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Abstract— The number of traffic accidents has been
continuously increasing in recent years worldwide. Many
accidents are caused by distracted drivers, who take their
attention away from driving. Motivated by the success of
Convolutional Neural Networks (CNNs) in computer vision,
many researchers developed CNN-based algorithms to recognize
distracted driving from a dashcam and warn the driver against
unsafe behaviors. However, current models have too many
parameters, which is unfeasible for vehicle-mounted computing.
This work proposes a novel knowledge-distillation-based
framework to solve this problem. The proposed framework first
constructs a high-performance teacher network by progressively
strengthening the robustness to illumination changes from
shallow to deep layers of a CNN. Then, the teacher network is
used to guide the architecture searching process of a student
network through knowledge distillation. After that, we use the
teacher network again to transfer knowledge to the student
network by knowledge distillation. Experimental results on
the Statefarm Distracted Driver Detection Dataset and AUC
Distracted Driver Dataset show that the proposed approach
is highly effective for recognizing distracted driving behaviors
from photos: (i) the teacher network’s accuracy surpasses the
previous best accuracy; (ii) the student network achieves very
high accuracy with only 0.42M parameters (around 55% of
the previous most lightweight model). Furthermore, the student
network architecture can be extended to a spatial-temporal
3D CNN for recognizing distracted driving from video clips.
The 3D student network largely surpasses the previous best
accuracy with only 2.03M parameters on the Drive&Act Dataset.
The source code is available at https://github.com/Dichao-Liu/
Lightweight_Distracted_Driver_Recognition_with_Distillation-
Based_NAS_and_Knowledge_Transfer
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I. INTRODUCTION

AS DEFINED by the National Highway Traffic Safety
Administration in the United States (NHTSA), distracted

driving is “any activity that diverts attention from driving”
[1], [2], such as drinking, talking to passengers, etc. Nowadays,
distracted driving has become a huge threat to modern society.
For example, as reported by the NHTSA, in the United States,
traffic accidents caused by distracted driving led to 3,142 or
8.7 percent of all accidents in 2019 [3].

Recently, Advanced Driver Assistance Systems (ADAS) are
being developed to provide technologies that alert the driver
to potential problems for preventing accidents. As one of the
basic and most important technologies of ADAS, distracted
driver recognition (DDR) has attracted much interest from the
academic society [4], [5], [6], [7]. Many approaches have been
developed to use the images taken by a dashcam to recog-
nize whether the driver is driving safely or behaving some
categories of distracted driving actions [8], [9], [10], [11],
[12], [13]. With the effort of the researchers, the recognition
accuracy of the DDR task has been increasing, especially
when convolutional neural networks (CNNs) are employed
in this field [8], [10], [14], following the success of CNNs
in many other fields. However, the accuracy improvement is
generally brought by increased CNN parameter size. The huge
parameter size becomes a big problem for real-world applica-
tions because of the limitation of vehicle-mounted computing
equipment. The purpose of this paper is to design a lightweight
and fast network for DDR with high DDR accuracy, which
will be very useful for intelligent transportation system (ITS)
applications. In the remainder of this section, we start with a
review of the existing DDR methods and then briefly present
a general overview of our approach.

A. Existing Distracted Driver Recognition Approaches

Recently, with the success of CNNs in the computer vision
field, it has become common to use deep learning models to
solve distracted driver recognition (DDR) tasks [8], [15], [16].
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For example, Yan et al. [16] embedded local neighborhood
operations and trainable feature selectors within a deep CNN,
and by doing so, meaningful features could be selected auto-
matically to recognize distracted drivers.

However, the introduction of CNNs causes the problem
of huge parameter size. There are some recent lightweight
networks designed for general-purpose computer vision, such
as MobileNet [17], MobileNetV2 [18] and SqueezeNet [19].
However, these lightweight networks are not specifically
designed for DDR, and therefore is still room for improvement
regarding DDR accuracy and the number of parameters.

There are now also some lightweight networks designed
specifically for DDR by hand. For example, Baheti et al. [20]
propose the MobileVGG, which reduces the number of para-
meters by replacing the traditional convolution in the classical
VGG structure with depth-wise convolution and point-wise
convolution. D-HCNN [21] is another example, which uses an
architecture containing four convolution blocks with the filters
of rather large spatial sizes and achieves high performance
with small number of filters. However, these networks were
designed entirely by hand based on experience with net-
works used for general-purpose computer vision tasks, so the
potential of the network structure could not be reached to
the maximum extent possible. Moreover, D-HCNN requires
histogram of oriented gradients (HOG) [22] in addition to
RGB image as the input. HOG counts occurrences of gradient
orientation in localized portions of an image and describes the
appearance and shape of the local objects. The computation
of HOG requires extra processing effort and is not favorable
for real-world applications.

In this work, we search for an optimal architecture for the
DDR task, which has less parameter size and higher accuracy
than the above studies. Our approach is designed by NAS
rather than totally by hand and only requires RGB images as
inputs.

B. A Brief Overview of the Proposed Approach

To solve this problem, we propose a distillation-based neural
architecture search and knowledge transfer framework. Over-
all, the proposed framework is based on knowledge distilla-
tion [23], which refers to the process of transferring knowledge
from a large model (teacher network) to a smaller one (student
network). The proposed framework includes three steps:
(i) constructing a strong teacher network; (ii) searching and
define the architecture of a student network under the super-
vision of the teacher network; (iii) transferring the knowledge
from the teacher network to the student network.

1) Teacher Network: The teacher network is built based
on progressive learning (PL). PL is a training strategy that
starts the training from shallow layers and then progressively
deepens the model by adding new layers to the model [8],
[15], [16]. In some studies, PL is also regarded as partitioning
a network into several segments and progressively training
the segments from shallow to deep [25], [26]. Progressive
learning (PL) was originally proposed for generative adversar-
ial networks [27]. It started with low-resolution images, and
then progressively increased the resolution by adding layers

Fig. 1. Examples of images taken by a camera monitoring the driver’s
behavior under different illumination conditions. The ground-truth label of
the images is “Drink”. The images are from the AUC Distracted Driver
Dataset [24].

to the networks. For example, Wang et al. [28] proposed to
progressively cascade residual blocks to increase the stability
of processing extremely low-resolution images with very deep
CNNs. Shaham et al. [29] proposed to reconstruct high-
resolution images by a progressive multi-scale approach that
progressively up-sample the output from the previous level.
Recently, PL has been also applied in fine-grained image clas-
sification tasks. For example, Du et al. [25] and Zhao et al. [26]
used PL to fuse information from previous levels of granularity
and aggregate the complementary information across different
granularities.

In this work, we introduce PL into DDR to solve the
problem caused by various illumination conditions, such as
sunlight and shadow. As shown in Figure 1, in the real
world, the dashcam commonly records the driver’s behavior in
different illuminations, while the color itself is susceptible to
the influence of illumination. RGB information changes con-
siderably under different illuminations, which causes strong
intra-class variance in the DDR task. Such intra-class variance
affects CNNs from shallow to deep layers. The shallow
layers of CNN tend to learn basic patterns, such as different
orientations, parallel lines, curves, circles, etc., while the deep
layers tend to encode the patterns learned by shallow layers
to capture more semantically meaningful information, such as
hands, body, etc [30]. Following the experience learned with
bright illumination on what basic patterns are discriminative,
the shallow layers of a CNN might fail to find enough
discriminative basic patterns in the shadows.

In this work, we progressively train the teacher network
for several stages. During the stages, the training starts from
shallow layers and progressively goes deeper with random
brightness augmentation [31] to increase the robustness to the
illumination of the layers from shallow to deep. Thereafter,
we use the original image to train the aggregation of the
models of all stages, considering that the random brightness
augmentation might lose some visual information.

2) Student Network: The student network is a compact
network that should be able to achieve high recognition
performance. This leads to a research question: how to define
the architecture of the student network to make it compact,
lightweight, yet powerful for DDR, by utilizing the knowledge
of the teacher network as supervision?

To answer this question, we turn our eyes to neural archi-
tecture search (NAS). NAS refers to the process of automating
architecture engineering to learn a network topology that can
achieve best performance on a certain task [32], [33], [34].

The major components of NAS includs searching space,
searching algorithm, and evaluation strategy [32]. With the
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prior knowledge about typical properties of architectures,
NAS approaches commonly define the searching space as
a large set of operations (e.g., convolution, fully-connected,
and pooling). Each possible architecture in the searching
space is evaluated by a certain evaluation strategy [32], [33]
and the searching process is controlled by certain searching
algorithms, such as reinforcement learning [33], [35], [36],
evolutionary search [37], differentiable search [38], or other
learning algorithms [34], [39], [40], [41]. NAS commonly
defines a searching space at first and then uses a certain policy
to generate a sequence of actions in the searching space to
specify the architecture.

In this work, we propose a new searching approach for
DDR based on the characteristics of the images in the DDR
task. We introduce how we define the searching space and the
searching strategy as described below.

3) Searching Space: The images in the DDR task have less
diversity and much stronger inter-class similarity than those
in many other image recognition tasks. For example, in the
fine-grained image recognition task of CUB Birds [42], the
images contain the birds of different species, the background
of different habitats, etc. However, in the DDR task, almost all
the images can be roughly described as “a human is driving.”
Thousands of images showing different driving behaviors
might be performed by the same person, and the backgrounds
of all the images are actually the interior of the same car.

Due to the above reason, a large proportion of the visual
information does not provide discriminative clues in the DDR
task. For example, in CUB Birds, the color of wings, the shape
of heads, etc. all provide useful information. Sometimes, even
the background provides useful information as a bird image
with the sea as the background highly likely shows a certain
sea bird. In contrast, in the DDR task, the color of the driver’s
clothes, the shape of the driver’s glasses or hat, almost all the
background, etc. are useless information.

Consequently, the models for the DDR task do not need
a huge number of object detectors. The key is to explore
some discriminative objects, which are quite universal among
different driving behaviors, such as hands, body pose, steering
wheel, etc. In CNNs, depth influences the flexibility, and each
channel of the filters acts as an object detector [30]. Thus, the
architecture for DDR does not require a very deep structure
and a huge number of channels. The above claim is backed
up by some earlier observations that the architecture of a
decreased number of layers and channels can achieve good
results in DDR [20], [21].

On the other hand, the architecture for DDR must be able
to effectively find and capture useful clues from the limited
discriminative objects, which is very difficult because: (i) the
inter-similarity is strong; (ii) the key objects vary largely
in size (e.g., hands and body). In this work, we introduce
pyramidal convolution (PyConv) [43] into the DDR task. In a
standard convolution layer, all the filters have the same spatial
size. In contrast, a PyConv layer uses convolution filters of
different spatial sizes, and the filters are possible to divide
into several groups. Thus, PyConv has very flexible receptive
fields, which is beneficial to capture key objects of different

sizes. Also, due to its flexibility, PyConv provides a large
pool of potential network architectures. In this work, the main
searching space is defined as the candidate combinations of
filters’ spatial sizes and the number of groups. Moreover,
the pooling method applied in the model also influences the
performance of capturing key objects [44]. We also search
whether to use max pooling or average pooling in the layers.

4) Searching Strategy: Most of the NAS methods train the
possible candidate networks one by one, and evaluate the
performance of the trained candidate networks on a validation
set [32], [45]. The evaluation results are used as metrics
to update the architecture searching process. However, the
process of candidate evaluation could be very expensive in
terms of time, memory, computation, etc. In this work, since
we have already constructed a powerful teacher network,
we directly use the teacher network to guide the searching.
Specifically, we first build a super student network that aggre-
gates all the candidates with a weighted sum, whose weights
are regarded as the possibility of choosing each candidate.
Then the super student network is trained to learn from the
teacher network by knowledge distillation. After the training,
the candidates with the maximum weight are chosen to build
the architecture of the student network.

After defining the architecture of the student network, the
teacher network is utilized again to transfer knowledge to the
student network.

Our contributions are summarized as follows:
- We propose a novel framework for solving the DDR task

with high accuracy and a small number of parameters.
The research question is solved by the proposed searching
strategy.

- We mainly carried out the experiments of training the
teacher network, defining the student network, and eval-
uating the performance of the teacher and student net-
works on two image-based DDR datasets, namely the
AUC Distracted Driver Dataset (AUCD2) [24] and State-
farm Distracted Driver Detection Dataset (SFD3) [46].
The experimental results show that the teacher network
achieves 96.35% on the AUCD2 and 99.86%–99.91%
in different splitting settings on the SFD3 with 44.62M
parameters, which outperforms the previous state-of-the-
art approaches on both datasets. Note that the previous
best approach on AUCD2 requires 140M parameters.

- The student network achieves 95.64% on the AUCD2
and 99.86%–99.91% in different splitting settings on the
SFD3 with only 0.42M parameters.

- The student network architecture can be extended into
a spatial-temporal 3D convolutional neural network by
replacing the 2D layers with spatial-temporal 3D lay-
ers [47], [48], [49], [50]. We carried out comprehen-
sive experiments in all the tasks of the Drive&Act
Dataset (DAD) [51], which is a video-based DDR dataset.
The 3D student network is 0.89%–29.00% higher than
the previous best accuracy in the validation set and
2.05%–30.88% higher than the previous best accuracy in
the test set. The 3D student network requires only 2.03M
parameters.
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II. DETAILS OF THE PROPOSED APPROACH

A. Teacher Network Construction

In this subsection, we introduce the details of the teacher
network. Let E be the backbone feature extractor, which
can be based on any state-of-the-art models, such as SKRes-
NeXt50 [52], etc. The layers of E are divided into N segments
{m1,m2, . . . ,mn, . . . ,mN }. Assume {s1, s2, . . . , sn, . . . , sN }
be N consecutive stages from shallow to deep. At each
stage of {s1, s2, . . . , sn, . . . , sN }, the training always starts
from the first layer of E . From s1 to sN , the training
gradually goes deeper and covers more layers of E . That
is, the segments under training at stage sn are m1 +
m2 + . . . + mn . Let {x1, x2, . . . , xn, . . . , xN } denote the the
output feature maps at {s1, s2, . . . , sn, . . . , sN }. Let xn ∈
R

Hn×Wn×Cn denote the output feature map at the stage
sn , and Hn, Wn , and Cn respectively denotes the height,
width, and the number of channels of xn . We use a set of
operations {φ1(.), φ2(.), . . . , φn(.), . . . , φN (.)} to respectively
process {x1, x2, . . . , xn, . . . , xN } into 1D vectorial descriptors
{v1, v2, . . . , vn, . . . , vN }, where vn ∈ R

L . The φn(.) corre-
sponding to xn is defined as:

vn = φn(xn) = f max_pool
H×W (x ′′

n ), (1)

x ′′
n = f ReLU( f bn( f conv

3×3× L
2 ×L

(x ′
n))), (2)

x ′
n = f ReLU( f bn( f conv

1×1×C× L
2
(xn))), (3)

where f max_pool
H×W (.) denotes a max-pooling operation whose

window size is H ×W . f conv(.) illustrates the 2D convolution
operation by kernel size. For example, f conv

1×1×C× L
2
(.) denotes

a 2D convolution operation whose kernel size is 1×1×C × L
2

(1 × 1 is the spatial size, C is the number of input channels,
and L

2 is the number of output channels). f bn(.) denotes the
batch normalization operation [53], and f ReLU(.) denotes the
ReLU operation.

Thereafter, we use a set of operations {ψ1(.), ψ2(.), . . . ,
ψn(.), . . . , ψN (.)} to respectively process {v1, v2, . . . ,
vn, . . . , vN } to predict the probability distribution {p1, p2, . . . ,
pn, . . . , pN } over the classes at each stage:

pn = ψn(vn)

= f fc
L
2 ×K

( f ReLU( f bn( f fc
L× L

2
( f bn(vn))))), (4)

where pn ∈ R
K , and K denotes the number of the classes of

driving behaviors. f fc
L
2 ×K

(.) denotes a fully connected layer

whose input size is L
2 and the output size is K . f fc

L× L
2
(.)

denotes a fully connected layer whose input size is L and
the output size is L

2 .
After the last stage sn , we add an additional stage by

concatenating v1, v2, . . . , vN and generating the concatenated
vector into the probability distribution over the classes as:

pN+1 = ψN+1(vN+1)

= f fc
L
2 ×K

( f ReLU( f bn( f fc
N L× L

2
( f bn(vN+1))))), (5)

vN+1 = f concat(v1, v2, . . . , vn, . . . , vN ), (6)

Algorithm 1 Building the Teacher Network Based on
Progressive Learning

Require: Given a dataset D = {(inputi , pi
truth)}I

i=1 (I is
the total number of images in D), and N stages {s1, s2, . . .,
sn, . . . , sN } of the backbone feature extractor E .
1: for epoch ∈ [1, num_of_epoch] do
2: for (input, ptruth) in D do
3: for n ∈ [1, N] do
4: inputn = Brightness_augmentor(input)
5: xn = sn(inputn)
6: vn = φn(xn)
7: pn = ψn(vn)
8: Ln = Lcls(pn, ptruth)
9: BACKPROP(Ln)

10: end for
11: for n ∈ [1, N] do
12: inputn = input
13: xn = sn(inputn)
14: vn = φn(xn)
15: end for
16: vN+1 = f concat(v1, v2, . . . , vN )
17: pN+1 = ψN+1(vN+1)
18: LN+1 = Lcls(pN+1, ptruth)
19: BACKPROP(LN+1)
20: end for
21: end for

where f concat(.) denotes the concatenation operation.
Now, we have N + 1 prediction probability distributions
{p1, p2, . . . , pn, . . . , pN , pN+1}. The teacher network is
trained by using a cross entropy loss Lcls(.) to minimize
the distance between ground truth label ptruth and each
prediction probability distribution of {p1, p2, . . . , pn, . . . , pN ,
pN+1}:

Lcls(pn, ptruth) = −
K∑

k=1

p(k)truth log(p(k)n ), (7)

where p(k)n denotes the probability that the input belongs to

the category k at the stage sn . p(k)truth equals to 1 if it is true
that the input belongs to the category k, and equals to 0 on
the contrary.

The overall algorithm of building the teacher network is
given in Algorithm 1. For the stages s1 ∼ sn , the input images
are augmented with Imgaug [31].

B. Distillation-Based Neural Architecture Search
for the Student Network

The computation overhead, including speed and parameter
size, acts as an extremely crucial role for DDR. According
to the experiences of previous studies [12], [21], it is much
more favorable to use large convolution filters rather than deep
layers because the former is able to compute in parallel to
achieve a fast processing speed that satisfies the requirements
of the real-world application. Thus, in this work, we design the
student network to have four convolutional blocks, which are
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Fig. 2. Illustration of the searching process. “CAND” is the abbreviation for “candidate”. In the super student network, there are several candidates for the
convolutional architectures of each block. Besides, there are two candidates of the pooling method, namely average pooling and max pooling, in each block.
The candidates of convolutional architecture and pooling methods for each block are aggregated by the weighted sum. α and β are the learnable weights.
“GAP” means global average pooling and “FC” means the fully-connected operation. The super student network is trained to learn from the teacher network
by knowledge distillation. After the training, only the candidates with the maximum weight are kept and forms the student network.

followed by a global average pooling layer (GAP) and a fully
connected (FC) layer for predicting the probability distribution
over the classes.

For each block, we use pyramidal convolution
(PyConv) [43] rather than standard convolution. PyConv
contains a pyramid of kernels, where each level involves
different types of filters with varying sizes. Using PyConv for
DDR has two benefits. First, PyConv can capture different
levels of details in the scene. A filter of a smaller kernel size
has smaller receptive fields and thus can capture more local
information and more detailed clues. A filter of a bigger
kernel size has bigger receptive fields and thus can “see”
more information at once and capture relatively more global
information, such as the dependencies among some local
patterns, some large objects, etc. Such multi-level details
are very important for recognizing driver behaviors. Second,
PyConv is flexible and extensible, giving a large space of
potential architecture designs. That is, PyConv gives strong
potential to search for a lightweight architecture.

At the end of each block, we use a pooling layer to
downsample the feature maps. Two types of pooling layers
are widely used for this objective: max pooling and average
pooling. We define our search space as the candidates of
different designs of PyConv and different pooling types in
the four convolutional blocks.

As shown in Figure 2, the overall process of defining the
architecture of the student network is given as: at first, we con-
struct a super student network covering all the candidates of
each block. In the super student network, the output feature
maps of the candidates of each block are aggregated by a
weighted sum to become the input of the next block. The
sum weights are learnable and represent the probability of
choosing the candidates. Then the super student network is
trained to learn from the teacher network. Thereafter, the final
architecture of the student network is derived by selecting the
candidate with the maximum probability.

Specifically, let {b1, b2, b3, b4} denote the four blocks
of the student network and super student network.
{ω1

b(.), ω
2
b(.), . . . , ω

m
b (.), . . . , ω

M
b (.)} denote M different can-

didates of PyConv for the block b. { f avg_pool
b (.), f max_pool

b (.)}
denotes the candidates of using average pooling or max
pooling layer at the end of the block b. Given the feature map
X in

b outputted by the previous block, the output feature map
Xout

b of the block b in the super student network is defined as:

Xout
b = β

avg
b f avg_pool

b (

M∑
m=1

αm
b ω

m
b (X

in
b ))

+ βmax
b f max_pool

b (

M∑
m=1

αm
b ω

m
b (X

in
b )), (8)

where {α1
b , α

2
b , . . . , α

m
b , . . . , α

M
b } and {βavg

b , βmax
b } are the

probabilities of choosing the corresponding candidates, and
they are computed as:

αm
b = exp(α̂m

b )∑M
j=1 exp(α̂ j

b )
, (9)

β
g
b = exp(β̂g

b )

exp(β̂avg
b )+ exp(β̂max

b )
, g = {avg,max}, (10)

where, {α̂1
b, α̂

2
b , . . . , α̂

m
b , . . . , α̂

M
b } and {β̂b

avg
, β̂b

max} are
learnable parameters that are all initialized as 1 and optimized
during the training.

All the blocks of {b1, b2, b3, b4} of the super student net-
work are constructed by the process introduced above. The
output feature map of b4 is processed by the GAP and FC
layers to predict the probability distribution over the classes
(psuper). As mentioned above, after the training of the teacher
network, we only use pN+1 of the teacher network for category
prediction. The super student network is trained with the
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Fig. 3. Sample images of distracted driving behaviors on the Statefarm Distracted Driver Detection Dataset (SFD3) [46].

Fig. 4. Sample images of distracted driving behaviors on the AUC Distracted Driver Dataset (AUCD2) [24].

search loss Lsearch(.) defined as:
Lsearch(psuper, pN+1, ptruth) = λLmse(psuper, pN+1)

+ (1 − λ)Lcls(psuper, ptruth),

(11)

where Lmse(.) denotes the mean squared error loss, and λ is
a manual hyperparameter. During the training of the super
student network, the parameters of the teacher network are
fixed. After the training, we only keep the candidate with the
maximum probability and prune all the other candidates for
each block to construct the student network.

C. Knowledge Transfer

In the former subsection, we use the teacher network to
guide the search of the student network architecture, and in
this subsection, we use it to transfer knowledge to the student
network. Assume that pstudent is the probability distribution
over the classes predicted by the student network. The student
network is trained with the knowledge transfer loss Ltrans(.)
defined as:
Ltrans(pstudent, pN+1, ptruth) = λLmse(pstudent, pN+1)

+ (1 − λ)Lcls(pstudent, ptruth).

(12)

III. DATASETS AND IMPLEMENTATION DETAILS

A. Dataset Description

The experiments are conducted using two types of datasets:
image-based DDR dataset and video-based DDR dataset.
The image-based DDR task requires recognizing the driver’s

behavior from each given image. The video-based DDR task
requires recognizing the driver’s behavior from each given
video clip containing several frames. We mainly carried out
the experiments of training the teacher network, defining the
student network, and evaluating the performance of the teacher
and student networks on the image-based DDR datasets. Then,
we obtained an extremely lightweight yet powerful student
network for the image-based DDR task. Thereafter, following
Hara et al. [47], we extended the student network from 2D to
3D for the video-based DDR task.

For the image-based DDR task, we carried out experiments
on two standard benchmark datasets for DDR: the Statefarm
Distracted Driver Detection Dataset (SFD3) [46] and the AUC
Distracted Driver Dataset (AUCD2) [24]. These two datasets
are the most widely used datasets, and have been used for
many studies on DDR. Both of the two datasets are composed
of one safe driving action and nine distracted driving actions
including (i) text right, (ii) talk right, (iii) text left, (iv) talk
left, (v) adjust radio, (vi) drink, (vii) reach behind, (viii) hair
and makeup, and (ix) talk to passenger. The images of both
datasets are taken by dashboard cameras recording the driver’s
behavior. The sample images of the SFD3 and AUCD2 are
shown in Figure 3 and Figure 4, respectively.

SFD3 is one of the most influential public datasets in the
field of DDR. There are 22,424 images for training (around
2,000 images in each category) and 79,728 unlabeled images
for testing. Since SFD3 does not provide the labels for the test-
ing images, we follow the common practice of previous studies
to perform experiments on the training dataset. We randomly
split the training dataset of SFD3 as training image: testing
image = 7:3 [13], [21], 7.5:2.5 [21], [54], [55], 8:2 [14],
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Fig. 5. Sample frames of distracted driving behaviors on the Drive&Act Dataset (DAD) [51]. The video clips are labeled with multiple annotations, including
different categories of fine-grained activities, scenarios, atomic actions, objects, locations, together with possible combinations of the atomic actions, objects,
and locations.

[21], [56], [57], [58], 9:1 [21], [59]. In this work, for each
proportion of the train-test partition, we randomly split the
images 10 times and report the average accuracy.

AUCD2 is another widely used public dataset for DDR.
It has 17,308 RGB frames, of which 12,977 are for training,
while the remaining 4,331 are for testing.

For the video-based DDR task, we utilized the Drive&Act
Dataset (DAD) [51]. This is a large-scale video dataset con-
sisting of various driver activities, with more than 9.6 million
frames. As shown in Figure 5, the DAD provides multiple
annotations for performing three types of recognition tasks
on the video clips. The first task is the scenario recogni-
tion task, which requires recognizing the top-level activities
(e.g., work and drink) from each given video clip. There
are totally 12 different scenario categories. The second task
is the fine-grained activity recognition task, which requires
recognizing the specific semantic actions (e.g., open laptop,
close bottle, etc.) from each video clip. There are totally
34 different categories of fine-grained activities. The third
task is the atomic action unit recognition task. The atomic
action units portray the lowest degree of abstraction and are
basic driver interactions with the environment. The annotations
of the atomic action units involve triplets of atomic action,
object, and location, which are detached from long-term
semantic meaning and can be regarded as building blocks for
complex activities. There are five categories of atomic actions
(e.g., reach for), 17 categories of objects (e.g., automation
button), 14 categories of locations (e.g., center console back),
and 372 possible combinations.

B. Implementation Details

1) Teacher Network: We use SKResNeXt50_32 × 4d [52]
as the backbone of the feature extractor E . We divide
SKResNeXt50_32 × 4d into three segments {m1,m2,m3}.
m1 includes the Conv1–Conv3 of SKResNeXt50_32 × 4d.
m2 and m3 respectively include the Conv4 and Conv5 of
SKResNeXt50_32 × 4d.

2) Super Student Network: As mentioned above, we define
our search space as the candidates of different designs for the
four convolution blocks of the student network and construct a
super student network to cover all the candidates. The specific
candidates are shown in Table I. In Table I, the design of filters
are illustrated by kernel size, number of channels, and number

of groups. For example,

[
11 × 11, 16, 1

7 × 7, 16, 1

]
denotes a PyConv

layer with two types of filters: one filter has 11 × 11 kernel
size and the other has 7 × 7 kernel size. Both filters have
16 channels and 1 group. The pooling layers are illustrated by
the type and window size. For example, “Avg. Pool

[
2 × 2

]
”

denotes an average pooling layer with 2×2 window size. The
stride of all the convolution layers is set as 1 and the padding
size is set as θ−1

2 , where θ is the spatial size of the filter.
Thus, the convolution layers do not change the spatial size of
feature maps. The stride of the pooling layers is set as 2, and
the height and width of feature maps decrease by half after
the pooling layers.

3) Training Details: For the experiments on the image-
based datasets, during the training, all the learning rate are
set as 0.002 with cosine annealing [60]. Weight decay is set
as 5 × 10−4. The input images are resized to 256 × 256 and
applied with random crop of 224 × 224 region for training,
center crop of 224 × 224 region for testing. We set batch
size as 32 and train each network for 300 epochs. The manual
hyper parameter λ in Equation 11 and Equation 12 is set as 0.7,
which is a common setting for distillation. For the experiments
on the video-based dataset, we follow the settings of Hara
et al. [47]. Specifically, the learning rate is set as 0.001 with
plateau scheduler [47]. Weight decay is set as 1 × 10−5. The
batch size is set as 32, and 16 frames (16 × 3 × 112 × 112)
are sampled for each video clip by uniform sampling.

IV. RESULTS AND DISCUSSIONS

A. Student Network Architecture Definition
As mentioned above, we first train the super student

network to approximate the prediction distribution of the
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TABLE I

CANDIDATES OF EACH BLOCK

TABLE II

PROBABILITIES OF CHOOSING EACH CANDIDATE OF EACH BLOCK

TABLE III

THE STUDENT NETWORK DEFINED BY DISTILLATION-BASED NEURAL ARCHITECTURE SEARCH

teacher network. We carry out this experiment on the AUCD2,
as it is a more challenging dataset than SFD3. The prob-
ability of choosing each candidate is shown in Table II.
The candidates of the highest probability are marked in gray
background. For convolutional layers, the searching guided by
the teacher network chooses the third candidate for b1 and the
first candidate for all the other blocks. For pooling layers, the
second candidate (max pooling) is selected for all the blocks.
The reason might be that max pooling selects the brighter
pixels or the features corresponding to the sharp pixels, and
therefore more robust to illumination changes.

Referring to Table I and Table II, we define the architecture
of the student network as Table III. This architecture only
requires 0.42M parameters. In the following experiments,

we use this architecture as the student network on both
datasets.

B. Recognition Performance of the Teacher and
Student Network

In this subsection, we compare the recognition performance
of the teacher network with and without progressive learning
(PL), the student network trained from scratch and finetuned
after transferring the teacher network’s knowledge to the
student network. The results are shown in Table IV.

On the AUCD2, PL improves the teacher network by 1.06%,
which shows the effectiveness of PL. On the SFD3, the
improvement brought by PL is small, which is 0.04%–0.11%.
It is because backbone of the teacher has already achieved
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TABLE IV

THE RECOGNITION ACCURACY OF THE TEACHER AND STUDENT NETWORKS

TABLE V

THE F1-SCORE OF THE TEACHER AND STUDENT NETWORKS

a high accuracy that is 99.75%–99.87%. Considering the very
narrow possible improvement space, we suppose PL can be
still regarded as effective on the SFD3. In the following
experiments, we use the teacher network with PL to guide
the search of the student network architecture and transfer
knowledge to the student network.

On both datasets, the student network trained from scratch
already achieves a very high accuracy, which shows the
architecture obtained by the proposed searching approach is
effective for the DDR task. Knowledge distillation respectively
improve 0.52% and 0.03%–0.05% on the AUCD2 and SFD3,
respectively.

Considering that the accuracy for the datasets is almost
saturated, it is interesting to see there is still room for the
improvement by our proposed method.

In addition, since the AUCD2 dataset is somewhat unbal-
anced, we also show the F1-score obtained with this dataset in
Table V. PL improves the teacher network by 0.32%–1.54%
in different categories. Knowledge distillation respectively
improve 0.17%–0.84% for the student network in different
categories.

C. Comparison With State-of-the-Art Distracted Driver
Recognition Approaches

In this subsection, we compare our performance with the
state-of-the-art approaches on AUCD2 and SFD3.

Table VII shows the results on the AUCD3. The accu-
racy of the teacher network (96.35%) surpasses the best

TABLE VI

COMPARISON OF THE DESIGNED STUDENT NETWORKS WITH EXISTING
LIGHTWEIGHT NETWORKS IN TERMS OF GFLOPs

AND TIME CONSUMPTION

previous accuracy (96.31%), which is achieved by Regularized
VGG-16 [12]. Regularized VGG-16 has 140M parameters,
whereas the teacher network in this work has 44.62M para-
meters (i.e., 31.87% of the Regularized VGG-16 parameters),
which shows the effectiveness of the teacher network on this
dataset. The student network achieves 95.64% with 0.42M
parameters. For comparison, the original VGG-16 achieves
94.44% with 140M parameters (i.e., 333.33 times of the stu-
dent network parameters), and the modified VGG-16 achieves
96.54% with 15M parameters (i.e., 35.71 times of the student
network parameters) [12].

Table VIII shows the results on the SFD3. Both the teacher
and student network achieve 99.86%–99.91%, which outper-
forms the best previous accuracy. The student network is
recommended because it requires fewer parameters.

D-HCNN [21] also achieves good accuracy on both datasets
with small parameters. However, our student network is better
because: (i) The student network has better accuracy than
D-HCNN on both datasets; (ii) The student network’s para-
meters are only about 55.26% of D-HCNN; (iii) D-HCNN
requires HOG images in addition to RGB images as input.
Therefore, it needs to compute the HOG feature [22] of every
image when using D-HCNN, which is unfavorable for real-
world applications.

Moreover, the student network has better real-time perfor-
mance than other lightweight models. As shown in Table VI,
for processing a single image in the test mode, the student
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TABLE VII

COMPARISON WITH STATE-OF-THE-ART METHODS ON AUCD2

network requires 2.25 GFLOPs takes 2.23 ms on 1080Ti +
Intel i7-10700F. In comparison, MobileVGG [20] requires
2.11 GFLOPs and takes 5.19 ms. MobileNet [17] requi-
res 0.59 GFLOPs and takes 3.54 ms. MobileNetV2 [18]
requires 0.33 GFLOPs and takes 6.94 ms. SqueezeNet [19]
requires 0.86 GFLOPs and takes 3.86 ms. D-HCNN [21] requi-
res 31.10 GFLOPs and takes 7.40 ms. As D-HCNN requires
HOG images as additional input, it takes additional 1.48ms
per image to compute HOG for each image. Compared to
previous lightweight networks, our network has no significant
advantage in terms of GFLOPs but clearly has faster speed.
It is because the parallelism of a convolutional network is
mainly reflected in the calculation of each layer, and there is
generally no parallelism across layers. So for convolutional
neural networks used in high-speed DDR, large convolutional
filter size is better than too deep layers. This fact was also
pointed out by Qin et al. [21] and experimentally proved by
them. Another advantage of our network is the aforementioned
lower number of parameters, which allows our network to
require less storage and memory space and be more easily
deployed on in-vehicle devices.

Since GPUs can process multiple images in parallel, we also
compare the time consumption of our network with other
lightweight networks that process multiple images in parallel.
For processing one batch of images (32 images) in the test
mode, the student network takes 35.69 ms on 1080Ti + Intel
i7-10700F. In comparison, MobileVGG [20] takes 122.34 ms.
MobileNet [17] takes 53.15 ms. MobileNetV2 [18] takes
44.72 ms. SqueezeNet [19] takes 48.79 ms. D-HCNN [21]
takes 40.67 ms.

As the proposed teacher and student networks achieve very
high accuracy on both image-based DDR datasets [24], [46],

TABLE VIII

COMPARISON WITH STATE-OF-THE-ART METHODS ON SFD3

Fig. 6. Typical sample images that are wrongly classified by the networks
proposed in this work. The ground-truth labels are confusing even for humans.

it is important to know what images cause the small number of
recognition failures. Figure 6 shows the typical failure cases of
the wrongly-predicted images together with their ground-truth
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TABLE IX

THE RECOGNITION ACCURACY OF THE 3D STUDENT NETWORK ON THE THREE SPLITS OF DIFFERENT TASKS OF THE DAD [51]

TABLE X

COMPARISON WITH STATE-OF-THE-ART METHODS ON THE DAD [51]

labels and the prediction given by the proposed networks (the
teacher network or student network). Those failure cases are
even confusing for humans.

D. Extending the Student Network to 3D for the
Video-Based Distracted Driver Recognition

The above experiments have proposed a lightweight yet
powerful network architecture (i.e., the student network) for
image-based DDR. In this subsection, we extend the stu-
dent network into a spatial-temporal 3D network to evaluate
whether on the video-based DDR dataset [51], the 3D student
network can retrace the success of the student network archi-
tecture proposed for the image-based DDR. This experiment
is inspired by the experiments of Hara et al. [47], in which
the researchers replaced the 2D layers (e.g., 2D convolutional
layers, 2D batch normalization layers, etc.) of the ResNet
architectures [64] with 3D layers (e.g., 3D convolutional
layers, 3D batch normalization layers, etc.) and proved that
using 3D ResNet architectures together with Kinetics [65] can
retrace the successful history of 2D CNNs on ImageNet [66].
Following Hara et al. [47], we set the size of the third
dimension of each 3D convolutional kernel to be the same
as the size of the first and second dimensions. For example, a
2D convolutional kernel of a 3 × 3 kernel size is extended to
a 3D convolutional kernel of a 3 × 3 × 3 kernel size.

We conducted comprehensive experiments to evaluate the
performance of the 3D student network for all the tasks on
the DAD. The specific accuracy of each split and the average
accuracy over the three splits are shown in Table IX. The
comparison results with the state-of-the-art approaches on the
DAD are shown in Table X. It can be observed that the 3D
student network outperforms the state-of-the-art approaches
by a significantly large margin in both validation and testing
sets. Our approach is 0.89%–29.00% higher than the previous

best accuracy in the validation set and 2.05%–30.88% higher
than the previous best accuracy in the test set. Besides, the
3D student network has only 2.03M parameters and is much
more lightweight than the state-of-the-art approaches. The
parameter size of the 3D student network is only 16.48%
of the parameter size of C3D [48], 3.09% of the parameter
size of P3D ResNet [49], 2.60% of the parameter size of
I3D [50]. Moreover, the student network has better real-time
performance than those 3D convolutional neural networks.
As shown in Table VI, for processing a single video clips, 3D
student network requires 37.20 GFLOPs and takes 25.35 ms
on 1080Ti + Intel i7-10700F. In comparison, C3D requires
38.55 GFLOPs and takes 25.57 ms. P3D ResNet requires
18.67 GFLOPs and takes 148.04 ms. I3D 27.90 GFLOPs and
takes 61.86 ms. Similar to the case of 2D student network,
3D student network does not have clear advantage in terms of
GFLOPs, but has a clearly faster speed.

For processing 8 video clips (8 × 16 frames) in the test
mode, the 3D student network takes 479.83 ms on 1080Ti +
Intel i7-10700F. In comparison, C3D takes 1452.86 ms. P3D
ResNet takes 983.22 ms. I3D takes 588.44 ms.

E. Discussion on the Implication of the Proposed
Framework on the Its Applications

The implication of our approach to applications is as
follows:

- We construct a powerful teacher network using pro-
gressive learning to increase robustness to illumination
changes from shallow to deep layers of a backbone
CNN. The classification accuracy of the teacher network
exceeds that of all existing approaches and is well suited
for the DDR applications that do not require a particularly
small computational overhead but rather high accuracy.
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TABLE XI

THE RECOGNITION ACCURACY OF THE TEACHER AND STUDENT
NETWORK ON THE THREE ADDITIONAL DATASETS

TABLE XII

COMPARISON RESULTS ON THE THREE ADDITIONAL DATASETS

- Using NAS and knowledge distillation, we generate an
effective student network with the guidance of the teacher
network. The student network can achieve high DDR
accuracy and has less parametric count and inference time
than any existing lightweight DDR networks. The student
network is suitable for applications with high parametric
and inference time requirements.

- We extend the student network into a spatial-temporal
3D network for performing DDR based on small video
clips. The 3D student network has better DDR accuracy,
smaller parameter size, and faster speed than the exist-
ing approaches. The 3D student network is suitable for
applications developed based on video clips.

- Our proposed framework combining knowledge distilla-
tion and NAS has the potential to become a general DDR
network design framework for different applications.

V. ADDITIONAL EXPERIMENTS

We also evaluate our approach on three additional datasets,
which are not for the DDR task but have the same charac-
teristic: small diversity and strong inter-class similarity. The
three additional datasets are Sign Language Digits Dataset
(SLD2) [67], Gesture Dataset 2012 (Gesture2012) [68], and
UIUC Sports Event Dataset (USED) [69]. SLD2 and Ges-
ture2012 are image datasets for hand sign language recog-
nition, which are also used by Qin et al. [21] as additional
datasets to evaluate D-HCNN [21]. USED is an image dataset
for sport event recognition.

On the three additional datasets, we compared the recog-
nition performance of the teacher network with and without
progressive learning (PL), the student network trained from
scratch and finetuned after knowledge transferring. The results
are shown in Table XI. We also compared our approach with
the state-of-the-art approaches on the three additional datasets,
and the results are shown in the Table XII.

Both the teacher and student networks achieve 99.74%
on the SLD and 100% on the Gesture2012, which reach
state-of-the-art performance on the two datasets. The student
network has much fewer parameters than other state-of-the-art
approaches on these two datasets.

On the USED, the improvement brought by PL and knowl-
edge transfer is obvious. PL improves the teacher network by
0.84% and knowledge transfer improves the student network
by 2.91%. The accuracy of the teacher network is 98.75%,
which surpasses the best previous accuracy by 3.55%. The
student network achieves 92.08% with 0.42M parameters.

VI. CONCLUSION

In this paper, we proposed a novel framework for distracted
driver recognition to achieve high accuracy with a small
number of parameters. This framework first builds a powerful
teacher network based on progressive learning and then uses
the teacher network to guide the searching of an optimal
architecture for a student network, which is lightweight but
can achieve high accuracy. Thereafter, the teacher network is
used again to transfer the knowledge to the student network.
The teacher network outperforms the previous state-of-the-
art approaches on the Statefarm Distracted Driver Detection
Dataset and AUC Distracted Driver Dataset. The student
network achieves high accuracy with extremely tiny parame-
ters on both datasets. The student network architecture can
be extended into a spatial-temporal 3D convolutional neural
network for recognizing distracted driving behaviors from
video clips. The 3D student network significantly outperforms
the previous state-of-the-art approaches with only 2.03M para-
meters on the Drive&Act Dataset.
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