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Lightweight and Effective Convolutional Neural
Networks for Vehicle Viewpoint Estimation from

Monocular Images
Simone Magistri‡∗ 1, Marco Boschi§∗ 2, Francesco Sambo†, Douglas Coimbra de Andrade†,
Matteo Simoncini† ‡, Luca Kubin¶, Leonardo Taccari†, Luca De Luigi§, Samuele Salti§

Abstract—Vehicle viewpoint estimation from monocular im-
ages is a crucial component for autonomous driving vehicles and
for fleet management applications. In this paper, we make several
contributions to advance the state-of-the-art on this problem.

We show the effectiveness of applying a smoothing filter to
the output neurons of a Convolutional Neural Network (CNN)
when estimating vehicle viewpoint. We point out the overlooked
fact that, under the same viewpoint, the appearance of a
vehicle is strongly influenced by its position in the image plane,
which renders viewpoint estimation from appearance an ill-posed
problem. We show how, by inserting in the model a CoordConv
layer to provide the coordinates of the vehicle, we are able to
solve such ambiguity and greatly increase performance. Finally,
we introduce a new data augmentation technique that improves
viewpoint estimation on vehicles that are closer to the camera or
partially occluded.

All these improvements let a lightweight CNN reach optimal
results while keeping inference time low. An extensive evalua-
tion on a viewpoint estimation benchmark (Pascal3D+) and on
actual vehicle camera data (nuScenes) shows that our method
significantly outperforms the state-of-the-art in vehicle viewpoint
estimation, both in terms of accuracy and memory footprint.

Index Terms—Azimuth, Convolutional Neural Networks, Ma-
chine Learning, Monocular Images, Vehicles, Yaw.

I. INTRODUCTION

VEHICLE viewpoint estimation [1] consists in estimating
the vehicle azimuth or yaw angle, i.e., the rotation of the

vehicle around the axis perpendicular to the road plane with
respect to a reference point of view, like a camera (see Fig. 1).
Vehicle viewpoints enrich the semantic information about the
road scene provided by traditional perception tasks, such as
object detection, semantic segmentation and depth estimation,
and lead to a better understanding of the road scene [2], [3].
Furthermore, viewpoint estimation enables accurate prediction
of future vehicle motion [4], thus it is of considerable interest
for applications in which prediction or classification of road
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Fig. 1. Definition of azimuth θ for the blue vehicle, whose front is denoted
by the solid triangle. C is the camera and z is the direction of the optical
axis on the road plane. z′ is the global z translated so to pass through the
blue vehicle center flipped to face towards the camera and zv is pointing in
the direction of the vehicle front from the vehicle center: θ is the angle from
z′ to zv measured clockwise.

maneuvers are key, like driver warning systems and risk
estimation in the context of fleet management [5].

For this work, we consider the scenario of a single monocu-
lar camera mounted inside the windshield of a moving vehicle,
suitable for the context of after-market fleet-management ap-
plications.

Viewpoint estimation from a single monocular image has
inherent difficulties such as radial distortion, motion blur,
occlusion and lack of depth information. Furthermore, in a
realistic scenario the camera is not mounted exactly in the
same spot for every vehicle, leading to non-fixed points of
view and lack of some extrinsic camera parameters, namely
camera height, roll and pitch. In light of this, we aim at
defining a solution that generalizes to multiple vehicle makes
and models and that is independent of the camera mounting
position.

Current approaches in the literature tackle the vehicle
viewpoint estimation problem from a single image within the
context of 3D monocular object detection [6], [7]. The main
problems concerning these methods are the need to estimate
depth or 3D information and the requirement of accurate
camera parameters for correct localization. Furthermore, they
may require higher computational resources if compared to 2D
object detectors because of extra computation for 3D position
estimation [8]. Thus, we explore different solutions for the
viewpoint estimation problem from monocular images without
trying to estimate the vehicle 3D position and we present a
lightweight real-time deep learning model which uses data
from a single on-board monocular camera.
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(a) nuScenes. (b) Pascal3D+.

Fig. 2. Samples from nuScenes (2a) and Pascal3D+ (2b) datasets. The azimuth
label of each vehicle is identified by the red circle placed in the top-left corner
of each bounding box.

Since estimating vehicle viewpoint requires first to identify
the position of the vehicle within the image, we decouple
the viewpoint estimation problem from the detection one,
assuming to have the vehicle bounding boxes in input. This
choice is justified by the fact that training a detector jointly
with a viewpoint estimator results in a model that is both less
versatile and harder to maintain or adapt [9]. Our models are
tested on the nuScenes [10] dataset, a large-scale autonomous
driving dataset, and on the Pascal3D+ [11] dataset, a popular
benchmark for object viewpoint estimation (see Fig. 2).

The main contributions of this work can be summarized as
follows:
• We develop a novel lightweight and accurate vehicle

viewpoint model, referred to as fine-grained model,
which improves upon the coarse-grained model origi-
nally proposed in [9], where it was referred to as multi-
task model. The proposed model is independent from
any 2D object detector and does not need any extra
camera information, such as extrinsic and intrinsic camera
parameters.

• We show that vehicle viewpoint estimation from a
monocular image is strongly dependent on the position of
the target vehicles in the image plane and we show that,
by providing this information to the model, performance
can be improved.

• We show that preserving the original aspect ratio of
the source image considerably improves the viewpoint
estimation.

• We successfully adapt the Siamese approach, developed
by [12], in the context of vehicle viewpoint estimation.

• Since traditional approaches on viewpoint estimation
methods are very sensitive to truncated objects [13], [14],
we propose a task-specific data augmentation technique,
which we dubbed viewpoint crop, to improve viewpoint
estimation of truncated vehicles.

All these contributions but the Siamese approach are im-
provements to the preliminary version of this work published
in [9]. The paper is organized as follows: in Section II we
provide the current state of the art approaches for vehicle
viewpoint estimation, in Section III we describe the fine-
grained and coarse-grained architectures and present our
contributions; in Section IV, we introduce the datasets we
employ in our benchmarks and we provide details on the pre-
processing we used; in Section V we compare our proposed
models with viewpoint estimation state-of-the-art methods
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Fig. 3. Azimuth bins we adopted to evaluate our models performance. The
frame of reference assumes slice 0 facing towards the camera.

and provide an ablation study on the effectiveness of our
contributions; finally, in Section VI we summarize our results
and we list some possible future developments.

II. RELATED WORKS

Most of the methods in the literature address the viewpoint
estimation problem with a classification approach, which was
shown by Massa et al. in [15], [16] to outperform the regres-
sion one. Focusing on the classification approach, Ghodrati et
al. [17] leverage image features extracted by a Convolutional
Neural Network (CNN) to estimate a discretized object view-
point. Tulsiani et al. [14] directly estimated the viewpoint from
the object images, using a CNN based on VGG16 architecture
[18], taking into account the object class. Zhou et al. [19]
reduce the prediction error of [14], changing the convolutional
backbone to the more recent residual architecture ResNet18
[20]. Su et al. [21] introduced a discretization into 360 bins for
viewpoint prediction and they proposed a geometric structure
aware loss function. Divon et al. [12] proposed a CNN-
based architecture that jointly solved detection, classification
and viewpoint estimation, introducing a loss function based
on the idea of the Siamese Networks [22]. More recently,
Xiao et al. [23] used a class-agnostic CNN to estimate object
poses and introduced a contrastive learning method based on a
contrastive loss and pose-aware data-augmentations to improve
the performance.

III. PROPOSED MODELS

The objective of this research is to develop a framework
based on CNNs to estimate vehicle viewpoints given a single
road view image and 2D vehicle detection information. Given
the road view image, we crop the vehicles according to their
bounding box information and we feed the cropped images,
together with the bounding box coordinates (see Section III-C),
into our proposed models. In the original work [9] we in-
vestigated whether vehicle classes can be useful to improve
the network predictions. Since we found that vehicle class
provides marginal improvements, in this extended work we
ignore the class information, focusing on a model using only
visual and positional information.

We address azimuth estimation as a classification problem,
thus we discretize the ground truth azimuth labels into 360
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sectors and we design our models output layer to have 360
units, i.e. the logits. This 360 dimensional vector is fed to
a softmax classifier [24] to predict the azimuth angle at
different levels of quantization. In particular, we evaluate
the performance of our models by mapping their predictions
into discrete uniform bins, equally spanned in the unit circle
(Fig. 3), with four scale levels ranging from coarser to finer,
i.e., the standard evaluation protocol of Pascal3D+.

The developed models share a common structure: a convolu-
tional backbone, followed by a Global Average Pooling Layer
and by a linear output layer with 360 units. The proposed
models differ for the training loss and for the specific logits
smoothing technique.

In the remainder of this section, we provide a detailed
description of the explored architectures, the fine-grained
(Fig. 4b) and the coarse-grained model (Fig. 4c), and we
discuss the need to take into account the coordinates of the
vehicles to properly estimate their viewpoint, the adaptation
of the Siamese loss to our setup, and the proposed data
augmentation, which improves robustness in the presence of
truncated vehicles.

A. Fine-grained Model

The fine-grained model is an evolution of the single-task
model proposed in our original work [9], i.e., a single output
head predicting a single level of discretization. We increase
the granularity of the prediction with more bins of a smaller
size, resulting in a more fine-grained model.

In this model we apply a circular moving average fil-
ter (see Fig. 4b) with stride 1 and window size 15, pre-
ceding the softmax activation function. We dub it cir-
cular because of the padding strategy used, with values
wrapping around at the edges: given the network out-
put (l1, l2, . . . , lN ) we add a 7 element wide padding as
(lN−6, . . . , lN−1, lN , l1, l2, . . . , lN , l1, l2, . . . , l7), resulting in
a vector of N + 14 elements. This, after application of the
filter, is reduced to a cardinality of N + 14− (15− 1) = N ,
the same as the network output.

The intuition behind the usage of a circular moving average
filter comes from the error analysis of viewpoint estimation
methods by Redondo-Cabrera et al. [13]. They show that a
consistent portion of the errors made by the viewpoint models
concentrates on nearby and opposite viewpoint predictions
with respect to the ground truth viewpoints, i.e., the prediction
error e usually satisfies either 15° ≤ e ≤ 30° or e > 160°. In
order to correct for these errors, we would like the viewpoint
probabilities distribution of the network to be unimodal [25],
i.e. the probability mass should gradually decrease on both
sides of the viewpoint that has most of the mass and should
be centered on the correct viewpoint. A circular mean filter has
the objective of smoothing the 360 network logits in order to
filter isolated peaks and to gradually decrease the probability
mass function away from the overall highest logit.

The loss function used to train this model is the categorical
cross entropy loss between the smoothing filter output and the
ground truth azimuth discretized into 360 sectors.

Backbone

Global
Average
Pooling {

(a) Base network shared by the two models.

Predicted Azimuth

Circular
Mean
Filter

SoftmaxBase
Network

(b) Fine-grained model. The model has a single output head which results
in the azimuth prediction as an angle with 1° of precision. Such precision is
achieved by smoothing the logits fW with a circular mean filter and allows
the predicted azimuth to be used as-is or discretized with large bins.
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(c) Coarse-grained model. The output of the model consists of 4 heads,
which sum in a circular fashion the network logits fW . Each head obtains
a prediction at a different discretization level. Sα represents the summation
performed for α bins with α ∈ {4, 8, 16, 24}.

Fig. 4. Proposed models architecture.

B. Coarse-grained Model

The coarse-grained model output layer [9] (see Fig. 4c)
consists of four sums of the network logits, resulting in
multiple output heads. The summations are designed to map
the network logits to the four discretization levels defined in
Fig. 3. The summation for α bins, where α ∈ {4, 8, 16, 24},
can be thought of as a mono dimensional circular convolution
with a unitary filter with window and stride fixed to

⌈
360
α

⌉
.

Similarly to the fine-grained model, applying these filters
results in assigning less importance to isolated peaks in the
predicted probability mass function.

The loss function adopted to train this model is made up
of the sum of four categorical cross entropy losses between
the ground truth azimuth discretized into 4, 8, 16 and 24 bins
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Fig. 5. Example from the nuScenes dataset of the intrinsic ambiguity of
viewpoint and appearance.

and the corresponding logits summation. This kind of loss is
designed to take into account errors at different granularities,
to smooth isolated peaks in the probability mass of the network
probability distribution and to train a single model able to
predict viewpoint at different quantizations.

C. Vehicle Coordinates

Estimating viewpoint reasoning only on the appearance of
the vehicle within the bounding box suffers of an intrinsic
ambiguity. Indeed, a vehicle with the same azimuth angle with
respect to the camera exhibit different appearance onto the
image plane of the camera according to its horizontal distance
with respect to the camera optical axis. For instance, a vehicle
whose azimuth is 180°, i.e., moving in the same direction of
the camera, will have only its rear visible in the image if it is
in front of the camera, but both the rear and the left side if it
is in the adjacent right lane [26] (see Fig. 5).

To make the network able to estimate the same azimuth
angle in the presence of different appearances, we propose
to provide also pixel coordinates in the original image of the
cropped bounding box with a CoordConv layer [27]. Such
layer, when applied to a color image represented as a 3D tensor
with channels, width and height as dimensions, will construct
two additional channels: one for the X coordinates along the
horizontal axis of the image and one for Y coordinates along
the vertical axis of the image. Each channel is constructed
using as values the coordinates of the elements themselves
for that dimension, i.e., for the X channel the first column
will be filled with 0, the second with 1 and so on, while for
the Y channel the first row is all 0, the second all 1, and so
on; both coordinates channels are then normalized to [−1, 1].
The result is an image with five channels, three carrying color
information and two for the coordinates. After creating the
additional channels for the input, the CoordConv layer behaves
like a normal convolutional layer.

Since we are interested in the coordinates relative to the full
image and our models accepts only the crop corresponding to
the 2D bounding box of the target vehicle, we first apply the
coordinate channel generation, then crop the bounding box and
finally feed the image to the network.

D. Siamese Network

A Siamese network [22] consists of two or more copies of
the same convolutional neural networks that share learnable
weights. In the context of object viewpoint estimation, each
sub-network takes in input a different image and improves

the standard neural network training by adding geometrical
constraints into the training loss.

In our work, we adapt to our task the Siamese loss,
originally proposed by Divon et al. [12] to jointly train a
2D object detector and a viewpoint estimator. We propose a
Siamese approach for a model trained independently from a
2D object detector and we modify the Siamese network input
such that it accepts both the bounding box vehicle coordinates
and the input image, as discussed above.

Formally, let us consider the triplet (X, c, θ) where X is
the cropped vehicle image, θ ∈ [0, 360) is the corresponding
azimuth label and c = (x0, y0, x1, y1) represents the bounding
box coordinates of the vehicle in the source image adopting
the standard top-left bottom-right coordinate system.

The Siamese network is fed with two images: X and
its horizontally flipped version Xflp. Flipping the image X
implies that both the bounding box coordinates in the original
image and the ground truth azimuth label associated to Xflp

are horizontally flipped. Let θflp be the mirrored version of
θ on the Y axis and let cflp = (w − x0, y0, w − x1, y1)
be the flipped vehicle coordinates in a image with width w.
We implement our methodology by defining a training loss
consisting of three terms: L , Lflp and D. L is the loss on the
image X with ground truth θ, Lflp is the loss on the image
Xflp with ground truth θflp and D : R360 × R360 7→ R is a
distance function between the network output fW on the image
and on its flipped version fflpW . The final Siamese training loss
can be summarized as follows:

Ls = L+ Lflp + λD(fW , f lip(f
flp
W )) (1)

where fW , f
flp
W ∈ R360, both parametrized by shared

weights W , are the network outputs for the pairs (X, c) and
(Xflp, cflp) respectively, λ ∈ R is a hyperparameter, and
flip : Rn 7→ Rn is an operator mapping y = (y1, y2, . . . , yn)
to flip(y) = (y1, yn, yn−1, . . . , y2), i.e. it swaps logits between
an angle α and its correspondent −α under the horizontal flip
while leaving the first logit, corresponding to 0°, fixed.

We expect that the distance between the output of the
network on the image X and the flip of the network output
on Xflp should be zero. We used as D function either the
squared `2 distance, as proposed in [12]

D(x, y) = ‖x− y‖22 , (2)

or the angular distance

D(x, y) =
1

π
arccos

x · y
‖x‖ ‖y‖

, (3)

where x, y ∈ Rn.

E. Viewpoint Crop

Traditional approaches on viewpoint estimation are highly
sensitive to truncated vehicles [13], [14]. In the context of
vehicle viewpoint estimation from a single on-board monoc-
ular camera, vehicles can be heavily truncated, since they
can be really close to it or placed on the margins of the
camera field of view. For this reason we propose a task-specific
data augmentation for vehicle viewpoint estimation, that we



THIS WORK HAS BEEN ACCEPTED FOR PUBLICATION IN THE IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 5

90%

20%

(a) Option 1: close front vehicle.
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(b) Option 2: vehicle is close to the
camera and partially beyond the left
margin of the camera field of view.
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25% 90%

90%
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(c) Option 3: vehicle is close to the
camera and partially beyond the right
margin of the camera field of view.

(d) Option 4: fully visible vehicle.

Fig. 6. The viewpoint crop data augmentation. The blue and the red dashed lines represent respectively the minimum and the maximum dimensions of the
crop for each option, while the black dashed line represents a possible crop applied during training.

name viewpoint crop, with the aim of improving performance
on truncated vehicles. The proposed data augmentation is
performed online during training and chooses with probability
25% one of four cropping options, each designed to simulate
different truncations of vehicles captured by a moving camera:

1) The vehicle is directly in front of the camera and very
close to it (Fig. 6a), simulated by cropping only the
image bottom side;

2) The camera is very close to a vehicle placed on its left
side, i.e. part of the vehicle is just beyond the left edge
of the field of view of the camera (Fig. 6b), simulated
by cropping the left and bottom image side.

3) The mirrored version of the previous case, simulating
vehicles on the right side of the camera (Fig. 6c).

4) The vehicle is fully visible (Fig. 6d).

The crop target sizes are extracted as w ∼ U(wmin, wmax)
and h ∼ U(hmin, hmax), where U stands for the uniform
probability distribution and wmin, hmin, wmax, hmax rep-
resent respectively the lower and the upper bounds of the
percentage of the vehicle original width and height. In Figure
6, we provide the bounds of each cropping option.

IV. DATASET

Pascal3D+ [11] is an object viewpoint estimation dataset.
It contains 12 object classes and samples from Pascal VOC
2012 [28] and a subset of Imagenet [29], enriched with 3D
annotations (azimuth, elevation and tilt).

nuScenes [10] is a large-scale autonomous driving dataset
containing a full suite of vehicular sensor data and 3D bound-
ing box and viewpoint annotations.

All images in nuScenes are acquired by 6 cameras mounted
on the front, front-right, front-left, back-right, back-left and
back of a moving vehicle. Thus, the elevation and tilt of the
objects are almost the same for each image. Pascal3D+ images,
on the other hand, are captured by a single fixed camera,
located at different positions. As a result, elevation and tilt
of the objects may significantly vary across different images.

Data Pre-Processing In the case of nuScenes, we collect
the images from the 6 cameras provided, projecting the 3D
bounding boxes to each image plane, following the procedure
provided in the development kit of [10]. We extract crops
around the vehicles from the projected 3D boxes and we
retain the azimuth. For training and testing we retain only
those bounding boxes with enough data to correctly infer the
orientation according to the same criteria defined in [9].

TABLE I
PASCAL3D+ AND NUSCENES SAMPLES DISTRIBUTION.

%

Dataset Split Bike Bus Car Motorbike Truck Total

nuScenes
Train 1.7 3.0 74.9 1.7 18.6 ∼ 400k
Valid 2.4 3.4 74.8 2.3 17.1 ∼ 35k
Test 2.1 3.5 72.8 2.2 19.5 ∼ 90k

Pascal3D+
Train 14.9 11.9 52.5 13.9 6.8 ∼ 10k
Valid 19.8 14.1 46.1 17.5 2.5 ∼ 1k
Test 18.6 14.7 44.4 17.8 4.5 ∼ 2k

In the case of Pascal3D+, we extract tight crops around
the vehicles using the provided 2D bounding boxes and we
retrieve the provided azimuth angle. Furthermore we manu-
ally identify and label the trucks contained in Pascal3D+ to
preserve consistency with nuScenes vehicle classes.

Finally, we define one training validation split for nuScenes
and one for Pascal3D+: for the latter we split 50/50 its official
training set stratifying by vehicle type, while for nuScenes the
split is obtained choosing respectively 650 and 50 scenes for
training and validation set.

As for the test set, for Pascal3D+ we use the Pascal VOC
2012 validation set as test set, as specified in [11], including
the vehicles annotated as difficult, occluded and truncated,
while for nuScenes, we use the official validation set. In Table I
the percentage of vehicle types in each split and the effective
size of datasets are shown.

V. EXPERIMENTAL RESULTS

Our experimental results are reported on the nuScenes and
Pascal3D+ dataset. For each model, we measure the accuracy
per class, the average accuracy across vehicle classes and the
overall accuracy for each discretization level (i.e. 4, 8, 16,
24 bins) on the test set. Using these metrics, we compare the
fine-grained model and the coarse-grained model performance
with state-of-the-art approaches of viewpoint estimation [19],
[21], [14], [23] and the preliminary version of this work [9].

In the ablation study, we show how much the convolutional
backbone and our contributions affect the performance of the
coarse-grained and the fine-grained models. For this analysis,
we use the nuScenes dataset, since it is more representative of
the task we want solve, i.e., vehicle viewpoint estimation from
road view monocular images. Finally, we provide the inference
time and the memory footprint of the developed models.
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TABLE II
STATE OF THE ART COMPARISON. “RESNET18 CS” REFERS TO “RESNET18 CLASS SPECIFIC” [19], [14], AND “MBIKE” TO THE “MOTORBIKE” CLASS.

%

Bins Architecture Bike Bus Car Mbike Truck Avg Total

4

Render for CNN [21] 57.35 79.59 89.92 66.65 79.49 74.60 86.33
ResNet18 CS [19], [14] 59.95 82.80 90.95 73.57 81.23 77.70 87.74
PoseContrast [23] 64.36 85.19 91.80 71.16 83.79 79.26 88.98
Multi-Task [9] 65.66 86.20 92.26 73.36 83.65 80.23 89.40
Coarse-grained Model 65.56 84.93 93.83 74.23 84.66 80.64 90.71
Fine-grained Model 66.23 85.47 93.77 73.67 85.02 80.83 90.75

8

Render for CNN [21] 40.88 73.65 81.95 54.35 68.72 63.91 77.61
ResNet18 CS [19], [14] 49.87 76.86 83.11 60.40 71.05 68.26 79.35
PoseContrast [23] 48.36 81.21 85.35 60.81 75.10 70.17 81.89
Multi-Task [9] 54.75 80.61 85.46 62.40 75.24 71.69 82.15
Coarse-grained Model 55.74 82.36 89.38 66.03 79.58 74.62 86.01
Fine-grained Model 55.74 82.04 89.81 63.78 79.77 74.23 86.29

16

Render for CNN [21] 29.87 62.62 71.27 36.58 57.86 51.64 66.73
ResNet18 CS [19], [14] 29.71 66.88 73.31 41.75 60.85 54.50 69.05
PoseContrast [23] 37.82 70.15 74.88 45.39 64.04 58.46 71.18
Multi-Task [9] 39.95 71.23 76.17 44.52 65.76 59.53 72.52
Coarse-grained Model 44.47 74.86 82.60 54.15 70.64 65.34 78.58
Fine-grained Model 44.16 75.68 83.83 51.33 71.73 65.35 79.64

24

Render for CNN [21] 22.81 56.07 64.96 27.36 50.52 44.34 60.13
Resnet18 CS [19], [14] 21.82 59.98 67.38 31.97 53.57 46.94 62.70
PoseContrast [23] 26.08 65.03 70.73 37.19 59.10 51.63 66.59
Multi-Task [9] 29.19 63.57 70.11 35.45 58.09 51.28 65.92
Coarse-grained Model 34.81 72.57 79.03 43.55 67.07 59.41 74.77
Fine-grained Model 36.99 73.33 80.42 44.77 67.92 60.70 76.05

(a) nuScenes.

%

Bins Architecture Bike Bus Car Mbike Truck Avg Total

4

Render for CNN [21] 68.5 81.5 68.4 73.2 N/A 72.9 74.3
ResNet18 CS [19], [14] 73.5 82.9 71.3 76.1 67.4 74.3 74.1
PoseContrast [23] 72.7 80.4 73.6 75.5 68.6 74.2 74.5
Multi-Task [9] 71.6 84.0 80.0 74.9 76.7 77.5 78.0
Coarse-grained Model 74.9 84.0 76.1 77.0 76.7 77.8 77.2
Fine-grained Model 76.3 83.6 77.3 80.8 76.7 79.0 78.7

8

Render for CNN [21] 58.6 70.5 58.3 62.5 N/A 62.5 63.2
ResNet18 CS [19], [14] 62.3 73.3 61.0 63.7 61.6 64.8 63.5
PoseContrast [23] 60.6 74.0 66.0 65.5 54.7 64.1 65.6
Multi-Task [9] 60.3 71.2 70.2 66.4 68.6 67.3 67.8
Coarse-grained Model 64.8 72.6 67.6 65.8 60.5 66.3 67.2
Fine-grained Model 65.1 71.5 68.7 70.8 65.1 68.2 68.6

16

Render for CNN [21] 39.4 63.3 46.5 45.1 N/A 48.6 49.7
ResNet18 CS [19], [14] 45.4 65.8 48.8 44.8 38.4 48.6 49.5
PoseContrast [23] 45.6 66.9 55.6 50.2 43.0 52.3 53.9
Multi-Task [9] 42.5 68.0 57.9 42.8 50.0 52.2 53.5
Coarse-grained Model 47.9 66.9 58.5 46.0 43.0 52.5 54.9
Fine-grained Model 48.7 68.7 58.0 44.8 45.4 53.1 55.0

24

Render for CNN [21] 34.9 55.9 40.8 36.0 N/A 41.9 42.6
ResNet18 CS [19], [14] 33.2 60.9 45.9 36.6 32.6 41.8 43.5
PoseContrast [23] 37.8 60.1 50.0 37.2 37.2 44.5 46.4
Multi-Task [9] 32.7 56.2 49.3 36.3 41.9 43.3 44.6
Coarse-grained Model 38.3 59.4 50.7 33.0 40.7 44.4 46.1
Fine-grained Model 40.6 60.5 49.2 41.6 40.7 46.5 47.5

(b) Pascal3D+.
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Fig. 7. Performance on the validation dataset varying the distance and λ value used for the Siamese training loss.

A. Implementation Details

Training settings We use convolutional backbones, with
different size and structure, to evaluate the performance of
our proposed models: MobileNetV2 [30], ResNet50 [20] and
DenseNet [31]. We fine-tune all the layers for each backbone,
starting from pre-trained Imagenet [29] weights. The models
are trained using Adam [32] as optimizer with learning rate
10−3 and weight decay set to 10−4. During training, the
learning rate is reduced by a factor 0.1 when no improve-
ment on the overall accuracy on the validation set for each
discretization level is detected for three epochs. Each training
is performed setting a maximum number of epochs to 100
with early stopping when the learning rate reaches 10−5 and
the validation set accuracy stops to improve.

Image Pre-Processing The crops, extracted from the full
images, were resized to 224×224 pixels and were normalized
by subtracting the mean and dividing by the standard deviation
of the Imagenet dataset, we call this approach SquareResize.

We note that resizing all images to a square can distort the
content because the aspect ratio is not preserved, hence we
propose a different approach that we call KeepRatio: the
images are resized so that only the largest side is 224 pixels,
then zero-padding is applied to center the image in the target
224 × 224 square, finally the images are normalized as for
SquareResize. In the ablation study (see Section V-C), we will
provide a detailed comparison between the two different data
pre-processing. As an additional data augmentation step, we
apply random horizontal flipping with probability 50% to all
the training images and their respective coordinates, except
when the Siamese approach (see Section III-D) is employed.

Siamese Hyperparameters We evaluated different λ values
for the Siamese training loss (Equation 1). Since the distance
metrics we evaluate have different scales, we perform a
grid-search over two different search ranges: λ ∈ {10k},
k ∈ {−2,−1, 0, 1} for the angular distance and λ ∈ {10k},
k ∈ {−4,−3,−2} for the `2 distance. In our tests (Fig. 7) we
verified that both our proposed models (i.e., coarse-grained
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and fine-grained) are pretty robust with respect to these two
parameters, except for the `2 distance with λ = 10−2 that
involves a significant performance drop when used to train
the fine-grained model. From this analysis we fix the distance
type and λ to the values gaining the best performance on the
validation set, i.e., the angular distance with λ = 100 for the
coarse-grained model and the `2 distance with λ = 10−3

for the fine-grained one, which gained the best performance
on the validation set. The best hyperparameters are slightly
different from the ones reported in our original work [9], where
the grid search is performed fixing the data pre-processing
to SquareResize. Here we fix the data pre-processing to
KeepRatio since it provides better performance.

Viewpoint Crop Settings Our proposed data augmentation
(Section III-E) is intended to improve the viewpoint estimation
performance on the closer vehicle, thus we apply it to vehicles
with a reasonable distance from the on-board camera, namely
not too near, since probably the vehicle is already truncated,
and not too far. For Pascal3D+ the viewpoint crop is applied
to all the available images, since the majority of vehicle
are centered and occupy the entire foreground of the image.
Instead, for nuScenes we use as proxy for the distance from
the camera the bounding box area. For each vehicle class, we
sort by increasing area the bounding boxes and we empirically
verify that those between the 40th and the 80th percentile are at
the right distance from the camera. We use the corresponding
areas as thresholds for each vehicle class to select bounding
boxes suitable for viewpoint crop augmentation.

B. Comparison with the State-of-the-Art

We compare our models performance on the Pascal3D+ and
the nuScenes datasets with the architecture defined by Su et
al. [21], by Tulsiani et al. [14] and by Xiao et al. [23]. In
order to compare our model with state-of-the-art approaches,
we use the provided weights when available (e.g. [21] pre-
trained on Pascal3D+1), otherwise we re-train the model in
order to predict only the azimuth angle keeping the original
implementation training setting and using our performance
evaluation. For the model defined by Tulsiani et al. [14], we
change the backbone from VGG16 [18] to ResNet18, since it
has been proved more effective by Zhou et al. [19].

For both the coarse-grained and the fine-grained model we
use MobileNetV2 as a backbone, since it provides the best
results when compared to ResNet or DenseNet models (see
Section V-C) and, due to its reduced number of parameters
and careful design, is one of the fastest CNNs.

While training on the nuScenes dataset, we augment the
training set with Pascal3D+ images since in our tests we
verified that it helps to better generalize, while when training is
performed on Pascal3D+ we use only images from the original
challenge to perform a fair comparison with the state-of-the art
approaches. All our models (i.e., the coarse-grained and the
fine-grained models) are trained using the Siamese approach,
viewpoint crop data augmentation and the CoordConv layer,

1This model was trained without the truck class as it is not part of the
official Pascal3D+ dataset.
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Fig. 8. Performance of different backbones for the fine-grained (FG) and the
coarse-grained (CG) model.
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Fig. 9. Performance of the SquareResize and KeepRatio pre-processing
methods for the fine-grained (FG) and the coarse-grained (CG) model.

to add the information of the original position of the vehicle
in the source road view image.

In Table II, we report the results on both datasets. The
fine-grained model is the top performer among state-of-the-art
approaches and further improves the results obtained by the
previously proposed multi-task model [9], where the viewpoint
crop, the KeepRatio pre-processing and the CoordConv layer
were not employed. Furthermore, our models show a large
increase in performance with respect to the state-of-the-art on
nuScenes. It should be noted that the CoordConv layer impact
is more prominent the finer the quantization.

It is worth noting that different types of vehicles pose
different difficulty levels in correctly estimating the viewpoint
as can be seen in Table II and it is a known limitation of
viewpoint estimation [12]. This is especially true for bicycles
and motorbikes, for which is challenging to recognize the front
from the rear, especially if the handlebar is occluded.

C. Ablation Study

In this section we discuss the impact on the performance
of our models of backbone size, data pre-processing, and the
proposed design decisions presented in Section III.

Backbone Size In Fig. 8 we show the overall total accuracy
of the coarse-grained model and the fine-grained one, varying
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Fig. 10. Performance impact of the mean circular filter, with window size 15 and stride 1 for the fine-grained model.

TABLE III
ABLATION STUDY ON VIEWPOINT CROP, COORDCONV, AND SIAMESE

LOSS. CLASS AVERAGE AND OVERALL ACCURACY ARE REPORTED

Viewpoint Crop CoordConv Siamese Avg Total

Coarse-grained (24 bin)

3 3 3 59.41 74.77
7 3 3 59.30 74.09
3 7 3 51.18 65.69
3 3 7 55.88 73.08

Fine-grained (24 bin)

3 3 3 60.70 76.05
7 3 3 60.70 75.82
3 7 3 51.26 66.49
3 3 7 55.18 72.59

the convolutional backbone. Our results show that, for each
discretization level the performance drops when more complex
models are used, which seems counter intuitive. We conjecture
that, for this task, the reduced number of parameters helps to
prevent overfitting, an hypothesis supported by the increasing
accuracy when the size of the backbone decreases from the
larger ResNet50 (24.2 M parameters) to DenseNet(7.3 M) and
finally to the chosen MobileNetV2 (2.7 M).

Data Pre-Processing In Fig. 9 we compare the impact of
the data pre-processing on our models. The results shows that
preserving the original aspect ratio using KeepRatio provides
a small but consistent improvement in accuracy compared to
SquareResize, especially on finer discretization levels.

Smoothing Circular Filter for Fine-grained Model In
Fig. 10a we compare the model accuracy of the fine-grained
model with and without the circular mean filter before the
softmax activation function. Our results show that our intuition
about smoothing the logits and the analysis provided in [13]
is correct, providing a significant boost in accuracy over the
model trained without the smoothing by reducing the errors
in the nearby bins and in those corresponding to a viewpoint
flip, i.e., an error close to 180° (see Fig. 10b).

Viewpoint Crop Data Augmentation In Table III, we
evaluate the effect of the proposed cropping strategy for data
augmentation over our models. The results show that using of
viewpoint crop provides a noticeable, although small, improve-
ment in the overall models accuracy. Since we empirically
found that the larger the area of a box the more likely it is
to contain a cropped vehicle, we also evaluate the accuracy
for different box areas to gain more insights on the benefits
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Fig. 11. Viewpoint crop effect on the nuScenes test set. A bar pair in the
plot represents the 24 bins average accuracy on the classes considering only
the box areas included in the percentile range of the bin, percentile values are
computed for each vehicle class. This setup ensures that each bin contains
one tenth of the whole dataset while preserving the class ratios (Table I).

brought in by viewpoint crop. In particular, we compute the
average accuracy per vehicle classes on the nuScenes test set
when we consider only a specific range of box areas. Results
of this study for the fine-grained model are reported in Fig. 11;
similar trends can be seen also for the coarse-grained model.

It clearly appears that viewpoint crop provides significantly
more accurate predictions on larger boxes, likely to correspond
to nearby and possible occluded vehicles. Improving model
performance on nearby vehicles is in practice very relevant
for a broad range of applications, e.g. safety critical applica-
tions like car crashes identification, which usually require the
highest performance on the closest vehicles.

Vehicle Coordinates In Table III we show the effect of the
use of vehicle position in the original image as an additional
input. Our experiments designate this as the most significant
factor in improving the accuracy of the network, providing a
remarkable increase of 10% in terms of total accuracy.

We note that the use of a CoordConv layer is also a
limitation since the network will learn to expect vehicles with
specific coordinates to have a certain aspect, meaning that
a significant change in camera positioning between training
and test images will result in a significant performance drop.
When testing our models trained with nuScenes on Pascal3D+
we obtained a total accuracy of 35.71% for the fine-grained
model at 24 bins, a drop of about 10% when compared to
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TABLE IV
MEMORY REQUIREMENTS AND TIMING.

CPU Time (ms) GPU Time (ms) # Parameters

Render for CNN [21] 74.51 ± 7.71 5.43 ± 0.03 64.2M
ResNet18 CS [19], [14] 192.31 ± 14.61 10.82 ± 0.03 11.2M
PoseContrast [23] 662.67 ± 28.85 33.71 ± 0.05 25.8M

Coarse-grained Model 277.10 ± 10.91 12.05 ± 0.02 2.7MFine-grained Model

the models trained only on Pascal3D+; moreover by training
without the CoordConv layer on nuScenes the performance
on Pascal3D+ do not drop as much, achieving 44.68%, thus
highlighting the limitation of using vehicle coordinates.

Siamese Network In Table III we show the effects of
training using a Siamese approach. Both models benefits
from this training approach and exhibit a significant increase
in average accuracy, with the fine-grained one considerably
increasing also the total accuracy.

D. Memory Requirements & Timing

In Table IV we provide the inference time and the number
of trainable parameters of our models, which we note are the
same given the shared architecture. Since in nuScenes [10]
there are on average 20 vehicles per image, the timing are
measured fixing the batch size to 20 vehicle crop images and
averaging the time over 300 executions running on an AMD
Ryzen 7 3700X 8-Core CPU and a GeForce RTX 2070 GPU.
Our models outperform in terms of memory requirements
other state-of-the-art approaches and, thanks to the small
memory footprint, are suitable to be deployed on the edge.

Of note is that a smaller number of parameters does not
lead to faster inference times, which is also influenced by how
the parameters are used, e.g. in sequential operations generally
slower instead of faster parallel processes or convolutions. This
is the case for Render for CNN [21] and ResNet18 [19], [14]
when compared to our models; this behavior has also been
reported in benchmarks for different models [33].

VI. CONCLUSION

In this paper we presented two lightweight deep learning
models able to predict the viewpoint of vehicles from monoc-
ular images, taken, e.g., from a camera mounted on a vehicle
driving on the road. We have shown that the fine-grained
model improves the coarse-grained one, developed in our
original work [9], and outperforms state-of-the-art results. We
achieved this result by means of several contributions.

First, we show that applying smoothing techniques to the
network output can noticeably improve vehicle viewpoint
estimation performance. Specifically, applying a circular mean
filter before the network output, as done for the fine-grained,
provides better results than summing the network logits, i.e.
the approach of the coarse-grained model. Additionally, we
show that adding geometrical constraints to the training loss
by means of a Siamese network further improves the results.

We also introduce the task-specific data augmentation tech-
nique viewpoint crop with the aim of improving its perfor-

mance on truncated vehicles at test time, which is an impor-
tant trait in practical deployments of a viewpoint estimation
algorithm, e.g. to estimate azimuth of involved vehicles in the
case of car crashes.

Finally, we point out an ambiguity of vehicle viewpoint
prediction from monocular images and propose an effective
solution to it in the form of CoordConv layers [27]. Both the
fine-grained and coarse-grained model considerably improved
their performance on the nuScenes dataset.

Experimental results on the nuScenes dataset show that a
small convolutional backbone, like MobileNetV2 [30], is able
to obtain results which are comparable to or even better than
the ones obtained by much more complex backbones. Thanks
to the speed and the size of the backbone, our model is suitable
to be deployed on edge devices. We obtain state-of-the-art
results also on Pascal3D+, although the absolute performance
is lower than on nuScenes, likely because the fixed point of
view of the camera with respect to the road eases vehicle
viewpoint estimation.

Possible directions for future research involve the use of
videos to train and test our proposed models. We believe that
temporal information from videos can improve the quality of
vehicle viewpoint estimation by imposing constraints on the
rigid object motion through time. Another path is to further
evaluate the limitation to a specific camera and positioning im-
posed by the use of a CoordConv layer and how to compensate
the differences between the train and test setup.
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[13] C. Redondo-Cabrera, R. López-Sastre, Y. Xiang, T. Tuytelaars, and
S. Savarese, “Pose estimation errors, the ultimate diagnosis,” in ECCV,
2016.

[14] S. Tulsiani and J. Malik, “Viewpoints and keypoints,” in CVPR, 2015,
pp. 1510–1519.

[15] F. Massa, M. Aubry, and R. Marlet, “Convolutional neural networks
for joint object detection and pose estimation: A comparative
study,” CoRR, vol. abs/1412.7190, 2014. [Online]. Available:
http://arxiv.org/abs/1412.7190

[16] R. M. Francisco Massa and M. Aubry, “Crafting a multi-task cnn for
viewpoint estimation,” in BMVC, E. R. H. Richard C. Wilson and
W. A. P. Smith, Eds. BMVA Press, September 2016, pp. 91.1–91.12.

[17] A. Ghodrati, M. Pedersoli, and T. Tuytelaars, “Is 2d information enough
for viewpoint estimation?” in Proceedings of the British Machine Vision
Conference. BMVA Press, 2014.

[18] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in ICLR, Y. Bengio and Y. LeCun, Eds.,
2015.

[19] X. Zhou, A. Karpur, L. Luo, and Q. Huang, “Starmap for category-
agnostic keypoint and viewpoint estimation,” in ECCV, September 2018.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, June 2016, pp. 770–778.

[21] H. Su, C. R. Qi, Y. Li, and L. J. Guibas, “Render for CNN: Viewpoint
estimation in images using CNNs trained with rendered 3D model
views,” in ICCV, December 2015.

[22] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature
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