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Abstract— This work proposes a new modeling framework
for jointly optimizing the charging network design and the
logistic mobility planning for an electric vehicle fleet. Existing
literature commonly assumes the existence of a single entity –
the social planner, as a powerful decision maker who manages all
resources. However, this is often not the case in practice. Instead
of making this assumption, we specifically examine the innate
non-cooperative nature of two different entities involved in the
planning problem. Namely, they are the charging service provider
(CSP) and the fleet operator (FO). To address the strategic
interaction between entities, a bi-level mixed integer program
is formulated, with the CSP/FO’s problem expressed in the
upper/lower levels respectively, in a joint decision making process.
These decisions involve the CSP’s infrastructure siting, sizing,
substation capacity upgrades, the FO’s fleet composition, vehicle
routing, charging, and delivery assignment. To solve the problem,
an iterative fashion is adopted to solve and reach optimality.
We conduct detailed numerical studies on a synthesized small
network and the simulation results reveal the unique aspects
of this two-entity framework. This modeling perspective can be
generalized to other system design problems with two interacting
agents planning and operating resources across networks.

Index Terms— Electric trucks, heterogeneous fleet sizing,
charging infrastructure planning, stackelberg game.

I. INTRODUCTION

DECARBONIZATION of the transportation sector is an
important step towards alleviating climate change. In the

U.S., about 28% of the total greenhouse gas emissions is con-
tributed by transportation [1]. According to the California Air
Resources Board (CARB), commercial trucks are responsible
for 80% of the diesel soot emitted, leading the largest source
of air pollution from vehicles [2]. Hence, a significant step
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to cut emissions is electric commercial vehicles, specifically
E-trucks, as part of a sustainable supply chain. As a result,
CARB has voted to rule out the sales of any fossil fuel trucks
by 2045 and to force truck makers to begin the transition
in 2024 [2].

Along with enforcing policy orders, many logistic and deliv-
ery companies (we refer to as fleet operators, FOs) and Charg-
ing Service Providers (CSPs) are committed to transportation
electrification. To realize profit maximization, it is more
important to have effective communications between these
two entities. The CSPs, with knowledge of spatial-temporal
charging demands, could strategically construct their charging
network to accommodate the needs; whereas the FOs, whose
electrified trucks are constrained by driving range, would
consider charging en-route but with minimal detours.

A. Literature Review
In this section, we are going to review a body of liter-

ature that we have identified as not only relevant but also
crucial to understand our problem. On one hand, to consider
commercial E-trucks routing, a portfolio of attributes can
be considered, including homogeneous/heterogeneous fleet,
range, partial/fully charging time, delivery time windows,
etc. On the other hand, to consider charging infrastructure
planning, another set of attributes are considered, such as
the station locations, power constraints, etc. The two entities,
FO and CSP, are entangled through charging events and an
extensive body of literature ([3], [4], [5], [6], [7], [8], [9],
[10], [11]) has accounted for this interactions. In the field of
Operation Research and Electrical Engineering, this is called
the electric location routing problem (E-LRP), an extension
to pure electric vehicle routing problem (E-VRP). For the
classical vehicle/location routing problems, we refer interested
readers to these two survey papers [12], [13].

In the aforementioned literature, each work varies focus
slightly and considers a subset of the above entity-specific
attributes. Yang and Sun [3] were the first to investigate
the E-LRP, where the location of battery swapping stations
(BSS) was jointly optimized together with the routing of a
homogeneous E-trucks fleet. The computational results of the
work were later improved by Hof, Schneider and Goeke [4].
M. Schiffer et al. conducted a series of research on E-LRPs.
Each publication in this series has a different focus. For
example, [5] incorporated real-world data to address the com-
petitiveness between E-trucks and ICEVs, [6], [7] considered
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deployment of multiple types of facilities (replenishment,
recharging, and combined type facilities), [8] addressed uncer-
tainty using robust optimization, [9] used different planning
objectives. Authors in [10] further considered multiple types of
charging facilities in E-LRP with time windows (E-LRPTW).
Paper [11], on the other hand, investigated the effects of
heterogeneous fleets on a similar E-VRPTW setting with a
full recharge scheme. These works inevitably assume the
existence of a powerful social planner, who is capable of
coordinating all the tasks. However, this is often not possible
in practice. Instead, the FO and the CSP are more likely to
be separate organizations with misaligned incentives, lead-
ing to non-cooperative behavior. Such interactions exist in
other domains, power system transmission expansion [14],
distribution system and demand response [15], food products
supply chain [16], forestry and biofuel supply chain [17].
In the EV domain, a recently published paper [18] discussed
a Stackelberg game setting for the private electric vehicles,
in which charging facility locations, capacities and prices were
the main focuses. However, the routing decisions for delivery,
the charging schedule, the time windows are outside of their
scope. Reference [6] included both the charging station siting
and fleet sizing decisions, but a single planner was assumed.
In this work, we specifically capture these dynamics and model
it as a leader-follower Stackelberg Game, which to the authors’
best knowledge, has never been studied.

Furthermore, the modeling approaches in the above works
closely resemble each other and are the natural stems from
the classic traveling salesman problem (TSP). The abstracted
network is often called the customer-node based network,
where customer nodes are the graph representatives and
constrained to be visited once and exactly once. Additional
features like range limits and charging speed for E-trucks are
easily incorporated via supplemental constraints.

On the other hand, while the customer-node based network
is classic and easy to adopt, the shortfall is prominent - lack of
flexibility in tracking temporal events, such as charging. Since
every node is associated with one specific set of entry and
exit times for one vehicle, the temporal sense of simultaneous
visits or queuing at a charging station node is dismissed.
Adding trackers, e.g. indicator functions, is inevitable to
address this issue. However, this makes the problem highly
nonlinear and hence the solution quality cannot be guaran-
teed. Alternatively, references [19], [20] adopted the idea of
layered graphs and proposed state-space-time/resource-space-
time expanded networks to embed discretized resource values
(energy consumption, time, etc.) when defining nodes. In this
case, resource constraints are directly encoded in the expanded
network model and time-dependent consumption patterns can
be characterized. However, such modeling flexibility comes at
a cost of significantly increased network size, and subsequently
the problem scale. To plan a charging network, authors
from [21] took a macroscopic point of view with traffic
flow and designed another way to expand the transportation
network. In this network, all reachable nodes are extended with
hyper-arcs to model EVs’ feasible routes. Then, a joint fleet
sizing and charging system planning method for autonomous
electric vehicles was proposed. However, the core, which is

TABLE I

OVERVIEW OF CONSIDERED ASPECTS IN EXISTING LITERATURE

the extended network, requires full recharge and predefined
homogeneous battery capacities. Recently, the authors of [22]
introduced a novel mixed integer linear programming model
for the E-VRP with load-dependent charging patterns. The pro-
posed formulation allows multiple visits of charging stations
without expanding the network into higher dimensions, thus
helping to reduce the problem scale. Although this approach
neatly relaxes the aforementioned restriction, it cannot be
directly applied to a setting where locations of charging
facilities are unknown. To conclude, though charging station
location planning for E-trucks has been studied, incorporating
station size and capacity upgrade remains as gap in this field
of research.

We have reviewed a series of literature and identified the
remaining gaps in the community. In Table I, we summarize
the aspects covered by some representative works and compare
with ours.

B. Contributions
This paper proposes a novel framework to jointly con-

sider the charging infrastructure deployment and E-truck fleet
design, as well as routing strategies. In this paper, we consider
two players (the CSP and FO) who jointly optimize their
decisions, under their individual objectives, and explore if the
solution leads to a sense of non-cooperation. Note that in
practice, stochastic conditions are indeed a big challenge, yet
this manuscript is not focused on addressing that. It focuses
on the two specific entities with misaligned objectives. This
issue is poorly understood. Comparing to existing literature,
the major innovations of this paper are:

1) Instead of assuming the existence of a powerful single
entity who owns both the fleet and the charging network,
a two-party model with the charging service provider
and fleet operator is adopted. They have their own objec-
tives and their interactions are captured via a Stackelberg
game, whose results are closely analyzed. This modeling
perspective, to the authors’ best knowledge, has never
been studied for the vehicle/location routing problem
before. The necessity of such modeling perspective is
revealed.

2) We propose an innovative partial time expanded network
(PTEN) model on top of the customer-node based
network [3], [4], [5], [6], [7], [8], [9], [10], [11], [24].
This network only expands at candidate charging station
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nodes to capture both the time domain index and the
charger index. This enables us to track the simultaneous
charging activities of E-trucks at each location. There-
fore, we may incorporate not only the charging station
location but also the size decisions. Based on this, the
upgrade cost of transformers is also incorporated in the
CSP cost calculation, which is actually an important
factor in real-world operation but has been neglected in
past research. The PTEN also keeps the overall model
in the domain of mixed integer linear program, which is
more tractable than a mixed integer non-linear program.

In order to solve this complex problem, the framework is
broken down to be solved in an iterative fashion. An outer
loop adopts the idea from [25] to capture the dynamics of the
Stackelberg game while ensuring convergence. Within each
iteration, three subproblems are solved for CSP, FO, and a
feasibility check accordingly. Each subproblem can be solved
by either an off-the-shelf solver or any customized algorithm.
We emphasize our contributions to the modeling perspective,
rather than a particular solution algorithm.

The remainder of this paper is organized as follows:
Section II gives formal problem definition and the proposed
partial time expanded network modeling method. Based on the
system model, Section III presents the detailed mathematical
formulations of the planning problem. The solution algorithm
for the formulated model is then described in Section IV. Case
studies are presented in Section V followed by the conclusions
and limitations in Section VI.

II. PROBLEM DEFINITION AND SYSTEM MODEL

The overall goal of this paper is to optimally design the
E-truck fleet composition and associated charging station net-
work. Specifically, a charging service provider decides where
to locate new CSs among candidate locations. Additionally,
the number of charging ports and substation capacity upgrades
(size configurations) are optimized. A fleet operator designs
the portfolio of fleet vehicle types, and the optimal routing and
charging strategies to deliver customer demands within given
time windows while avoiding battery depletion. In this section,
we define the problem and present the intuitive illustration to
our proposed model.

A. Problem Description

The problem is defined on a directed graph G = {E,V},
where E is the set of all edges1 and V is the collection
of all nodes. Specifically, nodes in V are categorized into
three different types: a depot node D0, customer nodes
{C1, C2, . . . , Cn} in set C, and candidate charging station
(CS) nodes {F1, F2, . . . , Fm} in set F . Successive visits
of nodes are represented with chosen edges. This is the
aforementioned customer-node based network. We assume the
following common rules:2

1) All customer nodes are visited once and only once by
one vehicle during one duty cycle.

1We will use edge, link, and arc interchangeably.
2Background on the vehicle routing problem and its common formulations

can be found in [3], [4], [5], [6], [7], [8], [9], [10], [11], and [24].

Fig. 1. Illustrative network.

2) All E-trucks depart from the depot D0 and return to the
same depot after completing the assigned logistic tasks.

3) Customer demands are represented in the aggregate
sense with real values and without specifications, e.g.
weight, size, or shape.

An illustrative network and toy example is given in Fig.1.
One depot D0, two customer nodes C1 and C2, and one
charging node F1, dashed lines indicate feasible links. Assume
there is an E-truck with a driving range of 4 units of length.
One possible route is colored in red with arrow directing its
trajectory: the E-truck will first make a stop at C1 due to given
time window [1,3], then recharge at F1 and go to C2, whose
latest required arrival time is 5. Upon task completion, the
E-truck will make a return to D0. Alternatively, the feasible
routing plan can be chosen as D0−C1−D0 and D0−C2−D0.
Hence, recharging is not required, but two E-trucks are needed
to fulfill the task.

In this model, every time index is inherently associated
with the node. We loose information to concurrent charging
sessions when multiple E-trucks are traversing on the graph.
Hence, the model is unable to consider configurations of
the charging infrastructure, i.e. the number of ports and
transformer upgrades. A work-around is introducing indica-
tor functions to determine specific charging periods; or full
state-space-time layered graph is used (Section I-A). Both
approaches either impose nonlinearities or severe scaling
issues (number of nodes and links explodes). In the next
subsection, we propose a different graph expansion approach
to capture the time information neatly.

B. Proposed Model: Partial Time Expanded Network Model

We propose to encode the time expansion solely on the
charging station nodes, avoiding other unnecessarily added
nodes. Namely, this is a partial time expansion. Each original
candidate CS node Fi ∈ F is expanded across time and
charging ports. A two-dimensional time-port graph (Fig.2)
is introduced to represent a candidate CS node. Altogether,
|Ti | · |si | dummy nodes3 are introduced to represent node Fi ,
where |Ti | is the time horizon (i.e. the number of feasible
visiting time slots at Fi ) and |si | is the CS size (i.e. the number
of charging ports). Each of these nodes, as shown in Fig.2,

3We will use dummy nodes, dummies, and virtual nodes interchangeably.
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Fig. 2. An example for a partial time expanded charging station.

encodes two index trackers: the time availability index t (·) and
the charging port index p(·). We denote a set Mi to represent
these expanded nodes.

We have defined nodes and now will construct feasible links
between nodes within this set Mi . A link from node j to
node m, { j, m ∈ Mi }, is created if t (m) − t ( j) = �t and
p(m) = p( j), indicating an E-truck charges at port p( j) for
one time step (�t) starting at t ( j). We denote the set of all
internal links at station node Fi as Ai . A subset of time specific
links is defined as Ai (t) = {( j, m) ∈ Ai | t ( j) = t, t (m) =
t+�t}. The original links connecting between customer nodes
and the station nodes are reconnected accordingly. With this
expansion, real time charging power at station Fi can be
easily computed by counting the number of traversed links in
Ai (t). Take the case in Fig. 2 as an example, the connection
represents that E-truck 1 charges during period [2, 4] and E-
truck 2 charges during [3, 5]. Hence, at least two chargers are
needed as both E-trucks are present during time [3, 4] (box
color coded).

A copy of the depot node is also created as the sink
node D�

0 (due to assumption 1, this is a common practice).
A corresponding partial time expanded network is presented
in Fig.3. The charging activity at F1 is then modeled by the
link (F1 − 1 − 2, F1 − 1 − 3).

We will denote the expanded network as GPT E =
{E PT E ,V PT E }. Formal notations are summarized in Table II,
but relevant sets are also given in Fig.1 and Fig.3. We present
the nomenclature in Table III and are now ready to formally
introduce the planning problem formulation in the following
section.

III. MATHEMATICAL FORMULATION OF THE PROBLEM AS

BI-LEVEL PROGRAMMING

As mentioned in previous sections, this study aims to
capture the interactive dynamics between the charging service
provider and the fleet operator. We do not assume cooperation

Fig. 3. Expanded illustrative network. Here, the notation F1−x−y represents
the xth charger and the corresponding time slot y.

TABLE II

NODES AND LINKS BEFORE AND AFTER NETWORK EXPANSION

between these two players and hence competition between the
two entities is inevitable. Today, many transportation logistic
companies are considering fleet electrification to reduce total
cost of ownership, reduce greenhouse gas emissions, and sat-
isfy upcoming regulations [26], [27], [28]. However, optimally
designing the vehicle fleet, routing, and charging strategies
remains as open questions. Fleet operators, as we observed,
often seek consultation from charging service providers in
practice. This naturally leads to a leader-follower setting,
in which the charging service provider is the leader.4 We
assume leader is the CSP in this work and has complete
information of the follower. Leader-follower games are also
known as Stackelberg games [29].

The decision variables and notation for the problem are
summarized in Table III. Next, we detail the model for each
player as well as for the complete problem.

A. CSP’s Problem: Charging Network Design and Operation

The leader CSP aims to minimize its overall costs by
optimally placing and sizing the new charging stations. The
binary variable yi is used to indicate the construction decision
at the specific site Fi , and the integer variable si represents
the number of chargers to be installed at Fi .

The overall cost gL constitutes two parts. The first part is the
capital expenditure (CAPEX), namely the costs for installing
ports and for upgrading the local transformer if necessary. The
second part is the operational profit introduced by providing
charging service to E-trucks with the predetermined service
fee ce

i ($/kWh). Mathematically, gL is expressed as

gL(y, s,�P) =
∑
i∈F

{ζs · (cs
i si + c p

i �Pi ) − ce
i Ech

i }. (1)

4The leader knows the cost function mapping of the follower in this game.
The follower, on the other hand, observes the strategies from the leader and
always has to take them into account.
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TABLE III

NOTATION SUMMARY (ALPHABETICAL ORDER)

Here, Ech
i represents the total electricity delivered to

E-trucks at station Fi . Based on the proposed PTEN model
in Section II-B, it is calculated as

Ech
i = prated�t ·

∑
k

∑
( j,m)∈Ai

x k
j,m . (2)

Factor ζs in gL converts the life-cycle fixed cost into its annual
equivalent level, which is calculated as

ζs = r(1 + r)Ys

(1 + r)Ys − 1
, (3)

where r is the cash discount rate and Ys is the service life of
the charging station.

When building the charging stations, the CSP should ensure
adequate chargers,

∑
k∈K

∑
( j,m)∈Ai (t)

xk
j,m ≤ si ∀i ∈ F ,∀t ∈ Ti , (4)

and sufficient transformer capacity to supply power to the
visited vehicles. If at any point of time t , the total demanded
power si · prated is higher than the available capacity yi · Pi,t ,
then the CSP would need to consider the transformer capacity
upgrade cost,

si · prated − yi · Pi,t ≤ �Pi ∀i ∈ F . (5)

There are also constraints on the station size and variable
domain constraints:

yi s
min
i ≤ si ≤ yi s

max
i ∀i ∈ F , (6)

yi ∈ {0, 1}, si ∈ Z+,�Pi ∈ R+, ∀i ∈ F . (7)

B. FO’s Problem: Fleet Design and Operation

The FO’s goal is to decide its E-truck fleet composition and
routing plans so that its overall cost is minimized. The cost
objective for the FO is

gF (x) = ζv

∑
k∈K

∑
j∈N

ckxk
D0 j +

∑
k∈K

∑
i∈N0

∑
j∈Nn+1

ck
i j xk

i j

+
∑
i∈F

∑
t∈Ti

(πi,t + ce
i )

∑
k

∑
( j,m)∈Ai (t)

prated�t · xk
j,m.

(8)

The first term in gF represents the total E-truck purchase
cost, which is converted into the equivalent annual level using
ζv . The second term yields the traveling cost of the fleet. The
last term calculates the cost of charging, where the per unit
charging cost involves the electricity price πi,t plus the service
fee ce

i posed by the CSP.
Vehicle routing must respect resource constraints along the

network, including time windows, payload capacity, energy,
etc., which are given as follows.

1) Network Flow Constraints:

∑
k∈K

∑
j∈Nn+1, j �=i

xk
i j = 1 ∀i ∈ C, (9)

∑
k∈K

∑
j∈Nn+1, j �=i

xk
i j ≤ 1 ∀i ∈ F �, (10)

∑
j∈N0, j �=i

xk
j i −

∑
j∈Nn+1, j �=i

xk
i j = 0 ∀i ∈ N,∀k ∈ K, (11)

Constraint (9) requires each customer to be visited once
and only once, while for the expanded charging station nodes,
this requirement is relaxed in (10). Flow conservation of each
node, except the source and sink, is expressed by (11).
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2) Time Window Constraints:

te
i ≤ τi ≤ tl

i ∀i ∈ C ∪ D0, D�
0, (12)

τ j − τi ≥ (
ti j + ts

i

)
xk

i j −
(

1 − xk
i j

)
T

×∀i ∈ N0,∀ j ∈ Nn+1,∀k ∈ K, j �= i, (13)

t ( j) − τi ≥ (
ti j + ts

i

)
xk

i j −
(

1 − xk
i j

)
T

×∀i ∈ N0,∀ j ∈ F �,∀k ∈ K, j �= i, (14)

t ( j) − τi ≤ (
ti j + ts

i

)
xk

i j +
(

1 − xk
i j

)
T

×∀i ∈ N0,∀ j ∈ F �,∀k ∈ K, j �= i, (15)

τ j =
∑
k∈K

∑
i

xk
i j · t ( j) ∀i ∈ N0,∀ j ∈ F � (16)

The arrival time of a vehicle at a customer point i must
respect the customer’s service time window

[
te
i , tl

i

]
(12). For

the depots, the time window is set as [0, T ]. Constraint (13)
expresses the relationship between two successive customer
nodes i and j at their respective visited times. When xk

i j = 1,
then E-truck k’s arrival time at customer j depends on the
traveling time between i, j and the service time at i . However,
when xk

i j = 0, i.e. j is not visited after i , then this constraint
is relaxed.

Constraints (14)-(16) describe the evolution of visiting times
when an E-truck is driving towards a charging station node.
Since each dummy node is strictly associated with one specific
time slot, the corresponding relation xk

i j = 1 is true only if the
arrival time τ j at the charging node j matches t ( j), as shown
in (14). Again, those constraints are relaxed if xk

i j = 0.
3) Freight Capacity Constraints:

qk
j ≤ qk

i − di x
k
i j +

(
1 − xk

i j

)
Qk (17)

×∀i ∈ N0,∀k ∈ K,∀ j ∈ Nn+1, j �= i,

0 ≤ qk
i ≤ Qk ∀k ∈ K,∀i ∈ N0,n+1, (18)

Following the same modeling philosophy from above, the
available freight loads at each node along the route are tracked
using (17). Constraint (18) ensures that the E-trucks are never
overloaded.

4) Energy Consumption/Recharge Constraints:

bk
j ≤ bk

i − rkdi j xk
i j +

(
1 − xk

i j

)
Bk

×∀(i, j) ∈ EN ,∀k ∈ K, j �= i (19)

bk
j ≤ bk

i + prated · �t · xk
i j +

(
1 − xk

i j

)
Bk

×∀(i, j) ∈ Az,∀z ∈ F ,∀k ∈ K (20)

Given the limited range of E-trucks, it is crucial to track
available battery energy while traveling, which is modeled by
(19) and (20). These constraints are relaxed when xk

i j = 0 by
using the term (1 − xk

i j )Bk . We assume a constant energy
consumption rate while traversing to customers and a constant
charging rate while traversing the charging links. Visiting
consecutive charging nodes at one physical location represents
charging for multiple time slots.

bk
0 = Bk ∀k ∈ K, (21)

0 ≤ bk
i ≤ Bk ∀k ∈ K,∀i ∈ Nn+1, (22)

bk
i + prated · �t ≤ Bk ∀k ∈ K,∀i ∈ F �, (23)

We assume all E-trucks start fully charged at depot (21). The
battery is never depleted nor overcharged as enforced by (22)
and (23), respectively.

5) Simultaneous Charging Constraint:
∑
k∈K

∑
( j,m)∈Ai (t)

xk
j,m ≤ si ∀i ∈ F ,∀t ∈ Ti . (24)

The number of simultaneous charging E-trucks must respect
the physical charging station size limit.

6) Additional Variable Domains:

xk
i, j ∈ {0, 1} ∀i ∈ N0,∀ j ∈ Nn+1 (25)

τi ∈ Z+, qi , bi ∈ R+ ∀i ∈ N0,n+1.

C. Joint Problem as a Stackelberg Game

Given the CSP (leader) and FO (follower) optimization
models above, we now integrate them to yield the complete
joint planning problem:

min
y,s,�P

gL(y, s,�P; x∗) (26a)

s. to: hL(y, s,�P) ≤ 0 (26b)

(x∗, τ ∗, b∗, q∗) = arg min
x,τ ,b,q

gF (x) (26c)

s. to: hF (s, x, τ , b, q) ≤ 0.

The constraint set hL(y, s,�P) contains (4)-(7) and
hF (s, x, τ , b, q) includes (9)-(25). For the reader’s conve-
nience, we have colored the leader’s optimization variables
blue and the follower’s optimization variables red. Black bold
variables are fixed optimization variables.5

A key benefit of the proposed PTEN is the overall math-
ematical formulation (26) maintains a mixed integer linear
programming structure. However, solving this model is still
highly non-trivial. The main challenges are twofold: (i) The
overall model is a bi-level mixed integer problem (Bi-MILP)
and integer variables exist in both the upper and lower levels.
In this case, the commonly-used KKT (Karush-Kuhn-Tucker)-
based single-level reformulation method is not applicable.
(ii) The electric vehicle routing problem, embedded as the
essential part of the overall problem, is an NP-hard problem
whose scale grows dramatically with the size of the network.
This holds true even with the partial time expansion, which
mitigates but does not eliminate the computational complexity.

IV. SOLUTION ALGORITHM DESIGN

To solve this complex problem, the framework is broken
down to be solved in an iterative fashion. A diagram flow in
Fig.4 offers a more straightforward visualization of the overall
architecture.

5We would emphasize that although this is a fleet sizing, facility siting and
sizing, and vehicle routing joint decisions, the model is also able to consider
the current existing charging network. We simply convert the corresponding
decision variables to input parameters. It is a degenerate case of our model.
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Fig. 4. The overall solution architecture. Notice that (SP2) has been detailed in Section IV-A.2. It serves as a CSP feasibility check to evaluate the solution
set from its successor (SP1). Its reformulation follows the exact same process from Section IV-B.

A. Outer-Loop: Solving Bi-MILP With Reformulation and
Decomposition

To address the first challenge (i), we facilitate the overall
computation of the Bi-MILP with a reformulation and decom-
position method [25]. We denote this as an outer loop design.
The main idea of this approach and the problem-specific
implementation are presented below and readers are referred
to the original references for further theoretical details.

1) Reformulation: A key observation is that when all
discrete variables in the lower-level FO problem are fixed,
then the FO (26c) becomes a pure linear program with con-
tinuous decision variables. Then the optimal solution can be
represented using KKT conditions. Given a specific realization
for the z-indexed combination of the lower level discrete
variables xz, τ z , we denote the corresponding KKT conditions
as �(xz, τ z). Therefore, if one enumerates all possible com-
binations of the follower’s discrete decisions, we can denote
their collection using index set Lfull = {1, . . . , lmax} where
z ∈ Lfull. Then the original problem can be equivalently
formulated as a single-level problem:

(P0) min gL(y, s,�P, x0) (27)

s. to: hL(y, s,�P) ≤ 0, (28)

hF (s, x0, τ 0, b0, q0) ≤ 0, (29)

∀z ∈ Lfull

gF (x0) ≤ gF (x z), (30)

y, s,�P, bz, q z ∈ �(x z, τ z). (31)

Variables x0, τ 0, b0, q0 are duplications of the follower’s
decisions. Constraint (30) requires that the FO’s objective is
at least the same, if not improved, from the discrete (and
previous as we shall see) realization x z. Notably, in our case
the discrete variables x, τ uniquely define the routes of the
fleet. Once all routes are realized, then values of b, q are
implicitly determined. The complexity of (31) can thus be
largely reduced.

2) Decomposition: Instead of directly solving the complete
problem (P0) with all possible combinations of {x, τ, b}
enumerated, one may solve the problem with a subset Lsub

of these combinations, i.e. z ∈ Lsub ⊆ Lfull and gradually
enlarge the set. As explained in [25], the solution of (P0) can
be obtained by iteratively solving the following decomposed
parts,

• A restricted version of (P0) with the subset Lsub ⊆ Lfull,
denoted as (SP0). Since only a subset of all the constraints
are considered during each iteration (with fixed x z, τ z in
(30)-(31)), (SP0) provides a lower bound to the original
problem (P0).

• Subproblem 1 (SP1) finds the follower’s corresponding
best response {x∗, τ ∗, b∗, q∗} to the leader’s decisions
{ y∗, s,∗ �P∗} from (SP0), i.e.

(SP1) min
x,τ ,b,q

gF (x) (32)

s. to: hF (s∗, x, τ , b, q) ≤ 0, (33)

• Subproblem 2 (SP2) performs a feasibility check6 and is
defined as

(SP2) min
x,τ ,b,q

gL(y∗, s∗, �P∗; x)

s. to: gF (x) ≤ θ∗
sp1, (34)

hF (s∗, x, τ , b, q) ≤ 0,

where θ∗
sp1 is the optimal value from (SP1). When a

solution is found feasible in (SP2), then the decision set
{x̃∗, τ̃ ∗, b̃∗, q̃∗} represents the most favorable follower
action for the leader. We then add it into Lsub in (SP0)
for the next round of iteration. (SP2) provides θ∗

sp2 as
an upper bound for (P0), since it clearly finds a feasible
solution.

The pseudo code is detailed in Algorithm 1.

6Sometimes there may be multiple non-unique lower-level optimal solutions
given the upper-level decision. By solving (SP2), we select the follower
solution that is most in favor of the leader.



122 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 1, JANUARY 2023

Algorithm 1 Algorithm for the Joint Planning Bi-MILP
Input: model parameters and convergence margin �
Output: optimal solution for both CSP and FO

- Initialization:
1: Set L B = −∞, U B = ∞, and l = 0

- Loop Process:
2: while U B − L B > � do
3: Solve (SP0) with current combinations z = 1, . . . , lsub

and obtain { y∗
z , s∗

z , �P∗
z } and the optimal objective

	∗
RMP, set L B = 	∗

RMP.
4: Solve (SP1) given { y∗

z , s∗
z , �P∗

z } as fixed, and obtain
{x∗, τ ∗, b∗, q∗} and the optimal objective as θ∗

sp1
5: Solve (SP2) with { y∗

z , s∗
z , �P∗

z } as fixed, and obtain
{x̃∗, τ̃ ∗, b̃∗, q̃∗} and the optimal objective as θ∗

sp2
6: if (SP2) is feasible then
7: Set {x z+1, τ z+1} as {x̃∗, τ̃ ∗},

U B = min{U B, θ∗
sp2}

8: else
9: Set {x z+1, τ z+1} as {x∗, τ ∗}

10: end if
11: Add the new optimal cut corresponding to {x z+1, τ z+1}

to the (SP0), set z = z + 1.
12: end while
13: return y∗

z , s∗
z ,�P∗

z , x z, τ z, bz

B. Inner Loop: Solving E-V/LRP

Notice that the three subproblems are structurally similar
and the electric vehicle routing problem serves as the core
in (SP1) and (SP2) and the location planning is encoded in
(SP0). Since novel computation algorithms are not the focus
of this work, for the analysis in Section V we rely on a
commercial solver (e.g. Gurobi) to solve these subproblems.
However, one can reformulate these problems as generalized
set-partitioning problems and subsequently solve them in an
iterative fashion to reduce computational burden when the
network size becomes very large, possibly sacrificing solution
quality. We refer interested readers to [11] for set-partitioning
reformulation.

V. CASE STUDIES

We have proposed an optimization modeling framework
and iterative algorithm to solve this problem. To effectively
demonstrate the model, we deliberately design a small but
intuitive network. We will highlight some of the binding
features, like the customer time windows and the charging
rates.

The small network is presented in Fig. 5. It consists of
1 depot node D0, 5 customer nodes C = {A, B, C, D, E} and
2 candidate charging station nodes F = {F1, F2}. The dashed
lines are the feasible links with adjacent numbers indicating
the lengths. We summarize all relevant parameters for CSP in
Table IV7 and for the FO in Table V. Next, we will numerically
demonstrate the necessity of the two-entity modeling. Then,

7We keep the station available capacity Pi,t constant over time for
convenience. It’s not the main focus of this study.

Fig. 5. Small network (original).

we will study the cost breakdowns and the varying dynamics
when stricter time windows are applied and charging rates are
varied.

A. Base Case: Necessity of Considering Different Entities

We first focus on the different strategies when a social
planner (single entity) or non co-operation (two entities) is
considered. Simulations are performed for both scenarios with
the service fee varying from 0 to 0.5($/kWh).8 The results
obtained are given in Fig.6.

Consider the single entity scenario. To enable a fair com-
parison against the two-entity case, we plot the combined
costs of electricity and service fee (πi + ce

i ) for the single
entity. Together they will jointly affect the vehicle routing,
charging, as well as the infrastructure decisions. When the
service fee is set to 0, the FO charges at the cost of electricity
(πi ) purchased from the utility, i.e. with zero profit margin.
Given the optimized planning results, we then split and plot the
corresponding costs to the FO and CSP. In greater detail, the
FO cost consists of the fleet investment, travel expenditure as
well as the combined cost of electricity and service fee; on the
other hand, the CSP cost is the infrastructure investment less
the profits from providing service. The cost splits are presented
by the dashed lines in Fig. 6 and the colored shape labels
on the dashed line indicate the different optimal strategies
corresponding (see Table VI) to each simulated price value.
Note that when service fee is set at $0/kWh, this is the case
commonly known as to minimize the total cost of ownership
(TCO) in literature. However, as shown in the left most in
Fig.6, it actually induces the largest cost to the CSP.

For the two-entities scenario, we solve the problem with
the proposed model. We superimpose the costs for the FO
and CSP in Fig. 6 using solid lines. It is visually clear that
the decisions under the two-entity scenario achieves lower
net costs than the single entity scenario most of the time,

8We leave customer time windows sufficiently wide in this case.
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TABLE IV

PARAMETERS OF CANDIDATE CHARGING STATIONS

TABLE V

VEHICLE PARAMETERS

Fig. 6. Cost of different players with respect to different service fee, without
time windows. The colored marker shapes correspond to different strategies
in Table VI. The markers on the upper dashed blue line correspond to the
single entity case, whereas the markers on the lower solid red line correspond
to the two-entity case.

i.e. the FO achieves lower costs and the CSP generates more
profit. The only exceptions happen when the service fees are
extremely low (below $0.05/kWh). Within this range, from a
pure economic point of view, the CSP has little to no interest
to invest and enter the market.9 The CSP can be incentivized
to participate by increasing the service fee. However, as the
CSP becomes more “greedy,” the FO will reject the option
to charge at the facility. This then leads to a non-cooperative
situation, as indicated by the grey rhombuses on the solid line
in Fig. 6 (after service fee is more than $0.421/kWh).

Since the CSP is the leader in the game, it will naturally
take advantage of being the first-mover. The final decision for
the CSP is to build charging stations at both locations with
service fee set at 0.125 $/kWh in this particular example (solid
green triangle in Fig. 6). The corresponding fleet routes are
shown in Fig. 7 (Plan 2). We denote the first/second route
chosen by E-truck-1/2 as route 0/1 for later reference. Indeed,
it is the most efficient and straightforward to assume the

9Even if the CSP enters (the second green triangle), it is not at all cost-
attractive. It experiences positive cost and no profit.

TABLE VI

POSSIBLE STRATEGY-PAIRS IN BASE CASE

existence of a powerful social planner. However, this common
assumption in the literature is not always the case in real life.
We further emphasize an important nuance here: only through
rigorous and comprehensive cost analysis can we incentivize
both entities to come up with an agreement that benefits both
sides, even though the eventual outcome does not always lead
to the social optimum as contests prevail.10

B. The Effects of Customer Time Windows and Charging
Rates

We are going to show how two of the binding features, time
windows and charging rates, will influence optimal decisions.
We set tighter delivery time windows for customer B, C and
D as [1, 4], [6, 9], [2, 3] respectively. First, we keep the charge
rate as 10 kW as in the base case and the results are plotted in
Fig. 8. In this case, the FO will reject charging service from the
CSP when the price exceed 0.25 $/kWh. This critical threshold
was 0.421 $/kWh in the base case (Section V-A), where no
time windows are set. The only profitable service fee for the
CSP occurs 0.1684 $/kWh, whereas all other services fees
yield zero or negative profit. Note, in the base case, there were

10Note that this is an one-to-one service scenario. More involved settings
and further analysis can be extended to one-to-many or many-to-one scenarios.
This is out of scope and we will leave it for future work.
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Fig. 7. Optimal routes of FO.

Fig. 8. With time windows, cost of different players with respect to different
service fee. The two upper curves correspond to the FO costs; the lower two
are the CSPs’.

TABLE VII

SELECTED STRATEGY WHEN TIGHTER TIME WINDOWS ARE APPLIED

six profitable service fees. However, the profit now is 74.23%
lower than that in the base case.

In this example, some tightened time windows significantly
reduced the number of feasible routes for the FO. It becomes
a tougher decision to balance both time spent for charging
and time to meet customers. The previously selected route 1
(D0 → B → F2 → E → C → D0) becomes infeasible
as the E-trucks need 4 units of time to charge (to complete
the trip) but will miss customer C . As a result, three separate
E-trucks are purchased instead to serve customer B, C and
E respectively. The detailed plan is given in Table VII. This
increases the final cost of the FO by 13.8%.

Fig. 9. Costs of different players with different charging rate at F2. Upper
solid line is the net annual equivalent costs of the FO and the lower dashed
line is the net profits of the CSP.

TABLE VIII

PLAYERS’ STRATEGIES WITH DIFFERENT CHARGING RATES

One alternative solution that may realize benefits to both
sides is to increase the chargers’ charging rate. The cost
breakdowns over the variations of rate are shown in Fig. 9.
They are plotted with respect to the two entities – the FO
on the left and the CSP on the right. Black dashed lines
indicate the CSP’s overall net cost/profit (for positive/negative
values resp.). The corresponding strategies are also listed in
Table VIII. We see that when the rate increases from 10 kW to
15 kW, the previously selected route 1 can again be assigned
to a larger E-truck, whereas when the rate is doubled, the
smaller E-truck may be used. Although more charging energy
is needed, the trucks still meet all the delivery time windows.
As a result, reductions in E-truck fleet investment and travel
cost compensate the extra charging expenditure and lead to
overall FO cost savings. From the CSP’s perspective, although
more infrastructure investment is required11 up-front, it also
realizes more profit gains. The increased revenues from energy
service cover the increased capital costs.

11The cost for a single port is assumed to increase with the charging rate.
Indeed the infrastructure investments at 15 and 20 kW are subtly different.
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Fig. 10. Computation Time for 4 Different Instances. Since the commercial
solver (denoted “-Solver”) is not able to handle the latter two instances (freezes
over 100,000s), we have reformulated the problem as a set-partitioning (SP)
problem and solved.

We have illustrated two of the binding features along with
the dynamic interactions between the two entities. This is
indeed a complex but more realistic situation, as opposed to
existing work that considers a single entity only. We have
demonstrated that without assuming the existence of a pow-
erful social planner, careful analysis is needed to contemplate
and incentivize both parties to collaborate. With our frame-
work, the FOs and the CSPs can now look for their opera-
tion “sweet spots” and be more committed to transportation
electrification.

C. Complex Network Study
For this work, we highlight the modeling contribution,

rather than any algorithmic superiority. However, to analyze
the computational burden and results as network size grows,
we synthetically generated three larger instances. There are
12, 15, 20 nodes in the instances respectively. Each instance
has three candidate charging station nodes. The total number
of nodes and edges are calculated after partial time expansion
at the three candidate sites. These are fully connected graphs
and the networks after expansion contain thousands of edges
(summarized in Table IX). Since the commercial solver is not
able to handle the latter two instances, we reformulated the
subproblems as a set-partitioning problem and solve iteratively.
The computational times are summarized in Fig. 10

The parameters used in these instances are summarized
in Table X and Table XI. These parameters are adopted
to reflect practice: customers are more spatially distributed,
the E-truck ranges and energy consumption are taken from
vehicle specifications announced by the manufacturers, and
all cost parameters are adopted from [21], [30], [31], [32],
and [33]. We demonstrate that the outer-loop algorithm from
Section IV-A empirically converged in much fewer iterations
as compared to the enormous set Lfull (Table IX). Our results
align with the findings in [17]. In fact, these iterations may be
interpreted as a negotiation process between the leader (CSP)
and the follower (FO). While solving the leader problem in
(SP0), (30) upper bounds the follower’s objective and ensures
it decreases (or stays the same) at each iteration. With this
(follower’s response) in mind, the leader proposes a design
and operational plan until an optimal proposal is accepted by
both entities.

Fig. 11. Cost of different players with respect to different service fees. The
green rectangle in the figure indicates the best action of CSP, which yields
the most profits.

The non-cooperative nature of the two entities holds for
these larger instances. We will share N12 as an example in
Fig. 11. There are four possible strategy pairs for the leader
(CSP) and follower (FO) detailed in Table XII, corresponding
to different service fees imposed by the CSP. With smaller
service fees, such as Plan 1, the CSP is not willing to open
more than one charging station to provide service; on the other
hand, when the service fee is high, such as Plan 4, the CSP
will invest heavily and open all stations. In Plan 4, however,
the CSP faces the risk that the FO deploys more E-trucks
to accommodate customer demand yet reduce charging needs,
which increases the FO’s cost but decreases the CSP’s revenue.
As Fig. 11 demonstrates, the best strategy for the CSP is
actually Plan 3, where the CSP finds the most profitable action
is to open 2 charging stations and the FO deploys 5 E-trucks
to fulfill customer demand.

D. One-to-Multiple Generalization

This work studies in depth the non-cooperative nature
between the charging service provider (CSP) and the truck
fleet operator (FO), a one-to-one interactive setting. However,
this framework can also be generalized to a one-to-multiple
setting, where multiple fleet operators charge through a single
service provider. In reality, logistic companies provide delivery
services through bilateral contracts with individual customers.
This is unlike an open market, where different suppliers
compete for customers with bid offers. In fact, about 80% of
this market is based on long-term contractual agreements. Each
truck fleet operator has pre-determined the specific portfolio
of customer locations and demands. Hence, to model multiple
FOs in the problem, we consolidate these fleet operators
and simply introduce the idea of a “Super FO”. Relevant
constraints like (4) (the charger constraint) can be extended
to the following,

∑
φ∈�

∑
k∈Kφ

∑
( j,m)∈Ai (t)

x
kφ

j,m ≤ si ∀i ∈ F ,∀t ∈ Ti , (35)
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TABLE IX

CONFIGURATIONS OF INSTANCES

TABLE X

VEHICLE PARAMETERS

TABLE XI

MISCELLANEOUS PARAMETERS

TABLE XII

POSSIBLE STRATEGY-PAIRS FOR N12

where notation � represent the set of fleet operators. On the
other hand, we would like to point out that if competition
prevails among the fleet operators to use the chargers (i.e.
charging demand exceeds supply), then the notion of “Super
FO” may not exist. A study of market equilibrium becomes
necessary. However, this is out of the scope of this work.

VI. CONCLUSION

This work proposes a new modeling framework to capture
the non-cooperative interactions between a charging service
provider (CSP) and fleet operator (FO) in the joint charging
network design and mobility planning problem. This reflects
reality, in which the two entities are separate self-optimizing
organizations. To consider the charging station capacity, this
work also proposes, for the first time, a partial time expanded
network. It enables jointly optimizing the size of the charging
infrastructure in the classic location routing problem regime.
The non-cooperative interaction is formulated in a Stackelberg
game framework as a Bi-MILP problem. The solution frame
work was broken down to be solved in an iterative fashion.

We find that non-cooperation between these two entities can
lead to lower total costs than a single entity scenario. Detailed
numerical studies demonstrate the effects of binding features
and provide insights to interested players. The nature of the
solutions with a single social planner and two non-cooperative

entities can be dramatically different. Our framework examines
these distinct aspects and hence provide more reliable results
to the case in real life. In the end, we have also included a
discussion about the generalization from one to multiple FOs
setting.
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