
1

Learning the Distribution-Based Temporal
Knowledge with Low Rank Response Reasoning for

UAV Visual Tracking
Guoxia Xu, Member, IEEE, Hao Wang, Senior Member, IEEE, Meng Zhao, Member, IEEE, Marius

Pedersen, Member, IEEE, and Hu Zhu, Member, IEEE,

Abstract—In recent years, the constraint based correlation
filter has shown good performance in unmanned aerial vehicle
(UAV) tracking, which gains a lot popularity in many intelligence
transportation applications. In this work, a distribution-based
temporal knowledge driven method is proposed to leverage
the temporal translation property in UAV tracking. Instead of
focusing on the traditional issues in the correlation filter, we
provide a new method of learning parametric distribution on
temporal knowledge by Wasserstein distance which is successfully
embedded to solve the problem of temporal degeneration in learn-
ing process of tracking. Furthermore, we approximate optimal
response reasoning with low-rank constraint over response con-
sistency. Furthermore, the proposed method is solved by a simple
iterative scheme with alternating direction multiplication ADMM
algorithm. We demonstrate the superior tracking performance
in several public standard UAV tracking benchmarks compared
with state-of-the-art algorithms.

Index Terms—Visual Tracking, Low Rank Constraint, Wasser-
stein Distance, ADMM

I. INTRODUCTION

V IDEO target tracking is an important research direction
in the field of internet of vehicles, which is widely

used in video surveillance [1], human-computer interaction
[2], intelligent transportation [3] and other fields. Based on
the requirement of intelligent transportation, it needs more
powerful technical support in terms of traffic flow control,
vehicle detection, and border control [4] to ensure safety
and effectively improve the level of intelligence in traffic.
Intelligent transportation infrastructure connects the internet of
vehicles based on the collected information to adjust facility
parameters according to the actual situation. It will inevitably
bring challenges to data collection and its performance. With
the continuous development of machine learning, the deep in-
tegration of UAV technology [5] and intelligent transportation
has become the general trend. However, the main challenge of
UAV tracking in the traffic domain is how to adapt fast change
in the appearance of the target.
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Fig. 1. a). Two response maps from UAV tracking shows the variants and
these response maps can directly described as two distributions. b). Here, we
show the predefined two distributions and calculate corresponding barycenter
of Euclidean and Wasserstein. c). Upper and lower are barycenter interpolation
with Euclidean and Wasserstein distance.

Even if the initial frame of an unknown scene is given, the
main performance of predicting the target state of each frame
will be limited by several appearance variants. Moreover,
because the traditional target tracking background is basically
fixed, the tracker only considers the problem of the target itself
in the tracking process. However, due to the movement of
traffic vehicles, the tracking process needs to take into account
the complex scene variants and unpredicted interference. The
characteristic of UAV target tracking [5], [6] is that both the
target and the background are in motion, which is hard to well
solve the difficulty of target tracking in the traffic scenarios
and achieve good intelligent traffic video monitoring effect.
In addition, due to the problems of mechanical vibration,
object motion, target occlusion, background clutters [7], target
tracking has brought greater challenges.

Benefiting from its easy implementation and fast prediction
of discriminative correlation filter (DCF), DCF has attracted a
lot attention in UAV tracking. Until now, there are three main
research directions in UAV tracking: spatial regularization,
temporal smoothing, and robust feature representation. To
solve the first problem, spatial regularization DCF: SRDCF
[8] are proposed based on the spatial penalty. This work
also inspired other research work on spatial regularization [9],
[10]. In [3], they proposed a new DCF tracker by suppressing
the constraint of spatial boundary effect with spatial feature
selection. Moreover, the spatial reliability enhanced DCF [7]
[11] had proposed to indicate the reliability of background.
However, these methods do not adaptively depress the back-
ground and consider the temporal information. To solve the
second problem, a temporal regularization is introduced by
[10] and [12] to realize the joint spatial-temporal solution and
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obtain the better performance. For the third question, with the
development of robustness image feature extraction method on
deep neural network, the performance of DCF-based trackers
has been greatly improved performance and solves the problem
to some extent.

Recently, to combine temporal information, some latest
models used a transformer to combine spatial and temporal
information. STARK [13] had not used any proposals, anchors,
and post-processing steps (such as cosine window or bounding
box regression), which greatly simplified the visual tracking
model. [14] developed a feature fusion network based on
a self-context augmentation module with self-attention and
a cross-feature augmentation module with cross-attention.
Compared with correlation-based feature fusion, self-attention-
based methods adaptively focus on useful information, such
as edges and similar objects, and establish associations be-
tween distant features, enabling the tracker to obtain better
classification and regression result. However, the response of
redundant information in the global response will affect the
accuracy. AutoTrack [12] automatically updated the hyper-
parameters to accommodate the change of each frame with the
global response. To achieve the better performance, the spatial
constraints with content-aware [15] and bilateral regression
ranking model [16] and other different hybrid response mining
[17] [18] based methods had been proposed. While online
learning of tracking has made good progress, there are still
many problems in the temporal-based tracking framework.
These existing methods only discover the reliability of spatial
or temporal or background or response, the reliability of the
temporal knowledge transfer is also deserved to investigate to
avoid temporal degeneration. In existing temporal knowledge
transfer based on the DCF tracking framework, euclidean dis-
tance is commonly used to measure the similarity of the targets
of the two adjacent filters within a closed appearance [10],
[12], [19]. Here, we recall a new concept about online temporal
learning in visual tracking (probability measurement). This
problem is unnoticed by the above methods. It also brings
some questions over here: what can we measure in online
learning: probabilistic temporal fitting or direct temporal
interpolation?

In temporal-based framework, most methods assume that
the target context between two frames is a component with
minor changes, and the change of two adjacent target dis-
tributions can be kept only by interpolation. However, this is
difficult to appear in reality. In UAV tracking, it is obvious that
there is no such assumption that the tracked target has obvious
occlusion or deformation. The noise drift in the temporal
domain will also lead to tracking distortion inevitably. A
more reasonable solution is to replace the measurement or
transformation here. Regardless of temporal regularization or
response mining methods, they are all looking for a transfor-
mation such that the representation of the updated frame is
matched with historical information. The well-known class of
transformation can be expressed in [20], in which the Kullback
Leibler divergence was used in a deep neural network for
visual tracking [21]. However, there is no closed-form solution
that can express the similarity measurement.

Actually, the distorted appearance in UAV tracking chal-

lenges the spatial or temporal based DCF methods. The above
discussion motivates us to mitigate the problem of overfitting
and omit the impact of unpredicted appearance. Fortunately,
the Wasserstein distance with a common Lagrangian formu-
lation and alleviates the need for a common space. In [22],
they proposed a novel approach to learn domain invariant
feature representations. Wasserstein generative adversarial net-
work (GAN) [23] learned a more reasonable and efficient
approximation method and cured the main training problem of
GAN. Thus, we leverage a probability temporal fitting method
motivated by the Wasserstein distance. To improve the anti-
noise performance of the tracking, we use the Wasserstein
distance to measure the similarity of the filter distribution
instead of previous linear interpolation method for estimation
of temporal filter. From our own observation on preliminary
experiment shown in Fig. 1, two time-varying distributions
with corresponding means and barycenter under euclidean
metric and Wasserstein metric are respectively shown in (b).
The barycenter map of 2D and 3D maps can be clearly shown
the state-transition truth of the similarity of two distributions.
It is noticeable that this property is desirable for UAV tracking
to overcome several appearance variants.

With the development of target tracking, research on low
rank has made great progress and achieved good results.
He et al. [24] had been successfully used in object tracking
by exploiting low-rank constraints to capture the underlying
structure of candidate particles. To mitigate this issue, we
further investigate the low rank reasoning over the temporal
response. Therefore, we propose a new model (ATGT) as
shown in the Fig. 2. The main contributions of our ATGT
method include:

• A novel Wasserstein distance regularization method for
measuring the temporal transition is proposed. By adap-
tively incorporating the probability temporal fitting man-
ner, the filter is enabled to mitigate the problem of
temporal degeneration.

• Different from inducing the representation, the low rank
constraint is conducted on the temporal response to
achieve beyond response consistency for improving track-
ing robustness and overcoming the appearance variants.

• The iterative process is solved by ADMM algo-
rithm. A comprehensive evaluation of ATGT, includ-
ing UVA123@10fps, DTB70, OTB100, UAVDT-M, and
UAVDT-S. The results demonstrate the advantages of the
ATGT, as well as its advantages over the most advanced
trackers.

The main structure of the paper is as follows. Section I is
the introduction of this paper. Section II introduces the related
works. And Section III introduces the new method proposed in
this paper. Then Section IV introduces the related experimental
results. Finally, Section IV provides a brief summary of our
work.

II. RELATED WORK

A. Visual Tracking based on Correlation Filter and Low-rank
Constraint

Deep learning methods have begun to make inroads in
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Fig. 2. Our proposed method adopts low rank temporal response constraint and group feature selection to improve the stability of correlation filter. In addition,
the distribution-based knowledge is discovered from the wasserstein distance for probability temporal fitting

the field of target tracking, and have gradually surpassed
traditional methods in terms of performance, resulting in great
breakthroughs. However, the correlation filter-based tracking
has still attracted a lot attention and played an important role
in UAV application.

In the field of visual recognition and target tracking, how
to extract essential data representation from data and learn
useful information is a key problem in these fields. Low rank
is an important property to describe the data structure, which
is suitable for extracting the essential features of data. A low
rank constraint from [19] is defined to achieve the temporal
smooth presented as follows:

rank(Wt)− rank(Wt−1) (1)

where Wt = [vec(w1), · · · ,vec(wt)] ∈ RN2C×t is a matrix.
Here, the constraint Equ. (1) imposes a low-rank property
across frames because it impacts on the selection process.
However, it is inefficient to calculate rank (Wt) in long-term
videos. Therefore, its sufficient condition as a substitute is
used:

d(wt − ut−1) (2)

where ut−1 =
∑t−1
k=1 wk/(t − 1) is the average of all the

filters learned before, d is a distance metric. Therefore, the
regularization term is used to adaptively strengthen the time
low-rank attribute as follows:

RT =

C∑
k=1

∥∥Wk
t −<(Wk

t−1)
∥∥2

F
(3)

where F norm in the Equ. (3) represents d in the Equ. (2),
that is, F norm distance measure. < in the Equ. (3) represents
ut−1 in the Equ. (3).

However, the correlation of the temporal parameters S in the
temporal mining model has not been fully studied. Therefore,
the difference between each frame with low rank property
is limited to avoid the mutation of the abnormal temporal
parameters. As shown in the following formula:

St − St−1 (4)

In addition, to avoid redundant feature information leading to
break the temporal consistency of the model, we adopt low-
rank processing for the temporal parameter St as follows:

Rank(St)−Rank(St−1) (5)

Based on Equ. (1), (2), (3) on the above inspiration , we can
get the following formula:

Rank(St)−Rank(St−1) =

C∑
k=1

∥∥Skt −<(Skt−1)
∥∥2

F
(6)

where <(Skt−1) =
∑t−1
k=1 wk/(t − 1) is the average of all

temporal parameters learned before.

B. Wasserstein Distance

In mathematical probability and mathematical statistics, it is
a common way to measure distance by Wasserstein distance.
In traditional target tracking, there is usually no big difference
between two frames of targets. Thus, traditional target tracking
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basically adopts Euclidean distance to measure the similarity
of correlation filters of two frames of targets. However, when
the target has obvious occlusion or deformation, the drift of
temporal noise will lead to the distortion of target tracking.

Here, we suppose that d(x, y) is treated as the probabil-
ity temporal fitting, and f(x) and g(x) are the probability
density function of learned filter in our UAV tracking task.
h(x, y) is an arbitrary joint distribution, and its edge function
is two probability density functions:

∫
h(x, y)dx = g(y),∫

h(x, y)dy = g(x). Then for p > 0, the Wasserstein distance
dwp is:

dwp (f, g) = inf
h

p

√∫
d(x, y)ph(x, y)dxdy (7)

The inf
h

represents the lower bound of all possible joint

probability functions, p usually takes 1 and 2. Actually, filter
ht is definitely treated as the a multi-variable distribution.
Therefore, the Wasserstein distance can be used to measure
the similarity of the filter with geometry of the underlying
space even the two distributions without overlap. But it is
noticeable that Equ. (7) can not be used in practice, because
joint distribution function of two distribution is not available.
Here comes the empirical distribution function:

δx(x) =
1

n

n∑
i=1

δxi
(x) (8)

Then the Wasserstein distance of X and Y is:

dwp (X,Y ) = dwp (δ(X), δ(Y )) (9)

Then the final Wasserstein distance [25] can be presented
as follows:

dwp (X,Y ) = inf
h

p

√√√√ n∑
i=1

m∑
j=1

Ci,jd(xi, yj)p (10)

where C = {Ci,j} is the transfer Matrix.

III. THE PROPOSED ATGT MODEL

In this section, we will introduce the model building process
and solution method of ATGT Algorithm.

A. ATGT Model

The final ATGT model can be separated into innovation
part to discover the inherent space of parameters St: (Rs(St)),
(Rc(St) and (RT (St)).

ε(Ht, St) =
1

2

∥∥∥∥∥Y −
K∑
k=1

Xk
t ~Hk

t

∥∥∥∥∥
2

2

+
1

2

K∑
k=1

∥∥ũ�Hk
t

∥∥2

2

+
St
2

K∑
k=1

∥∥Hk
t −Hk

t−1

∥∥2

2
+ λ1Rs(St) + λ2Rc(St) + λ3RT (St)

(11)
1) Spatial: λ1Rs(St) is in order to obtain the grouping

attribute of each spatial location (St)i,j: by using l2
norm,

Algorithm 1 Solution of the ATGT model with ADMM
algorithm

1: Input: y ,γ, λ1,λ2,λ3,vt,gt,N
2: Initialization:

v0
t = g0

t = h(0) = 0, i = 0;
3: Iteration:

While (i ≤ N ) do
(1) Update Ht∗ by solving Equ. (21), t = 1, 2, · · ·K;
(2) Update St by solving Equ. (22);
(3) Update S

′

t by solving the third sub-equation of
Equ. (23);

(4) Update Ĝt by solving Equ. (26);
(5) Lagrangian multiplier update V̂ i by solving Equ.

(27);
(6) Lagrangian multiplier update Γ by solving Equ.

(28);
(7 ) i = i+ 1;
end while

4: Output:
h(i+1)

2) Channel: λ2Rc(St) is using the Frobenius norm to
obtain the grouping attributes for channels

{
Skt
}C
k=1

,
3) Temporal: λ3RT (St) is the temporal regularization term

between St and St−1, which is subject to low rank
constraints to promote time consistency in the temporal
parameters.

4) Hyperparameters: λ1, λ2, λ3 is corresponding parame-
ter.

Correspondingly,

1) Spatial: Rs(St) =
N∑
i=1

∑M
j=1 ‖(St)ij:‖

2) Channel: Rc(St) =
K∑
k=1

∥∥Skt ∥∥F
3) Temporal: RT (St) = Rank(St)−Rank(St−1)

It is noticeable that the final ATGT is presented as follows:

ε(Ht, St) =
1

2

∥∥∥∥∥Y −
K∑
k=1

Xk
t ~Hk

t

∥∥∥∥∥
2

2

+
1

2

K∑
k=1

∥∥ũ�Hk
t

∥∥2

2
+

St
2

K∑
k=1

∥∥Hk
t −Hk

t−1

∥∥2

2
+
λ1

2
(

N∑
i=1

M∑
j=1

‖(St)ij:‖+

λ2

K∑
k=1

∥∥Skt ∥∥F + λ3

K∑
k=1

∥∥Skt −<(Skt−1)
∥∥2

F
)

(12)
Furthermore, the Wasserstein distance is similar to the in-

formation distribution, which can weaken its influence of tem-
poral degeneration. Thus, the treatment of ht with Wasserstein
distance is conducted to achieve the following model: From the
Equ. (10), W (N(Hk

t , H
k
t−1)) the probability temporal fitting

model with Wasserstein distance is presented as follows

min
C

p

√√√√√|Hk
t |∑

i=1

|Hk
t−1|∑
j=1

Ci,j
∥∥Hk

t −Hk
t−1

∥∥p (13)
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Then we get :

ε(Ht, St) =
1

2

∥∥∥∥∥Y −
K∑
k=1

Xk
t ~Hk

t

∥∥∥∥∥
2

2

+
1

2

K∑
k=1

∥∥ũ�Hk
t

∥∥2

2

+
p

√√√√√|Hk
t |∑

i=1

|Hk
t−1|∑
j=1

Ci,j
∥∥Hk

t −Hk
t−1

∥∥p + λ2

K∑
k=1

∥∥Skt ∥∥F
+
λ1

2

N∑
i=1

M∑
j=1

‖(St)ij:‖+

K∑
k=1

∥∥Skt −<(Skt−1)
∥∥2

F

(14)
In Equ. (14), where C is the transfer Matrix, in which

Ci,j > 0,
∑hk

t
i=1 Ci,j = 1

|hk
t |

.

B. The Optimization of Proposed Model

Here, the model in Equ. (14) can be minimized with the
alternating direction method of multipliers ADMM algorithm
to obtain the global optimal solution. Equ. (14) has a con-
volution calculation, Pasival’s theorem is used to facilitate
the calculation by converting the problem into the frequency
domain. For optimization, we use an auxiliary variable ĝt
by ordering ĝt =

√
TFht(Ĝ =

[
ĝ1
t , ĝ

2
t , ĝ

2
t , · · · , ĝKt

]
) where

F ∈ CT×T denotes the orthonormal matrix and the symbol
denotes the discrete Fourier transform (DFT) of a signal. Then
we get the objective function in the frequency domain as
follows:

ε(Ht, St, Ĝt) =
1

2

∥∥∥∥∥Y −
K∑
k=1

X̂k
t � Ĝkt

∥∥∥∥∥
2

2

+
1

2

K∑
k=1

∥∥ũ�Hk
t

∥∥2

2
+

λ1

N∑
i=1

M∑
j=1

‖Sijt‖+ λ2

K∑
k=1

∥∥Skt ∥∥F + λ3

K∑
k=1

∥∥Skt −<(Skt−1)
∥∥2

F

+
p

√√√√√|Ĝk
t |∑

i=1

|Ĝk
t−1|∑
j=1

Ci,j

∥∥∥Ĝkt − Ĝkt−1

∥∥∥p (15)

By minimizing Equ. (15), an optimal solution can be
obtained by (ADMM) [26]. The Augmented Lagrange form
of Equ. (15) can be formulated as:

ιt(Ht, St, Ĝt, M̂t) =ε(Ht, St, Ĝt) +
γ

2

K∑
k=1

∥∥∥Ĝkt −√TFHk
t

∥∥∥2

2

+

K∑
k=1

(Ĝkt −
√
TFHk

t )T m̂k
t

(16)
where M̂t = [m̂1, m̂2, · · · , m̂K ] ∈ RT×K is the Fourier
transform of the Lagrange multiplier and γ denotes the
step size regularization parameter. By assigning vkt =
mk
t /γ

(
Vk
t =

[
v1
t ,v

2
t , · · · ,vKt

])
. Equ. (16) can be reformu-

lated as:

ιt(Ht, St, Ĝt, V̂t) = ε(Ht, St, Ĝt) +
γ

2

K∑
k=1

∥∥∥Ĝk
t −
√
TFHk

t + v̂k
t

∥∥∥2
2

(17)

Due to the convexity of the proposed formulation, we apply
the augmented Lagrange method [27] to optimize Equ. (17).

Concretely, we introduce a slack variable S
′

= S and construct
the following Lagrange function:

ε(Ht, St, S
′
t , Ĝt) =

1

2

∥∥∥∥∥Y −
K∑

k=1

X̂k
t � Ĝk

t

∥∥∥∥∥
2

2

+
1

2

K∑
k=1

∥∥∥ũ�Hk
t

∥∥∥2
2

+

λ1

K∑
k=1

∥∥∥S′kt ∥∥∥
F

+ λ2

N∑
i=1

M∑
j=1

∥∥∥S′ijt∥∥∥+ λ3

K∑
k=1

∥∥∥Sk
t −<(Sk

t−1)
∥∥∥2
F

+

γ

2

K∑
k=1

∥∥∥Ĝk
t −
√
TFHk

t + V̂k
t

∥∥∥2
2

+
µ

2

K∑
k=1

∥∥∥∥Sk
t − S

′k
t +

Γk

µ

∥∥∥∥
F

+W

(18)

where the p

√∑|Ĝk
t |

i=1

∑|Ĝk
t−1|

j=1 Ci,j

∥∥∥ĝkt − Ĝkt−1

∥∥∥p is W , Γ is

the Lagrange multiplier sharing the same size as X , Γk is its k-
th channel, and µ is the corresponding penalty. The augmented
Lagrange function of the above is divided into main sub-
problems by the ADMM algorithm.

Ht=
1
2

K∑
k=1

∥∥ũ�Hk
t

∥∥2

2
+ γ

2

K∑
k=1

∥∥∥Ĝkt − ωhkt + v̂kt

∥∥∥2

2

St=λ3

K∑
k=1

∥∥Skt −<(Skt−1)
∥∥2

F
+ µ

2

K∑
k=1

∥∥∥Skt −S′kt + Γk

µ

∥∥∥
F

S
′

t=λ1

K∑
k=1

∥∥∥S′kt ∥∥∥
F

+λ2

N∑
i=1

M∑
j=1

∥∥∥S′ijt∥∥∥+µ
2

K∑
k=1

∥∥∥Skt −S′kt + Γk

µ

∥∥∥
F

Ĝt=

∥∥∥∥Y − K∑
k=1

X̂k
t � Ĝkt

∥∥∥∥2

2

+ γ
2

K∑
k=1

∥∥∥Ĝkt −ωHk
t +V̂k

t

∥∥∥2

2
+W

(19)
For simplification, in the Equ. (19), where the

√
TF is ω ,

We detail the solution to each subproblem for the update as
follows.

Update of Ht: given St, Ĝt, V̂t,S
′

t, we can optimize Ht

by:

min
Ht

1

2

K∑
k=1

∥∥ũ�Hk
t

∥∥2

2
+
γ

2

K∑
k=1

∥∥∥Ĝkt − ωHk
t + V̂k

t

∥∥∥2

2
(20)

The closed-form solution of ht can be written by:

H∗
t =

[
UT Ũ + γT I

]−1

γT (Vk
t + Gk

t ) =
γT (Vk

t + Gk
t )

(ũ� ũ) + γT
,

(21)
where Ũ = diag(ũ) ∈ RT×T represents diagonal matrix.

Update of St: Given other variables in Equ. (19), the
optimal solution of St can be determined as:

min
St

λ3

K∑
k=1

∥∥Skt −<(Skt−1)
∥∥2

F
+
µ

2

K∑
k=1

∥∥∥∥Skt − S′kt +
Γk

µ

∥∥∥∥
F

S∗
t =

2λ3

2λ3 + µ
Skt−1 +

µ

2λ3 + µ
S
′k
t −

Γk

2λ3 + µ
(22)

Update of S
′

t: Given other variables in Equ. (19), the optimal
solution of S

′

t is determined as:

S
′∗
t = max

(
0, 1− λ1

µ ‖Pk‖F
− λ2

µ ‖Pij‖2
Pkij

)
(23)

where Pkij = Skij + γkij/µ.
Update of Ĝt: It is very difficult to solve Ĝt directly in

Equ. (19) because of its complexity. we know that Parsavar’s
transformation of the Ĝt subproblem in Equ. (23)
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min
Ĝt

∥∥∥Y − X̂k
t � Ĝkt

∥∥∥2

2
+W +

γ

2

∥∥∥Ĝkt − ωHk
t + V̂k

t

∥∥∥2

2

(24)
Then we can get the solution of Ĝt as :

Ĝ∗
t =

x̂tY + ŜtĜt−1 + γωHk
t − γV̂ kt

2X̂T
t X̂t + CŜt + γ

(25)

After derivation using the Sherman Morrison formula, we
can obtain its solution:

Ĝt =
1

CŜt + γ
(I − 2X̂T

t x̂t

2X̂T
t X̂t + CŜt + γ

)ρ (26)

where the vector ρ is X̂tY + ŜtĜt−1 +γωHk
t −γV̂ kt , γ takes

the formγi+1 = min(γmax, ργ
i).

Lagrangian multiplier update: after solving the four
subproblems above, we can update the Lagrangian multipliers
as

V̂ i+1 = V̂ i + γi(Ĝi+1 − Ĥi+1) (27)

where i and i+ 1 denotes the iteration index and the step size
regularization constant γ (initially equals to 1) takes the form
of γ(i+ 1) = min(γmax, βyi). (β = 10, γmax = 10000)

Γ = Γ + µ(St − S
′

t) (28)

where Γ is the Lagrange multiplier sharing the same size as
X , Γk is its k−th channel, and µ is the corresponding penalty.

C. Computational Complexity Analysis

After the above analysis and derivation, because the op-
timization process is realized by the ADMM algorithm, the
solution of each optimization sub-problem is closed. There-
fore, it guarantees the global optimality of convergence to the
Eckstein-Bertsekas condition. In addition, we set the number
of iterations to 5. The detailed program is given as Algorithm
1. The convergence of Algorithm 1 can be guaranteed. Since
the overall objective function in Equ. (19) is convex with a
global optimal solution. In each iterative calculation of sub-
problem , FFT and inverse FFT transformations are needed.
Then the computational complexity is O(DMNlog(MN)).
And the computational complexity of sub-problems ht, ℘t, ℘

′

t

and Ĝt is O(DMN). To this end, if the number of iterations
is K, the total computational complexity of the model is
O(KDMN(log(MN) + 4)).

IV. EXPERIMENTS AND RESULTS

A. Experiment Implements and Evaluation metrics

We implement our ATGT using MATLAB 2017a. The
ATGT is implemented on a platform with one Intel(R)
Core(TM) i5-4200M CPU processor(2.50GHz), 4GB RAM.
We evaluate the performance of our ATGT and other trackers
on six benchmark datasets, including DTB70 [28], UAVDT-
S [29], OTB100 [30], UAVDT-M [31], and UVA123@10fps
[32]

For quantitative comparison, we employ the precision plot
[30] and the success plot [30]. The precision plot illustrates the
percentage of frames whose tracked locations are within the

given threshold distance to the ground truth. A representative
precision score with the threshold equal to 20 pixels is used
to rank the trackers. Meanwhile, the success plot is based on
the overlap ratio that is as follows:

s =
|rt
⋂
r0|

|rt
⋃
r0|

(29)

where rt is tracker bounding box, and r0 is the ground-truth
bounding box,

⋂
represents an overlapping area of the two,

⋃
represents a total coverage area of the two, and the || represents
the acreage of an area.

In addition, the accuracy of the proposed tracking algorithm
(precision graph) and the success graph (success graph) are
used to represent the performance of the tracking algorithm.
Thus, these two evaluation indicators also serve as the eval-
uation criteria of our experiment. Moreover, all tracking al-
gorithms are sorted according to the region under the image.
The execution speed of a tracking algorithm is given in frame
rate.

B. Performance Analysis

1) Comparison with CPU-based trackers: The results are
compared with 11 state-of-the-art trackers with both HOG
feature based trackers and deep-based trackers, i.e, KCF [33],
DSST [34], SAMF [35], SRDCF [8], STRCF [10], ECO-
HC (with gray-scale) [36] , AutoTrackC [12], GFSDCF [19],
ARCF-HC [28], HOG-LR, LADCF [37], ARCF-H [28].

Results on DTB70: As can be seen from part (a), (e) of Fig.
(3), ATGT performs best on DTB70, We evaluate our tracker
on a dataset DTB70. Fig. (3) shows the precision and success
plots of all trackers. Among the existing methods, our ATGT
has the best performance with the score of 0.492 and 0.714 on
precision and success plot. Compared with the AutoTrack in
second place on success plots which has the precision score
of 0.472 and the success score of 0.699, our ATGT tracker
has improved almost 2% and 1.5% respectively. By the way,
compared with the GFSDCF which has the precision score of
0.448 and the success score of 0.672, our ATGT tracker has
improved almost 4.4% and 5.7%. Because we add Wasserstein
distance and low rank processing to AutoTrack, the scores
of AutoTrack and ATGT are compared to better reflect the
advantages of ATGT, which is shown in Fig. (3) to have the
best performance of all trackers. This shows that our ATGT
has better tracking than AutoTrack.

Results on OTB100: In part (b) of Fig. (3), ATGT also
has the best success plot with a score of 0.673 , followed
by STRCF and LADCF, and their scores were are 0.661 and
0.655 . In part (f) of Fig. (3), GFSFCF and AutoTrack rank
behind them with an accuracy of 0.625 and 0.591. As for
the precision plot, we can see the ATGT ranks the first with
0.879, exceeding GFSDCF and Autotrack by 6.5% and 8.6%
respectively. Thus, we can say that our method performs best
of all 11 methods. Because of the low rank smoothing of
the temporal regularization term, we can clearly improve the
information redundancy caused by the multi-channel feature,
compared with other algorithms, our algorithm ATGT achieves
good results in gray-scale and color videos target tracking.
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Fig. 3. Success and Precision plots of proposed methods as well as other trackers on the (a)DTB70, (b)OTB100, (c)UVA123@10fps, (d)UAVDT-S datasets.

Results on UVA123@10fps: As can be seen from part (c),
(g) of Fig. (3), Overall, we can see that our method ATGT
performs better than all the other state-of-the-art trackers in
terms of success and precision. Compared with the second
best tracker, ATGT achieves the improvement by 1.5% and
1.9% on UAV123, respectively. During tracking, because our
Wasserstein distance reduces the influence of the target de-
formation, we can find that our ATGT algorithm has been
improved obviously.

Results on UAVDT-S: In part (d),(h) of Fig. (3) show the
precision and success plots of all trackers. Among the existing
methods except ECO-HC, our ATGT gets the best performance
with the score of 0.742 and 0.476 on precision and success
plots respectively. Our ATGT performs better than AutoTrack
with an AUC of 2.8%. In the process of target tracking,
we adopt the Wasserstein distance of information distribution
instead of the Euclidean distance from point to point, thus
effectively reducing the influence of boundary effect, our
Algorithm is a significant improvement over algorithms like
AutoTrack.

Results on UAVDT-M: The colors red, blue and green
represent the first, second, and third best. It is clear that our
algorithm is better than the other 11 algorithms, in which the
fraction of our algorithm in success and precision is 0.468
and 0.739, and are higher than ARCF-HC and ARCF-H.
Thus, we can say that our algorithm is best performing in
the UAVDT-M dataset compared to the other 11 algorithms.
Combined with low rank smoothing and Wasserstein distance,
ATGT based on AutoTrack provides excellent performance
for state-of-the-art trackers. As shown in Fig (5), despite the
interference of multiple targets in the video, our algorithm has
achieved significant improvement and performance. To take
the visualization clearly, we figure out the tracking results of
ATGT (green wire frame) AutoTrack (blue wire frame) and
GFSDCF (red wire frame) on 3 challenge video sequences for
comparison, as shown in Fig. (4). As can be seen from Fig.

(4), in these three video sequences, the difficulty of tracking is
mainly caused by occlusion, fast movement and illumination
changes respectively. Our method successfully captures the
tracking target and keeps track of it all the time. The results
show the accuracy and robustness of ATGT in the video
sequences with challenge factors. It is clear to see that our
tracker ATGT has a fps of between 1 and 3, which is roughly
in line with Table I.

2) Comparison with Deep-based Trackers: We compared
the trackers on the UAVDT-S dataset with deep-based feature
trackers to better evaluate the performance of our ATGT. The
results are compared with deep-based trackers (i.e, ADNet
[38], MDNet [39], ASRCF [40], ECO [36], SiamFC [41],
CFNet [42], MCPF [43], CCOT [44], CREST [45], HDT [46],
FCNT [47], CF2 [48], SINT [49]) and cpu-based trackers(i.e,
DSST [34], SAMF [35], STRCF [10], ECO [36] ARCF [28],
HOG-LR, LADCF [37], AutoTrackc [12], GFSDCF [19],
ARCF-H [28]).

As can be seen in Table (I), ATGT performs best on
UAVDT-S. Table (I) shows the precision and success plots
of all trackers. Among the existing methods, our ATGT wins
the best performance with the score of 0.742 and 0.476 on
precision and success plots respectively. Compared with the
MDNet in second place on success plots which has the preci-
sion score of 0.725 and the success score of 0.464, our ATGT
tracker has improved almost 1.7% and 1.2%, respectively. It
is worth noting that the tracking speed of our algorithm is
still relatively good performance on the UAVDT-S dataset with
deep feature.

C. Tracking Process Analysis

Fig. (6) presents the overlap rate between the estimated
and ground-truth bounding boxes at each frame of the BMX5
sequence from DTB70. In the sequence, when a person’s
posture changes so much that parts of themselves are obscured,
AutoTrack does not adapt to this change, although it does
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4. The comparison of tracking for ATGT, AutoTrack and GFSDCF on 3 video sequences. Figure (a), (b), (c), (d) show how our method handles targets
with fast movement. Figure (e), (f), (g), (h) show how our method handles targets with occlusion. Figure (i), (j), (k), (l) show how our method handles targets
with lighting changes.

TABLE I
Comparison with the Deep Trackers and handcrafted feature trackers on UAVDT-S. The RED, GREEN, and BLUE fonts show the best three results,

respectively. The superscript indicates the speed.

Tracker Prec Succ Fps Tracker Prec Succ Fps Tracker Prec Succ Fps
AutoTrack 0.722 0.448 20.1 ECOHC 0.700 0.421 12.8 CCOT 0.659 0.409 0.9
GFSDCF 0.687 0.452 11.2 LADCF 0.678 0.433 11.0 CREST 0.649 0.396 4.3
ARCF 0.725 0.456 157.6 ADNet 0.683 0.429 7.5 HDT 0.596 0.303 9.0
STRCF 0.636 0.416 10.6 MDNet 0.725 0.464 1.0 FCNT 0.656 0.245 3.2
ARCF2 0.730 0.461 147.9 SINT 0.570 0.290 96.8 CF2 0.602 0.355 9.8
HOGLR 0.442 0.273 2.6 ASRCF 0.704 0.443 0.8 CFNet 0.680 0.428 41.0
DSST 0.685 0.371 44.7 ECO 0.702 0.452 16.5 MCPF 0.660 0.399 3.6
SAMF 0.588 0.335 4.3 SiamFC 0.681 0.447 37.9 ATGT 0.742 0.476 8.7

Fig. 5. Overall comparison with other compared methods on UAVDT-M
dataet

not completely lose its target as shown in Fig. (6)(before
frame 54). The detection response of AutoTrack at frame #72
becomes less salient and contains more noise compared to
ATGT, because AutoTrack is still affected by the redundancy
of the history frame when tracking the next frame. Therefore,
AutoTrack begins to drift gradually and finally fails to track
the person (frame #72). As shown in Fig. (6), except for a few
frames, the overlap rate of AutoTrack between the estimated
and ground-truth bounding boxes remains around 0 after.

Fig. 6. Overlap of ATGT and AutoTrack on the sequence BMX5 from
DTB70.

D. Ablation Analysis

In order to study the effect of the parameter setting on
the tracking effect, we mainly analyze the parameter of the
Wasserstein distance and the parameter of penalty term in
UAVDT-S dataset, that is C and µ, and get the best parameter
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Fig. 7. Comparison of tracking results based on different parameters C.

setting of tracking effect. In this paper, we discuss the tracking
performance of this method under different parameters by
using the method of controlling variables.

In our experiment, we first fix the parameter µ to 0.005. As
shown in Fig. (7), when the value of C is 0.1, both success
and precision are higher 0.01 and 0.02 higher than Autotrack
and GFSDCF. Then let’s fix C to 0.1. From Fig 8 we can see
that µ reaches its maximum value when µ is 0.005.

Fig. 8. Comparison of tracking results based on different parameters µ

V. CONCLUSION

In this paper, an UAV tracking method (ATGT) is proposed
based on the distribution of temporal knowledge. The probabil-
ity temporal fitting and low rank property are conducted based
on the correlation filter model. To accurately and reasonably
allocate the temporal parameters and reduce the influence of
temporal degeneration, the Wasserstein distance is used to
replace the Euclidian distance to describe the similarity of
filters. The low rank constraint is used to achieve beyond
response consistency. In the process of model optimization,
the ADMM algorithm is used to solve the whole iterative
process. Compared with state-of-the-art techniques, a large
number of experiments have proved the performance of our
model. However, this paper only improves the global response
and the temporal domain update of the correlation filter. To
improve its accuracy, it can be considered to improve the
trade-off between spatial and temporal domain to improve the
accuracy of target tracking.
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