffic Steering,
Switching, and Splitting (ATSSS) functionality that allows
traffic steering, switching, and splitting for multi-RATs
environments [3]. Therefore, to improve reliability and
lower latency of autonomous driving in multi-RATs, we
consider redundant user planes with ATSSS, N3IWF, and
User Plane Functions (UPFs) at the edge clouds. Such
consideration allows data of autonomous vehicles in 5G,
LTE, and Wi-Fi to be routed to User Plane Function (UPF)
directly and via N3IWF.

In addition to vehicular communication networks, the au-
tomotive and transportation industries have recently made
enormous investments in autonomous driving and Artificial
Intelligence (AI) [4] to develop Intelligent Transportation
System (ITS) [5]. In 2019, the global autonomous vehicle
market was valued at USD 24.1 billion. For the forecast
period, 2020-2025, the autonomous vehicle market expected
a Compound Annual Growth Rate (CAGR) of 18.06% [6].
According to [7], autonomous driving using AI in ITS
can help in providing reliable transportation services by
eliminating many accidents that could be caused by human
errors. The ITS provides information and recommends driv-
ing decisions to drivers and self-driving cars. This requires
collaborative sensing and information exchange between
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vehicles and infrastructure, where communication network
is a substantial enabling element of ITS [8]. Therefore, ITS
requires a combination of various cutting-edge information
using AI, computation, and communication technologies for
traffic signal control, route optimization, emergency driving
assistance, intelligent parking, etc [9]. Consequently, ITS
should use massive amounts of data from various sources
such as vehicles, pedestrians, passengers, and roadside units
[10]. According to [11], an autonomous vehicle alone (level
2 and above of driving automation) can generate between
4 and 10 terabytes of data per day, depending on the
number of mounted sensors. In practice, the most critical
computation challenges faced by autonomous vehicles when
processing collected data from sensors are:

• In the autonomous vehicle, On-Board Units (OBU)
does all processing/computation of collected data
from sensors. Thus, OBU consumes a lot of battery
energy leading to a shorter battery and OBU lifetime
[12]. Also, handling all compute-intensive tasks in the
autonomous vehicle may exceed the available resource
capacity.

• The time for getting computational results is critical
for autonomous driving. In the worst-case, computa-
tion time may exceed the deadline bound to make safe
and reliable autonomous driving decisions.

• To support OBU, autonomous vehicles may offload
tasks to edge clouds using multi-RATs. Therefore, data
from multiple autonomous vehicles may rapidly reach
edge cloud with mixed finite and infinite flows with
varying rates. Considering that each edge cloud works
independently, required computation resources may
exceed the available resources of one edge cloud.

• Offloading data to the edge cloud depends on the
network status. However, network status frequently
changes over time and causes fluctuation of end-to-end
latency [13], [14].

• Offloading data in the presence of multi-RATs involves
multiple handovers due to the vehicle’s connection in
motion and high mobility. Multiple handovers affect
computation and communication delay.

In this work, we consider computation and commu-
nication delay in handling data from vehicles. We opt
Age of Processing (AoP), where AoP comes from Age
of Information (AoI). AoI has been proposed to measure
the status freshness of the environment [15]. AoI captures
the time elapsed from status being generated at the
source node to the latest status update at the destination
node. However, we can get the status information after
performing some data processing, i.e., computation of
collected data. To include computation time in the AoI,
we consider AoP for vehicle data offloading to edge
cloud in multi-RATs environment. The AoP considers
the time elapsed from generating task to the time of
receiving computation output. AoP has been applied in
data sampling, offloading, and processing for real-time
Internet of Things (IoT) applications [16]. To the best of
our knowledge, this work is the first that considers AoP

in autonomous driving. We propose an AoP-based data
offloading for autonomous vehicles in multi-RATs Open
RAN to tackle the aforementioned challenges. Our main
contributions are summarized as follows:

• We propose a Collaboration Space (CS) of edge clouds
to compute tasks as close as possible to autonomous
vehicles for minimizing AoP. The CS is defined using
Affinity Propagation (AP)- an unsupervised ML algo-
rithm implemented in O-RAN controllers. AP allows
putting edge clouds in CSs based on their similarity,
responsibility, and availability.

• We propose a communication planning approach to
reduce unpredictable variation in offloading delay. The
vehicle can preselect appropriate RATs available in
its route before its road trip. Then, the vehicle can
choose a suitable RAT among the preselected RATs
to immediately start offloading tasks when its local
computing resource is insufficient.

• We formulate an optimization approach that jointly
optimizes communication and computation models
to minimize the AoP of autonomous vehicles. The
formulated problem is shown to be non-convex and
computationally intractable. To handle it, we develop
a surrogate and upbound problem of the original
problem. Then, we transform the surrogate problem
to an unconstrained optimization problem using the
Lagrangian method and apply dual decomposition to
solve it.

The rest of this paper is structured as follows: we discuss
related work in Section II. Section III presents our system
model, and Section IV discusses age-based task offloading.
In Section V, we present our problem formulation and
proposed solution. Section VI presents our performance
evaluation, and we conclude the paper in Section VII.

II. Related Work
We classify the existing related work into two categories:

(i) offloading and autonomous vehicles, and (ii) offloading
and age of information.

(i) Offloading and autonomous vehicles: The authors in
[17] highlighted the need for a highly efficient, fast, and
integrated network supporting data offloading. Specifically,
Multi-RATS can increase network capacity and throughput.
The related works in [18], [19] discussed communication
and computation approaches for task offloading in multi-
access edge computing. Rather than considering binary
offloading available in [18]–[20], where each task is either
computed locally or entirely offloaded to the edge cloud,
the authors in [21] proposed energy efficiency partial
computation offloading in which a task is divisible for
being executed parallelly in different locations. Inspired
by artificial intelligence, the authors in [5], [22] proposed
offloading and caching approaches that enable vehicle to
Road Side Unit (RSU) offloading. Using edge computing,
the authors in [13] proposed offloading autonomous driving
services. However, in their proposed approach, the authors
consider only a single edge server. Since many autonomous
vehicles may offload tasks to the edge server at the same



time, their demands may surpass the capacity of a single
edge server. The authors in [23] proposed a radio resource
management approach for offloading tasks to edge clouds
using 6G V2X communications. They used Federated Q-
Learning to allocate and utilize the available radio resources
efficiently. In [24], the authors presented a data sharing
approach in the vehicular edge network that minimizes
transmission latency in data sharing. To handle the formu-
lated problem, they used Q-network and federated learning
approaches to ensure efficient and secure data sharing
among multi-access edge computing (MEC) servers. In [25],
the authors defined an optimization problem for vehicle
offloading and communications selection decisions in the
MEC environment. They used a deep Q-learning approach
to find the optimal solution. The authors in [26] minimize
delay and energy consumption for multilevel offloading in a
vehicular network. They used distributed Deep Q-learning
algorithm to handle the formulated problem by maximizing
reward. However, the aforementioned ML-based approaches
do not provide a computational complexity analysis to
prove their applicability in the driving environment. Also,
the proposed approaches cannot easily be implemented in
O-RAN due to distributed O-RAN elements.

(ii) Offloading and age of information: The authors
in [27] proposed joint traffic offloading and AoI control
for data collected by IoT devices in the smart city. They
presented a price-based mechanism using AoI to minimize
the costs of service providers. Similarly, using AoI, the
authors in [28] proposed the age of task for evaluating
task computation of mobile edge computing systems in
terms of temporal values. The authors considered a system
with a single mobile edge computing server and a single
mobile device. In [27], [28], the authors do not consider
fronthaul and midhaul links of 5G networks in their
AoI models. Also, in intelligent systems such as video
surveillance, status information can only be available after
some computation, which takes time. Thus, the time
required for data processing affects the status freshness;
the authors in [16] proposed age-driven status sampling
and processing offloading that aims to minimize AoP for
IoT.

In general, prior work has not yet addressed the problem
of offloading for autonomous vehicles in an environment
consisting of both Multi-RATs and multi-edge computing.
Also, O-RAN is a newly introduced architecture, therefore
prior work has not tackled the task offloading problem
in Multi-RATs using 5G O-RAN architecture. No prior
work has presented a joint offloading and communication
planning problem that uses AoP and leverages O-RAN
controllers. To this end, our proposed approach has several
novelties over these prior approaches, including: (i) model-
ing AoP of offloaded tasks from autonomous vehicles; (ii)
defining CS of edge clouds to minimize AoP; (iii) proposing
a new communication planning approach that enables the
autonomous vehicle to preselect RATs available in its route
for task offloading; (iv) designing an offloading approach in
O-RAN environment that considers redundant user planes
of multiple User Plane Function (UPF) and RATs at the
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Figure 1: Illustration of our system model.

Table I: Summary of key notations.

Notation Definition

R Set of edge clouds, |R| = R
V Set of autonomous vehicles, |V| = V
S Set of RATs, |S| = S
O Set of routers/switches
W Set of collaboration spaces, |W| = W
E Set of links, |E| = E
Φ Responsibility matrix
Θ Availability matrix
Z Function that computes the similarity
Kv

i Time of new status update i sampling at v ∈ V
Aav Average AoP for autonomous vehicle v
uv(t) Freshest status update at autonomous vehicle v
xs→r

v Offloading variable for autonomous vehicle v
for being executed at autonomous vehicle v

ωr,RC Capacity of wired link between EC r and RC
ωv,s Capacity of wireless link between UE v and RAT s
Tv Task of autonomous vehicle v ∈ V
τ loc

v Local computational delay of autonomous vehicle v
τoff

v Total offloading delay of autonomous vehicle v ∈ V
pr Computation capability of EC r ∈ R
pv Computation capability of each vehicle v ∈ V
Lv

i Total offloading and computation time
of status update i for autonomous vehicle v

edge to improve reliability and lower latency of autonomous
driving.

III. System Model
Fig. 1 illustrates the system model of our proposed AoP-

based offloading approach for autonomous vehicles. The
summary of our key notations in the proposed model is
available in Table I.

Autonomous vehicles: We consider a set V of autonomous
vehicles. Each vehicle has an application that generates
compute-intensive tasks, where Tv = (sdv, τ̃v, z̃v) is a
computation task of vehicle v. In Tv, sdv is the size of input
data dv in bits. We denote by τ̃v the task computation
deadline, and by z̃v the computation workload. Each
autonomous vehicle v ∈ V has an OBU with computational
capacity Pv, and it generates computation task Tv when it
is sensing environment. We consider a new status update
i of the environment at the vehicle v is sampled at
time Kv

i . The sampling time is slotted with slot index



i ∈ {1, 2, . . . , KV }.
Offloading and edge clouds: Handling compute-intensive

tasks in OBU may exhaust the computational resource
and energy of the autonomous vehicle. In such a situation,
the vehicle can offload computation tasks to edge clouds
via communication links. We assume that every vehicle
v ∈ V moves in the area covered by one or more RATs. In
our system model, 5G O-RAN uses O-RAN Radio Units
(O-RUs), while LTE uses Radio Unit (RU), evolved NodeB
Distributed Unit (eNB-CU), and evolved NodeB Control
Unit (eNB-CU). For Wi-Fi, we consider Wi-Fi hotspots
with wired interface Y2 between Wi-Fi hotspot and N3IWF
for the transport of traffic data and control data in 5G [29].
We consider 5G, LTE, and Wi-Fi as a single multi-RAT
network using ATSSS. Therefore, hereafter, unless stated
otherwise, we use the terms “RAT” to mean “RU”, or
“O-RU” or “Wi-Fi hotspot”. At least one RAT connection
needs to be activated in the autonomous vehicle to offload
data to proximity edge clouds. Let S denotes the set of
RATs. Each vehicle v is connected to a RAT s ∈ S via
a wireless channel (W. Ch). Furthermore, we consider
each RAT s ∈ S is connected to an Edge Cloud (EC)
r ∈ R via fronthaul/Y2 link of the capacity ωs

v,r. Let R
be the set of ECs, where each EC r accommodates O-
Cloud that hosts O-RAN Control Unit (O-CU), O-RAN
Distributed Unit (O-DU), eNB-DU, and eNB-CU. Using
Multi-Access Edge Computing (MEC) server(s), each EC
r ∈ R has computing resources Pr that can be allocated to
autonomous vehicles. Here, we consider MEC is collocated
with UPF at EC. Each EC r ∈ R serves multiple RATs
and vehicles. When EC r ∈ R does not have enough
resources, it can rather collaborate with nearby ECs than
send tasks to the remote RC or data center. Unless stated
otherwise, we use the terms “regional cloud” and “data
center” interchangeably. Therefore, we define a CS of ECs in
Section IV-A. The collaboration of ECs helps in maximizing
the utilization of edge resources and meeting computation
deadlines. To enable such collaboration and application-
level data exchange, we consider interface Xn [30] between
O-RAN nodes (O-CU-CPs and O-CU-UPs) and interface
X2 between eNB-CUs and O-CU-UPs.

Offloading and Regional Cloud (RC): In the worst-case
scenario, when resources are not available at any EC in the
CS around a vehicle, the tasks of vehicles can be offloaded
to the RC. Each EC r ∈ R can access the RC via a wired
backhaul of capacity ωr,RC . We denote the computation
capacity of the RC by PRC .

IV. Task Offloading in Multi-RAT Edge
Computing

When a vehicle does not have enough computation and
energy resources, its tasks can be offloaded to an EC.
However, each EC has limited resources. Therefore, each
EC needs to collaborate with other nearby ECs to process
data at the edge of the network in proximity to autonomous
vehicles. This section describes our Collaboration Space
(CS) of ECs, communication model to reach ECs, and com-
putation model. Unless stated otherwise, we use the terms

“EC” and “edge server/MEC server” interchangeably.
A. Collaboration Spaces of Edge Clouds

We assume that ECs’ network topology and locations are
known at Non-RT RIC to form CSs. We assume that the
ECs’ network topology does not change frequently. Given
the locations of ECs, we propose Affinity Propagation-
based Algorithm for CS (APACS). Affinity Propagation
(AP) is a clustering algorithm based on messages passing
between dataset elements to form clusters [31]. We choose
AP over other approaches because AP is a fast clustering
approach in terms of computation speed and does not
depend on the initialization of the number of clusters, unlike
most exiting clustering approaches such as k-means [31].
The APACS is implemented at Non-RT RIC, where the
Non-RT RIC runs Algorithm 1 when the network topology
changes. In the algorithm, we consider zr and zj to be the
locations for ECs r, j ∈ R and Z to be a function that
computes the similarity between any two locations. When
Z(r, j) > Z(r, w), zr is more similar or closer to zj than to
zw. Furthermore, we use squared distance of two locations
for zr and zw such that:

Z(r, w) = −∥zr − zw∥2. (1)

When Z(r, w) is large, we have high similarity. Furthermore,
the APACS takes as input measurement of similarity
between each pair of EC locations and exchanges messages
between these locations until the locations of Centroid
Edge Cloud (CECs) and corresponding locations of ECs
gradually emerge as CSs.

In the messages exchange between ECs, we have respon-
sibility and availability metrics. We use Φ to denote the
responsibility matrix, where Φ contains values ϕ(r, w) that
shows how befitting zw as a location of CEC w for zr, by
comparing it to other candidate locations of CECs for zr.
The responsibility ϕ(r, w) is send from location zr of EC r
to candidate location zw of CEC w as evidence of how well-
suited EC w ∈ R is to serve as the CEC for EC r ∈ R. The
ϕ(r, w) takes into account other potential CECs for the EC
r. Furthermore, we use Θ to denote the availability matrix.
The Θ has values θ(r, w) that represents how appropriate
it would be zr to take zw as its CEC, taking into account
other locations preference for zr as a CEC. The availability
θ(r, w) sent from CEC w to EC r reflects the accumulated
evidence for how appropriate it would be for EC r to choose
EC w as its CEC. The Θ considers other ECs that may
select EC w to be a CEC.

The proposed Algorithm 1 (APACS) starts by initializing
the messages ϕ and θ to zeroes. Then, APACS needs to
update ϕ and θ iteratively. The following equation updates
for responsibility ϕ :

ϕ(r, w)← Z(r, w)− max
w ̸=w′

{ θ(r, w′) + Z(r, w′)}. (2)

In (2), ϕ(r, w) uses the similarity between location zr of
EC r and location zw of CEC w as input minus the largest
of the similarities and availability between location zr

and other candidate CEC w′. Through iterations, when
some locations are effectively assigned to other CECs, their



Algorithm 1 : AP-based Algorithm for CS (APACS).
1: Input: R: A set of ECs with their coordinates, bm:

Maximum number of iterations;
2: Output: Θ: Availability matrix, Φ: Responsibility

matrix, and number of CSs;
3: Initialize iteration bi = 0, Θ← ∅, and Φ← ∅;
4: for EC r ∈ R and bi ≤ bm do
5: Select EC w;
6: Compute similarity Z(r, w) between any two loca-

tions of EC r and w;
7: Compute responsibility ϕ using (2);
8: Compute availability θ using (3) and (4);
9: Use θ and ϕ to compute criterion c(r, w);

10: Θ← θ and Φ← ϕ;
11: Find maximum c(r, w) for each EC r and w, find

CECs and associate ECs to CECs for forming CSs;
12: bi = bi + 1;
13: Return to step 4;
14: end for
15: Via Near-RT RIC, Non-RT RIC informs ECs about

their CSs.

availability θ will continue being reduced. Therefore, re-
sponsibility update enables all candidate CECs to compete
for owning ECs, where each CEC and its associated ECs
form one CS. In other words, a CEC refers to an EC that
is at the center of each CS, and the CEC is unique in each
CS. Furthermore, each EC belongs to one CS. The APACS
updates availability θ by using the following equation:

θ(r, w)← min
r ̸=w

( 0, ϕ(w, w) +
∑

r′ /∈(r,w)

max(0, ϕ(r′, w))) , (3)

θ(w, w)←
∑

r′ ̸=w

max(0, ϕ(r′, w)). (4)

In (3), we consider the availability θ(r, w) is equal to the
self-responsibility ϕ(w, w) plus the sum of the positive
responsibilities that the candidate CEC w receives from
other ECs. In (3), we consider only positive responsibilities;
thus, a good CEC is the one that has higher similarities.
Furthermore, in (4), we consider ϕ and θ can be combined
at any stage to decide the number of ECs that are CECs.
In other words, the number of CECs equals the number of
CSs, i.e., the number of clusters.

To prevent Algorithm 1 to run indefinitely, for each
location zr, we choose the value of zw that maximizes the
following criterion:

c(r, w) = ϕ(r, w) + θ(r, w). (5)

In the criterion, r is the row and w is the column of the
associated matrix of responsibility and availability. Each
EC with the highest criterion value at each row is the CEC.
Furthermore, rows that share the same CEC are in the
same CS. Algorithm 1 performs iterations until either the
CS boundaries remain unchanged or the algorithm reaches
the maximum number of iterations bm.

The APACS makes non-overlapping CSs of ECs. Since
the CEC is the center of each CS, to facilitate the commu-
nication between ECs of different CSs, we assume that the
CECs can exchange information. The information includes
location and available resources in the CS. However, to
avoid overhead due to information exchange between CSs,
one-hop distance can be applied. When there is no available
resource in its CS, an EC can redirect the task to another
EC of another CS or to the RC. Such intercluster routing is
defined in [32]. In this work, we focus on intra-cooperation
between ECs that belong to the same CS. We consider
inter-cooperation between ECs that belong to different
CSs as future work. Within a CS, ECs exchange resource
utilization information such as CPU and memory. Each
EC stores this information in the resource allocation table
defined in [33].
B. Communication Model for Autonomous Vehicles

Fig. 2 shows the communication planning model. In
the model, before the autonomous vehicle starts its road
trip, it preselects RATs available in its route for offloading
tasks when its resource exhausted. We assume each vehicle
v ∈ V moves in an area covered by RATs. To obtain RATs
information such as coordinate and coverage, we assume
that Access Network Discovery and Selection Function
(ANDSF) server [34] is available at RC to enable network
discovery and selection between 3GPP and non-3GPP
access networks. The vehicle sends a request to the ANDSF
using its home RAT denoted RAT 0 in Fig. 2. The request
includes the geographic location and destination of the
vehicle. On the other hand, the ANDSF’s feedback contains
the coordinates and coverage areas of all available RATs
along the vehicle trajectory. Then, each vehicle v calculates
the distance d̃s

v between its route and each RAT s:

d̃s
v = gs

vsinαs
v, (6)

where αs
v is the angle between the trajectory of movement

of autonomous vehicle v and the line from RAT s ∈ S.
We denote by gs

v a geographical distance between vehicle v
and RAT s. Also, each vehicle v calculates the remaining
distance dv

s to reach each area covered by RAT s:

dv
s = gs

vcosαs
v. (7)

Then, the autonomous vehicle computes the probability
χs

v that RAT s is preselected for being used to offload
computation task Tv to EC such that:

χs
v =


1, if d̃s

v = 0,
d̃s

v

γs
if 0 < d̃s

v < γs,
0, otherwise,

(8)

where γs is the area covered by RAT s. Furthermore, based
on a speed ιv of vehicle v, we define ts

v as the time required
by vehicle v ∈ V to leave each area covered by RAT s. We
can calculate ts

v as follows:

ts
v = γs

ιv
. (9)



Once the vehicle reaches an area γs, it can select RAT
s among preselected multiple RATs. When ts

v ≤ τ̃v, the
autonomous vehicle can easily offload the computation task
and get output in the area covered by RAT s. However,
when τs

v > τ̃v, the autonomous vehicle can select the next
RAT to use for offloading computation task to EC.

When RAT s is Wi-Fi, we consider the Wi-Fi channel
is shared to vehicles via a contention-based model as
described in [35]. Therefore, the instantaneous data rate
for vehicle v via Wi-Fi is given by:

ρs,w
v = φsρsξs

v(|Vs|)
|Vs|

,∀v ∈ Vs, s ∈ S, (10)

where φs is the Wi-Fi throughput efficiency factor. The
φs is used to determine overhead related to MAC protocol
layering such as header, Distributed Coordination Function
Interframe Space (DIFS), Short Interframe Space (SIFS),
and acknowledgment (ACK). |Vs| is the number of vehicles
that communicated simultaneously with Wi-Fi s, where
Vs ⊂ V. Furthermore, ρs is the maximum theoretical data
rate that Wi-Fi can handle [35]. In (10), we denote by
ξs

v(|Vs|) as decreasing function, which is a function of
the number of autonomous vehicles connected to Wi-Fi.
ξs

v(|Vs|) helps determine the impact of contention over Wi-
Fi throughout.

When RAT s is cellular, we consider orthogonal resource
allocation. We assume that each vehicle can offload its
task when there is enough spectrum resource to satisfy
its task offloading. Therefore, the spectrum efficiency for
autonomous vehicles v becomes:

ϱs
v = log2

(
1 + κv|Gs

v|2

σ2
v

)
, ∀v ∈ V, s ∈ S, (11)

where κv is the transmission power of autonomous vehicle
v and Gs

v is the channel gain between vehicle v and the
O-RU/RU s. We define σ2

v as the power of the Gaussian
noise at vehicle v. The achievable data rate of the vehicle
for offloading its computational task via O-RU/RU s is
given by:

ρs,c
v = as

vωv,sϱs
v,∀v ∈ V, s ∈ S. (12)

Each vehicle obtains a fraction as
v of bandwidth capacity

ωv,s such that
∑

v∈Vr
as

v = 1.
We consider the vehicle v can perform handover between

Wi-Fi and cellular network. Since the strength of a wireless
signal gets attenuated with distance, the vehicle needs
to select cellular or Wi-Fi based on achievable data rate
and the time required to leave the area covered by RAT.
Therefore, we define connection variables ηs,w

v for Wi-Fi
and ηs,c

v for cellular network:

ηs,w
v =

{
1, if dv

s = 0, ρs,w
v > ρs,c

v χs
v > 0, and ts

v ≤ τ̃v,

0, otherwise,
(13)

ηs,c
v =

{
1, if dv

s = 0, ρs,c
v ≥ ρs,w

v χs
v > 0, and ts

v ≤ τ̃v,

0, otherwise.
(14)
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Figure 2: Communication planning model.

Furthermore, we define xs→r
v as a decision variable that

indicates whether or not the autonomous vehicle uses RAT
s ∈ S to offload its task to EC r:

xs→r
v =


1, Tv is offloaded from vehicle v to EC r

via RAT s if ηs,w
v + ηs,c

v = 1,

0, otherwise.
(15)

Equations (8) and (15) guarantee that the vehicle has an
active RAT connection. Once vehicle v reaches an area
covered by RAT s ∈ S, it can immediately start offloading
its computation task, i.e., when its local computation
resource is not enough.

We model the network linking for RAT, edge, and
regional clouds as an undirected graph G = (O, E), where O
denotes the set of routers/switches and E is the set of links.
Furthermore, we denote by A ⊂ E the set of fronthaul/Y2
links, by B ⊂ E the set of the links between ECs, and by
C ⊂ E the set of the backhaul links, where E = A ∪ B ∪ C.
For each fronthaul/Y2 link a ∈ A, the traffic volume is
expressed as:

ρA =
∑

v∈V(a)
xs→r

v sdv, (16)

where V(a) ⊂ V is a set of vehicles that use the fron-
thaul/Y2 link a ∈ A. We assume that all offloading tasks
reach ECs via RATs using fronthaul/Y2 links. Futhermore,
for each link b ∈ B between ECs, the traffic volume is
expressed as:

ρB =
∑

v∈V(b)
(1− ys→r

v )xr
vsdv, (17)

where V(b) ⊂ V is a set of vehicles using the link b. Here,
ys→r

v is a decision variable that indicates whether or not
the task of autonomous vehicle v offloaded via RAT s is
computed at EC r.

ys→r
v =


1, if task Tv of vehicle v offloaded

via RAT s is computed at EC r,
0, otherwise.

(18)

In a CS, when ys→r
v = 1, the EC r computes the task

Tv and does not forward task Tv to another EC. However,
when EC r does not have enough resources, it can offload
the task to another EC j of the same CS, which has enough



resources. Therefore, we define yr→j
v as a decision variable

that indicates whether or not the task of vehicle v offloaded
to EC r is redirected to EC j for computation.

yr→j
v =


1, if task Tv offloaded to EC r is

redirected to EC j for computation,
0, otherwise.

(19)

In the worst-case scenario, when the resources are not
enough at ECs, the task can be offloaded to regional cloud.
Therefore, for each backhaul link c ∈ C, the traffic volume
is given by:

ρC =
∑

v∈V(c)
(1− (ys→r

v + yr→j
v ))xr

vsdv, (20)

where V(c) ⊂ V is a set of autonomous vehicles using the
backhaul link c. When a task Tv is computed in CS, i.e.,
at EC r (ys→r

v = 1) or EC j (yr→j
v = 1), the task will not

be offloaded to regional cloud.
C. Computation Model

Fig. 3 shows task offloading using the proposed commu-
nication model and CS. In this subsection, we describe all
computation scenarios presented in Fig. 3.

Scenario (a): Computing task Tv at autonomous vehicle
v ∈ V requires CPU energy Ev = sdvνz̃vP 2

v , where
ν is a hardware architecture’s constant parameter. The
computation of task Tv takes execution time τv, where τv

is given by:
τv = sdv z̃v

Pv
. (21)

However, when τv > τ̃v, or z̃v > Pv, or Ev > Ẽv vehicle v
does not have enough resources to meet the computation
deadline. Here, we consider Ẽv as available energy for
autonomous vehicle v ∈ V. Therefore, we define vehicle
status parameter αv ∈ {0, 1} for computing task Tv, where

αv =
{

0, if z̃v > Pv, or τv > τ̃v, or Ev > Ẽv,

1, otherwise.
(22)

We define the total local execution time τ loc
v of task Tv at

vehicle v to be:

τ loc
v =


τv , if αv = 1 and xs→r

v = 0,

τv + φv , if αv = 0 and xs→r
v = 0,

0, if αv = 0 and xs→r
v = 1,

(23)

where φv is the average waiting time of task Tv for being
executed at vehicle v when the resources become available.
If the task Tv is computed locally, then the computation
time of update i is Lloc

iv = τ loc
v .

Scenario (b): When a vehicle v does not have enough
computation resources and it cannot wait until the re-
sources become available, the vehicle can offload the task
to its EC r ∈ R. In considering wireless and fronthaul/Y2
links, the transmission delay for offloading task Tv is:

τs→r
v =

∑
v∈Vr

xs→r
v

(
sdv

ηs,w
v ρs,w

v + ηs,c
v ρs,c

v
+ sdv

ωs
v,r

)
,∀s ∈ S.

(24)
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The computation allocation pvr of the offloaded task
Tv from autonomous vehicle v at EC r can be defined as
follows:

pvr = Pr
z̃v∑

g∈Vr
z̃g

, ∀v ∈ Vr, r ∈ R, (25)

where
∑

g∈Vr
z̃g is the computation tasks of other au-

tonomous vehicles than v. Furthermore, at each EC r, the
total computation allocations must satisfy the following
computation constraint:∑

v∈Vr

xs→r
v pvrys→r

v ≤ Pr, ∀r ∈ R. (26)

For offloaded task Tv at EC r, the execution latency τvr =
sdv z̃v

pvr
. Therefore, the total execution time for task Tv at

EC r becomes:

τe
vr = τs→r

v + τvr, ∀v ∈ Vr, s ∈ S, r ∈ R. (27)

However, the EC r may be overloaded while still having
resources (z̃v ≤ pvr) to meet computation deadline τ̃v

of vehicle v (τe
vr ≤ τ̃v). When τ̃v is large enough, EC

r can forward task Tv to another EC j having a lower
computational load. This requires analyzing computation
load in both ECs r and j to ensure that the task forwarding
will not perturb the vehicle service. Also, to minimize
propagation delay, EC j should be in less distance than
RC.

Scenario (c): When z̃v > pvr or τe
vr > τ̃v, i.e., EC r does

not have enough resources to meet computation deadline.
The EC r checks its resource allocation table and find
EC j which is in less distance than RC and has enough
resources to compute Tv. Then, EC r offloads the task to
the EC j. The computation resource allocation pvj at EC
j can be calculated using similar approach in (25). Using
pvj , the execution latency τvj = sdv z̃v

pvj
for task Tv at EC j.

Therefore, the total execution time for a task offloaded by
autonomous vehicle v to EC j becomes:

τe
vrj = τs→r

v + τ r→j
v + τ r→j + τvj , ∀v ∈ Vr, and r, j ∈ R,

(28)
where τ r→j

v =
∑

v∈Vr
yr→j

v sdv

ωj
r

is the offloading delay
between EC r and EC j. Here, ωj

r is the link capacity
between EC r and EC j. Furthermore, we denote τ r→j =
hr→j

κr→j , ∀r, j ∈ R as the propagation delay between EC j and



EC r. We use hr→j to represent the length of physical link
between EC j and EC r and κr→j to represent propagation
speed.

Scenario (d): In the worst-case scenario, there is no
available resource in the CS. In other words, EC r does not
have enough resources, and there is no other EC j, which
is in less distance than RC and has computation resources
to handle the task Tv. Therefore, we define yr→RC

v as a
computation decision variable, where yr→RC

v is expressed
as follows:

yr→RC
v =


1, if task Tv of vehicle v is offloaded to RC by

EC r and ρB ≤ ωr,RC ,
0, otherwise.

(29)
Furthermore, we define τ r→RC

v =
∑

v∈Vr
yr→RC

v sdv

ωr,RC
as the

offloading delay between EC r and RC, where ωr,RC is the
link capacity between EC r and remote RC. Therefore, the
total execution time for task Tv offloaded by autonomous
vehicle v at RC becomes:

τe
vrRC = τs→r

v +τ r→RC
v +τ r→RC+τvRC , ∀v ∈ Vr, and r ∈ R,

(30)
where τ r→RC = hr→RC

κr→RC is the propagation delay between
EC r and RC. Here, hr→RC is the length of physical link
between EC r and RC, and κr→RC is propagation speed.
Furthermore, at RC, execution latency τvRC = sdv z̃v

PRC
, where

PRC is computation resource allocation.
V. Problem Formulation and Solution

This section discusses the problem formulation, the
proposed solution, and the application scenario of the AoP-
based offloading.
A. Problem Formulation

Considering all scenarios (a), (b), (c) and (d), the total
offloading delay τoff

v of task Tv from autonomous vehicle v
is given by:

τoff
v = ys→r

v τe
vr + yr→j

v τe
vrj + yr→RC

v τe
vrRC . (31)

When vehicle v decides to offload its computational task
to EC or RC, offloading and computation delays τoff

v are
required. In other words, when the task Tv is computed
at EC r or RC, then the computation time of update i
is Loff

iv = τoff
v . Therefore, we consider total offloading and

computation time:

Lv
i = (1− xs→r

v )Lloc
iv + xs→r

v (Loff
iv ). (32)

After computation, we consider Mv
i as the time to deliver

the processed result of update i at autonomous vehicle v.

Mv
i = Kv

i + Lv
i . (33)

In other words, Mv
i is the time vehicle v receives the

processed result of update i.
We consider the autonomous vehicle can generate a new

task after time Nv
i ≥ 0. Therefore, sampling the new status

update i + 1 is done at time kv
i+1 = Mv

i + Nv
i . At any time

t, the freshest status update i at the vehicle v becomes:

uv(t) = max{Kv
i : Mv

i ≤ t;∀i}. (34)

Therefore, at time t, let us denote av(t) as instantaneous
AoP of autonomous vehicle v, where av is given by:

av(t) = t− uv(t). (35)

Therefore, the overall AoP Av of autonomous vehicle v
becomes:

Av = lim
t→∞

1
t

∫ t

0
av(t)dt. (36)

AoP, which represents data freshness, is crucial for au-
tonomous driving. The status information of the environ-
ment impacts the future behavior of autonomous driving,
i.e., the time of sampling the new status update of the
environment. In other words, AoP captures the time elapsed
from status being generated at the vehicle to the latest
status update after computation. AoP and network delay
represent different metrics. Network delay is a packet-based
performance metric, expressing the time elapsed between
the packet generation at the source and reception at the
destination without considering computation delay. Also,
computation delay or execution delay does not include
network delay. Therefore, we choose AoP over other metrics
because it includes network delay and computation delay
that affect the time of sampling a new status update.

To compute the average AoP, as described in [16], we
can decompose integral using a series of areas in Fig. 4.
The shaded parallelogram Qv

i1 defines:

Qv
i1 = (Lv

i−1 + Nv
i−1)Lv

i , (37)

and shaded triangle Qv
i2 defines:

Qv
i2 = 1

2(Lv
i + Nv

i )2. (38)

Therefore, the average AoP Aav becomes:

Aav =
∑

i→∞ Qv
i1 + Qv

i2∑
i→∞ Lv

i + Nv
i

. (39)

At time Mv
i , we denote Ωv

i ≜ {Lv
i−1, Nv

i , Lv
i } as the

system state, where Ω is the system state space. We
consider the system state Ω to be finite, where |Ω| = KV .
Therefore, the autonomous vehicle can choose an action
𭟋v

i ≜ {xs→r
v , ys→r

v , yr→j
v , yr→RC

v } from the action space 𭟋.
The action space 𭟋 consists of offloading and computation
decisions. Therefore, we need offloading and computation
policy π. The policy π is defined as a mapping from
the system state space Ω to the action space 𭟋, where
π : Ω → 𭟋. Let us consider Qv

i = Qv
i1 + Qv

i2. When a
policy π is employed, the average AoP can be computed
as follows:

Aav(π) = lim sup
n→∞

Eπ[
∑n

i=1 Qv
i ]

Eπ[
∑n

i=1 Lv
i + Nv

i ]
. (40)
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Figure 4: Age-based task offloading.

We aim to find the optimal policy π∗ that minimizes
the average AoP as follows:

minimize
π

∑
r∈R

∑
v∈Vr

Aav(π) (41)

subject to:∑
v∈Vr

xs→r
v as

v ≤ 1, ∀s ∈ S, (41a)∑
v∈Vr

xs→r
v pvrys→r

v ≤ Pr, ∀r ∈ R. (41b)

Constraint (41a) ensures that a fraction of communication
resource allocated to each autonomous vehicle v must
not exceed available communication resources. Constraint
(41b) ensures that the computation resources allocated to
autonomous vehicles do not exceed available computation
resources.
B. Proposed Solution

The formulated problem in (41) is computationally
intractable to find the optimal policy π∗. Therefore, to
simplify the problem in (41), we formulate a surrogate
function of the original problem (41), where a surrogate
function is defined as follows:

Ãv(π) = lim sup
n→∞

1
n
Eπ[

n∑
i=1

Qv
i ]. (42)

Then, we minimize surrogate function of the original
problem as follows:

π∗ = minimize
π

∑
r∈R

∑
v∈Vr

Ãv(π)

subject to: (41a) and (41b).
(43)

To solve (43), we transform the formulated problem
in (43) to unconstrained optimization problem by using
Lagrangian method [36]. Therefore, the problem (43)
becomes:

L(π, λ, µ) =
∑
r∈R

∑
v∈Vr

Ãv(π) +
∑

v∈Vr

λv(xs→r
v as

v − 1)+∑
v∈Vr

µv(xs→r
v pvrys→r

v − Pr),

(44)
where λv is the Lagrangian multiplier associated with the
constraint in (41a), while µv is the Lagrangian multiplier

associated with the constraint in (41b). Then, to identify
λ, µ, we formulate the following Lagrange dual function:

g(λ, µ) = inf
π
L(π, λ, µ), (45)

where the solution must satisfy the following
Karush–Kuhn–Tucker (KKT) conditions:
(i) Stationarity: ∇πL(π, λ, µ) = 0;
(ii) Complementary slackness:

∑
v∈Vr

λv(xs→r
v as

v − 1) = 0
and

∑
v∈Vr

µv(xs→r
v pvrys→r

v − Pr) = 0;
(iii) Primal feasibility:

∑
v∈Vr

xs→r
v as

v ≤ 1
and

∑
v∈Vr

xs→r
v pvrys→r

v ≤ Pr;
(iv) Dual feasibility: λv ≥ 0 and µv ≥ 0.

Our goal is to find the values of µ∗ and λ∗

that give the optimal policy π∗ and satisfy the con-
straints

∑
v∈Vr

xs→r
v as

v ≤ 1 and
∑

v∈Vr
xs→r

v pvrys→r
v ≤

Pr. However, when
∑

v∈Vr
λv(xs→r

v as
v − 1) > 0 and∑

v∈Vr
µv(xs→r

v pvrys→r
v − Pr) > 0, we can end up paying

high penalties µ and λ. In other words, we pay high
penalties when resource constraints are violated. To avoid
paying such penalties, let us consider a feasible policy π̃,
µ ⪰ 0, and λ ⪰ 0 such that:∑

r∈R

∑
v∈Vr

Ãv(π̃) ≥ L(π̃, λ, µ) ≥ inf
π
L(π, λ, µ) = g(λ, µ).

(46)
Therefore, minimizing the overall feasible π̃ gives π∗ ≥
g(λ, µ). In other words, the equation (46) verifies dual
bound theorem. In dual bound theorem, if π∗ is an optimal
policy, then

g(λ, µ) ≤
∑
r∈R

∑
v∈Vr

Ãv(π∗) ≤
∑
r∈R

∑
v∈Vr

Ãv(π̃). (47)

To derive optimal λ∗ and µ∗, we can solve the following
dual problem:

maximize
λ,µ

g(λ, µ) (48)

subject to:
µ, λ ⪰ 0, (48a)
(µ, λ) ∈ {µ, λ|g(λ, µ) > −∞}, (48b)

where the dual problem (48) is the lower-bound of the
primary problem (43). In (48), we exclude −∞ to ensure
that the problem (48) is lower bound of (43) and feasible.
Therefore, if π∗ is an optimal solution of (43) and λ∗ and
µ∗ are the solution of (48), then

g(λ∗, µ∗) ≤
∑
r∈R

∑
v∈Vr

Ãv(π∗). (49)

To minimize AoP by applying dual decomposition, we
propose an age of processing-aware offloading algorithm
(Algorithm 2). As a precondition of Algorithm 2, we assume
each EC knows its CS via the Near-RT RIC (Algorithm
1).

In (44), we use the penalty Dual Decomposition (DD)
method described [37] by integrating Lagrangian multi-
pliers µv and λv in the objective function as penalties.
According to the convergence analysis of DD provided in
[37], the convergence of Algorithm 2 is estimated as follows.



Algorithm 2 : AoP-Based Offloading Algorithm.
1: Preconditions: Each EC knows its CS;
2: Input: T : tasks, P : computation resources, B: wireless

bandwidth, ωs
v,r: fronthaul/Y2 capacity, Γ link capacity

between ECs, and ωr,RC : backhaul capacity;
3: Output: Average AoP Ãv(π∗), Lagrangian multiplier

multipliers µ∗ and λ∗, Offloading variable x∗, compu-
tation variable y∗, communication resources allocation
a, and computation resources allocation p;

4: Each autonomous vehicle v ∈ V chooses xs→r
v and

computes αv. When xs→r
v = 0, autonomous vehicle

v ∈ V computes its task Tv locally, calculates τ loc
v , and

sets τ loc
v = Lloc

iv ;
5: When xs→r

v = 1, autonomous vehicle v ∈ V offloads its
task Tv to EC r ∈ R;

6: For each task Tv reached at any EC r ∈ R in CS, EC
checks available resources in resource allocation table,
calculates τoff

v , and re = xs→r
v as

v. Then, set τoff
v = Loff

iv

;
7: Find the optimal policy π∗, Ãv(π∗), µ, λ, x, and y

by solving (44, 48);
8: x← xs→r

v and a← re, p← pvr ;
9: repeat

10: Decrease slightly µ, λ;
11: Return to step 7;
12: until termination criterion is met (50)
13: Then, consider x∗ = x, y∗ = y, λ∗ = λ , and µ∗ = µ

as solution.

Let us consider {πn, λn, µn} as the sequences generated
in Algorithm 2. Here, λn is the sequences generated for
the Lagrangian multiplier associated with (41a), and µn

is the sequences generated for the Lagrangian multiplier
associated with (41b). Furthermore, let ϵ be a small positive
number, we can formulate the termination criterion for
Algorithm 2 as follows:

∥en∥∞ ≤ ϵ,∀n (50)

where en is given by:

en = projπ{πn −∇πL(πn, λn, µn)} − πn. (51)

Let π∗ denote the limit point and minimum point of
the sequence {πn} when n → ∞. Based on dual bound
theorem (47), where π∗ ≥ g(λ, µ) and π∗ satisfies KKT
stationarity condition for ∇πL(πn, λn, µn) = 0. Therefore,
for ∇πL(πn, λn, µn) = 0, ∥en∥∞ goes to zero and this
satisfies termination criterion in (50) and takes sublinear
convergence O (log(1/ϵ)). In other words, at stationary
points π∗ when n→∞, {πn} cannot find a better mini-
mum point than π∗. The proof of sublinear convergence
of DD is discussed in [38].

Remark 1 (The computational complexity of the
proposed approach is O(n2)). In Algorithm 1, we apply
AP. AP has O(r2n) computational complexity [39], where
r is the number of data points and n is the number of
iterations. In Algorithm 1, the number of data points is
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Figure 5: LiDAR-based SLAM system in offloading.

R, and the number of iterations is bm. Furthermore, in
Algorithm 2, a task offloaded by vehicle v, EC checks the
resource allocation table and allocates resources to the
vehicle or forwards the task to another EC. Since we have
R ECs, we assume that checking the resource allocation
table (line 6) takes n iteration. Therefore, checking the
resource allocation table has O(n) computational complexity.
Furthermore, Algorithm 2 has a loop (lines 7 − 12) for
applying dual decomposition. Considering vehicles V , where
at each iteration, the Algorithm 2 has to deal with λ and
µ. Consequently, applying dual decomposition has O(n2)
computational complexity. Therefore, the Algorithm 2 has
O(n2+n) computational complexity. From both computation
complexities of Algorithm 1 and Algorithm 2, we conclude
that the computational complexity of our proposed approach
is O(n2).

In terms of the applicability of our approach, as assumed
in [16], we consider that computation results are smaller
than the input data and downlink bandwidth to be larger
than uplink. Also, a dedicated channel can be utilized
to download computational results. Therefore, the time
of transmitting the result to the autonomous vehicle
is negligible. Furthermore, the proposed approach has
polynomial-time computation complexity O(n2), where its
execution time depends on the number of edge clouds and
vehicles. Since many practical problems have polynomial-
time solutions [40], the proposed approach can be easily
implemented in the driving environment. An example of
application scenario of our approach is described in the
below Section V-C.
C. Application Scenario of Age-Based Offloading

There are many application scenarios of task offloading
for autonomous vehicles. As an illustrative example, let us
consider Simultaneous Localization and Mapping (SLAM)
[41]. We consider SLAM as a computational problem
where an autonomous vehicle builds a map of its current
environment. Then, the autonomous vehicle uses the map
to navigate the environment. In other words, using sensed
data, an autonomous vehicle uses SLAM to generate
localized maps. In the implementation, SLAM can use
laser sensors. One of the well-known laser sensors is Light
Detection and Ranging (LiDAR), where LiDAR uses pulsed
laser waves to map the distance to surrounding objects.

As shown in Fig. 5, the LiDAR-based SLAM system has



four modules described in [42] and summarized as follows:
• It uses cameras attached to the autonomous vehicle

to estimates the egomotion of the autonomous vehicle.
Estimating egomotion works in parallel with the
tracking, where image features are extracted and
tracked. Then, motion Bundle-Adjustment (BA) gives
pose in the local frame. Motion BA defines three
dimensional coordinates describing the scene geometry
relative to motion.

• Tracking: Gets rasterized images and extracts fea-
tures from these images using Oriented FAST and
Rotated BRIEF (ORB). Then, The tracking thread
performs features matching and removes outliers. The
matched feature points get projected back to LiDAR
coordinates. Based on the motion transformation, the
tracking thread calculates the pose of LiDAR. Then,
the tracking thread does a feature consistency checking.
The tracking thread can also decide to add a new
keyframe.

• Mapping: Once new keyframes are added, the map-
ping thread registers new keyframes to the keyframe
database. Then, simultaneously, the mapping thread
builds and saves a local map using pose information.

• Loop Closure: The loop closure thread detects the loop
and corrects the accumulated error in the estimated
trajectory over time. Loop closure thread searches for
the nearest keyframes and performs feature matching
to detect loop closure. Once loop closure is detected,
the loop closure thread builds a pose graph with all
keyframes as nodes. Then, the loop closure thread
adds loop closure constraint to the pose graph and
optimizes trajectory.

Visual Odometry, Visual Tracking, and Mapping could
be executed locally in the autonomous vehicle because
they have hard real-time computations. Whereas the loop
closure has soft real-time computation [43]. Also, the loop
closing thread has a longer execution time and can lead
to fast battery power dissipation in vehicle. Therefore, to
minimize AoP, the loop closure thread can be offloaded to
the ECs for energy-saving and leveraging computational
resources of the edge. We assume that the ECs and RC are
connected to the power grid and have more computation
resources than the autonomous vehicle.

VI. Performance Evaluation
This section presents the performance evaluation of the

proposed age of processing-based offloading approach for
autonomous vehicles.
A. Simulation Setup

To form CSs of ECs, we use a distributed computing
dataset from the Swinburne University of Technology [44]
available at Kaggle [45]. In the spatial coverage of the
dataset, we use Melbourne’s central business district area.
After data preprocessing, in the coverage area, we use 125
edge servers attached to the base stations. We consider a
single RC that resides outside the spatial coverage of the
central business district area. We randomly select 24 radio

Figure 6: Colloboration space using k-means.

Figure 7: Colloboration space using APACS.

base stations and consider them as RATs. Among these 24
RATs, we use 6 as Wi-Fi hotspots, 5 as RUs, and 13 as
O-RUs. We generate the autonomous vehicles randomly in
a range from V = 5 to V = 300. Each autonomous vehicle
samples the new status update i and generates one task
at each time slot. For the task Tv of vehicle, the size of
the input data sdv

is within a range of 40 to 200 MB. We
randomly generate the task computation deadline of each
vehicle v within a range of τ̃v = 0.02 second to τ̃v = 1
second. The computation workload z̃v of each vehicle v
is in a range of z̃v = 250 to z̃v = 9990 cycles per second.
Each autonomous vehicle has a computation resource in
the range from Pv = 2.0 GHz to Pv = 3.0 GHz. Since the
dataset does not have computation tasks or resources, we
randomly generate the computation tasks and resources.
The computation resources of each EC are in the range
from Pr = 3.0 GHz to Pr = 3.5 GHz, while at RC, the
computation resources are in the range 3.0 GHz to 4.5
GHz.

For the communication resources, we set the path loss
factor to 4, and the transmission power κv = 27.0 dBm.
The cellular channel bandwidth is in the range from ωv,s =
25 MHz to ωv,s = 32 MHz [19]. The Wi-Fi bandwidth is
160 MHz (802.11ax) with a maximum theoretical data rate
of ρs = 3.5 Gbps. We consider fronthaul/Y2 bandwidth to
be in range ωr,s,t = 2000 to ωr,s,t = 2500 Mbps. We set
the symmetric bandwidth between each pair of ECs in the
range from ωj

r = 3000 to ωj
r = 3500 Mbps. Furthermore,

the symmetric bandwidth between each EC and RC is
selected in the range from ωr,RC = 3000 to ωr,RC = 4500
Mbps.



Figure 8: Nv
i for sampling new status update.

Figure 9: Computation resource utilization.

We use Python as a programming language [46] for nu-
merical analysis. For driving route, distance, and duration,
we use the OpenStreetMap routing engine available in
[47] and geographic locations of the RATs available in the
dataset. Each autonomous vehicle v navigates in the area
of 24 RATs, where speed ιv varies in the range of 4.35 to
8.63 meter per second. For the optimization approach, we
use CVXPY [48].
B. Simulation Results

In making CSs of ECs, we compare our APACS with
k-means. We chose k-means [49] as a baseline over other
clustering approaches because APACS and k-means use
two different clustering techniques. The k-means uses a
fixed number of clusters, while APACS does not require
specifying the number of the clusters, i.e., the number of
CSs. APACS takes measures of similarity between pairs
of ECs as input, exchanges messages between ECs, and
gradually emerges ECs into CSs. The simulation results in
Fig. 6 show 6 CSs as an optimal number of CSs using the
Elbow methods and k-means. However, when we use 6 CSs,
some CSs have many ECs (more than 20 ECs) and this
increases the communication delay for exchanging tasks
among ECs of the same CS. As shown in 7, to overcome
this challenge, we use our APACS. The APACS puts edge
ECs in 9 CSs, where each CS has around 13 ECs. Since
each vehicle v is connected to at least one RAT s, RAT s
can be connected to EC of any collaboration space among
9 CSs. We remind that Non-RT RIC at RC runs APACS to
make CSs. Then, Non-RT RIC informs each EC about its
CS via Near-RT RIC. Since ECs’ network topology does

Figure 10: Total delay before optimization.

Figure 11: AoP before optimization.

not change frequently, we also assume that CSs do not
change frequently. This motivates us to use two algorithms:
Algorithm 1 (APACS), which runs at Non-RT RIC for the
formation of CSs; and Algorithm 2 (AoP-Based Offloading
Algorithm), which runs in both EC and vehicle for AoP-
based offloading. Furthermore, ECs exchange resource
utilization information and tasks to help each other in
computing tasks as close as possible to autonomous vehicles
for minimizing AoP. In other words, Algorithm 2 deals
with the topology that frequently changes because of the
vehicle’s connection in motion and high mobility.

We consider that the vehicle samples new status update
i + 1 after time Nv

i ≥ 0. In Fig. 8, we use zero wait for
Nv

i = 0, where the vehicle continuously keeps sampling new
status updates. We also consider random, uniform, and
betavariate Nv

i for sampling new status update i+1, where
Nv

i is in the range between 0 and 1 second. Furthermore,
Fig. 9 shows computation resources utilization. Most of the
computations are performed in CS, i.e., at ECs because the
vehicles have limited resources. There is a collaboration
of ECs of the same CS to avoid sending more tasks to a
remote RC at a far transmission distance. Fig. 10 shows
the comparison of delays, where local computation in
the autonomous vehicle meets the computation deadline
because local computation does not involve offloading time.
However, offloading tasks to the edge and regional clouds
may violate the computation deadline due to transmission
and propagation delays. In considering Nv

i , we compute
AoP. The results in Fig. 11 show that the Nv

i = 0 has the
best performance compared to other values of Nv

i . When
the vehicle keeps Nv

i very close to zero for generating
new update i + 1, each generated input data is small,



Figure 12: Total delay versus AoP.

Figure 13: Computation policy π∗.

Figure 14: AoP with π∗ and different Nv
i .

Figure 15: Our approach vs ASSPO.

and offloading input data takes less time. In random and
uniform Nv

i , when Nv
i is very close to 1 second, input data

becomes large, and offloading input data takes more time.
In such a case, the AoP becomes large, and the computation
cannot meet the deadline because 1 second is quite large
for autonomous driving.

After applying our optimization approach, in Fig 12,
we compare the total delay (offloading and computation
delay) and AoP with zero Nv

i . Also, in this figure, we
show the offloading delay. The gap between offloading
delay and total delay/AoP is the computation delay. The
optimization approach helps to ensure offloading and
computation meet the deadline. The simulation results
show that using AoP achieves better performance than
minimizing the total delay. In the total delay, we solve (41)
by considering (32) as an objective function. Furthermore,
we compute the optimal policy π∗ that minimizes the
AoP and show the result in Fig. 13. In other words,
this figure shows the convergence of (43). Considering
policy π∗ that prevents the violation of computation and
communication constraints, Fig. 14 shows average AoP
with π∗ and different Nv

i .
In our approach, the vehicle senses the environment.

Then, it uses the status update to make safe and reliable
autonomous driving decisions without relying on external
operators to validate the status update. In other words,
a vehicle plays the roles of operator and sensing node
simultaneously. This consideration has not been tackled so
far in the existing AoP or AoI-based offloading approaches.
However, we compared our approach with the AoP model
presented in [16] (denoted ASSPO in Fig 15). In the ASSPO
model, we consider an operator at the RC that controls the
sensed data of edge device (i.e., a vehicle in our approach).
The operator sends an acknowledgment for each received
status update. Then, ASSPO calculates AoP based on
the reception of acknowledgment. The simulation results
in Fig. 15 show that our approach achieves a lower AoP
than that of ASSPO because the vehicle does not have to
wait for the acknowledgment before sampling a new status
update. In other words, ASSPO always has to wait for the
acknowledgment before sampling a new status update.

VII. Conclusion
To meet the computation deadline of autonomous vehicle,

we propose an offloading approach that supports OBU and
enables the autonomous vehicle to offload computation
tasks to the edge clouds. In the proposed offloading
approach, the CS of edge clouds guarantees that vehicles’
tasks are computed as closely as possible to the vehicles.
Since the network status changes over time, to achieve less
variation in delay for offloading tasks, our new communi-
cation planning approach enables the vehicle to preselect
appropriate RATs available in its route to use for offloading
tasks. The simulation results clearly show that our proposed
approach satisfies computation deadlines by minimizing
AoP. This work focuses on AoP and delay as metrics. In
future work, we plan to enhance our age-based offloading
for autonomous vehicles in a dynamic network environment
and consider more metrics such as reliability, throughput,
packet loss, and retransmission.
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