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Stability Analysis With LMI Based Distributed H∞
Controller for Vehicle Platooning Under Random

Multiple Packet Drops
Kaushik Halder , Lee Gillam , Shilp Dixit, Alexandros Mouzakitis, and Saber Fallah

Abstract— This paper proposes a discrete time distributed
state feedback controller design strategy for a homogenous
vehicle platoon system with undirected network topology which
is resilient to both external disturbances and random consecutive
network packet drop. The system incorporates a distributed
state feedback controller design by satisfying bounded H∞ norm
using Lyapunov-Krasovskii based linear matrix inequality (LMI)
approach that ensures internal stability and performance. The
effect of packet drops on internal stability in terms of stability
margin are studied for a homogenous vehicle platoon system
with undirected network topology and external disturbance.
The variation of stability margin, representing absolute value
of least stable close-loop pole, is also studied for two common
undirected network topologies for vehicle platooning, i.e., bidirec-
tional predecessor following (BPF) and bidirectional predecessor
leader following (BPLF) topologies by varying platoon members,
packet drop rates with number of contiguous packets dropped.
Results demonstrate that the control strategy best satisfies the
requirement of maintaining a desired inter-vehicular distance
with constant spacing policy and leader trajectory using two
network topologies: BPF and BPLF. We show how these
topologies are robust in terms of ensuring internal stability and
performance to maintain cooperative motion of vehicle platoon
system with different number of followers, random multiple
consecutive packet drops and external disturbance.

Index Terms— Vehicle platoon, LMI, distributed H∞ control,
stability margin, random multiple packet drops.

I. INTRODUCTION

VEHICLE platoon systems manage groups of two or
more connected autonomous vehicles (CAVs) travelling

together, for the most part, in a single lane of a highway.
A platoon comprises of a first vehicle called the leader
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and other vehicles referred to as followers. Vehicles in a
platoon travel with a commonly agreed speed and maintain
pre-specified and short inter-vehicular distances for which
multi vehicle co-operation is critical [1], [2]. The benefits
of small inter-vehicular distances in a platoon include road
safety, highway utility, and fuel economy [3], [4]. A vehi-
cle platoon system can be referred to as homogeneous or
heterogeneous, depending on the dynamics of the member
vehicles [5]–[7]. A vehicle platoon is called homogeneous if
the dynamics of its member vehicles are identical, otherwise,
it is heterogeneous [6], [7].

A. Related Works on Vehicle Platooning With Different
Network Topologies

To ensure internal stability by maintaining cooperative
motion such as specified inter-vehicular distance, desired
speed etc. among the vehicles in a platoon system, several
researcher groups have designed platoon control systems under
various communication topologies as reported in [2], [6],
[8]. In general, the vehicles in a platoon exchange their
information with other platoon members using wireless com-
munication systems to support vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) communication to maintain the
cooperative motion [1]. The information exchange, through
wireless communication, amongst the vehicles in a platoon
can be distinguished by the network topology or information
flow topology (IFT) [6]–[9]. The IFT can be either directed
or undirected. A network topology is called undirected if
communication between all pairs of connected vehicles in
a platoon are bidirectional, otherwise it is directed. Typical
examples of directed and undirected network topologies are
predecessor following (PF), two PF (TPF), predecessor leader
following (PLF) [6], [8] and bidirectional PF (BPF), two
BPF (TBPF), bidirectional PLF (BPLF) [6]–[8], and all-to-
all [10], respectively. The importance of various network
topologies in vehicle platoon systems has been reported in [6],
[8]. Amongst the various network topologies used in vehi-
cle platoon systems, the analysis of platoon control systems
with undirected topology has piqued the interest of several
researchers because vehicles in a platoon can share more
information amongst themeselves thus improving the system’s
performance as reported in [6], [7], [9], [11]–[14]. However,
inherent properties of wireless communication networks in
platoon systems may lead to packet drops and/or delays in
data transmissions among the vehicles [8], [15], [16] since
reliability highly depends on bandwidth allocation, signal
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strength, etc. [17]. Such network issues, i.e., packet drop or
communication delay, may cause performance degradation in
terms of stability and control loop performance leading to
instability of the vehicle platoon systems [15], [18], [19].
Therefore, the challenge is to design a platoon control system
that ensures stability and maintains desired performance, keep-
ing appropriate desired speed and pre-specified inter-vehicular
distance in a vehicle platoon system and being resilient against
network issues such as packet drop and especially, under
multiple consecutive packet drops.

B. Related Works on Controller Design Under Packet Drop
and/or Delay for Vehicle Platooning

Various controller design approaches such as model pre-
dictive control (MPC) [20], [21], sliding mode control
(SMC) [13], [22], adaptive control [10], H∞ control [7], [7],
[9] etc. have been established to ensure closed-loop stability
and cooperative motion either for homogeneous [9], [10],
[23]–[25] or heterogeneous [20], [26], [27] vehicle platoon
systems with and without complexities like external distur-
bances (due to wind gust, road slope etc.) [7], [13], [28],
parametric uncertainties (due to, engine time constant, change
in mass under different load etc.) [13], network imperfec-
tions such as packet drop [9], [14], [29] and communication
delay [27], [28]. For example, distributed MPC has been
designed for heterogeneous vehicle platooning with unidi-
rectional topology, i.e. directed in [20]. SMC based control
strategy has been designed for vehicle platoon systems using
car-following theory in [22]. A distributed adaptive control
strategy has been proposed to ensure string stability for vehicle
platoon system with dynamic uncertainty in [30]. A distrib-
uted H∞ controller design methodology has been proposed
for uncertain heterogeneous platoon systems with undirected
topology in [12]. To ensure stability and robustness of the
homogeneous platoons with undirected topology and external
disturbances, an LMI based distributed H∞ controller has
been designed in [7]. An adaptive control strategy has been
developed to ensure cooperative motion by reducing demands
on the communication network, i.e., reducing the network
load among the member vehicles in a homogeneous vehicle
platoon system, modelled as a synchronisation problem of
multi-agent systems in [10]. The internal stability in terms
of stability margin for continuous time homogeneous and het-
erogeneous vehicle platoon systems with undirected topology
were analysed in [6], [11], [31] and [2] respectively. The works
in [2], [6], [11], [32], and [31] measured stability margin as
the absolute value of the real part of the least stable closed-
loop eigenvalue/pole in the continuous time domain, i.e., in the
s-plane and proposed methodologies like asymmetric control,
mistuning of symmetric control, and reduction of tree depth
by extending information flow to improve stability margin
of closed-loop platoon systems, respectively. An interested
reader can refer to [16], which contains a detailed survey on
vehicle platoon stability and control issues, including homo-
geneous and heterogeneous platoons, formation geometry i.e.
spacing policies, various IFTs e.g. directed and undirected,
stability and performance analysis i.e. internal and string
stability, robustness analysis with various platoon control

strategies etc. However, none of these methods ensure the
internal stability of vehicle platoon system under network
imperfections such as packet drop and/or communication
delay. To achieve internal stability under such conditions with
low/high communication latency, a decentralised MPC has
been designed for longitudinal platoon control problem in [21].
In [29], an LMI based distributed state feedback controller has
been designed to achieve co-ordinated motion under random
packet drop for vehicle platooning modelled as a multi-agent
control problem. An LMI based finite time control strategy has
been proposed for analysing stability and robustness of multi
platoons with time varying delays in [33]. For heterogeneous
vehicle platooning with PF topology and under packet drop
and delay, a two-layered control technique within a distributed
MPC and state feedback control framework with multi rate
sampling has been proposed in [34]. In [35], an adaptive
event-triggered control strategy was proposed and both internal
and string stability of vehicle platoons with packet drop
and communication delay were investigated. Internal stabil-
ity and string stability for homogeneous vehicle platoons
were investigated under limited communication range with
random packet drop in [23] and with both random packet drop
and time varying communication delay in [36], respectively.
Analysis of string stability and control performances of a
platoon under packet drop and communication delay has been
reported in [15], [37] and [38], [39], respectively. However,
in contrast to the above mentioned research works, very few
researchers have proposed control strategies for analysing
internal stability, string stability and robust performance of the
vehicle platoon systems under both networked packet drop or
delay and parametric uncertainty or external disturbances [9],
[14], [19], [25], [27], [40]. An LMI based distributed H∞
controller has been designed for heterogeneous vehicle platoon
systems under parametric uncertainties, external disturbances,
and communication delays in [27]. However, the method pro-
posed in [27] only considers PLF network topology (i.e., unidi-
rectional) for communication among platoon vehicles. As an
extension of [27], an LMI based distributed H∞ controller
design methodology has been proposed to analyse robustness,
and cooperative motion for homogeneous vehicle platooning
with generic network structure (i.e., both unidirectional and
bidirectional) under random single packet drop and external
disturbances in [14]. H∞ control strategy has been developed
for homogeneous platoon with external distubances, random
packet drop and communication delay in [25]. The analytical
solution of robustness analysis was obtained and LMI based
distributed H∞ controller was designed with a dimension
of single vehicle for homogeneous vehicle platoon systems
under undirectional network topology, random single packet
drop, and external disturbances in [9]. However, the method-
ologies of [9] and [14] do not ensure stability and control
loop performances for vehicle platoon systems under multiple
consecutive packet drops. In contrast to the literature described
above, this paper proposes an LMI based distributed controller
design methodology for homogeneous vehicle platoon systems
with generic undirected network topologies, i.e., bidirectional,
for communication between vehicles under random multiple
consecutive packet drops and external disturbances in discrete
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time. In addition, the designed controller is also used to
analyse internal stability, represented by stability margin,
of a platoon control system under random consecutive packet
drops and external disturbances. Thus, this paper extends the
research, reported in [6], [7] and [9], [14], where a distributed
controller was implemented to ensure internal stability and
robustness for the homogeneous vehicle platoon system either
with perfect communication (i.e., without packet drop) or with
random single packet drop only, respectively.

C. Contribution of the Present Work
In this paper, a discrete time distributed H∞ controller has

been designed for cooperative driving of longitudinal dynam-
ics of a linear time invariant (LTI) homogeneous platoon with
external disturbances and random consecutive packet drops
modelled as probabilistic Bernoulli distribution. The designed
controller is then used to analyse the stability margin for such
a system. As in [7], [9], [10], [14], here, the synchronisation
problem of multi-agent system using algebraic graph theory
is used to transform homogeneous vehicle platoon control
problem under multiple consecutive packet drops and external
disturbance. The contributions of the paper are reported as
follows:

• Lyapunov-Krasovskii based LMI approach is used to
obtain the controller gains with the satisfaction of cer-
tain bounded H∞ norm which ensures the mean square
stability (MSS) and maintains desired inter-vehicular dis-
tances for homogeneous platoon systems with multiple
consecutive packet drops and external disturbance.

• In contrast to [25], for reducing the computational com-
plexity for the tuning of control gains, a methodology to
reduce the size of the resultant LMI (mentioned above)
to the dimensions of an LMI on the single vehicle
dynamics is proposed. This methodology ensures MSS
and bounded H∞ norm for entire platoon system with
undirected topologies, multiple consecutive packet drops
and external disturbance.

• In the discrete time domain, i.e., in the z-domain, the
stability margin is measured by the absolute value of the
least stable closed-loop eigenvalue to the circumference
of the unit circle. This concept is used for the internal
stability analysis of a platoon system under undirected
topologies (e.g., BPF and BPLF), multiple consecutive
packet drops and external disturbance with the designed
controller. This contrasts with the continuous time domain
analysis performed in [6], [11], [31], [32] where the value
of the real part of the least stable closed-loop eigenvalue
in the negative half of the s-plane was checked. Addition-
ally, for different platoon members, the effects of different
packet drop rate on the stability margin of the platoon
system with two different network topologies (e.g., BPF
and BPLF) and external disturbance, including multiple
packet drops where packets are dropped consecutively,
are also studied. Furthermore, the effects of different
sampling time (Ts) on the internal stability of vehicle
platoon control systems with BPF and BPLF topologies
are studied to understand robustness capability in terms
of stability and performance of the proposed controller

design methodology. To the best of our knowledge, the
above-mentioned studies have not been investigated yet in
the contemporary literature. Therefore, the current work
numerously extends the results by considering external
disturbance, different packet drop rate, and sampling
time of [6], [11] where stability and scalability were
investigated for homogeneous platoon systems without
external disturbance and under perfect communication
network (i.e., without random packet drop) in continuous
time domain.

The rest of the paper is organised as follows: Section II
describes platoon modelling and control objectives of platoons
for the synchronisation problem under consecutive packet
drop. Then, to achieve the control objectives for a platoon, the
LMI based distributed controller design approach for satisfying
internal stability is described in Section III. Numerical and
simulation results are shown in Section IV to analyse the effec-
tiveness of the proposed method. Conclusions are presented
in Section V. The paper also has an Appendix, containing a
systematic proof of the core Theorems.

Notations. Here, some standard mathematical notations
used throughout the paper are introduced for convenience.
Rn and Rn×n , are the n-dimensional real Euclidean space
and the n × n real matrix space, respectively. M−1 (MT )
denotes the inverse (transpose) of a square matrix M . M <
0 (M > 0) is a strictly negative (positive) definite matrix,
whereas, M = MT ≤ 0 (M = MT ≥ 0) denotes a symmetric
negative (positive) semi-definite matrix. λi (M) is the i th

eigenvalue of a symmetric matrix M after they have been
sorted in ascending order, and λmin(M) denotes the minimum
eigenvalue of M. In is the unit matrix in the n × n real matrix
space. The symbol (∗) represents the symmetric elements
of a symmetric matrix and (⊗) represents the Kronecker
product between two matrices. Given a random variable ζ ,
E(ζ ) denotes its expected value (mean value).

II. MODELLING AND CONTROL OBJECTIVES OF VEHICLE

PLATOON SYSTEMS

In this paper, the platoon control problem is considered as
a synchronisation problem of a networked dynamical system
with a pinner node [7], [9], [10], [41] where a set of agents
(i.e., follower vehicles) defined by nodes interact among
themselves through a network and these nodes are controlled
in such a way that the dynamics of all nodes (i.e., follower
vehicles) converge towards the pinner node (i.e., the leader of
a platoon). This section describes the modelling of the platoon
network topology and longitudinal dynamics of the vehicles
in a platoon represented by graph nodes. For the synchronisa-
tion problem of vehicle platoon systems with communication
topology and random packet drop, it is assumed that the
follower vehicles receive information from the leader, i.e., the
pinner node, but the leader will not receive any information
from the followers as reported in [9], [10], [14].

A. Modelling of the Network Topology and Random Packet
Drop for Vehicle Platooning

The graph GN = (VN ,EN ) represents the communica-
tion topology of the N followers (nodes) where VN =
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{1, 2, . . . , N} denotes a set of nodes or vertices and
EN ⊆ VN × VN is the set of edges or arcs. The pair (i, j) ∈
EN indicates that the i th vehicle receives the information from
the j th vehicle. Based on the edges EN , an adjacency matrix
AN = [ãi j ] ∈ RN×N can be defined. The generic entry ãi j

of the adjacency matrix defines ãi j = 1 when (i, j) ∈ EN and
ãi j = 0 otherwise, i.e., ãi j = 1 implies that the i th vehicle
receives the j th vehicle’s information while ãii = 0 represents
no self-loop in the network. The degree DN of the graph is
represented by the number of edges pointing to the follower.
For such a case the Laplacian matrix L = [li j ] ∈ RN×N

can be represented by L = DN − AN where lii = �
j 	=i

ãi j

and li j = −ãi j ∀ i 	= j . The neighbour set of the node i
in the followers is represented by Ni i.e., Ni = { j ∈VN

| ãi j = 1}. If the network topology considers the leader
(i.e., leader of the platoon or pinner of the network) then the
graph GN is augmented with node 0 and the modified graph
is GN+1 = (VN+1,EN+1) where VN+1 = {0, 1, . . . , N} and
EN+1 ⊆VN+1×VN+1, also representing the pinner of the net-
work. The corresponding adjacency matrix is AN+1 = [ãi j ] ∈
R(N+1)×(N+1) with ã0 j = 0, j = 1, 2, . . . , N , indicates that
the followers are not sending information to the leader, ãi0 =
1, i = 1, 2, . . . , N indicates that the followers are receiving
information from the leader and finally ãi0 = 1 indicates
otherwise. P = diag{p1, p2, . . . , pN } represents the pinning
matrix which defines connections between each follower and
the leader where pi = 1, i = 1, 2, . . . , N if node i is obtaining
the information from the leader, i.e., node i is pinned to the
leader and pi = 0 otherwise. The leader-accessible set of node
i can be defined as:

Pi =
�{0} if pi = 1,

∅ if pi = 0.
(1)

This paper considers undirected topologies, i.e., i ∈ Ni

⇔ j ∈ N j , ∀i , j ∈ VN . Next, we assume the stochastic
variable θi j (k) ∈{0, 1} is satisfying a Bernoulli distribution
representing packet drop in the communication network among
the vehicles in a platoon. θi j (k) = 0 represents the i th follower
receives a packet from follower j while θi j (k) = 1 represents
packet drop or data loss. Thus, the following conditions hold:

Prob(θi j (k) = 1) = E(θi j (k)) = r,∀i 	= j, (2a)

E(1 − θi j (k)) = 1 − r,∀i 	= j, (2b)

where, r defines the mean packet drop rate in the communi-
cation network among the vehicles.

B. Modelling of the Longitudinal Vehicle Dynamics

In a vehicle platoon system, the nonlinear longitudinal
dynamics of the member vehicles can be represented by a
third order linearized differential equation due to its satisfac-
tory trade-off between accuracy and simplicity [7], [9]. The
third order model of i th vehicle with disturbance input in
homogeneous platoon considering the states xT

i (t) = [si , vi ,
ai ], i = 1, 2, . . . , N is represented in state space form as:

ẋi (t) = Axi (t) + Bui (t) + Bwi (t), (3a)

yi(t) = C xi (t), (3b)

where, ui (t) ∈ R, wi (t) ∈ R ∈ L2[0,∞) and yi (t) ∈ R

are the system input, the exogenous disturbance, and output,
respectively, while the system matrices are

A =
⎡
⎣0 1 0

0 0 1
0 0 − 1

τ

⎤
⎦ , B =

⎡
⎣0

0
1
τ

⎤
⎦ , C = �

1 0 0
	
. (4)

In (4), si , vi , ai and τ represent position, velocity, acceleration,
and time constant of the power train of the i th follower vehicle
in a platoon, respectively. The equivalent discretised system
using forward Euler discretisation method of its continuous
time version (4) with specified sampling time Ts is represented
as [42]–[44]:

xi (k + 1) = Ad xi (k) + Bdui (k) + Bdwi (k), (5a)

yi (k) = C xi (k), (5b)

where, Ad = I3 + ATs and Bd = BTs .

C. Control Objectives of Vehicle Platoon Systems

In general, two different strategies such as constant spacing
policy (CSP) and constant time headway policy (CTHP) are
used for platoon stability and spacing control problem. CSP
ensures that the distance between successive vehicles is kept
constant, whereas, the inter-vehicle spacing is a function of
velocity of vehicles under CTHP [6], [40], [45]. Although,
CTHP is simpler to implement and provide more advantages
for analysing string stability under simple IFT than CSP [40],
[46], but CSP has higher traffic capacity over CTHP [6],
[45] for vehicle platooning. Here, we consider CSP as in
[2], [6], [9], [10], [12], [14], [20], [24], [47], which means
that vehicles are controlled to follow a leading vehicle in
a rigid formation ensuring stability and robust performance
under random consecutive packet drop and/or communication
delay and external disturbances. The control objective of the
platoon is categorised in two ways [9], [10] (i) to impose
leader velocity to all followers and (ii) to maintain specified
inter-vehicular distance between consecutive vehicles in a
platoon with a given spacing policy [7], [9], [10]. If di,i−1,
i = 1, 2, . . . , N represents the desired inter-vehicular distance
between i th vehicle and its predecessor with a constant spacing
policy [1], [5], [13], then the aim of the platoon control is to
find ui (k) in (5) such that,

lim
k→∞ � vi (k) − v0(k) � = 0, (6a)

lim
k→∞ � si (k) − si−1(k) − di,i−1 � = 0, ∀i = 1, 2, . . . , N,

(6b)

where, v0 represents the velocity of the leader. This paper
considers the leader of a platoon is travelling with a constant
speed, i.e., a0 = 0 [7], [9], [10].

If di,0 is the desired distance between the leader and the i th

follower, i.e., di,0 = �i
m=1dm,m−1, then the second objective

of (6) can be re-written as lim
k→∞ � si (k) − s0(k) − di,0 �=

0, which together with the first objective (6a) represents
consensus or synchronisation problem where the pinner is
represented by the leader vehicle which provides the reference
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trajectory. Therefore, if the tracking error for the i th fol-
lower is represented by x̂i (k) = [ŝi (k), v̂i (k), âi (k)]T , where
ŝi (k) = si (k)−s0(k)−di,0, v̂i (k) = vi (k)−v0(k) and âi(k) =
ai (k) − a0(k) then (6) becomes

� x̂i (k) �→ 0 when k → ∞,∀i = 1, 2, . . . , N. (7)

It is noted that eqn. (7) does not consider (i) random packet
drop in the communication channel which allows the expected
value of x̂i (k) → 0 as k → ∞,∀i = 1, 2, . . . , N and
(ii) effect of external disturbances wi (t) on the output dynam-
ics yi (t), i = 1, 2, . . . N .

To address these issues, this paper considers mean square
stability (MSS) and H∞ norm bound as platoon control
objectives under random consecutive packet drop and external
disturbances. The platoon control objectives under MSS and
bounded H∞ norm has been described as follows:

Definition 1: If lim
k→∞ E(� X(k) �2) = 0 for any initial

state X(0) ∈ R3N , then tracking error X(k) is said to be
MSS [9], [41].

Definition 2: If the closed-loop system is MSS and following
hold [9], [48]:

∞

k=0

E(� Y (k) �2) � γ 2
∞


k=0

E(� W(k) �2), (8)

for all X(0) = 0 and W(k) = [wT
1 (k),wT

2 (k), . . . , wT
N (k)]T 	=

0, then there exist a bounded H∞ norm γ > 0, in the output
error dynamics Y(k).

The detail explanation of Definition 1 and 2 can be found
in [9] (see Definition 2 and 3 of [9]).

To achieve the platoon control objective (7) by impos-
ing MSS and H∞ norm bound, we define stack of state
tracking error as X(k) = [x̂T

1 (k), x̂T
2 (k), . . . , x̂T

N (k)]T and
output tracking error as Y(k) = [ŝ1(k), ŝ2(k), . . . , ŝN (k)]T =
(I N ⊗C)X(k).

D. Modelling of Consecutive Packet Drop for Vehicle
Platoon Systems

The network packet drop is modelled as a Bernoulli dis-
tribution. Let, x̄i (k) be the augmented state tracking error of
the i th follower which can be used by the j th follower at
kTs instant, since j th follower knows whether the information
from i th follower has been received or not in the form of
a packet. Then x̄i (k) can be represented under consecutive
packet drop or consecutive sample delay, denoted as stochastic
known variable βk = β(k) which is bounded within 1 � βk �
δmax [41]:

x̄ i (k) = (1 − θi j (k))x̂i (k) + θi j (k)x̂i (k − βk), (9)

correspondingly,

x̄ j (k) = (1 − θ j i(k))x̂ j (k) + θ j i(k)x̂ j (k − βk), (10)

where, maximum packet drop or sample delay (δmax) is the
known integer. Similar to [9], [14], [41], this paper assumes
θi j (k) = θ j i(k), which defines that a specific link failure
affects the consecutive packet drops in both directions with
mean packet drop rate r as described in (2).

III. STABILITY ANALYSIS AND CONTROLLER

DESIGN FOR VEHICLE PLATOONS UNDER

CONSECUTIVE PACKET DROP

A. Controller Design Under Random Consecutive
Packet Drop

Considering the packet drop in the transmitted state vectors
(9) and (10) among the vehicles in a platoon, the control law
for each follower can be represented as:

u i (k) = K


j∈Qi

(x̄i (k) − x̄ j (k)),∀i = 1, 2, . . . , N, (11)

where, Qi = Ni ∪ Pi is the neighbour set of the follower i
in the GN+1 graph and K = [−Ks,−Kv ,−Ka] represents the
identical controller gain for each follower vehicle since this
paper considers homogenous platoon system [9].

Now, defining the stack of the augmented control action as
U(k)= [uT

1 (k), uT
2 (k), . . . , uT

N (k)]T , the control law takes the
form:
U(k) = (L + P) ⊗ K [(1 − θi j (k))X(k)+(θi j (k))X(k − βk)].

(12)

The closed-loop dynamics of the state tracking error using
the control law (12) for homogeneous platoon systems can be
represented as:

X(k + 1) = (I N ⊗ Ad)X(k) + ((L + P)(1 − θi j (k))

⊗Bd K )X(k) + ((L + P)θi j (k) ⊗ Bd K )

×X(k − βk) + (I N ⊗ Bd )W(k),

Y (k) = (I N ⊗ C)X(k). (13)

To achieve the control objectives (6) for the closed-loop system
(13), the control gain need to be designed. An LMI approach
to obtain the control gain satisfying the closed-loop system
(13) to be MSS with a bounded H∞ norm is described by the
following theorem.

Theorem 1: Given system (13) with consecutive packet drop
modelled as in (9)-(10) with mean packet drop rate r as in
(2) and the control action (12), then closed-loop system is
MSS satisfying bounded H∞ norm if there exists P = PT =
I N ⊗P0 > 0 ∈ R3N×3N , Q = QT = I N ⊗ Q0 > 0, R = RT =
I N ⊗R0 > 0 ∈ R3N×3N and Z ∈ R1×3 such that � < 0 in
(14), shown at the bottom of the next page, hold, where, L̃ =
(L + P), P−1 = P̄ , Q−1 = Q̄, R−1 = R̄, P−1 Q P−1 = �,
P−1 R P−1 = � and K = Z P̄0

−1 = Z P0 ∈ R1×3 is the
controller gain of (12).

The analytical proof of the Theorem 1 is presented in the
Appendix.

It can be inferred that the dimension of LMI (14) in
Theorem 1 is high, i.e., (� = R14N×14N ) for large number of
followers (N) in a platoon which is computationally expensive
and may result in an infeasible and/or intractable problem.
Therefore, to improve the computational efficiency, the idea of
orthogonality [9] is used for decomposing the LMI (14) which
is described in the following as Theorem 2 with reduced in
dimension.

Theorem 2: Given closed-loop system (13) under consec-
utive packet drop modelled as in (10) with mean packet
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drop rate r (2) and the control action (12) is MSS satisfying

bounded H∞ norm γ > 0 if there exists P0 = PT
0 > 0,

Q0 = QT
0 > 0, R0 = RT

0 > 0 ∈ R3×3 ∀ λi � λi (L + P),
i = 1, 2, . . . , N such that �̃i < 0 in (15), shown at the
bottom of the page, hold, P0

−1 = P̄0, Q0
−1 = Q̄0, R0

−1 =
R̄0, P0

−1 Q0 P0
−1 = �0, P0

−1 R0 P0
−1 = �0 and K =

Z P̄0
−1 = Z P0 ∈ R1×3 is the controller gain of (12).

The analytical proof of the Theorem 2 is presented in the
Appendix.

Remark 1: The dimension of LMI (14) is scaled with the
number of followers in a platoon. Therefore, high compu-
tational effort may require to obtain the solution from LMI
(14) and also may results computationally infeasible and/or
intractable problem when platoon system is with large number
of followers. To overcome this problem, the LMI (15) is
decomposed form of set of LMI (14) into a size of single
vehicle rather than size of whole platoon system to obtain
controller gain (12). The LMI �̃i in (15) is affine in λi such
that LMI (14) holds for i = 1, 2, . . . , N iff the LMI (15) holds
for both maximum and minimum eigenvalues of (L + P).
Hence, LMI (15) does not depend on number of followers
in a platoon and is scaled with individual vehicles. The LMI
(15) is the relaxed form of (14) to facilitate its solution as
reported in [9], [41].

B. Internal Stability Analysis for Vehicle Platooning Under
Random Consecutive Packet Drop

Internal stability in terms of a stability margin can be
measured by the absolute value of the least stable closed-loop
pole or eigenvalue in the discrete time domain. Therefore, the
following Theorem applies to analysing the effect of (i) packet
drop and (ii) number of vehicle platoon members on the
stability margin of vehicle platoon systems with both BPF
and BPLF topologies in the discrete time domain.

Theorem 3: If given discrete time closed-loop system (16),
shown at the bottom of the next page, where (17), shown at
the bottom of the next page, is the characteristic polynomial
of (16), with independent variable z, non-zero constant real
number {Ks , Kv , Ka, τ, Ts}, mean packet drop rate r , consec-
utive packet drop δmax = δ and eigenvalue λi = λi (L + P),

i = 1, 2, . . . , N , is asymptotically stable ∀λi =
λi (L + P), i = 1, 2, . . . , N , the following statements hold:

3.1) closed-loop system (13) is asymptotically stable.
3.2) If λi goes to zero then (17) has three characteristic

roots approaching zero and the others have certain value not
approaching zero.

3.3) No characteristic root of (17) will be zero unless λi

goes to zero.
The analytical proof of Theorem 3 is presented in the

Appendix.
From the Theorem 3, following remarks can be drawn.
Remarks 2.

• Eqn. (17) is the characteristic polynomial of i th vehicle of
a homogeneous vehicle platoon system with undirected
topologies (i.e. BPF and BPLF topology) and external
disturbance under multiple consecutive packet drops mod-
elled as in (9)-(10) with mean packet drop rate r . Closed-
loop system (13) is said to be asymptotically stable if
all the characteristic roots of (17) are within a unit
circle, i.e., |z| < 1 ∀λi = λi (L + P), i = 1, 2, . . . , N .
It can also be inferred that closed-loop system (13) is
asymptotically stable if all the characteristic roots of
(17) are |z| < 1 for both minimum and maximum
eigenvalues of (L + P). Therefore, if the absolute value
of the least stable eigenvalue of (17) is within a unit
circle for both minimum and maximum eigenvalues
of (L + P) then closed-loop system (13) is internally
stable.

• If λi goes to zero, then characteristic roots of (17) will
be independent of the value of controller gains and mean
packet drop rate {Ks, Kv , Ka, r} and will only depend
on the choice of sampling time and time constant of the
power train {Ts, τ}. However, the nature of these roots
can be analysed from the property of discriminant which
is not within the scope of this paper.

Theorem 3 provides an idea of the asymptotic stability of the
closed-loop system (13), which is a function of eigenvalue
of undirected topologies. Next, this paper investigates the
internal stability of the closed-loop system as a function of
follower vehicles in a homogenous platoon with BPF and

� =

⎡
⎢⎢⎢⎢⎢⎢⎣

� − � − P̄ ∗ ∗ ∗ ∗ ∗
� −� − � ∗ ∗ ∗ ∗
0 0 −γ 2 I N ∗ ∗ ∗

((I N ⊗ Ad) P̄ + L̃(1 − r) ⊗ Bd Z) L̃r ⊗ Bd Z I N ⊗ Bd − P̄ ∗ ∗
δmax((I N ⊗ Ad) P̄ + L̃(1 − r) ⊗ Bd Z − P̄) δmax(L̃r ⊗ Bd Z) δmax(I N ⊗ Bd) 0 −δmax R̄ ∗

(I N ⊗ C) P̄ 0 0 0 0 −I N

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0. (14)

�̃i =

⎡
⎢⎢⎢⎢⎢⎢⎣

�0 − �0 − P̄0 ∗ ∗ ∗ ∗ ∗
�0 −�0 − �0 ∗ ∗ ∗ ∗
0 0 −γ 2 I1 ∗ ∗ ∗

(Ad P̄0 + λi (1 − r)Bd Z) λi r Bd Z Bd − P̄0 ∗ ∗
δmax(Ad P̄0 + λi (1 − r)Bd Z − P̄0) δmax(λir Bd Z) δmax Bd 0 −δmax R̄0 ∗

C P̄0 0 0 0 0 −I1

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0. (15)
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BPLF topologies, respectively, under consecutive packet drops
with mean packet drop rate r .

Theorem 4: The closed-loop system (13) with BPF topol-
ogy is asymptotically stable if two given characteristic poly-
nomials (18) and (19), shown at the bottom of the next
page, with independent variable z, non-zero constant real
number {Ks , Kv , Ka, τ, Ts}, mean packet drop rate r and
number of follower vehicle (N) are asymptotically stable
∀i = 1, 2, . . . , N . Here, {λ	

min , λ	
max } represent minimum and

maximum eigenvalues of (LB P F + PB P F ).
Theorem 5: The closed-loop system (13) with BPLF topol-

ogy is asymptotically stable if two given characteristic polyno-
mials (20) and (21), shown at the bottom of the next page, are
asymptotically stable with independent variable z, non-zero
constant real number {Ks , Kv , Ka, τ, Ts}, mean packet drop
rate r and number of follower vehicle (N) ∀i = 1, 2, . . . , N .
Here, {λ†

min , λ†
max } represent minimum and maximum eigen-

values of (LB P L F + PB P L F ).
The analytical proof of the Theorem 4 and 5 are presented

in the Appendix.
From the Theorem 4 and 5, following remarks can be drawn.

Remarks 3.

• When minimum and maximum eigenvalue (λmin , λmax)
are used, ∇	

min(z, λ	
min), ∇	

max(z, λ
	
max) in (18), (19),

∇†
min (z, λ†

min), ∇†
max(z, λ

†
max) in (20), (21) represent two

characteristic polynomials of i th vehicle of a homoge-
neous vehicle platoon system with BPF and BPLF topol-
ogy under consecutive packet drop modelled as in (10)
with mean packet drop rate r and external disturbance,
respectively.

• {∇	
min(z, λ	

min ), ∇	
max(z, λ

	
max )} in (18), (19),

{∇†
min(z, λ†

min ), ∇†
max(z, λ

†
max)} in (20), (21) are obtained

from (17) using eigenvalues {λmin (LB P F + PB P F ),
λmax (LB P F + PB P F )} and {λmin(LB P L F + PB P L F),
λmax (LB P L F + PB P L F )}, respectively. Since, the
eigenvalues λi (LB P F +PB P F ) and λi (LB P L F +PB P L F)
will be varying towards both lower and upper bound
with the increasing number of platoon followers (N),
thus, all the characteristic roots in (18)-(21) will be
depending on N and hence, internal stability of (13) will
be affected by N . It is noted that the smallest eigenvalue
of BPLF topology is one [6].

• Only, characteristic roots under BPF topology, i.e.,
∇	

min (z, λ	
min) in (18) are depending on the sampling

time and time constant of power train {Ts, τ } for large
N . Whereas, including {Ts, τ }, the characteristic roots of
∇	

max(z, λ
	
max ) in (19) and ∇†

min(z, λ†
min ), ∇†

max(z, λ
†
max)

in (20), (21) are also depending on the other parameters
such as controller gains and mean packet drop rate
{Ks , Kv , Ka, r} even if N is large. Since, τ is constant,
therefore, selection of appropriate Ts is important when
N is large for the platoon control systems with BPF and
BPLF topologies under external disturbances and random
consecutive packet drop.

IV. NUMERICAL AND SIMULATION RESULTS

The effectiveness of the proposed methodology for achiev-
ing internal stability and cooperative motion of homoge-
neous vehicle platoon systems is evaluated for two dif-
ferent undirected network topologies, i.e., BPF and BPLF
and different numbers of follower vehicles under random
consecutive packet drop with different packet drop rates.
A desired spacing di,i−1 = 25 m is selected among the
vehicles in a platoon [7]. It is assumed that for all the
homogeneous followers there is no collision at initial time
t = 0 s and the initial states are random in nature. The
power train time constant is selected as τ = 0.5 s [7].
The leader’s speed is considered constant at 72 km h−1 [9],
[10], [14]. The continuous time system is discretised with
specified sampling time Ts = 0.1 s [9], [14] for designing
the controller. Furthermore, an L2 norm bounded the exter-
nal disturbance input, i.e., E{� wi (k) �L2} < +∞ to the
acceleration of all followers is considered as a unity ampli-
tude square wave. The starting period of the external dis-
turbances is at t = 100 s with a duration of t = 5 s.
The robustness measures, γ , of the closed-loop platoon sys-
tem under random packet drop can be defined as γ ≥
sup

E{� Y �L2}
E{� W �L2}

which describes the sensitivity or attenuation

effect of the energy of external disturbances on the output
tracking error [9], [48]–[50]. To obtain controller gain by
minimising the squared value of robustness measures, i.e.,
γ 2 using the LMI (15), the following optimisation problem
can be computed by YALMIP toolbox [51] combining with
the SeDuMi solver [52] in MATLAB environment:

min γ
P̄0, Q̄0,R̄0,�0,�0,Z,γ

.

s.t .(15) (22)

Gi (z) = Ts
3zδ[(τ zδ+3 + (Ts − 3τ )zδ+2 + (3τ − 2Ts)z

δ+1 + (Ts − τ )zδ) + λi ((Ka − Kv Ts + Ks Ts
2)Tsr − (2Ka − Kv Ts)

×Tsrz + KaTsrz2 + (Ka − Kv Ts + Ks Ts
2)Ts(1 − r)zδ + (Kv Ts − 2Ka)Ts(1 − r)zδ+1 + Ka Ts(1 − r)zδ+2)]−1,

∀i = 1, 2, . . . , N (16)

∇i (z, λi ) = [(τ zδ+3 + (Ts − 3τ )zδ+2 + (3τ − 2Ts)z
δ+1 + (Ts − τ )zδ) + λi ((Ka − Kv Ts + Ks Ts

2)Tsr − (2Ka − Kv Ts)

×Tsrz + Ka Tsrz2 + (Ka − Kv Ts + Ks Ts
2)Ts(1 − r)zδ + (Kv Ts − 2Ka)Ts(1 − r)zδ+1 + Ka Ts(1 − r)zδ+2)],

∀i = 1, 2, . . . , N (17)
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Fig. 1. Legend for Figs. 2 to 4.

Fig. 2. Transient response of 10 follower vehicles’ states (see colour legend
in Fig. 1) in a platoon with (a) BPF (left panel) and (b) BPLF (right panel)
topologies under 6 consecutive packet drop with 30% packet drop rate before
action of external disturbances.

A. Time Response Analysis
The transient responses of 10 follower vehicle’s states, i.e.,

inter-vehicular distance error (ei,i−1(k) = si (k) − si−1(k) −
di,i−1) among the consecutive follower, velocity (vi ) and
acceleration (ai ) in a vehicle platoon system are depicted in
Figs. 1 to 4 using the designed controller to achieve control
objectives (7) under random consecutive packet drops and
external distubance, where Fig. 1 represents the legend of
Figs. 2 to 4. These transient responses are compared for a
vehicle platoon system with two different network topologies,
i.e., BPF and BPLF under δmax = δ = 6 consecutive packet

drops with 30% packet drop rate and external disturbances.
By solving the LMI (15) using (22) and Ts = 0.1 s, the
controller gains are obtained for BPF and BPLF topology
as K B P F = −[0.7205, 5.3906, 2.5159] and K B P L F =
−[0.8843, 1.6439, 0.6259], respectively. It is assumed that at
time instant t = 0 s, the follower states are mismatched, e.g.,
up-to 3 m inter vehicular distance error (ei,i−1) among the
consecutive platoon members which describes the variation in
velocities (vi ) of the followers. Fig. 2 describes the transient
responses of follower’s states, i.e., (ei,i−1, vi ) and acceleration
(ai ), before applying external disturbances. From Fig. 2, it can
be observed that the dynamics of all follower vehicles are
converging to desired behaviours such as maintaining zero
inter-vehicular distance error, matching to leader’s velocity
(i.e., 20 m s−1 which is constant) and zero accelerations (ai ),
when the controllers are activated. The converging time of
all the follower states in the BPF topology is higher than
the converging time of follower states in the BPLF topology
under 6 consecutive packet drop with 30% packet drop rate
since the leader vehicle is connected to all the followers
in BPLF topology, as is consistent with [9], [14], since all
the followers receive information directly from the leader
vehicle when the vehicle platoon is in a BPLF topology.
Fig. 3 compares the behaviour of follower’s states when the
external disturbance is applied to each follower and network
imperfections are introduced into the vehicle platoon system
for both BPF and BPLF topologies. Under such scenarios,
the inter-vehicular distance error (maximum 4.9 m), settling
time, and velocity amplification is higher for BPF topology as
compared to BPLF topology where maximum inter-vehicular
distance error is 1.3 m. For BPLF topology the inter-vehicular
distance error exists only for the first follower; other followers
are maintaining almost zero error. This is due to the fact that
all the followers are pinned to the leader, thus maintaining

∇	
min (z, λ	

min) = [(τ zδ+3 + (Ts − 3τ )zδ+2 + (3τ − 2Ts)z
δ+1 + (Ts − τ )zδ) + (1/N2)((Ka − Kv Ts + Ks Ts

2)Tsr − (2Ka

−Kv Ts)Tsrz + Ka Tsrz2 + (Ka − Kv Ts + Ks Ts
2)Ts(1 − r)zδ + (Kv Ts − 2Ka)Ts(1 − r)zδ+1

+KaTs(1 − r)zδ+2)], (18)

∇	
max(z, λ

	
max ) = [(τ zδ+3 + (Ts − 3τ )zδ+2 + (3τ − 2Ts)z

δ+1 + (Ts − τ )zδ) + 4((Ka − Kv Ts + Ks Ts
2)Tsr − (2Ka

−Kv Ts)Tsrz + Ka Tsrz2 + (Ka − Kv Ts + Ks Ts
2)Ts(1 − r)zδ + (Kv Ts − 2Ka)Ts(1 − r)zδ+1

+Ka Ts(1 − r)zδ+2)], (19)

∇†
min(z, λ†

min ) = [(τ zδ+3 + (Ts − 3τ )zδ+2 + (3τ − 2Ts)z
δ+1 + (Ts − τ )zδ) + ((Ka − Kv Ts + Ks Ts

2)Tsr − (2Ka

−Kv Ts)Tsrz + Ka Tsrz2 + (Ka − Kv Ts + Ks Ts
2)Ts(1 − r)zδ + (Kv Ts − 2Ka)Ts(1 − r)zδ+1

+Ka Ts(1 − r)zδ+2)], (20)

∇†
max(z, λ

†
max ) = [(τ zδ+3 + (Ts − 3τ )zδ+2 + (3τ − 2Ts)z

δ+1 + (Ts − τ )zδ) + 5((Ka − Kv Ts + Ks Ts
2)Tsr − (2Ka

−Kv Ts)Tsrz + KaTsrz2 + (Ka − Kv Ts + Ks Ts
2)Ts(1 − r)zδ + (Kv Ts − 2Ka)Ts(1 − r)zδ+1

+Ka Ts(1 − r)zδ+2)], (21)
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Fig. 3. Transient response of 10 followers’ states (see colour legend in Fig. 1)
under external disturbance and 6 consecutive packet drop with 30% packet
drop rate for (a) BPF (left panel) and (b) BPLF (right panel) topologies.

Fig. 4. Control signal to the 10 followers (see colour legend in Fig. 1) during
the initial transient (upper panel) and after action of external disturbances
(lower panel) under 6 consecutive packet drop with 30% packet drop rate.

the same dynamic evolution [6], [9]. It is also noted that each
follower vehicle has maintained almost the same velocity and
acceleration under the BPLF topology. Fig. 4 depicts all the
control inputs converging to zero for both BPF and BPLF
topologies before and after activating external disturbances to
each follower. Highly oscillatory control inputs for the BPF
topology describe the requirement of high control effort as
compared to the BPLF topology under random consecutive
packet drop.

B. Internal Stability Analysis

To demonstrate the effect of two network topologies, num-
ber of platoon followers, random consecutive packet drop with
varying packet drop rate and sampling time on the internal
stability of vehicle platoon system, the variation on stability
margin, measured by absolute value of least stable closed-loop
pole location in discrete time, i.e., z-plane, is investigated.
Fig. 5 shows the closed-loop pole and zero location of i =
10th vechicle using (16) when a vehicle platoon system (13)
with 10 followers and both BPF and BPLF topologies, under
6 consecutive packet drops with 30% packet drop rate, Ts =
0.1 s and the designed controller in the frequency domain
using MATLAB ‘pzmap’ command. Fig. 5 shows that all the
closed-loop zeros are on the centre of the unit circle and all
poles are within the unit circle for both topologies, but the

Fig. 5. Closed-loop pole and zero (i.e., ‘x’ and ‘o’, respectively) plot for vehi-
cle platoon system (16) with both {λmin (LB P F + PB P F ), λmin (LB P L F +
PB P L F )} and {λmax (LB P F + PB P F ), λmax (LB P L F + PB P L F )} where
{N = 10, Ts = 0.1s, r = 0.3, δmax = 6}.

Fig. 6. Scaling trend of stability margin, i.e., |zmax | with varying number
of followers (N = 10 to 30) and packet drop rate (r = 0, 0.1, 0.2, 0.3, 0.4)
for a vehicle platoon system with BPF and BPLF topology when {Ts =
0.1s, δmax = 6}.

closed-loop poles are shifting more towards high frequency
and low damping when BPF topology is used, compared to
BPLF topology, which defines the degradation of stability as
reported in [53]. Therefore, Fig. 5 indicates that when the
leader is connected with all follower vehicles, i.e., under BPLF
topology, both internal stability and robustness are improving
as compared to BPF topology where only first follower is
connected with the leader vehicle. It is noteworthy that in
a platoon of N vehicles, the most stringent conditions for
stability lie on the Nth vehicle since λmin and λmax for both
BPF and BPLF topologies approach the lower and upper limit,
respectively for the Nth vehicle. Consequently, if the closed-
loop stability is achieved for the Nth vehicle the control law
also ensures stability for the remaining vehicles in the platoon.
Therefore, for the aforementioned analysis, the stability of the
Nth vehicle in the platoon, i.e., N = 10 is considered.

Next, to demonstrate the stability margin and its variation
(i.e., scaling trend) we consider different numbers of platoon
members (N = 10 to 30) for the two different network
topologies (i.e., BPF and BPLF), varying packet drop rate
(r = 0 to 0.4965, i.e., no drop to 49.65%) with fixed number
of consecutive packet drop, i.e., δmax = 6, Ts = 0.1 s and
designed controller gain (as presented in the previous sub-
section). Fig. 6 compares the scaling trend of the absolute
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Fig. 7. Scaling trend of stability margin, i.e., |zmax | with varying number
of followers (N = 10 to 30) and 49.65% packet drop rate (r = 0.4965)
for a vehicle platoon system with BPF and BPLF topology when {Ts =
0.1s, δmax = 6}.

least stable closed-loop eigenvalue, represented by |zmax |, with
varying N and packet drop rate r for both maximum and
minimum {λmax(LB P F + PB P F ), λmax (LB P L F + PB P L F)}
and {λmin(LB P F +PB P F ), λmin (LB P L F +PB P L F )} of BPF
and BPLF topology using (16), respectively. In Figs. 6 and 7,
the stability margin, represented by |zmax |, is moving towards
unit circle boundary, i.e., |z| = 1 which indicates |zmax |
is moving towards high frequency and low damping when
both number of follower vehicle (N) and packet drop rate (r )
are increasing. Fig. 6 describes the scaling trend of stability
margin (|zmax |) with both {λmin , λmax } of BPF and BPLF
topology when N is varying from 10 to 30 and r is varying
from 0 to 0.4 (r = no drop to 40%). It is seen from Fig. 6
that scaling trends of (|zmax |) are almost unaltered with the
chosen N and r when λmin is used for both BPF and BPLF
topologies. Whereas, scaling trend of (|zmax |) is shifting
towards unit circle boundary, i.e., |z| = 1 when both N and r
are increasing with λmax of both BPF and BPLF topologies.
Also, degradation of internal stability under BPF topology
is higher, since |zmax | under BPF topology is approaching
towards unit circle boundary more quickly with increasing N
and r as compared to BPLF.

Since variation of stability margin, |zmax |, is higher with
higher N and r when λmax is used for both topologies,
we assess the variation of |zmax | with higher packet drop
rate (r = 0.4965), and N = 10 to 30 when λmax of BPF
and BPLF topologies are used as shown in Fig. 7. This
assessment is to obtain the maximum allowable r and N for a
platoon control system to be internally stable (i.e., |z| < 1) by
maintaining cooperative motion (i.e., specified inter-vehicular
distance, desired speed) with both BPF and BPLF topologies
while controller is designed at specified parameter values, i.e.,
at {N = 10, Ts = 0.1 s, δmax = 6, r = 0.3}. Fig. 7 shows
that a platoon control system with BPF topology controlled
by the designed controller ensures internal stability and can
maintain cooperative motion for a maximum N = 24 follower
vehicles under 6 consecutive packet drop with 49.65% packet
drop rate (i.e., r = 0.4965). This is because |zmax | > 1 when
N ≥ 25 in a platoon with BPF topology under {δmax =
6, r = 0.4965}. However, a platoon control system with
BPLF topology controlled by the designed controller allows
N > 30 and r > 0.4965. Therefore, a controller designed

Fig. 8. Variation of closed-loop pole/zero (i.e., x/o) for vehicle platoon
system (16) with N = 10, two network topologies and varying sampling time
(Ts) under δmax = 6 consecutive packet drop with 30% packet drop rate
(a) BPF (b) BPLF.

using the proposed methodology with a fixed {N, Ts , δmax , r}
for a vehicle platoon control system is more robust and is
ensures higher internal stability against maximum allowable
packet drop rate and number of follower vehicles when BPLF
topology is preferred to BPF topology. It is to be noted that
the internal stability analysis with the eqns. (18)-(21) are not
separately presented here for the sake of brevity. In addition
to the above analysis, the variation of closed-loop poles and
zeros of (16) with varying sampling time (Ts) is also important
for internal stability and performance analysis of such kinds
of networked control systems [54]. Therefore, to demonstrate
the robustness of the platoon control system (13) controlled
by the designed controller at {N = 10, Ts = 0.1 s, δmax =
6, r = 0.3} against the varying Ts = 0.094 s, 0.098 s, 0.102 s,
0.106 s, 0.11 s, this paper analyses closed-loop stability using
λmax of both BPF and BPLF topologies and {N = 10, δmax =
6, r = 0.3} by pole-zero plot, as shown in Fig. 8 (a) and Fig. 8
(b), respectively, in discrete time. In Fig. 8, it is seen that the
closed-loop poles are moving towards high frequency and low
damping when Ts is increasing for system (16) at N = 10 with
both BPF and BPLF topologies, thus, both stability and per-
formances are degrading [44], [53]. The closed-loop poles are
moving faster towards high frequency and low damping as Ts

is increasing when BPF topology is used as compared to BPLF
topology. Also, closed-loop system (13) with BPF topology is
becoming unstable (|zmax | > 1) when Ts = 0.106 s, while
closed-loop system (13) with BPLF topology is stable (i.e.,
|z| < 1 ) for this Ts . Therefore, it can be inferred that the
designed platoon control system with BPLF topology, under
multiple consecutive packet drops and external disturbance,
is more robust and internally stable against sampling time
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(Ts) compared to BPF topology. However, investigation on
other platoon control parameters such as variation in separation
distance amongst the member vehicles ensuring safety may
be another interesting research problem to improve internal
stability and robustness of a platoon control system under
network imperfections that will be explored in future.

V. CONCLUSION

In this paper, an LMI based distributed controller sat-
isfying bounded H∞ norm has been designed for vehicle
platoons under random multiple consecutive packet drops
and external disturbance. Stability margin analysis has been
used to understand internal stability with respect to two
different undirected network topologies and platoon size under
random consecutive packet drop with varying packet drop
rates and external disturbances. The designed controller has
been tested in a MATLAB simulation platform in terms of
the time domain transient response for a vehicle platoon
system with 10 follower vehicles considering two different
network topologies, BPF and BPLF, under aforementioned
scenarios. Simulation results demonstrate the effectiveness of
the proposed controller for maintaining vehicle platooning
stability under random consecutive packet drop and external
disturbances while ensuring specified inter-vehicular distance.
From the analysis of the proposed method, it is shown that
both the stability and robustness of the vehicle platoon is better
when the leader is connected to all the followers, i.e., for a
BPLF topology as compared to a BPF topology. As a scope of
future work, the proposed method can be extended to address
various parameters such as directed topology, CTHP, time
varying delay, parametric uncertainty, and asymmetric packet
drop in the communication network and switching between
topologies for both homogeneous and heterogeneous vehicle
platoon systems.

APPENDIX

This section describes the systematic proof of all Theorems
that use the tracking error dynamic model of the homoge-
nous vehicle platoon to establish the stability criteria and
design an identical distributed controller based on Lyapunov-
Krasovskii theory. First we derive the model of closed-loop
error dynamics and subsequently using Lyapunov-Krasovskii
function, Theorem 1 in Section III is proved for a platoon of
vehicles.

A. Closed-Loop Dynamics and Its Transfer Function Under
Random Consecutive Packet Drop

Since, the packet drop is modelled as a Bernoulli probabilis-
tic distribution as in (2), the expected value of the closed-loop
tracking error dynamics under random consecutive packet drop
modelled as (10) with (2) can be represented after applying
the expectation value to the closed-loop system (13) as:
E(X(k + 1)) = ((I N ⊗ Ad) + ((L + P)(1 − r) ⊗ Bd K ))

×E(X(k))+((L+ P)r ⊗ Bd K )E(X(k−βk))

+(I N ⊗ Bd)E(W(k)),

E(Y (k)) = (I N ⊗ C)E(X(k)). (23)

Now, define �̄(k) = [�T
1 (k),�T

2 (k), . . . ,�T
βk

(k)]T = [XT (k −
1), XT (k − 2), . . . , XT (k − βk)]T where, �l(k) = X(k −
l),∀l = 1, 2, . . . , βk and the augmented state X̃(k) =
[XT (k), �̄

T
(k)]T . The eqn. (23) can be re-written in the form

of expected value as (24), shown at the bottom of the next
page. Similar to [9], the discrete time transfer function from
E(W(k)) to E(Y(k)) of (24) by assuming zero initial tracking
error can be obtained as (25), shown at the bottom of the next
page, with βk = δ. Now, using the system (23), the proof of
Theorem 1 is described below.

B. Proof of Theorem 1

Define the Lyapunov-Krasovskii function candidate with
P = PT > 0, Q = QT > 0, and R = RT > 0 as:

V (k) = V1(k) + V2(k) + V3(k) = XT (k)P X(k)

+
k−1


i=k−βk

XT (i) QX(i)

+
−1


j=−δmax

k−1

j=k+i


XT ( j)R
X( j), (26)

where, V1(k) = XT (k)P X(k), V2(k) = �k−1
i=k−βk

XT (i) Q

X(i) and V3(k) = �−1
j=−δmax

�k−1
j=k+i 
XT ( j)R
X( j).

The expected value of the inequality satisfying H∞ norm
bound γ > 0 can be represented as [9], [48]:

E(
V (k)) + E(Y T (k)Y(k) − γ 2W T (k)W(k)) < 0, (27)

where, 
V (k) = V (k + 1) − V (k).
Using (26),

E(
V1(k)) = E(V1(k + 1) − V1(k))

= E(XT (k + 1)P X(k + 1) − XT (k)P X(k)).

(28)

Using (23) in (28) and assuming Ād = ((I N ⊗ Ad) +
(L + P)(1 − r) ⊗ Bd K ), L̃ = (L + P), and augmented state

η(k) = �
XT (k) XT (k − βk) W T (k)

	T
, the expected value of


V1(k) i.e. E(
V1(k)) can be written as (29), shown at the
bottom of the next page. Similarly using (26),

E(
V2(k)) = E(V2(k + 1) − V2(k)) =
E(

�k
i=k+1−βk

XT (i) QX(i) − �k−1
i=k−βk

XT (i) QX(i)) =

E[ηT (K )]
⎡
⎣Q 0 0

∗ − Q 0
∗ ∗ 0

⎤
⎦ E[η(K )], (30)

and,

E(
V3(k)) = E(V3(k + 1) − V3(k))

= E(

−1

i=−δmax

k

j=k+1+i


XT ( j)R
X( j)

−
−1


i=−δmax

k−1

j=k+i


XT ( j)R
X( j))

= E(δmax
XT (k)R
X(k)
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−
−1


i=−δmax


XT (k + i)R
X(k + i))

≤ E(δmax
XT (k)R
X(k)

−
−1


i=−βk


XT (k + i)R
X(k + i))

≤ E(δmax(X(k + 1)−X(k))T R(X(k+ 1)−X(k))

−(X(k) − X(k − βk))
T R(X(k) − X(k−βk))).

(31)

Using (23) in (31), eqn. (32), shown at the bottom of the next
page, is obtained. Again,

E(Y T (k)Y(k) − γ 2(W T (k)W(k)) = E[ηT (K )]

×
⎡
⎣(I N ⊗ C)T (I N ⊗ C) 0 0

∗ 0 0
∗ ∗ −γ 2 I N

⎤
⎦ E[η(K )]. (33)

By adding (29), (30), upper bound of E(V3(k)) (32) and (33)
and for any non-zero E(η(k)), (27) will be satisfied when
following holds: ⎡

⎣π11 π12 π13
∗ π22 π23
∗ ∗ π33

⎤
⎦ < 0, (34)

where, π11 = ( Ā
T
d P Ād − P + Q + δmax( Ā

T
d R Ād −

Ā
T
d R − R Ad + R) − R + (I N ⊗ C)T (I N ⊗ C)),π12 =

Ā
T
d P(L̃r ⊗ Bd K ) + δmax( Ā

T
d R(L̃r ⊗ Bd K ) − R(L̃r ⊗

Bd K )) + R,π13 = ( Ā
T
d P(I N ⊗ Bd ) + δmax( Ā

T
d R(I N ⊗

Bd) − R(I N ⊗ Bd ))),π22 = (L̃r ⊗ Bd K )T P(L̃r ⊗ Bd K ) −
Q + δmax((L̃r ⊗ Bd K )T R(L̃r ⊗ Bd K )) − R,π23 = (L̃r ⊗
Bd K )T P(I N ⊗Bd)+δmax((L̃r⊗Bd K )T R(I N ⊗Bd)),π33 =
(I N ⊗ Bd )T P(I N ⊗ Bd ) + δmax(I N ⊗ Bd)T R(I N ⊗ Bd ) −
γ 2 ⊗ I N .

Using matrix factorisation, (34) can be re-written as (35),
shown at the bottom of the next page and taking Schur comple-
ment [55] of (35) yields (36), shown at the bottom of the next
page. Now, multiplying by diag{P−1, P−1, I N ,I3N ,I3N ,I N }
in both sides of (36) and defining P̄ = P−1 = I N ⊗P0

−1,
R̄ = R−1 = I N ⊗R0

−1, P−1 Q P−1 = �, P−1 R P−1 = �

and K = Z P0 yields (14).�

C. Proof of Theorem 2

In LMI (14), the submatrices { P̄ , Q̄, R̄, �, �, I N ⊗Ad ,
I N ⊗Bd , I N ⊗C , γ 2 I N } are block diagonal matrices and L̃
is symmetric matrix. Thus, an orthogonal matrix � ∈ RN×N

will satisfy �T = �−1 such that there exist �−1 L̃� = D,
where, D represents the diagonal and real matrix, i.e., D =
diag{λ1,λ2,…,λN } with λi = λi (L + P), i = 1, 2, . . . , N , λi

is the i th real eigenvalue of L̃ = (L + P).
Now, define �̄ = diag{�̄0,�̄0,�̄0,�̄0,�̄0,�̄0} and �̄

−1 =
diag{�̄

−1
0 ,�̄

−1
0 ,�̄

−1
0 ,�̄

−1
0 ,�̄

−1
0 ,�̄

−1
0 } with �̄0 = � ⊗ I3

where n represents the order of the system (5), i.e., n = 3.
Then the matrix �̃ can be defined as (37), shown at the
bottom of the next page, where, Ãd = ((I N ⊗ Ad) P̄ + L̃(1 −
r) ⊗ Bd Z). Now, using the properties of Kronecker prod-
uct [41] in (37) yields (38), shown at the bottom of the next
page.

Since � is an orthogonal matrix satisfying satisfying �T =
�−1 such that �−1 L̃� = D, therefore the following holds:

� ⇔ �̃ < 0. (39)

Moreover, it is observed that all the submatrices in LMI (38)
are block diagonal. Therefore, (38) can be re-written with
decomposed form for all λi = λi (L + P), i = 1, 2, . . . , N ,
such that �̃ < 0 iff (15) holds i.e. �̃i < 0 where, λi represents
the eigenvalues of (L + P). �

E(X̃(k + 1))

=

⎡
⎢⎢⎢⎢⎢⎢⎣

I N ⊗ Ad + (L + P)(1 − r) ⊗ Bd K 03N×3N . . . 03N×3N (L + P)r ⊗ Bd K
I3N×3N 03N×3N . . . 03N×3N 03N×3N

03N×3N I3N×3N . . . 03N×3N 03N×3N
...

...
. . .

. . .
...

03N×3N 03N×3N . . . I3N×3N 03N×3N

⎤
⎥⎥⎥⎥⎥⎥⎦

E(X̃(k)) +

⎡
⎢⎢⎢⎢⎢⎣

I N ⊗ Bd

03N×N

03N×N
...

03N×N

⎤
⎥⎥⎥⎥⎥⎦

E(W(k)). (24)

G(z) = Ts
3zδ[In · (τ zδ+3 + (Ts − 3τ )zδ+2 + (3τ − 2Ts)z

δ+1 + (Ts − τ )zδ) + (L + P)((Ka − Kv Ts + Ks Ts
2)Tsr − (2Ka

−Kv Ts)Tsrz + Ka Tsrz2 + (Ka − Kv Ts + Ks Ts
2)Ts(1 − r)zδ + (Kv Ts − 2Ka)Ts(1 − r)zδ+1 + KaTs(1 − r)zδ+2)]−1.

(25)

E{
V1(k)} = E[ηT (K )]
⎡
⎢⎣

Ā
T
d P Ād − P Ā

T
d P(L̃r ⊗ Bd K ) Ā

T
d P(I N ⊗ Bd)

∗ (L̃r ⊗ Bd K )T P(L̃r ⊗ Bd K ) (L̃r ⊗ Bd K )T P(I N ⊗ Bd)

∗ ∗ (I N ⊗ Bd)T P(I N ⊗ Bd)

⎤
⎥⎦ E[η(K )]. (29)
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D. Proof of Theorem 3

As shown in Theorem 2, the matrix L̃ = (L + P) is sym-
metric, thus there also exist an orthogonal matrix � ∈ RN×N

with the satisfaction of �T = �−1 such that �−1 L̃� =
D. Using this matrix property, the discrete time closed-loop
transfer function (25) under random consecutive packet drop
for the vehicle platoon system with undirected topology can
be written as (40), shown at the top of the next page [9].
Eqn. (40) implies,

G(z) = �[diag{G1(z), G2(z), . . . , GN (z)}]�−1, (41)

with Gi (z), i = 1, 2, . . . , N as given in (16) where, Gi (z)
represents the closed-loop transfer function of i th vehicle in a
platoon and λi = λi (L + P), i = 1, 2, . . . , N .

E. Proof of Statement 3.1 of Theorem 3

Using property of orthogonal matrix � as detailed above,
(41) can be represented as a block diagonal matrix. Therefore,
it can be inferred that Gi (z) will be asymptotically stable if
and only if closed-loop poles of Gi (z), i = 1, 2, . . . , N are
within a unit circle, i.e., |z| < 1.

E{
V3(k)}

= E[ηT (K )]δmax

⎡
⎣ Ā

T
d R Ād − Ā

T
d R − R Ad + R Ā

T
d R(L̃r ⊗ Bd K ) − R(L̃r ⊗ Bd K ) Ā

T
d R(I N ⊗ Bd ) − R(I N ⊗ Bd)

∗ (L̃r ⊗ Bd K )T R(L̃r ⊗ Bd K ) (L̃r ⊗ Bd K )T R(I N ⊗ Bd )

∗ ∗ (I N ⊗ Bd)T R(I N ⊗ Bd )

⎤
⎦

×E[η(K )] + E[ηT (K )]
⎡
⎣−R R 0

∗ −R 0
∗ ∗ 0

⎤
⎦ E[η(K )]. (32)

⎡
⎣ Q − P − R R 0

∗ − Q − R 0
∗ ∗ −γ 2 I N

⎤
⎦ +

⎡
⎣(I N ⊗ C)T

0
0

⎤
⎦ �

(I N ⊗ C) 0 0
	 +

⎡
⎣ Ā

T
d

(L̃r ⊗ Bd K )T

(I N ⊗ Bd)T

⎤
⎦ P

× �
Ād (L̃r ⊗ Bd K ) (I N ⊗ Bd)

	 + δmax

⎡
⎣ ( Ād − I3N )T

(L̃r ⊗ Bd K )T

(I N ⊗ Bd)T

⎤
⎦ R

�
( Ād − I3N ) (L̃r ⊗ Bd K ) (I N ⊗ Bd )

	
< 0. (35)

⎡
⎢⎢⎢⎢⎢⎢⎣

Q − P − R ∗ ∗ ∗ ∗ ∗
R − Q − R ∗ ∗ ∗ ∗
0 0 −γ 2 I N ∗ ∗ ∗

Ād L̃r ⊗ Bd K I N ⊗ Bd −P−1 ∗ ∗
δmax( Ād − I3N ) δmax(L̃r ⊗ Bd K ) δmax(I N ⊗ Bd ) 0 −δmax R−1 ∗

(I N ⊗ C) 0 0 0 0 −I N

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0. (36)

�̃ = �̄
−1

��̄

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̄
−1
0 (� − P̄ − �)�̄0 ∗ ∗ ∗ ∗ ∗

�̄
−1
0 ��̄0 �̄

−1
0 (−� − �)�̄0 ∗ ∗ ∗ ∗

0 0 −�̄
−1
0 (γ 2 I N )�̄0 ∗ ∗ ∗

�̄
−1
0 Ãd�̄0 �̄

−1
0 (L̃r ⊗ Bd Z)�̄0 �̄

−1
0 (I N ⊗ Bd )�̄0 −�̄

−1
0 P̄�̄0 ∗ ∗

�̄
−1
0 (δmax( Ãd − P̄))�̄0 �̄

−1
0 δmax(L̃r ⊗ Bd Z)�̄0 �̄

−1
0 δmax(I N ⊗ Bd)�̄0 0 −�̄

−1
0 δmax R̄�̄0 ∗

�̄
−1
0 ((I N ⊗ C) P̄)�̄0 0 0 0 0 −�̄

−1
0 I N �̄0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (37)

�̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

I N ⊗ �0 − I N ⊗ P̄0 − I N ⊗ �0 ∗ ∗ ∗ ∗ ∗
I N ⊗ �0 −I N ⊗ �0 − I N ⊗ �0 ∗ ∗ ∗ ∗

0 0 −γ 2 I N ∗ ∗ ∗
((I N ⊗ Ad )(I N ⊗ P̄0) + D(1 − r) ⊗ Bd Z) Dr ⊗ Bd Z I N ⊗ Bd −I N ⊗ P̄0 ∗ ∗

δmax ((I N ⊗ Ad )(I N ⊗ P̄0) + D(1 − r) ⊗ Bd Z − I N ⊗ P̄0) δmax Dr ⊗ Bd Z I N ⊗ Bdδmax 0 −δmax (I N ⊗ R̄0) ∗
(I N ⊗ C)(I N ⊗ P̄0) 0 0 0 0 −I N

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0.

(38)
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G(z) = �(Ts
3zδ[In · (τ zδ+3 + (Ts − 3τ )zδ+2 + (3τ − 2Ts)z

δ+1 + (Ts − τ )zδ) + D((Ka − Kv Ts + Ks Ts
2)Tsr

−(2Ka − Kv Ts)Tsrz + Ka Tsrz2 + (Ka − Kv Ts + Ks Ts
2)Ts(1 − r)zδ

+(Kv Ts − 2Ka)Ts(1 − r)zδ+1 + Ka Ts(1 − r)zδ+2)]−1)�−1. (40)

F. Proof of Statement 3.2 and 3.3 of Theorem 3
The characteristic polynomial (17) can be written with

δmax = δ as:
∇(z) = b0zδ+3 + b1zδ+2 + b2zδ+1 + . . . + bn−2z2

+bn−1z + bn, (42)

where, b0 = 1, b1 = (Ts−3τ )+λi (KaTs(1−r))
τ ,

b2 = (3τ−2Ts)+λi (KvTs−2Ka)(1−r)Ts
τ , b3 =

(Ts−τ )+λi (Ka−Kv Ts+Ks T 2
s )(1−r)Ts

τ , bn−2 = λi Ka Tsr
τ ,

bn−1 = λi (KvTs−2Ka)Tsr
τ , bn = λi (Ka−Kv Ts+Ks T 2

s )rTs
τ and

b4 = b5 = . . . = bn−3 = 0.
The eqn. (42) is a Schur polynomial if b0 > bn [56]. It is

seen from (42) that if λi goes to zero then three roots are
moving towards zero as O(λi ) and rest of the roots are with
certain value, depending on the parameters {Ts, τ }.

G. Proof of Theorem 4 and 5
It can be observed from Theorem 3 and (17) that closed-loop

system is internally stable if all the characteristic roots of
(18),(19) and (20), (21) satisfy |z| < 1 for both minimum and
maximum eigenvalue, i.e. λmin and of λmax when homoge-
neous platoon is with BPF and BPLF topologies, respectively.
It was proven in Theorem 2 for homogeneous platoon system
with BPF and BPLF topologies in [6] that if i � N and if
i = N then following holds:

1

N2 ≤ λi (LB P F + PB P F ) ≤ 4, (43a)

1 ≤ λi (LB P L F + PB P L F ) ≤ 1 + 4 = 5, (43b)

respectively. Using boundary values of λi (LB P F + PB P F )
and λi (LB P L F + PB P L F ) from (43), i.e., lower and
upper bound λmin (LB P F + PB P F ), λmax (LB P F + PB P F )
and λmin (LB P L F + PB P L F ), λmax(LB P L F + PB P L F ) in (17)
yields (18),(19) and (20), (21), respectively.�
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