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Automated Dilated Spatio-Temporal Synchronous
Graph Modeling for Traffic Prediction

Guangyin Jin*, Fuxian Li*, Jinlei Zhang, Mudan Wang and Jincai Huang

Abstract—Accurate traffic prediction is a challenging task in
intelligent transportation systems because of the complex spatio-
temporal dependencies in transportation networks. Many existing
works utilize sophisticated temporal modeling approaches to
incorporate with graph convolution networks (GCNs) for cap-
turing short-term and long-term spatio-temporal dependencies.
However, these separated modules with complicated designs
could restrict effectiveness and efficiency of spatio-temporal
representation learning. Furthermore, most previous works adopt
the fixed graph construction methods to characterize the global
spatio-temporal relations, which limits the learning capability
of the model for different time periods and even different
data scenarios. To overcome these limitations, we propose an
automated dilated spatio-temporal synchronous graph network,
named Auto-DSTSGN for traffic prediction. Specifically, we
design an automated dilated spatio-temporal synchronous graph
(Auto-DSTSG) module to capture the short-term and long-
term spatio-temporal correlations by stacking deeper layers with
dilation factors in an increasing order. Further, we propose a
graph structure search approach to automatically construct the
spatio-temporal synchronous graph that can adapt to different
data scenarios. Extensive experiments on four real-world datasets
demonstrate that our model can achieve about 10% improve-
ments compared with the state-of-art methods. Source codes are
available at https://github.com/jinguangyin/Auto-DSTSGN.

Index Terms—Traffic prediction, spatio-temporal modeling,
graph neural networks, automated machine learning

I. INTRODUCTION

TRAFFIC prediction plays a basic but crucial role in
intelligent transportation systems, which has been widely

deployed in some online services such as navigation and ride-
hailing. Effective spatio-temporal modeling is key to obtain
more precise predictions. In recent years, most works uti-
lize spatial modules including convolutional neural networks
(CNNs) and graph neural networks (GNNs), and temporal
modules such as recurrent neural networks (RNNs), tempo-
ral convolution networks (TCNs) for spatio-temporal model-
ing [1]–[19], but the complex correlations in spatio-temporal
scale are still difficult to learn.
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Fig. 1: Example of spatial and temporal graph construction
and spatio-temporal dependencies in a network. The blue
dotted arrows, green dotted arrows and red dotted arrows
respectively represents the cross-time self-connection, cross-
time geo-spatial relations and cross-time pattern similarities.

First, both geo-spatial relations and pattern similarities exist
in traffic network at the same time. As shown in Figure 1(a),
We can respectively construct the spatial graph and temporal
graph to characterize the proximity (e.g., tourist district and
business district) and similar patterns (e.g., two different tourist
districts) between different nodes. Second, the two different
dependencies not only exist in the same time interval but also
have influences across different time steps. The correlations
across different time steps can be short-term (e.g., time step
t1 to t2) or long-term (e.g., time step t1 to t12), as shown in
Figure 1(b). Although many graph-based deep learning models
have been demonstrated effective in traffic prediction, there are
still at least two limitations.

(a) Capturing complex long-short term spatio-temporal
dependencies. Most works employ GNNs and some temporal
learning components to respectively capture the spatial and
temporal correlations [20]. For temporal modeling, RNN is
a classical method but suffers from gradient vanishing or
explosion for learning long-range sequences [21]. Some su-
perior variants such as LSTM [22] and GRU [23] alleviate
the gradient problem to some extent, but still suffer from
low computational efficiency due to the recurrent structures.
Self-attention mechanism such as Transformer [3], [24] is
designed to capture long-term dependencies but it is still
time-consuming during training and inference phase. TCN
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considers both performance and efficiency but it is hard to
capture long-term dependencies by fixed kernel sizes [2]. To
address this problem, Graph WaveNet [6] integrates GCN
and dilated TCN to capture long-short term dynamics by
stacking layers with the dilation factors in an increasing order.
However, the framework with separate modules is still hard
to capture more complex dependencies from spatio-temporal
scale, as shown in Figure 1(b). To enhance the learning
capability for spatio-temporal dependencies, STSGCN [25]
and STFGNN [26] construct the spatio-temporal synchronous
graphs (STSGs). However, the fixed receptive field of them
limits their capability for learning both short-term and long-
term spatio-temporal dependencies.

(b) Flexible spatio-temporal graph construction. In most
previous works, spatio-temporal graph is artificially designed
and fixed for different time periods [2], [5], [25]–[29]. Mean-
while, the method of graph construction cannot be adjusted
even on different datasets. Hence, this manner can hardly
characterize diverse spatio-temporal relations for different time
periods and different datasets. The learnable mask [25], [26]
and adaptive graph [6], [14], [30]–[32] are introduced to
overcome the limitation of fixed spatio-temporal graph but
they still have many disadvantages. On one hand, the modeling
of them is global, thus they fail to characterize spatio-temporal
relations for different time periods. On the other hand, they
cannot be associated with the characteristics of the data itself,
hence they have weak interpretability.

To address the above problems, we propose a novel frame-
work for traffic prediction, called Automated Dilated Spatio-
Temporal Synchronous Graph Network (Auto-DSTSGN). To
be specific, we design the dilated spatio-temporal synchronous
graph framework to flexibly capture the short-term and long-
term spatio-temporal complex dependencies. Further, a graph
structure search operation is proposed to construct the flexible
and diverse STSGs automatically according to different data
input in different time periods. Our main contributions in this
paper are summarized as follows:
• We design a dilated spatio-temporal synchronous graph

framework to capture spatio-temporal correlations effi-
ciently, whose receptive field can become larger by stack-
ing deeper layers with the dilation factors in an increasing
order. This framework can capture both short-term and
long-term dependencies with relatively low computation
burden and GPU occupancy.

• We propose the graph structure search operation based
on DARTS framework. As far as we know, it is the first
attempt to search adjacency matrices rather than neural
architectures by auto machine learning methods.

• We conduct extensive experiments on four public traffic
datasets. The experimental results demonstrates that our
model can obtain at least 4.9%∼10.3% improvements
compared with the state-of-art baselines.

II. RELATED WORK

A. Traffic Prediction

In recent years, spatio-temporal graph modeling has become
a mainstream method for traffic prediction. Most of these

works combine spatial graph convolution networks (GCNs)
with some temporal encoder to capture the complex spatio-
temporal dependencies. STGCN [2] first integrate TCNs and
GCNs for spatio-temporal modeling. Based on this, AST-
GCN [8] adopts attention mechanism to enhance the rep-
resentation learning capability of GCNs and TCNs, Graph
WaveNet [6] involves the adaptive graph to incorporate with
dilated temporal convolution networks. RNN is a widely used
model for sequence leaning, whose variant gated recurrent unit
(GRU) is utilized in DCRNN [5] and T-GCN [33] to capture
temporal correlations of hidden representations from GCNs. In
addition, self-attention mechanism is powerful tool not only
for spatial dynamic learning, but also for capturing tempo-
ral dependencies [24]. Both STGNN [3] and GMAN [34]
adopt self-attention mechanism in spatial GCNs and temporal
dependencies learning. In some most recent works, some
novel frameworks are introduced in this field. STSGCN [25]
first proposes the framework of spatio-temporal synchronous
modeling. Based on this, STFGNN [26] presents an informa-
tive fusion graph and parallel TCNs for further improving
spatio-temporal dependencies learning. AutoSTG [35] first
combines neural architecture search approach with spatio-
temporal graph framework to improve the adaptability for
different data. However, these existing works are not only
difficult to flexibly capture the long-short term complex spatio-
temporal dependencies, but also hard to characterize the
spatio-temporal relations in different periods. Different from
them, our model can balance short-term and long-term spatio-
temporal correlations by dilation mechanism, and the graph
search operation in our model can construct diverse spatio-
temporal relations automatically for different datasets.

B. Automated Machine Learning

Automated Machine Learning (AutoML) aims to ob-
tain appropriate features or models for various downstream
tasks [36]. This field can be roughly divided into two main cat-
egories: automated feature engineering and automated model
design, while automated feature engineering aims to synthesize
or select informative features for model training [37]–[39].
Automated model design aims to select appropriate models
or construct reasonable model architecture. Neural architec-
ture search (NAS) is one of the most important direction
in automated model design, which is widely used in deep
learning. There are three mainstream types of methods in NAS,
reinforcement learning-based [40]–[42], evolutionary learning-
based [43]–[45] and gradient-based [46]–[48] respectively.
Among these three types, gradient-based methods are rela-
tively more efficient. Since efficiency is important in traffic
prediction, we adopt gradient-based framework DARTS [46]
in this paper. Different from these previous works, we employ
DARTS to search graph structure rather than neural architec-
ture in this paper.

III. PRELIMINARY

A. Problem Definition

Given the traffic sensor set with N nodes V (|V | = N),
the sensor network can be defined as a graph G = (V,E,A).
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E denotes the set of edges, whose relations between different
nodes is characterize by the adjacency matrix A. The graph
signal at time step t contains d-dimensional original traffic
features (e.g., the speed, volume), which is defined as X(t)

G ∈
RN×d. The aim of traffic prediction task in sensor network
is to learn a non-linear function f(·) from historical T -step
graph signals for forecasting next T

′
-step graph signals. The

mathematical form is defined as follows:

[X
(t−T+1)
G , · · · ,Xt

G ]
f(·)−−→ [Xt+1

G , · · · ,Xt+T
′

G ]. (1)

Fig. 2: Spatio-temporal synchronous graph construction in
previous works. (a) is the adjacency matrix in STSGCN and
(b) is the adjacency matrix in STFGNN. SGti and TGti

respectively denote the spatial graph and temporal graph at
time step i. TCti→tj describes the self-connectivity of nodes
at the time step i and j, while TGti→tj denotes the temporal-
pattern similarities among nodes at the time step i and j.

B. Meta Graph Construction
In this paper, the graph that characterizes the spatio-

temporal relations in one time step is called as the meta graph,
which is the basic unit of STSGs. To take both geographical
proximity and pattern similarity into account, we introduce two
types of meta graph: spatial graph ASG ∈ RN×N and temporal
graph ATG ∈ RN×N . The adjacency matrix of spatial graph
can be formulated as:

AijSG =

{
1, if vi connects to vj

0, otherwise
, (2)

Dynamic Time Warping (DTW) algorithm is adopted to
calculate the similarity of two time series [49], which can
characterize the pattern similarity between different nodes.
For example, given two time series X = (x1, x2, · · · , xm)
and Y = (y1, y2, · · · , yn), DTW is a dynamic programming
algorithm defined as:

D(i, j) = |xi−yj |+min (D(i− 1, j), D(i, j − 1), D(i− 1, j − 1)) ,
(3)

where D(i, j) denotes the shortest distance between sub-
sequence Xs = (x1, x2, · · · , xi) and Ys = (y1, y2, · · · , yj).
As a result, we can obtain DTW (X,Y ) = D(m,n) as the fi-
nal distance between X and Y . This method not only does not
need to limit the length of the input sequences, but also better
reveals the similarity of two time series compared with the
Euclidean distance. Thus, we can define the adjacency matrix
of temporal graph through the DTW distance as following:

AijTG =

{
1, DTW (Xi, Xj) < ε

0, otherwise
, (4)

where Xi and Xj are speed data series attached to node i and
node j respectively. ε is a threshold to control the sparsity of
ATG, the setting of which is the same as that in [26].

C. Spatio-Temporal Synchronous Graph Modeling
Spatio-temporal synchronous graph (STSG) is a special ar-

chitecture to establish the unified spatio-temporal correlations
by graph structures, which is first proposed in [25]. Given a
spatial graph with N nodes, the adjacency matrix of STSG
in [25] is designed as a 3N × 3N expanded matrix, as shown
in Fig. 2(a). In [26], the STSG is extended to 4N × 4N
and improved by involving more informative graphs such as
temporal graph, which is shown in Fig. 2(b). Although this
modeling approach can characterize more complex spatio-
temporal relations, the larger expanded STSG could bring the
problem of high computational overhead.

IV. METHODOLOGY

The overview of our model is illustrated in Figure 3. To
enhance the capability of representation learning, we employ
a fully connected layer at the top of our model to transform
the input graph signal into high-dimensional space. Then we
design multiple stacked layers for extracting spatio-temporal
structural information. At each layer, we design Automated Di-
lated Spatio-Temporal Synchronous Graph Convolution (Auto-
DSTSG) Module with multiple parallel blocks for modeling
complex spatio-temporal dependencies. To be specific, Auto-
DSTSG Module in each layer can expand receptive field to
capture both short-term and long-term spatio-temporal com-
plex dependencies by the increased dilation factors, which
addresses the first limitation in Sec. I. In each parallel Auto-
DSTSG block, we also propose the Graph Structure Search
(GSS) Operation to automatically construct adjacency matrix
of spatio-temporal synchronous graph (STSG), which can
characterize the flexible and diverse spatio-temporal relations
in different time periods. This deals with the second limitation
in Sec. I. Then the graph convolution layers are adopted to cap-
ture the spatio-temporal correlations based on the constructed
STSGs. There are also many supporting operators in each
block: cropping, gated linear units (GLUs) and max pooling.
The cropping operation is to ensure dimensional consistency
with the output. The gated linear units are used to increase the
nonlinearity of graph convolutional features. And max pooling
is to preserve the most distinctive features. Their details are
shown in the subsection IV-A. In addition, we also design
Dilated Temporal Convolution Module to enhance the global
temporal correlations, whose output is aggregated with the
output from Auto-DSTSG Module in each layer. We further
adopt the residual connection and skip connection in each layer
of Auto-DSTSGN. The hidden information of each layer flows
to the next layer after passing through residual connections. On
the other hand, the hidden information of each layer is output
through skip connections. At the top of the framework, the
outputs from the skip connections of each layer are summed
up as the input to the MLP to obtain the predictions.

In the following subsections, we introduce Automated Di-
lated Spatio-Temporal Synchronous Graph Convolution Mod-
ule, Graph Structure Search Operation, Dilated Temporal
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Fig. 3: Detailed framework of Auto-DSTSGN. (a) is the main architecture of Auto-DSTSGN. The Automated Dilated Spatio-
Temporal Synchronous Graph Convolution (Auto-DSTSG) Module and the Dilated Temporal Convolution (DTC) Module filter
the input of each layer in parallel to obtain comprehensive spatio-temporal modeling. (b) is a unified framework of dilated
convolution with kernel size 2. With a dilation factor d, the input data is picked every d steps, which is marked by yellow.
The receptive field becomes larger with dilation factor increasing. (c) is the detailed architecture of Auto-DSTSG blocks.
In each block, the Graph Structure Search (GSS) operation is an auto machine learning-based operator to construct diverse
Spatio-temporal Synchronous Graph (STSGs) according to different input data.

Convolution Module and some other components in details. In
addition, we also show a brief overview of the optimization
algorithm of graph structure search. To facilitate understand-
ing of the following expressions, we list the definition of
some important notations and operators throughout the overall
methodology in Table I.

TABLE I: The definition of some important notations and
operators in our methodology.

Symbols Definition
FG(·) Graph structure search operation
AST Final adjacency matrices of STSGs
MA Mixed adjacency matrices of STSGs
M1 Mixed main-diagonal matrices of STSGs
M2 Mixed sub-diagonal matrices of STSGs
C(·) Cropping operation for STSGs

A. Automated Dilated Spatio-Temporal Synchronous Graph
Convolution Module

Recall that a normal spatial GCN layer [50] has the form:

Z = σ(Â ·X ·Θ), (5)

where X ∈ RN×D and Z ∈ RN×D′
respectively denote the

input and output node embedding of the GCN layer. Θ ∈
RD×D

′
denotes the shared weight for nodes’ feature mapping

and σ(·) denote the activation function. Â ∈ RN×N denotes
the normalized adjacency matrix which represents the message
passing between one-hop neighbors.

To capture the complex spatio-temporal correlations, the
normal spatial GCN can be extended to the spatio-temporal

scale. A special GCN-based framework called spatio-temporal
synchronous graph convolution network is proposed [25], but
there are two main limitations of this modeling approach.
The first one is that the fixed spatio-temporal receptive field
limits the learning capability for long-term dependencies. To
capture the longer-term spatio-temporal dependencies by this
framework, the receptive field should become larger. Whenever
the receptive field is expanded by one unit, the calculation
amount of matrix multiplication will be expanded exponen-
tially. The second limitation is that the adjacency matrix of
STSG is shared for each spatio-temporal synchronous graph
convolution module, which can not reflect the diverse spatio-
temporal correlations in different periods. In addition, the
deterministic adjacency matrix designed manually is hard to
characterize the complex relations between different spatio-
temporal nodes for different datasets.

To overcome these problems, we design the Auto-DSTSG
module with multiple parallel blocks. The form of the Auto-
DSTSG block is defined as:

Z = σ(C(FG(X(t, k, d)) ·Θ)), (6)
X(t, k, d) = [x(t− d× (k − 1)), . . . ,x(t− d),x(t)], (7)

where X(t, k, d) ∈ RkN×D and Z ∈ RN×D′
respectively de-

note the input and output representation. k denotes the kernel
size and d denotes the dilation factor to control the skipping
distance in the sequence input. [·] denotes the concentration
operation. Compared with the normal GCN, the receptive
field has been expended to d × k times when the range of
spatio-temporal synchronous graph covers k time steps. Here
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FG(·) represents the graph structure search operation, whose
output is a mixed adjacency matrix MA ∈ RkN×kN during
searching phase. This operation can adjust the structure of
STSGs according to different data, which can characterize
complex spatio-temporal relations in different periods and even
different datasets. C(·) denotes cropping operation to convert
the range of data from kN to N . The common method is to
select the graph data of the middle or last time step as the
final output, which is described in [3]. When FG(·) is a fixed
adjacency matrix with k = 1, d = 1 and C(·) is an identity
mapping, eq (6) is equivalent to eq (5).

1) Dilated Spatio-temporal Synchronous Graph Convolu-
tion Framework: The framework of stacked dilated temporal
convolution was first proposed in [51]. To be specific, the
long-term correlations can be captured effectively by stacking
deeper layers with dilation factors in an increasing order.
Inspired by this, we expand the framework to the case of
spatio-temporal synchronous graph convolution. In this frame-
work, since even small kernel size can be competent for
long-term dependencies learning, we do not need large size
STSGs to cover long-range spatio-temporal correlations. The
computational burden and memory occupancy can also be
reduced greatly by small kernel sizes. Thus, the kernel size k is
fixed as 2 in our model. Suppose the input length of our model
is 12 time steps, we can design a four-layer framework with
a sequence of dilation factors [1, 2, 4, 4] to cover the whole
receptive field of the 12 time steps, as shown in Figure 3(b).
In this way, the short-term spatio-temporal correlations can be
captured in shallower layers while the long-term dynamics can
be extracted in deeper layers. Both short-term and long-term
spatio-temporal dependencies can be taken into account in this
framework.

2) Graph Structure Search: For each Auto-DSTSG block,
the most important part is graph structure search operation
FG(·), which can flexibly construct the adjacency matrix
of spatio-temporal synchronous graph (STSG). According
to [25], [26], there are three constraints to construct STSG: a)
the meta graph on the main diagonal in STSG must be spatial
graph (SG) or temporal graph (TG). b) the matrix on the sub
diagonal in STSG must not be the zero matrix. c) the complete
adjacency matrix of STSG is assumed to be symmetric.

The meta graph on the main diagonal in STSG can deter-
mine the different dependencies in different time steps while
the meta graph on the sub diagonal control the correlations
between different time steps. When the size of STSG is
fixed as 2N × 2N , there are four possible options on the
main diagonal, they are respectively [TG, TG], [TG, SG],
[SG, TG], [SG, SG]. There are also three possible options on
the sub diagonal, they are respectively TG, SG, TC, where
TC denotes the identity matrix to describe self-connectivity.
We divide the complete adjacency matrix into two groups by
the candidate sub-matrix on the main diagonal and on the sub
diagonal. It is worth mentioning that this grouping method can
also be extended to scenes where k is larger. The search space
of these two groups can also be determined by the possible
options we discuss above.

In Figure 4, we take an example to illustrate the selection
process of graph structure search operation. Suppose in a

Fig. 4: Illustration of Graph Structure Search operation FG(·)
with k = 2 based on a given example.

traffic scenario during rush hours as shown in Figure 4(a), the
pattern similarities between the districts with the same function
could be more significant (e.g., district B and C). Thus, the
temporal graph can better characterize the dependencies in
each time step, which can be selected as the meta graph on
the main diagonal in STSG. Assume that a congestion event
occurs in C, the congestion will propagate from C to the
spatial adjacent node A over time, as the red arrow shown
in Figure 4(a). Thus, the spatial graph can better characterize
the dependencies across time steps, which can be selected as
the meta graph on the sub diagonal. As shown in Figure 4(b),
the nodes with similar patterns are marked by the same color,
the significant dependencies are depicted by solid lines and
other insignificant dependencies are depicted by dotted lines.
Finally, we sum the selected options on main diagonal and
sub diagonal to obtain the complete STSG, as shown in
Figure 4(c).

In this case, we design the two-group graph structure
search method inspired by DARTS framework [46]. Although
adjacency matrices of STSGs are not neural architectures, they
can determine the mode of message passing in graph con-
volution networks. Thus, the structure of the spatio-temporal
synchronous adjacency matrices can be seen as a special
architecture in our model. Similar to the mixed operation
in classical DARTS framework, the mixed adjacency matrix
generated in searching phase is formulated as follow:

M1 =
∑

m1∈M1

exp(αm1
)∑

m′
1∈M1

exp(αm′
1
)
m1 (8)

M2 =
∑

m2∈M2

exp(αm2)∑
m′

2∈M2
exp(αm′

2
)
m2, (9)

MA =M1 +M2, (10)

where m1 ∈ R2N×2N and m2 ∈ R2N×2N are respec-
tively the candidate matrix of the case of main diagonal
and the sub-diagonal, M1 = {M (1)

1 ,M
(2)
1 , · · · } and M2 =

{M (1)
2 ,M

(2)
2 , · · · } are the set of pre-defined candidate matri-
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ces of the two groups. MA is the complete mixed adjacency
matrix as the final output from GSS operation in searching
phase. αm1 and αm2 are respectively the learnable parameters
to weight the candidate matrix m1 and m2.

For each group, the best sub-graph structure is determined
by the lowest validation loss in candidate set. And during the
training phase, we replace each mixed operationM1 andM2

with the highest confidence to get the final graph structure
AST , which can be formulated as follow:

AST = (Argmaxm1∈M1
αm1) + (Argmaxm2∈M2

αm2).
(11)

3) Mixed-Hop Graph Convolution: With the mixed adja-
cency matrix MA during searching phase or the final ad-
jacency matrix AST during training phase, we also adopt
the mixed-hop mechanism to capture complex spatio-temporal
information from different hops. In addition, gated linear unit
(GLU) is used as the mapping function for each hop. The
graph convolution operation for each hop can be formulated
as:

Hi = GLUi((C(Ai ·X))), (12)

where Ai ∈ R2N×2N denotes the ith hop adjacency matrix
during searching phase or training phase, X ∈ R2N×D

denotes the input data and Hi ∈ RN×D is the output of the
ith hop graph. GLUi(·) is the individual operation for the ith
hop graph convolution, which is formulated as:

GLUi(X) = (Xc ·W1 + b1)� σ(Xc ·W2 + b2), (13)

where W1,W2 ∈ RD×D′
, b1, b2 ∈ RD′

are weights and
bias of GLU, � represents element-wise product, σ denotes
the Sigmoid function and Xc ∈ RN×D is the output from
the cropping operation. Finally, we adopt the max-pooling
approach to aggregate the graph information from different
hops as the output of the Auto-DSTSG block, which is defined
as:

Hg = MaxPooling([H1, · · · ,Hi]) ∈ RN×D. (14)

The spatio-temporal input data is treated by multiple Auto-
DSTS blocks independently in parallel in each layer. The
output from the Auto-DSTSGC module in each layer is
formulated as:

Xg = [H0
g, . . . ,HT−d−1g ] ∈ RN×(T−d)×D, (15)

where T denotes the time steps of input data and Hig denotes
the output from ith Auto-DSTSG block.

B. Dilated Temporal Convolution Module

The weight sharing mechanism in temporal convolution
is conducive to learning global temporal dependencies for
individual nodes [26], [52]. Although Auto-DSTSG module
can flexibly capture the complex spatio-temporal correlations
in a unified framework, its weight non-sharing mechanism for
different blocks is more conducive to capturing diverse local
spatio-temporal dependencies for different time periods rather
than global dependencies for each node.

The dilated temporal convolution operation is defined as:

x ? f(t) =

k−1∑
s=0

f(Θ)x(t− d× s), (16)

where x ∈ RT denotes the given 1D sequence input, f ∈ RK

denotes a temporal convolutional filter at step t, Θ denotes
the learnable weights of the filter and d denotes the dilation
factor. Similar to [51], we obtain the larger receptive field by
expanding the dilation factor in temporal convolution when
the layer goes deeper. To keep the consistency of the receptive
field in each layer, the kernel size k of temporal convolution
is fixed as 2 with a sequence of dilation factors [1, 2, 4, 4].

To better control the information flow and reserve the useful
information, we adopt the gating mechanism in this case.
Similar to [53], a simple gated temporal convolution network
only contains an output gate, which is expressed as:

Xf = tanh(Θ1 ? X + b1)� σ(Θ2 ? X + b2), (17)

where X ∈ RN×T×D is the given input, Xf ∈
RN×(T−k−d+2)×D′

is the output, Θ1, Θ2, b1 and b2 are
model parameters, � is the element-wise product, tanh(·) is
the tanh activation function of the outputs, and σ(·) is the
sigmoid function which controls the ratio of information flow
put forward to the next layer.

To enhance the global temporal correlations for individual
nodes, we aggregate the output of the dilated temporal con-
volution module and the output of Auto-DSTSG module in
each layer. The output of each layer in Auto-DSTSGN can be
defined as:

Xout = Agg(Xg, Xf ), (18)

where Xout denotes the output from each layer, Xg and Xf

are respectively the output of Auto-DSTSG module and dilated
temporal convolution module. Agg(·) denotes the aggregation
function, which is set as sum function in our model.

C. Other Components

1) Residual connection: Residual connection is an effective
approach to overcome the problem of vanishing gradient in
deep neural networks. As shown in Figure 3(a), we employ it
in each layer of our model, which is defined as:

Xl = X + FC(F(X)), (19)

where X denotes the original input of each layer, F(·) denotes
the neural network mapping in each layer, FC(·) denotes the
linear mapping and Xl is the output of each layer.

2) Skip connection: Skip connection is adopted to fully
exploit different level information and aggregate them to
obtain powerful representation. As shown in Figure 3(a), each
layer has a skip connection, which is defined as:

Xs =

l∑
i=0

FCi(F(X)), (20)

where Xs denotes the final representation from aggregation of
skip connection, FCi(·) denotes the linear mapping.
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3) Input layer and output layer: At the top of our proposed
framework, we use a fully connected layer to map the raw
input into high-dimensional tensor, which can enhance the
capability of representation learning in deep neural networks.

In output layer, we adopt a series of two-layer fully con-
nected layers that do not share weights to deal with predictions
at different time steps, which is expressed as follows:

ŷi = ReLU(Xs ·W 1
i + b1i ) ·W 2

i + b2i , (21)

where Xs denotes the aggregated representation from skip
connection, ŷi denotes the predicted result at ith step. In
this manner, we can obtain the next T step predictions by
concentrating the predictions at each step together, which is
expressed as:

Ŷ = [ŷ1, ŷ2, . . . .ŷT ]. (22)

Finally, we select L1 loss as the loss function in our model:

L(Y, Ŷ ) = |Y − Ŷ |. (23)

D. Searching Algorithm

In graph structure search operation, all computations are dif-
ferentiable. Similar to DARTS framework, a bi-level gradient-
based optimization algorithm can be employed to update the
weight parameters θ of the network (including the parameters
in TCNs, GLUs, FCs and MLP) and the architecture parame-
ters ω (including the scores of candidate matrices) alternately.
As shown in Algorithm 1, the weight parameters (Line 4-5)
and architecture parameters (Line 6-7) are alternately updated
based on the training and validation sets, until the stopping cri-
teria is met. Then, the structures of STSGs can be obtained by
selecting the candidate operations with the highest operation
scores.

Algorithm 1 Optimization algorithm of Auto-DSTSGN.

Require: Traffic data from road networks:[V1, . . . , VN ], ad-
jacency matrix of spatial graph As and temporal graph
At

Ensure: The learned STSGs in each Auto-DSTSG module
and the predictions in next 12 steps;

1: Build Dtrain, Dvalid from [V1, . . . , VNe
], As and At;

2: Initialize the graph structure parameters ω and the weight
parameters θ;

3: do:
4: Sample Dbatch from Dtrain;
5: θ ← θ − µθ∇θL(θ, ω,Dbatch), µθ is learning rate
6: Sample Dbatch from Dvalid;
7: ω ← ω − µθ∇ωL(θ, ω,Dbatch), µθ is learning rate;
8: until stopping criteria is met;
9: Get the graph structures, and further train the model on

Dtrain

V. EXPERIMENTS

In this section, we conduct extensive experiments on four
public datasets to answer the following research questions:

• RQ1: How does our proposed Auto-DSTSGN perform
compared with the state-of-the-art baselines in traffic
prediction?

• RQ2: How does our model perform compared with
different variants in the ablation study?

• RQ3: What kind of graph structures can be searched by
GSS mechanism in our model? For different datasets,
what are the differences in searching results?

• RQ4: How does the efficiency and GPU occupancy of
our model compare with other models?

• RQ5: How do the model parameters (e.g., the max hop
of GCN layers) affect the performance of our model?

A. Datasets and Settings

We evaluate our model on PEMS03, PEMS04, PEMS07
and PEMS08 which are collected from Caltrans Performance
Measurement System (PeMS). The time granularity of all
datasets is set to 5 minutes. The spatial graph for each
dataset are constructed based on road network topology. Z-
score normalization is applied to the traffic flow data. Detailed
statistics of datasets are shown in Table II.

TABLE II: Dataset description and statistics.
Datasets #Nodes #Edges #TimeSteps #TimeRange
PEMS03 358 547 26208 9/1/2018 - 11/30/2018
PEMS04 307 340 16992 1/1/2018 - 2/28/2018
PEMS07 883 866 28224 5/1/2017 - 8/31/2017
PEMS08 170 295 17856 7/1/2016 - 8/31/2016

Each dataset is chronologically split with 60% for training,
20% for validation and 20% for testing. We use the historical
traffic flow in the last one hour to forecast the future traffic
flow in the next one hour. The spatial graph and temporal graph
are designed inspired by [26]. Our model is implemented
by Pytorch 1.5 with NVIDIA TESLA V100 GPU. The max
hop of graph convolution in each Auto-DSTSG block is set
as 2 by default. The dimension of hidden representations is
set as 40. The optimizer of our model is set as Adam. The
batch size is 64 and the learning rate is 0.001. Our model is
evaluated five times on each dataset. During search process,
we utilize the early stopping strategy for graph structure search
with tolerance 15 for 60 epochs. During training process,
we reinitialize the optimizer and employ early stopping with
tolerance 30 for 200 epochs.

B. Overall Performance (RQ1)

We compare our model with the following nine state-of-art
baselines in recent years:
• FC-LSTM: This is a variant of Long Short-Term

Memory Network, which adopts fully connected hidden
units [22]. We set the number of hidden layer as 1 and
the hidden units as 64.

• DCRNN: Diffusion Convolution Recurrent Neural Net-
work, which integrates GCNs into encoder-decoder
RNNs [5]. The hop of diffusion graph convolution is set
as 2 and the hidden dimension is set as 64.

• STGCN: Spatio-Temporal Graph Convolution Network,
which employs GCNs and TCNs for spatio-temporal
learning [2]. Each spatio-temporal cell in this model
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TABLE III: Performance comparison of baseline models and Auto-DSTSGN. The sub- optimal results are marked by the
asterisk

Datasets Metric FC-LSTM DCRNN STGCN ASTGCN(r) GWN STSGCN STFGNN STGODE AutoSTG Auto-DSTSGN

PEMS03
MAE 21.33 ± 0.24 18.18 ± 0.15 17.49 ± 0.46 17.69 ± 1.43 19.85 ± 0.03 17.48 ± 0.15 16.77 ± 0.09 16.53 ± 0.10 16.27* ± 0.27 14.59 ± 0.05

MAPE(%) 23.33 ± 1.23 18.91 ± 0.82 17.15 ± 0.45 19.40 ± 2.24 19.31 ± 0.49 16.78 ± 0.20 16.30± 0.09 16.68± 0.05 16.10* ± 0.03 14.22 ± 0.16
RMSE 35.11 ± 0.50 30.31 ± 0.25 30.12 ± 0.70 29.66 ± 1.68 32.94 ± 0.18 29.21 ± 0.56 28.34± 0.46 27.79 ± 0.32 27.63* ± 0.78 25.17 ± 0.24

PEMS04
MAE 27.14 ± 0.20 24.70 ± 0.22 22.70 ± 0.64 22.93 ± 1.29 25.45 ± 0.03 21.19 ± 0.10 19.83*± 0.06 20.84± 0.07 20.38 ± 0.09 18.85 ± 0.08

MAPE(%) 18.20 ± 0.40 17.12 ± 0.37 14.59 ± 0.21 16.56 ± 1.36 17.29 ± 0.24 13.90 ± 0.05 13.02± 0.05 13.76 ± 0.04 14.12 ± 0.02 13.21* ± 0.02
RMSE 41.59 ± 0.21 38.12 ± 0.26 35.55 ± 0.75 35.22 ± 1.90 39.70 ± 0.04 33.65 ± 0.20 31.88*± 0.14 32.84 ± 0.19 32.51 ± 0.12 30.48 ± 0.17

PEMS07
MAE 29.98 ± 0.42 25.30 ± 0.52 25.38 ± 0.49 28.05 ± 2.34 26.85 ± 0.05 24.26 ± 0.14 22.07*± 0.11 23.02± 0.15 23.22 ± 0.33 20.08 ± 0.08

MAPE(%) 13.20 ± 0.53 11.66 ± 0.33 11.08 ± 0.18 13.92 ± 1.65 12.12 ± 0.41 10.21 ± 1.65 9.21*± 0.07 10.09± 0.09 9.95 ± 0.01 8.57 ± 0.05
RMSE 45.94 ± 0.57 38.58 ± 0.70 38.78 ± 0.58 42.57 ± 3.31 42.78 ± 0.07 39.03 ± 0.27 35.80*± 0.18 37.48 ± 0.39 36.47 ± 0.47 33.02 ± 0.12

PEMS08
MAE 22.20 ± 0.18 17.86 ± 0.03 18.02 ± 0.14 18.61 ± 0.40 19.13 ± 0.08 17.13 ± 0.09 16.64± 0.09 16.79± 0.08 16.37* ± 0.12 14.74 ± 0.04

MAPE(%) 14.20 ± 0.59 11.45 ± 0.03 11.40 ± 0.10 13.08 ± 1.00 12.68 ± 0.57 10.96 ± 0.07 10.60± 0.06 10.58± 0.04 10.36* ± 0.03 9.45 ± 0.03
RMSE 34.06 ± 0.32 27.83 ± 0.05 27.76 ± 0.20 28.16 ± 0.48 31.05 ± 0.07 26.80 ± 0.18 26.22± 0.15 26.01 ± 0.14 25.46* ± 0.18 23.76 ± 0.05

TABLE IV: Ablation experiments.
Dataset Model&Variants MAE MAPE(%) RMSE

PEMS04

Auto-DSTSGN 18.85 13.21 30.48
w/o GCN 23.45 16.96 36.53
w/o TCN 19.33 14.12 30.79
w/o Dilation 19.18 13.76 30.71
w/o GSS 19.48 14.06 30.72
GGS Random 19.68 14.31 31.26
w/o DTW 19.27 13.84 31.05

PEMS08

Auto-DSTSGN 14.74 9.45 23.76
w/o GCN 18.59 12.73 28.91
w/o TCN 15.22 10.12 24.02
w/o Dilation 15.10 10.16 23.95
w/o GSS 15.31 10.15 24.21
GGS Random 15.31 10.15 24.21
w/o DTW 15.07 9.97 24.10

contains two TCNs and one GCN. The number of spatio-
temporal cell is set as 2 and the hidden dimension is set
as 64.

• ASTGCN: Attention based Spatial Temporal Graph Con-
volution Network, which utilizes spatial and temporal
attention mechanisms [8]. Similar to STGCN, there are
two spatio-temporal cells in this model and the hidden
dimension is set as 64.

• Graph WaveNet (GWN): Graph WaveNet adopts the
GCNs with adaptive adjacency matrix and 1D dilated
TCNs for spatio-temporal modeling [6]. Each layer in
this model contains a gated TCN and a spatial GCN.
The number of stacked layers in this model is set as 8
with the dilation rate [1, 2, 1, 2, 1, 2, 1, 2, 1, 2] and the
hidden dimension is set as 64.

• STSGCN: Spatial-Temporal Synchronous Graph Convo-
lution Network, which utilizes multiple STSG modules
for localized spatio-temporal joint dependencies model-
ing [25]. The size of spatial-temporal synchronous graph
is set as 3N × 3N , the number of STSG layers is set as
3, and the hidden dimension is set as 64 in this model.

• STFGNN: Spatial-Temporal Fusion Graph Convolution
Network, which utilizes spatio-temporal fusion graph
convolution and parallel TCNs for learning localized
and global spatio-temporal dependencies respecively [26].
The size of spatial-temporal fusion graph is set as
4N×4N , the number of layers is set as 3, and the hidden
dimension is set as 64 in this model.

• STGODE: Spatial-Temporal Graph Ordinary Differential
Equation Network, which integrates the tensor-based or-
dinary differential equation into GCN modules [54]. The
number of graph ODE layers is set as 6 and the hidden

dimension is set as 64 in this model.
• AutoSTG: Automated Spatio-Temporal Graph Network,

which integrates NAS with spatio-temporal graph learn-
ing modules [35]. The number of spatio-temporal graph
learning cells is set as 5, the number of mixed operations
is set as 6 in each cells, and the the hidden dimension is
set as 64 in this model.

The evaluation metrics are mean absolute errors (MAE),
root mean squared errors (RMSE) and mean absolute percent-
age errors (MAPE) averaged over five times for one hour ahead
prediction. For these three metrics, smaller values means better
performance and the formula of these three metrics are defined
as follows:

RMSE(ŷi, yi) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (24)

MAE(ŷi, yi) =
1

n

n∑
i=1

|yi − ŷi|, (25)

MAPE(ŷi, yi) =
1

n

n∑
i=1

|yi − ŷi|
yi

. (26)

where ŷi denotes the prediction results and yi denotes the
ground-truths.

From the results in Table III, we can observe that our model
Auto-DSTSGN consistently outperforms the sub-optimal base-
lines with 4.9%∼10.3% improvements in terms of MAE on the
four datasets, which demonstrates the superiority of our pro-
posed method. In order to make the comparison results more
intuitive visually, we also provide the box plot of Table III, as
shown in Figure 5. Next, we analyze and compare the strengths
of our proposed model with some well-performing baselines.

AutoSTG is the only baseline that integrates the neural ar-
chitecture search to adjust its architecture corresponding to the
data. From the comparison results, AutoSTG significantly out-
performs most non-auto state-of-art models such as DCRNN
and Graph WaveNet, since it can search the optimal neural
architectures for different data scenarios. However, AutoSTG
is still weaker than our model. There are two main reasons.
The one is that the spatio-temporal synchronous graphs of
our model can characterize more complex dynamics than the
normal graphs. Another one is that AutoSTG focuses on the
neural architecture search but ignores the importance of infor-
mative spatio-temporal graph construction. Both STFGNN and
STSGCN adopt the spatio-temporal synchronous graphs but
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Fig. 5: Boxplots for the comparison results in Table III.

they can hardly capture the short-term and long-term spatio-
temporal correlations flexibly. Our model presents the dilated
spatio-temporal synchronous graph convolution framework to
balance the short-term and long-term dependencies learning.
Both STFGNN and STGODE are the baselines that adopt
informative adjacency matrices for spatio-temporal dependen-
cies learning. However, these two models design the spatio-
temporal synchronous graphs or neural architectures manually
and empirically, thus they are difficult to adapt to different data
scenarios. In contrast, our model can construct different spatio-
temporal synchronous graphs for different data scenarios based
on auto machine learning, which enhances the adaptability and
generalizability of our model.

In summary, the dilated spatio-temporal synchronous graph
structures in our model can flexibly characterize the short
and long-term spatio-temporal dependencies, the auto machine
learning mechanism for graph structure search can help our
model adapt to different data inputs and achieve the optimal di-
lated spatio-temporal synchronous graph modeling. These are
why our model can outperform other baselines significantly.

C. Ablation Study (RQ2)

We conduct ablation study on PEMS04 and PEMS08 to
evaluate the effectiveness of key components in our model.
As shown in Table IV, we compared Auto-DSTSGN with
following variants: 1) w/o GCN, which removes all the Auto-
DSTSG modules from our models 2) w/o TCN, which removes
all the dilated temporal convolution modules from our model.
3) w/o Dilation, which removes the dilation mechanism in
Auto-DSTSG module from our model. 4) w/o GSS, which
replaces the Auto-DSTSG module with the fixed STFGNN
module [26]. 5) GSS Random, which samples an complete
adjacency matrix from search space in graph structure search
module during the search process. 6) w/o DTW, which replaces

the DTW with Pearson coefficient to construct the temporal
graphs.

From the experimental results, we can find that Auto-
DSTSGN outperforms all the ablation variants. Compared with
the results of w/o Dilation, Auto-DSTSGN improves 1.7%,
4.0% in terms of MAE and MAP on PEMS04. Meanwhile, it
also improves 2.4%, 7.0% in terms of MAE and MAPE on
PEMS08, which illustrates the effectiveness of dilation mech-
anism on learning long-term spatio-temporal dependencies.
Compared with the results of w/o GSS, Auto-DSTSGN im-
proves 3.2%, 6.1% in terms of MAE and MAPE on PEMS04.
In the meanwhile, it also improves 3.7%, 6.9% in terms of
MAE and MAPE on PEMS08. Compared with the results of
GSS Random, Auto-DSTSGN improves 4.2%, 7.7% in terms
of MAE and MAPE on PEMS04. Meanwhile, it also improves
5.5%, 12.4% in terms of MAE and MAPE on PEMS08, which
illustrates the effectiveness of Graph structure search module
in learning diverse spatio-temporal correlations and adapting
to different data. There is a significant fall of the perfor-
mance without graph convolutions and temporal convolutions
(w/o GCN and w/o TCN), demonstrating the effectiveness of
these two parts for spatio-temporal representation learning.
Moreover, when we replace DTW with Pearson coefficient
to construct the temporal graphs (w/o DTW), the performance
drops on both PEMS04 and PEMS08 datasets. The reason
is that Pearson coefficient can only characterize the linear
correlations between different time series while DTW can
better characterize the non-linear time series similarity.

D. Case Study (RQ3)

We select PEMS04 and PEMS08 to further investigate the
relations between the attributes of meta graphs and the optimal
structure of STSGs on them. For the two different meta
graphs SG and TG, we choose mean degree of them as the
most important attribute. The higher mean degree of a graph
means stronger correlations among the nodes. Specifically,
the higher mean degree of SG represents the stronger spatial
correlations while the higher mean degree of TG represents
the stronger temporal correlations. Thus, empirically we need
more graph convolution operations on the related graphs to
achieve a larger receptive field for capturing long-range spatio-
temporal correlations. We count the average number of SG
and TG in the learned structure of STSGs on two datasets.
All the results are shown in Table V. We observe that the
STSGs learned on PEMS04 contains more TGs while the
STSGs learned on PEMS08 contains more SGs. This can
be explained by the mean degree of TG and SG on two
datasets. Since the higher mean degree characterizes stronger
correlations between different nodes, our model can obtain
stronger capability for message passing in spatio-temporal
scale by adjusting the structure of STSGs automatically. In
addition, we also visualize the learned structures of STSGs on
the PEMS04 and PEMS08 in Figure 6.

E. Efficiency and Occupancy Analysis (RQ4)

Time consumption and memory occupancy on GPU are
two intuitive metrics to reflect the time and space complexity
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TABLE V: The attributes of two datasets and the correspond-
ing structures of STSGs.

Objects Attributes PEMS04 PEMS08

Datasets Mean degree of SG 2.21 3.22
Mean degree of TG 4.51 1.27

Structures of STSGs Average # of SGs 35 68
Average # of TGs 47 30

Fig. 6: The learned structures of STSGs on the PEMS04 and
PEMS08.

of different models. They are also two important metrics
that measure the efficiency and scalability of the model in
industrial scenarios. We select three best baselines STFGNN,
STGODE and AutoSTG to compare with our model on
the two metrics. The results are shown in Figure 7. From
the absolute perspective, the efficiency of our model during
training phase is slightly improved compared with STFGNN
and STGODE in general and the GPU occupancy of our model
is significantly lower than them. We involve the dilation mech-
anism into the spatio-temporal synchronous graph modeling,
so our model significantly reduces model complexity com-
pared with STFGNN. STGODE employs the multiple neural
ODE architectures, which greatly increase the time and space
complexity of the model. From the relative perspective, the
GPU occupancy of our model is almost the same during search
phase and training phase, but AutoSTG significantly costs
more GPU occupancy in the searching phase. This indicates
that graph structure search is more lightweight and efficient
than neural architecture search. This is because graph structure
search only involves simple matrix calculations whereas neural
architecture search involves complex computations of neural
network structures with learnable parameters.

F. Parameters Study (RQ5)

To further investigate the effectiveness of our model, we
conduct parameter study on PEMS04 and PEMS08, including
the dimension of hidden representations D and the max hop of

Fig. 7: Time consumption and GPU occupancy.

graph convolution H in each block. The experimental results
are shown in Figure 8. We can find that MAE, MAPE and
RMSE on two datasets are the optimal when D is equal to 48.
When D is too small, the learning capability of our model be-
come worse, resulting in poor prediction performance. When
D is too large, the three metrics on both PEMS04 and PEMS08
become worse. This is because too large hidden dimension
cause the over-fitting. For parameter H , we can observe that
MAE, MAPE and RMSE on PEMS04 achieve the optimal
results when H is equal to 2. On PEMS08, MAE, MAPE
and RMSE obtain the best values when H is equal to 3.
This implies that aggregating the neighbor information of the
appropriate order in the traffic network can better learn the
spatial dependencies, and an excessively large number of hops
will lead to the over-smoothing phenomenon of the GCNs.

Fig. 8: Studies on hyper-parameters.

VI. CONCLUSION

We propose a novel automated dilated spatio-temporal syn-
chronous graph convolution framework to capture complex
spatio-temporal dependencies for traffic prediction. Our model
can not only capture complex long-term and short-term spatio-
temporal dependencies, but also more flexibly characterize
spatio-temporal relations of different time steps and even
different scenarios through graph structure search. Extensive
experiments on four real-world datasets demonstrate the su-
periority of our model in prediction accuracy compared with
other state-of-art baselines. In addition, under the premise of
ensuring accuracy, our model also takes into account both effi-
ciency and GPU occupancy, which provides a solid foundation
for the deployment of the model in industrial scenarios. In
this paper, we give a first attempt to adopt automatic machine
learning approach in graph structure search for diverse spatio-
temporal relations. In future work, we will extend this method
to a more generalized spatio-temporal prediction scenario.
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