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Abstract— The automated monitoring of road pavement con-
ditions is a challenging subject in intelligent transportation.
However, the existing studies mostly focus on extracting pavement
damages such as cracks, while the pavement aging conditions are
still less investigated. In this paper, a novel method based on a
modified recurrent neural network is designed for automated
monitoring of asphalt pavement aging phenomena from fine-
resolution satellite imagery. A spectral augmentation method
is proposed to enhance the spectral details of the road pave-
ments. A novel loss function is also proposed to improve the
bi-directional gated recurrent unit (Bi-GRU) network in order to
better classify different degrees of road pavement aging and non-
pavement objects. In order to demonstrate the outperformance of
the modified network Bi-GRU+, the Worldview-2 satellite image
(16360 ∗7728) covering 16 asphalt roads in the southwestern
suburb of Beijing City is used. The results show that the proposed
approach has better performance than existing machine learning
methods, with an overall accuracy of 98.16% and a Kappa
coefficient of 0.97. The overall processing time of the proposed
method is 7836 seconds in our case study. The proposed method
is efficient for large-scale monitoring of road health conditions
from fine-resolution satellite imagery. It can become a part of
intelligent transportation and provide a new foundation for large-
range automated monitoring of road pavement aging conditions.

Index Terms— Remote sensing, recurrent neural network,
gated recurrent unit (GRU), asphalt pavement, aging conditions,
multispectral imagery.

I. INTRODUCTION

ROAD networks connecting buildings, villages, cities,
and countries are the most important transportation

infrastructure in modern life. The conditions of road pave-
ments are directly related to the driving experience, traveling
comfort, and driving safety [1].

The road pavement conditions can be simply divided into
two components: pavement aging [2], [3], [4] and pavement
damages [5], [6], [7], [8], [9]. For flexible pavement sys-
tems, pavement aging denotes the quality of asphalt pave-
ment degradation over time caused by weathering, loads,
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and moisture [2], [10]. The damages such as cracks, alligator
cracks, and potholes are likely to appear on the heavily
aged pavement. Therefore, road maintenance engineers should
regularly assess the road conditions and timely conduct main-
tenance to extend the road life [11].

A common method for road pavement condition assessment
is field inspection by engineers in order to evaluate the phys-
ical and chemical parameters of the pavement using indices
such as the pavement condition index, structural index, and
overall pavement condition index [3], [12]. In recent years, the
advanced pavement management system (PMS) mounted on a
vehicle has been used for road pavement inspection. The PMS
includes several sensors and equipment, including GIS, GNSS,
laser scanners, image acquisition systems, odometers, and
ground-penetrating radar [13], [14], [15], in order to instanta-
neously evaluate the road health and provide information for
maintenance strategies and decision-making [15], [16]. How-
ever, the field investigation and the PMS are labor-intensive
and have technical limitations, such as single-lane detection,
traffic obstruction, road surface destruction, costly large-scale
monitoring, and time-consuming and laborious [2], [17].

In recent years, with the advancement of remote sensing
technology and computer algorithms, high-resolution satellite
imagery and deep learning approaches have been used for
pavement conditions mapping [2], [17], [18], [19]. However,
most of the existing deep learning algorithms focus on pave-
ment damage monitoring and are suitable for fine-scale moni-
toring of pavement quality in a small range, but not suitable for
monitoring large-scale pavement aging processes. In addition,
the conventional shallow machine learning algorithms rely on
the manual selection of features or thresholds, while having
a low degree of automation and relatively poor accuracy.
Therefore, the existing methods fail to combine deep learning
and high-resolution satellite imagery well. A method that can
detect road aging conditions over a large range with a high
automation and generalization ability is not yet developed.

A novel method for monitoring asphalt pavement aging
conditions based on a deep learning architecture is proposed
to solve this problem. The proposed method does not require
manual selection of features and thresholds and can be used for
large-range asphalt pavement aging monitoring. The proposed
deep learning network model is improved on the basis of
the gated recurrent unit (GRU) to be suitable for monitoring
pavement aging conditions. To the best of our knowledge, it is
the first time developing an RNN-based classification model
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used to monitor asphalt pavement aging conditions from sub-
meter resolution satellite imagery.

The contributions of this paper are summarized as follows:
(1) We propose a biGRU-based road pavement aging clas-

sification method that does not require the manual selection
of features or thresholds and is highly automated. To our
knowledge, this is the first approach that uses RNN network
architecture to develop an algorithm for monitoring asphalt
pavement aging conditions.

(2) Combined with the characteristics of the pavement aging
process, a novel loss function is proposed based on the cross-
entropy loss. It can allow the model to focus on learning
“hard samples” and “similar samples” and improve the model’s
ability to classify different degrees of asphalt pavement aging.

(3) Using satellite imagery as the data source, an automated
pavement aging monitoring method including spectral aug-
mentation and statistical analysis is developed. It allows the
monitoring of large-range pavement aging conditions.

The remainder of this paper is organized as follows. The
Related works are reviewed in Section II. Section III addresses
the details of the proposed methods. The experiments and
results of this study are presented in Section IV, and the
discussion is provided in Section V. Finally, the conclusions
are drawn in Section VI.

II. RELATED WORK

A. Pavement Aging Monitoring

The asphalt pavement aging conditions can be monitored
using spaceborne and aerial remote sensing imagery [19].
Multispectral and hyperspectral image data cover a broad
spectral range and have a relatively fine spectral resolu-
tion, allowing the monitoring of the pavement aging process
[4], [11], [20], [21], [22], [23], [24].

The pavement quality changes with the composition and
content of asphalt concrete, which results in changes of the
pavement spectral reflectance. For instance, the volatilization
and oxidation of asphalt can be characterized by the absorption
of iron oxides at 520, 670, and 870 nm, while the slope
of the spectral curve between the visible and near-infrared
wavelengths increases as the asphalt pavement ages. Based
on these characteristics, Herold et al. [3], [4] construct three
spectral indices to characterize the slope in the visible to near-
infrared (VNIR) bands, in order to represent the degree of
pavement aging. However, these indices are less efficient for
monitoring seriously aged pavements and are only suitable for
relatively healthy pavements.

The field investigation demonstrated that the asphalt con-
tent of pavement decreased with the increase of the service
life, which results in increasing pavement reflectivity and
brightness in the images [20]. Therefore, asphalt pavement
with different aging conditions can be monitored based on
the pavement brightness [20], [25]. Mettas et al. [23] divide
the aged pavements into three levels and explore the possi-
bility of using Landsat7 ETM+ data to monitor the pave-
ment conditions. They deduced that the three aging levels
of asphalt pavements had significant spectral differences,
which demonstrated the potential of using satellite imagery

to monitor the pavement aging conditions. Mohammadi [26]
and Andreou [27] use hyperspectral images as data sources.
They deduce that the Spectral Angle Mapper(SAM) is rela-
tively efficient and more suitable for pavement aging condi-
tions mapping. Pan et al. [28] extracted the aging classes of
asphalt pavement using multiple endmember spectral mixture
analysis (MESMA) and Worldview-2 images. Their method
minimizes the influence of mixed pixels on the classification
result.

However, these approaches for monitoring pavement aging
conditions based on a small sample size have low automation,
require threshold selection and have poor generalization ability
when the regions of interest or image data change. These
problems have limited the application of remote sensing in
practical road pavement conditions monitoring.

B. Deep Learning

Deep learning is a data-driven approach which provides high
accuracy, automation, and high generalization performance for
massive samples [29]. Researchers have discovered the poten-
tial of deep learning in road pavement conditions monitoring.
Most of the existing deep learning architectures for monitoring
road pavement conditions focus on extracting cracks and other
pavement damages. They can be grouped into three categories.

The first category is the image classification into healthy
and damaged road sections [30], [31], [32]. This type of
method has a high classification accuracy and demonstrates
the potential of deep learning for pavement monitoring. It is
often combined with other methods to detect road damage. For
instance, Pan et al. [33] perform multi-scale segmentation of
road images and use the AlexNet to obtain different damage
categories.

The second category is the object detection, which deter-
mines the road damage in very fine resolution imagery using
a detection box [34], [35], [36]. It includes the one-step
methods that directly detect the damage [9], [37], [38], and
the two-step methods that use a detection step following
classification [39], [40], [41], [42]. These methods generally
used rectangular boxes to locate the detected damaged objects.
Due to the fact that road pavement damages have irregular
shapes, these methods have limited identification accuracy
and cannot obtain the shape of the damaged sections for
subsequent road health assessment.

The third category is the image segmentation, which
classifies each pixel into healthy and damaged pavement
[29], [33], [43], [44], [45], [46]. In general, pavement damages
comprise a relatively small area in road pavement images.
Thus, these methods suffer from the sample imbalance prob-
lem. In addition, some studies propose improvements in the
network structure, such as the feature pyramid and hierarchical
boosting network (FPHBN) [43], in which the samples are
weighted layer by layer. The model focuses on learning
difficult samples (i.e., hard samples), minimizing the sample
imbalance problem. Thus the approach performs well on
multiple sample sets. Kang et al. [18], [47], [48] perform
crack segmentation in complex environments and different
lighting conditions by integrating three independent computer
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Fig. 1. Framework for asphalt pavement aging monitoring from fine-resolution satellite imagery using the Bi-GRU+ network.

vision algorithms and developed a new encoder with an
attention module. Choi et al. [49] propose a real-time crack
segmentation DL architecture, referred to as SDDNet-V1,
which can greatly improve the time efficiency and identify
relatively vague cracks.

These deep learning models are mainly based on two-
dimensional convolutional neural networks (2DCNNs). Their
high image processing ability ensures the detection of pave-
ment damages (e.g. cracks) with distinguishing spatial char-
acteristics. However, different pavement aging degrees are
characterized by spectral characteristics, and 2DCNNs are not
well suited for fully using the abundant spectral information
in multispectral or hyperspectral data. In addition, the spatial

resolution of the remotely sensed data required for pavement
aging monitoring is often not sufficient for damage monitor-
ing, and the spatial information is less, which further limits
the application of 2DCNN in pavement aging monitoring.
Therefore, these existing deep learning methods cannot be
applied to road pavement aging mapping. Therefore, new deep
learning architectures are required to monitor pavement aging
conditions from fine-resolution satellite imagery.

III. FRAMEWORK AND METHODS

A. Framework Architecture

The proposed framework (Fig. 1) is composed of three
parts: data preprocessing, Bi-GRU+ network-based pavement
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classification and decision support. The satellite image is
processed to produce a road reflectance image in the data pre-
processing part. In addition, a nonlinear function is proposed
for spectral augmentation and the field investigation is per-
formed within three months of the satellite image acquisition
from which the true aging conditions of the road pavements
are collected. The Bi-GRU+ network is developed and used
to classify the augmented reflectance image pixel by pixel.
After the statistical analysis of the classification results, the
pavement aging conditions of each road are derived. They
can be used as decision support for the road maintenance
department

B. Data Preprocessing

In order to meet the requirements of large-scale road
pavement aging monitoring, the proposed framework uses
fine spatial resolution multispectral satellite images as the
data source. The spatial resolution should be less than one
meter, and the spectrum should cover at least visual and near-
infrared (VNIR) bands. A radiometric correction of the image
is performed using the gain and offset data provided in the
image metadata. In addition, an atmospheric correction is
performed using the Fast Line-of-sight Atmospheric Analysis
of Hypercubes (FLAASH). The resultant reflectance images
are then clipped to contain only the road pavements, in order
to reduce the influence of non-pavement areas on the clas-
sification process. A field investigation within three months
of the image acquisition date is performed to collect the true
conditions of road pavement aging in the study area.

The aging of asphalt pavement is a gradual process. The
field investigations demonstrated that the aging of asphalt
pavement can be divided into three categories [2], i.e., slightly
aged, moderately aged, and heavily aged. The slightly aged
pavement refers to a small reduction in the asphalt content
due to volatilization, oxidation, absorption, and photochem-
ical reactions. The asphalt oil film has mostly disappeared.
However, the gravel aggregate has not been exposed (Fig. 2b).
In moderately aged pavement, friction damage occurs due to
the traffic load and physical weathering, causing the exposure
of gravel aggregate in the asphalt mixture (Fig. 2c). When the
exposed gravel aggregate is subjected to ongoing friction and
pressure of vehicle loads and weathering, the coarse aggregate
breaks and drops, which results in heavily aged pavement
(Fig. 2d). During the aging processes, the deformability and
structural strength of the road pavement is degraded. Eventu-
ally, a wide range of road pavement damage occurs in different
forms, such as cracks, potholes, etc.

The Munsell neutral value scale card (MNVSC) is used in
the field investigation as a quantitative reference to describe
asphalt pavement aging conditions. The MNVSC divides the
gray color from pure black to pure white into 37 levels
according to the ISCC-NBS international standard [50]. Each
level has a value, which is a dimensionless number. Field
comparisons and visual discriminations are performed on the
color of the asphalt pavement of different aging degrees,
in order to obtain the gray values of the underlying asphalt
pavement. The three categories of aging conditions (Table I)

TABLE I

ISCC-NBS COLOR NAMES, VALUES AND SPECTRAL REFLECTANCE OF
THE MNVSC FOR THREE ASPHALT AGING CONDITIONS

correspond to the grayscale values: slightly aged asphalt
pavement ([N0.5/-N4.25/]), moderately aged asphalt pave-
ment ([N4.25-N6.75/]), and heavily aged asphalt pavement
([N6.75/-N8.75/]). The level [N8.75/N9.5/] is white, and it
is ignored because it does not correspond to any asphalt
pavement.

An analytical spectral devices full range (ASD Field Spec-
FR, ASD Corporation) is used to record spectral data. The
instrument has three detectors covering the RGB, near-infrared
(VNIR) and a short-wave infrared (SWIR1 and SWIR2) band,
with a spectral sampling interval of 1.4 nm for the VNIR detec-
tor and 2.0 nm for the SWIR. A field spectral measurement is
performed between local time 11:00 and 13:00 under a clear
sky, and the dark current is removed at every beginning of a
measurement. The optical fiber bundle collects the reflected
radiation with a 25-deg conical field of view at 50 cm above
the pavement, which corresponds to a 22 cm×22 cm region.
Besides the ground targets, a white reference is measured
with the Spectral on Panel (Lab sphere Inc., North Sutton,
New Hampshire) to standardize and calculate the spectral
reflectance of all the ground targets. The spectrum of every
target, including the white reference, is recorded five times
per measurement, and then the mean of five spectra was used
in further processing. In addition to the asphalt pavement,
the spectral information of other related objects including
vegetation, cement sidewalks, traffic lines, and bare soil was
also collected. Based on the field investigation, the pavement
features are categorized into three aging conditions (slightly
aged, moderately aged and heavily aged), vegetation, shadows
and others six categories. The others category includes traffic
lines, skyways and so on.

The spectral characteristics of the categories are summarized
as follows:

1) As the pavement ages, the reflectance of the asphalt
pavement increases. The reflectance values of the slightly
aged pavement range from 5% to 10%, those of the mod-
erately aged pavement range from 12% to 20%, and that of
the heavily aged pavement range from 14% to 35%.
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Fig. 2. Illustration of the aging processes of asphalt pavement over time. (a) Fresh pavement, (b) Slightly aged, (c) Moderately aged, (d) Heavily aged,
and (e) Pavement damages (e.g. crack, pothole, etc.). The pavement photos were captured by Canon 500, and the spectral curves were made from the in-situ
measurements of pavement spectra using the portable ASD device.

2) When the pavement ages, the slope of the reflectance
curve in the VNIR bands increases.

3) The reflectance values of the pavement surface and other
related objects range from 0% to 40%.

In general, the spectral characteristics of different aging
conditions are quite clear. The specific environment may affect
them. For example, the spectral characteristics of shadows
and heavily aged pavement are relatively similar. Therefore,
a spectral augmentation method is proposed in this paper.
Equation (1) is used for spectral augmentation.

x = − (ρ − 1)2 + 1 (1)

where ρ� [0, 1] is the original reflectance and x� [0, 1] is the
augmented spectral reflectance.

Equation (1) can enlarge the value of ρ� [0, 0.4] to
x� [0, 0.64] without changing the value range of ρ, which can
enlarge the spectral characteristics of different categories.

C. Bi-GRU+ Network-Based Pavement Classification

In contrast to the traditional feed-forward neural networks
such as CNNs, the hidden layers of an RNN are connected
between nodes and form a directed graph along a sequence.
Therefore, an RNN has a high performance for sequential
data analysis, and it has been widely used in natural language
processing [51]. However, the RNN is problematic for spectral
data, which results in gradient disappearance and the inability
to obtain spectral contextual information [52]. To address
these problems, a Bi-GRU+ network model is proposed.



CHEN et al.: NEW METHOD FOR AUTOMATED MONITORING OF ROAD PAVEMENT AGING CONDITIONS 24515

Fig. 3. Diagram of the proposed Bi-GRU+ network.

The proposed network is less affected by gradient disap-
pearance, has fewer parameters and higher efficiency than
the long short-term memory network (LSTM) [53]. It can
also extract contextual information from spectral sequence
data to learn spectral characteristics, which makes it suitable
for multispectral or hyperspectral image data. In addition,
the proposed loss function is improved using cross-entropy,
in order to be suitable for pavement aging monitoring.

The architecture of the proposed network is shown in
Fig. 3. Each pixel of a multispectral or hyperspectral image
is considered as a spectral sequence x = (x1, x2, . . . . . . , xn),
where xt represents the pixel value in band t . Consequently,
the remote sensing images can be transformed into spectral
sequence data as input into the network. The input spectral
sequence data contains contextual information between the
spectra. This information is learned using the forward and
backward hidden layers and is input into a fully connected
layer to obtain the spectral features. The Softmax classifier is
then used to predict the classes.

Complex environments can cause problems such as sample
imbalance or mixed pixels in actual scenes. For example, the
proportion of different aging conditions on the road pavement
is often different, which causes the problem of sample imbal-
ance. These problems make some pixels, denoted by “hard
samples”, difficult to classify. On the other hand, the aging of
asphalt pavement is a gradual process. Thus some pixels are
difficult to classify between two different aging conditions,
denoted by “similar samples”.

To solve these problems, the cross-entropy function is
improved as (2).

Lloss=
C−1�
i=0

(α ∗ �
1− pi

� ∗ pi−
�
1− pi

�2 ∗ yi ∗ log pi) (2)

where Lloss is the improved cross-entropy loss function,
C is the number of categories, yi is the one-hot encoding
of the i-th category, and pi is the predicted probability of
the i-th category. Compared with the original cross-entropy
loss function Lcross , the modulating factor

�
1− pi

�2
is used

to make the model focus on training the hard samples.
As pi → 1, the factor tends to 0 and the loss for well-classified
samples is down-weighted. Moreover, an additional item α ∗�
1− pi

� ∗ pi is added to improve the classification result of
similar samples, where α ≥ 0 is the tunable hyperparameter.
As pi → 0.5, the item increases and the loss for similar
samples is up-weighted.

The advantage of the GRU is that hidden states can be
selectively reset and updated by the reset gate and update gate.
The advantage of the proposed network is that it can focus on
the feature bands to distinguish between different objects. The
network hidden layer is computed as:⎧⎨

⎩
−→
Rt = σ

�
xt
−−→
Wxr + Ht−1

−−→
Whr +−→br

	
−→
Zt = σ

�
xt
−−→
Wxz + Ht−1

−−→
Whz +−→bz

	 (3)

−̃→
Ht = tanh

�
xt
−−→
Wxh +

�−→
Rt � Ht−1

	−−→
Whh +−→bn

	
(4)
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Fig. 4. Calculation of the forward hidden layers.

−→
Ht = −→Zt � Ht−1 +

�
1−−→Zt

	
�
−→

Ht (5)

Equations (3)-(5) are used for the forward hidden layers,
where xt is the input data, and

−→
H t is the output at step t

(Fig. 4).
In (3),

−→
Rt and

−→
Zt represent the reset gate and update gate of

the forward hidden layer, H t−1 is the previous hidden state,−−→
W xr ,

−−→
Whr ,

−−→
W xz , and

−−→
Whz are the weight parameters,

−→
br and−→

bn are the biases, and σ represents the sigmoid activation
function. More precisely, the reset gate

−→
Rt controls how the

hidden state of the previous step flows into the candidate
hidden state of the current step. In addition, the hidden state
of the previous step contains all the historical information
of the sequence data up to the previous step. Therefore, the
reset gate can be used to drop prediction-irrelevant historical
information, as expressed in (4). The update gate

−→
Zt helps to

capture partial long-term dependencies in the sequence data,
as shown in (5). Equation (4) is used to calculate the candidate
hidden state.

−−→
W xh and

−−→
Whh are the weight parameters,

−→
bn is

the biases, � denotes the multiplication by the element, and�−→
Rt � H t−1

	
represents the output of the reset gate of the

current step and the hidden state of the previous step. If the
element value in the reset gate is close to 0, the reset gate
corresponds to the hidden state element of 0. That is, the
hidden state of the previous step is discarded. If the element
value is close to 1, the hidden state of the previous step is
retained. Subsequently, the element multiplication of the result
is used to link to the input of the current step. The candidate
hidden state is calculated by the fully connected layer with the
tanh activation function.

Equation (5) is used to calculate the hidden state in the
current step. Since (4) uses the sigmoid activation function,
the update gate

−→
Zt ranges between 0 and 1.

−→
Zt � H t−1 and�

1−−→Zt

	
� 
−→

H t represent the network with the memory and
the forgotten sequences of the above and current information,
respectively.

The backward hidden layer structure is similar to the
forward hidden layer structure. It extracts the following infor-
mation of the sequence data using (6) ∼ (8).

⎧⎨
⎩
←−
R t = σ

�
xt
←−−
Wxr + Ht+1

←−−
Whr +←−br

	
←−
Zt = σ

�
xt
←−−
Wxz + Ht+1

←−−
Whz +←−bz

	 (6)

←̃−
Ht = tanh

�
xt
←−−
Wxh +

�←−
Rt � Ht+1

	←−−
Whh +←−bn

	
(7)

←−
Ht =←−Zt � Ht+1 +

�
1−←−Zt

	
�
←−

Ht (8)

The forward state
−→
H t and back hidden state

←−
H t are merged

into H t and sent H t to the fully connected layer. The final
classification results are obtained using the Softmax classifier.

D. Decision Support

The classification map is achieved using the abovemen-
tioned approach. Some statistical analysis can be extracted
from the classification map so as to obtain the pavement
aging conditions in the study area. The aging conditions and
their distribution on each road pavement will serve as further
decision support for the road maintenance department. The
heavily aged road pavements are often accompanied by cracks
and other damages, which seriously affect driving safety and
should be maintained as soon as possible. There is a risk
of further deterioration of moderately aged road pavements,
which also requires attention. The proportion of pixels with
different aging degrees on each road is counted, and they
are weighted as 0.05, 0.3, and 0.65 corresponding to slightly,
moderately, and heavily aged, so as to calculate the pavement
aging index of each road. The larger the index value, the more
serious the aging condition of the road pavement. If the index
value is greater than 0.5, the road surface is heavily aged and
needs maintenance.

E. Accuracy Assessment

The overall accuracy (OA), average accuracy (AA), class
accuracy, Kappa coefficient K , Macro Precision, Macro
Recall, and Macro F1 are used to evaluate the classification
performance of the proposed network on the test dataset. The
OA is the ratio between the number of correctly classified
pixels and the total number of pixels in the test set, while the
AA is the average of the class accuracies. The K is an index
used to determine whether the model prediction results and
actual classification results are consistent, as defined in (9).

K = O A −
�

k nk1∗nk2

N2

O A +
�

k nk1∗nk2

N2

(9)

where N is the sum of the confusion matrix elements, nk1 is
the sum of elements in row k, nk2 is the sum of elements in
col k.

Macro Precision, Macro Recall, and Macro F1 are the
averages of the Precision, Recall, and F1 of all the classes,
respectively. The larger the values of the metrics, the better
the performance.

IV. EXPERIMENTS AND RESULTS

All the experiments are implemented on a Windows
Server with Python3.6, Pytorch1.8.1 [54] and scikit-learn [55]
(CPU: Intel Xeon Silver 4116@2.1GHz; RAM: 128GB; GPU:
NVIDIA RTX 1080TI).
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Fig. 5. Worldview-2 satellite image and roads in the study area.

A. Study Area and Sample Set

Part of Fangshan district, southwest of Beijing City, China,
is considered as the study area. This area is relatively spacious,
with light traffic, no tall buildings and little shadow on roads.
Thus, it is suitable for monitoring road aging conditions from
satellite remote sensing data. There are 16 asphalt-paved roads
located in the study area, covering high-grade roads and urban
secondary roads (Fig. 5). For the convenience of description,
the roads accordingly are coded from No.1 to No.16. The field
investigation shows that these road pavements are in different
aging conditions.

Worldview-2 satellite image data covering the study area are
used to evaluate the proposed framework. The Worldview-2
sensor has eight bands with wavelengths covering visible and
near-infrared bands (0.4–1.04μm). The image was acquired
on 21 September 2013. The Gram-Schmidt algorithm is used
to pan sharpen the panchromatic and multispectral image. The
resultant reflectance images have a spatial resolution of 0.5 m.

Combined with the field investigation results, 17000 pixels
in total are selected on the five road images for the categories
of different aging degrees (Road 1, Road 3, Road 12, Road 13,
and Road 16) by visual interpretation and field investigation.
The train and validation sets are randomly generated using
a ratio of 7:3, and 49000 pixels on the remaining roads are
extracted to generate a test set (Table II).

B. Hyperparameter Setting

The three main hyperparameters (the learning rate, the factor
α in the loss function and the hidden state unit) significantly

TABLE II

NUMBER OF TRAIN/VALIDATION/TEST SAMPLES

affect the results. The impact of different hyperparameters on
the model performance is evaluated. The adaptive moment
estimation (Adam) [56] optimizer is used. In extreme cases,
a large learning rate may lead to fluctuations in the model
accuracy during training, and a small learning rate may result
in an inability of model fitting. In this study, three initial
learning rates of 0.000001, 0.0001, and 0.001 are assessed,
and the optimal initial learning rate is 0.001.

The factor α can control how much the model focuses on
the similar samples. The larger the value of α is, the more the
model will focus on the learning of similar samples, but it may
affect the learning effect of ordinary samples. It is deduced that
α = 0.1 leads to the best results in the experiments.

The hidden unit determines the number of neurons in
the implied hidden layer. The larger the number, the more
difficult the training, while a small number of hidden units
may also reduce the model performance. The hidden unit
variable is determined as the exponent of two (i.e. 32, 64,
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Fig. 6. Classification of road pavement conditions from the Worldview-2 images using the Bi-GRU network. The zoom-in images are satellite images and
classification results in the A, B and C locations.

TABLE III

CONFUSION MATRIX OF THE CLASSIFICATION ON THE TEST SAMPLE SET

128, 256, 512,1024, and 2048), in order to find the optimal
hyperparameters. The results show that 512 hidden units lead
to the best performance in the study area.

C. Results and Accuracy Validation

The classification results of the road surface aging condi-
tions from the Worldview-2 images of the 16 roads in the study
area are presented in Fig. 6. The different aging conditions in
the road images and the different categories of image elements
are accurately classified with OA of 98.16%, AA of 98.49%,

Kappa coefficient of 0.97, Macro Precision of 96.17%, Macro
Recall of 98.67%, and Macro F1 of 97.17% (Table III).

After the statistical analysis, the pavement ageing index
of each road is calculated to quantitatively assess the aging
conditions of the asphalt pavement in the study area (Fig. 7).
Consistent with the field investigations, Road 12 has the best
road condition with an aging index value of 0.1515. Roads
7 and 15 are also in good condition, with aging index values
of 0.251 and 0.2965 respectively. On the contrary, Roads 14,
9, 13, 16, 11, and 10 are heavily aged, with aging index
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TABLE IV

COMPARISON BETWEEN THE CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON THE TEST SAMPLE SET

values greater than 0.5, and should be maintained as soon as
possible. The information obtained by the proposed method is
valuable for management departments to facilitate the efficient
and timely road maintenance.

D. Comparative Study

The proposed Bi-GRU method is compared with sev-
eral widely used state-of-the-art methods, including SAM,
MESMA, ResNet18, ResNeXt50 and 1DCNN in order to
demonstrate its efficiency.

SAM is a physically-based spectral classification that uses
an n-D angle to match pixels to reference spectra. This method
is often used to monitor pavement aging conditions with hyper-
spectral imagery [26], [27]. MESMA [2] is currently the state-
of-the-art method for monitoring aging from satellite imagery.
This method divides Vegetation into Others. ResNet [57] and
has a high performance in image classification. ResNeXt [58]
combined the advantages of Inception [59] and ResNet. It has
been widely used for image classification. In this paper,
ResNet18 and ResNeXt50 are used to test whether the tra-
ditional CNN network can be applied to aging monitoring.
The sample set of ResNet18 and ResNeXt50 is the patches
generated by the initial sample set, in which each pixel is
converted into a 3∗3 patch. A one-dimensional convolutional
neural network (1DCNN) is designed for comparison. Its
architecture is shown in Fig. 8. The random seed is set to 0
in the experiments to avoid the effect of randomness on the
model accuracy.

The classification accuracies obtained by different methods
are presented in Table IV. The classification result obtained
by the SAM method is poor, which proves that it is not
suitable for multispectral satellite imagery. Although MESMA
is the state-of-art method, it is far less accurate than the
proposed method. The ResNet18 and ResNeXt50 have the
worst performance and are mainly unable to distinguish each
category. More precisely, they have a serious over-fitting
phenomenon. This is mainly because satellite images cannot
provide enough geometric information of pavement aging.
This confirms that 2DCNN can’t be directly applied to pave-
ment aging monitoring, as previously mentioned. The 1DCNN
model achieved accuracy second only to the proposed method
Bi-GRU+. However, the classification accuracy for heavily

Fig. 7. Pavement aging index value for each road in the study area.

aged and vegetation was poor. Compared with the proposed
method, 1DCNN can’t learn well the contextual information
between spectra.

The proposed Bi-GRU+ model achieves better performance
for learning spectral contextual information from different
bands than the CNN methods, allowing it to distinguish classes
with similar spectral features. Thus, the Bi-GRU+ achieves the
highest OA, AA, Kappa coefficient, Macro Precision, Macro
Recall, and Macro F1. Moreover, it is more important that
the proposed model can identify severely aging target roads
in practical applications. Therefore, although the accuracy of
1DCNN is relatively close to Bi-GRU+, our method is still
the best one and most suitable for practical applications.

E. Ablation Study

The Bi-GRU+ learns the contextual features of the spec-
tral bands for extracting spectral features. It can distinguish
different aging conditions from satellite images. Tackling the
problem of “hard samples” and “similar samples” in road
condition monitoring, an improved loss function based on the
cross-entropy function is proposed. The influence of each mod-
ule of the proposed Bi-GRU+ Network on the classification
performance on the test set is evaluated.

The detailed classification results with different modules
are presented in Table V. Noted that GRU denotes the
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Fig. 8. The architecture of 1DCNN.

TABLE V

ABLATION EXPERIMENT ON THE SAMPLE SET

normal GRU, Bi-GRU means the bi-directional GRU, and
“+” represents the improved Network with the proposed loss
function Lloss .

It can be inferred from Table V that both bi-directional net-
works and Lloss improve the accuracy of GRU towards classi-
fication, and the proposed Bi-GRU+ achieved the best results
in the most indicators. The high performance of the Bi-GRU+
on the moderately aging roads and shadow categories fur-
ther proves the effectiveness of Lloss . Both the GRU+ and
Bi-GRU+ models improve the classification accuracy with
the moderately aged, which proves that Lloss can enhance the
learning effect of the model for similar samples. The AA of
the Bi-GRU+ model is slightly lower than that of Bi-GRU,
which might be caused by the decrease of accuracy of the
slightly aged. This actually demonstrated that the Bi-GRU+
model could perform better in the learning of similar samples
of the moderately and heavily aged. In practical application,
moderately aged and heavily aged are more noteworthy, thus
we believe that a slight decrease in the accuracy of the slightly
aged is acceptable.

The classification results show that the proposed Bi-GRU+
network is efficient, provides high-level automation and has
higher accuracy than the existing methods. Thus, the proposed
framework is more suitable for large-scale road pavement
quality monitoring.

V. DISCUSSION

A. Applicability of Aerospace Remote Sensing

Dense vehicles will interfere to a certain extent with satel-
lites and other aerospace remote sensing platforms on traffic
busy roads. However, most roads do not always have heavy
traffic, and high-resolution satellite imagery is usually acquired
between 10:00 am and 2:00 pm, which is usually not as dense
as in the morning and evening rush hours. In addition, the
UAV remote sensing can be used as an auxiliary, and it is
more convenient to choose the time window to obtain pure
road pavement images. In future work, we aim at combining
the advantages of UAV and satellite remote sensing.

On the other hand, according to the field investigation,
secondary roads in suburban areas and rural roads are more
likely to be ignored by road managers than high-grade roads.
There are relatively few vehicles on secondary roads and rural
roads, and satellites can sufficiently obtain pure road pavement
images.

Therefore, the proposed method has applicability in pave-
ment aging conditions mapping.

B. Practical Contribution

Previous studies on the monitoring of road pavement condi-
tions from remote sensing images mainly focus on road dam-
ages such as cracks, while the pavement aged conditions are
currently less assessed. Therefore, we proposed a novel frame-
work for the highly automated monitoring of asphalt pavement
aging conditions. This framework can use fine-resolution satel-
lite remote sensing images as data sources and has the potential
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for large-scale monitoring applications. With the populariza-
tion of high-resolution multi-spectral satellite remote sensing
images, we believe that the proposed framework can become
an important part of intelligent transportation.

C. Limitations

This study still has some limitations. Firstly, non-pavement
objects such as shadows of trees on both sides of the road
may change the spectral characteristics of the road pavement,
masking the road conditions. A comprehensive analysis of
multi-seasonal remote sensing images may solve this problem.
In addition, due to the fact that the proposed method is a pixel-
based classification method, the “salt and pepper” phenomenon
occurs. One possible solution consists in using images with the
higher spatial resolution to allow the use of spatial information.
Another solution consists in combining CNN and RNN to
develop spatial-spectral neural network classification models.
Furthermore, the mixed pixels may also affect the classification
result. Further studies necessary on combining deep learning
and mixed pixel decomposition for monitoring aging road
pavements are crucial.

VI. CONCLUSION

This study presented a Bi-GRU+ method for monitoring
asphalt pavement aging conditions from fine-resolution
satellite imagery. To the best of our knowledge, this is the first
designed RNN-based extraction and classification method,
to evaluate the asphalt pavement health conditions. This
method uses a nonlinear function for spectral augmentation
and the Bi-GRU+ with the improved loss function in
order to generate a classification map of road pavement
aging conditions. The experiments were performed using a
Worldview-2 satellite image (16360 ∗7728) of the study area
covering 16 roads in southwest Beijing, and the processing
time is 7836 seconds in the experimental environment.
Since pavement aging is a relatively long-term process
in months or even years, the mapping accuracy is more
important than the processing time. Compared with different
state-of-the-art algorithms, the results show that the proposed
method achieves better performance than the other methods
for distinguishing pavement conditions with similar spectral
characteristics. The Bi-GRU+ model achieves the best
classification of the Worldview-2 images with OA of 98.16%
and the Kappa coefficient of 0.97. The resultant pavement
aging index for each road in the study area was also consistent
with the field investigation.

The proposed framework demonstrates the efficiency of the
RNN for road aging monitoring from satellite multispectral
imagery. With the continuous advancement of spaceborne
remote sensing technology, it is expected that it will become
possible to obtain more inexpensive high-spatial resolution
multispectral satellite imagery and allow the practical applica-
tion of the framework.

In future work, more experiments will be performed, such
as monitoring road aging conditions and road damages by
combining UAV-acquired multispectral/hyperspectral images.
The spectral mixture of image pixels will also be investigated.
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