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Abstract—With the advent of self-driving vehicles, autonomous
driving systems will have to rely on a vast number of heteroge-
neous sensors to perform dynamic perception of the surrounding
environment. Synthetic Aperture Radar (SAR) systems increase
the resolution of conventional mass-market radars by exploiting
the vehicle’s ego-motion, requiring a very accurate knowledge
of the trajectory, usually not compatible with automotive-grade
navigation systems. In this regard, this paper deals with the
analysis, estimation and compensation of trajectory estimation
errors in automotive SAR systems, proposing a complete residual
motion estimation and compensation workflow. We start by
defining the geometry of the acquisition and the basic processing
steps of Multiple-Input Multiple-Output (MIMO) SAR systems.
Then, we analytically derive the effects of typical motion errors
in automotive SAR imaging. Based on the derived models, the
procedure is detailed, outlining the guidelines for its practical
implementation. We show the effectiveness of the proposed
technique by means of experimental data gathered by a 77 GHz
radar mounted in a forward looking configuration.

Index Terms—SAR, Automotive, MIMO, Autofocus, Motion
compensation.

I. INTRODUCTION

The evolution to fully-autonomous vehicles requires the
usage of a huge and heterogeneous set of sensors, such as
cameras, lidars, radars, acoustic, etc., to enable advanced
environmental perception [1]. Cameras and lidars are, respec-
tively, passive and active optical sensors able to create high-
resolution images and/or point clouds of the surrounding. If
properly integrated, they can provide the vehicles with the
capability of detect and classify objects in the environment.
Automotive-legacy Multiple-Input Multiple-Output (MIMO)
radars working in W-band (76 − 81 GHz [2]) are widely
employed to obtain measurements of radial distance, veloc-
ity and angular position of remote targets [3]. Advantages
of radars are more than a few: they work in any weather
condition, do not need any external source of illumination and
are available at low cost. However, mass-market automotive
radars are characterized by a poor trade-off between angular
resolution - typically above 1 deg -, range, bandwidth and Field
Of View (FOV), challenging their usage for high-resolution
environment mapping in automated driving [2], [4].

Significant effort was spent in recent works to increase the
accuracy of environmental perception by means of Synthetic
Aperture Radar (SAR) techniques [5]–[8]. With SAR, a mov-
ing radar sensor is employed to synthesize a large antenna
array (synthetic aperture) by coherently combining different
acquisitions in different positions of the trajectory; the range
resolution, dictated by the bandwidth, remains the same as for

conventional real aperture radars, while the angular resolution
increases proportionally to the length of the synthetic aperture
(typically � 1 deg). In [5], an automotive SAR system has
been simulated using a radar mounted on a sliding rail. In [6],
a 77 GHz radar with 1 GHz of bandwidth was mounted
on the rooftop of a car to obtain images with resolution
as small as 15 cm. The system proved to be capable of
imaging the scene composed by cars, fences, sidewalks, houses
and more. In [8], SAR images were used to search for free
parking areas, while a 300 GHz SAR implementation (with 40
GHz of bandwidth) is presented in [7], showing millimeter-
accurate imaging capabilities on a slowly travelling van along
a linear path. A preliminary investigation on a cooperative
SAR system aimed at increasing the resolution in scarce
bandwidth conditions is by our previous work [9].

All the aforementioned works underline how the knowledge
about instantaneous radar position is of utmost importance for
automotive SAR systems. Errors in motion estimation, due to
inaccurate navigation data, make the SAR images to appear
rotated and defocused [10]. In principle, SAR requires navi-
gation accuracy to be lower than the wavelength (4 mm in W-
band) [11], but the requirement is on the relative motion within
the synthetic aperture, that extends up to tens of centimeters.
Early works on automotive SAR [12], [13] propose simple
accelerometer- and/or gyroscope-based Motion Compensation
(MoCo), other [14] consider the usage of odometric wheel
speed, for approximately linear trajectories. Our previous
work [15] demonstrated a good SAR imaging quality in urban
scenarios, employing an ad-hoc fusion of multiple sensors
such as Global Navigation Satellite System (GNSS), Inertial
Measurement Units (IMUs), odometer and steering angle.
However, these former works highlighted the need of a proper
residual motion correction in arbitrary dynamic conditions,
where automotive-grade navigation solutions are not accurate
enough.

Therefore, the residual motion estimation and compensation
is still and open issue. Traditionally, air-borne and space-borne
SAR systems make use of radar data to refine the positioning
accuracy with an autofocus procedure [16]–[18]. Very little
work has been done, on the other hand, in the automotive
field, whose most relevant contributions on residual motion
estimation and compensation are in [19]–[23]. In [19], for
instance, an autofocus procedure has been employed for the
focusing of SAR images without dealing with MIMO SAR and
providing simulation results. In [20], a complete automotive-
based SAR system has been proposed, based on a new
approach for motion compensation. As the vehicle changes
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its velocity, the radar’s parameters such as the pulse repetition
frequency is changed, to avoid distortions in the final SAR
image. The paper however does not cope with errors in the
knowledge of the vehicle trajectory. In [21], the authors report
an automotive SAR system, based on compressive sensing,
that does not require any prior on the motion of the vehicle.
However, compressive sensing approaches are known to be
hardly applicable to real scenarios with non-linear and possibly
high-velocity vehicle trajectories. Two similar approaches are
in [22] and [23]. In the former, the authors use a standard
range-Doppler radar to refine the ego-motion estimation of
the vehicle. This information is not used, however, to focus a
SAR image. In the latter, instead, two radars are used: one for
the ego-motion estimation and the other for the SAR image
formation.

This paper proposes a complete residual motion estimation
and compensation procedure for automotive SAR systems,
using radar data on top of navigation ones. The technique
exploits a single MIMO radar to do both a refinement of the
ego-velocity and SAR image formation. Such radar can be
mounted in any looking geometry (forward or side looking)
opening the possibility for the formation of wide and dense
SAR map of the urban environment. We start by providing
the analytical treatment of the effect of typical vehicle motion
errors on SAR imaging, highlighting the major sources of
image degradation and providing the theoretical requirements
in terms of maximum tolerable velocity errors. Then, we
outline the proposed autofocus workflow, exploiting a set
of co-registered low-resolution images obtained by focusing
the data received by a MIMO radar mounted on the car.
The low-resolution images provide the location of a set of
Ground Control Points (GCPs), that are first used to retrieve
the residual Doppler frequency and, consequently, the velocity
error. Finally, low-resolution images are phase-compensated
and summed along the synthetic aperture, obtaining a correctly
focused SAR image in any driving condition and acquisition
geometry. We also provide some insights on how to properly
select the GCPs, as well as on the effect of an error in
the focusing height and/or angular mis-localization of a GCP
on SAR imaging. The expected theoretical performance of
the residual motion estimation and compensation are also
assessed. The work is validated by experimental data gathered
by a 77 GHz MIMO radar mounted on the front bumper of
a car, in a frontal looking configuration. The car is purposely
equipped with navigation sensors to provide the a-priori trajec-
tory estimation, input of the autofocus procedure. The results
confirm the validity of the proposed approach, that allows to
obtain cm-accurate images of urban environments.

The paper is organized as follows: in Section II, an intro-
duction to Frequency Modulated Continuous Wave (FMCW)
MIMO SAR processing is provided; Section III reports the
analytical derivation of the effects of typical motion errors on
SAR focusing; Section IV describes the proposed autofocus
workflow, validated with experimental data in Section V.
Finally, Section VI draws the conclusion.

II. FMCW SAR PROCESSING

For the sake of clarity, in this section we propose a review
of the core aspects of FMCW radars [24], MIMO and SAR
processing. Each system is described, the geometry of the
problem is explained, strengths and limitations are reported.

A. FMCW Preliminaries

Let us consider a FMCW radar operating in W-band, located
in the origin of a 2D scenario, emitting a chirp signal of
duration Tp every Pulse Repetition Interval (PRI). The emitted
signal is:

stx(t) = exp{j(2πfct+ πKt2)} × rect

[
t

Tp

]
(1)

where t is the fast-time variable, fc is the carrier frequency, K
is the chirp rate measured in [Hz/s] and the overall frequency
sweep covers a bandwidth B. After the demodulation and
deramping of the received signal, the range of a target at
distance r0 from the radar can be estimated from the Range-
Compressed (RC) datum [25]:

src(t; t0) = Tp sinc[Tp(f −Kt0)] exp{−j2πfct0} (2)

where t0 = 2r0/c is the two-way travel time of the Tx signal
(c is the speed of light in vacuum) and and sinc[x] = sinx/x.
We also assumed a fast chirp modulation where range and
Doppler are decoupled.

By performing the change of variable t = 2r/c, we obtain:

src(r; r0) = Tp sinc

[
2B

c
(r − r0)

]
exp

{
−j 4π

λ
r0

}
(3)

where λ is the carrier wavelength. The range resolution of the
FMCW radar system is therefore

ρr =
c

2B
. (4)

For an exemplary bandwidth B = 3 GHz, the range resolution
is approximately 5 cm. A radar system with a single antenna
will provide no resolution at all in the direction orthogonal
to range (azimuth): every target at the same distance from
the sensor will be integrated in the same resolution cell. To
provide the angular resolution it is common practice to use
arrays of antennas, either real or virtual.

B. MIMO Processing

In the case of a real array, N physical antennas transmit a
signal and receive the echo, while in the virtual array scenario
there are Ntx transmitting antenna and Nrx receiving ones.
Each possible pair of TX-RX form a virtual radar channel
leading to an equivalent array of N = Ntx × Nrx virtual
elements. From now on, we will generically refer to antenna
arrays, without explicitly specify if real or virtual. Figure 1a
shows a Uniform Linear Array (ULA) displaced along y, with
an inter-antenna spacing of ∆y. The direction of motion is
identified by x axis, i.e., the MIMO radar is in a forward
looking configuration, to be consistent with the experimental
settings of Section V.
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Fig. 1: Geometry of the radar acquisition: (a) MIMO radar; (b) SISO
SAR, at height q from ground, consisting of a single-antenna moving
platform, transmitting a pulse for each PRI; (c) MIMO SAR with
antenna array orthogonal to motion (forward looking configuration).
Notice that other deployments of the radar are possible (for arbitrary
squint angles)

Let us therefore consider a 2D scenario. According to (3),
the Rx signal at the n-th antenna from the target in x0 is:

src(r, n;x0) = Tp sinc

[
r − r(n;x0)

ρr

]
×

× exp

{
−j 4π

λ
r(n;x0)

} (5)

where r(n;x0) is the distance from the target in x0 to the n-th
antenna. Assuming a plane wave impinging the antenna array,

it is:
r(n;x0) ≈ r0 − n∆y sinφ0 (6)

where r0 = r(0;x0) is the distance between the target and the
center of the array and φ0 = tan−1(y0/x0) is the observation
angle (angular position of the target in the FOV). Combining
(5) with (6), we obtain:

src(r, n;x0) = Tp sinc

[
r − r0

ρr

]
×

× exp

{
−j 4π

λ
r0

}
exp

{
j

4π

λ
n∆y sinφ0

}
,

(7)

i.e., a truncated spatial sinusoid across the array of frequency
fx = (2/λ) sinφ0. Therefore, the azimuth compression (or
DOA estimation) is again a frequency estimation problem. As
the maximum spatial frequency on the array is fx,max = 2/λ
(for φ0 = ±90 deg), it follows that the minimum inter-antenna
spacing shall be constrained to ∆ymin = λ/4. The angular
resolution of the array is:

ρφ =
λ

2N∆y cosφ
[rad] (8)

For instance, a N = 5 element array displaced by ∆y = λ/4
obtains a maximum resolution at boresight of just 23 deg. In
Figure 2, we show an example from real data of a MIMO
image acquired by an 8 channel array: the angular resolution
is roughly 15 deg. To improve angular resolution, it is possible
to use larger arrays at increased costs and system’s complexity
or, as here, exploiting the vehicle motion to synthesize a longer
array leading to a much finer angular resolution.

C. SAR Processing

The core of SAR is to jointly process several radar pulses
gathered by a radar mounted on a moving platform. For the
sake of simplicity, let us consider a single antenna moving on
a platform and a target in x0 = [x0, y0, z0]T (3D scene). The
geometry of the problem is depicted in Figure 1b. The RC
signal can be written by substituting in (5) the antenna index
n with the slow-time τ :

src(r, τ ;x0) = Tp sinc

[
r − r(τ,x0)

ρr

]
×

× exp

{
−j 4π

λ
r(τ,x0)

}
.

(9)

There are several algorithms that can be used for the so-called
focusing. The most adequate for non linear trajectories is the
Time Domain Back Projection (TDBP) [26], [27]. The TDBP
integral for a generic pixel in the scene x = [x, y, z]T can be
written as:

I(x) =

∫
τ∈T

src(r(τ,x), τ ;x0) exp

{
j

4π

λ
r(τ,x)

}
dτ (10)

where I(x) is the final SAR image, T is the considered
synthetic aperture time and r(τ ;x) = ‖x−p(τ)‖ is the time-
varying antenna-to-pixel distance at a given time τ , function
of the position of the Antenna Phase Center (APC) represented
by the vector p(τ) = [px(τ), py(τ), pz(τ)]T.



4

-15 -10 -5 0 5 10 15

y[m]

15

20

25

30

35

40

45

50
x 

[m
]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Fig. 2: MIMO image acquired by an 8 channel array. With 8 elements
spaced by λ/4 the angular resolution is roughly 15 deg.

The whole TDBP algorithm is divided in three steps: (i) the
RC data for a single pulse is evaluated at position r(τ ;x) (ii)
the interpolated data is phase rotated by exp {j(4π/λ)r(τ ;x)}
compensating for the two-way path phase (iii) the procedure
is repeated for every pulse into the synthetic aperture and the
results are coherently summed. A very simple interpretation of
the TDBP algorithm can be given if we assume a 2D geometry
and a rectilinear trajectory of the platform with constant
velocity. Let us therefore assume the platform traveling at
ground level (i.e, q = 0 or θ = 90 deg for all the pixels
in the FoV) along the x axis with a velocity v = [vx, 0, 0]. If
the target is located at a generic x0 = [x0, y0, 0]T, we have:

r(τ ;x) ≈ r0 + ξvxτ (11)

where ξ = π/2− φ, the TDBP integral (10) reduces to:

I(x) ≈
∫
τ∈T

C exp

{
−j 4π

λ
(ξ − ξ0)vyτ

}
dτ ≈

≈ T sinc

[
2vxT

λ
(ξ − ξ0)

] (12)

where we assume a constant illumination of the target along
the whole aperture time, i.e., |src(r(τ,x), τ,x0)| = C. The
expression of (12) is the Fourier transform of a truncated
complex sinusoid with frequency fd = 2vxξ0/λ, therefore the
result will be a cardinal sine function in the Doppler frequency
domain centered in fd.

Up to now we derived the SAR processing for a Single-
Input-Single-Output (SISO) architecture. In MIMO systems,
instead, we have multiple APCs (real or virtual) travelling
on the same platform, as exemplified in Figure 1c for a
forward looking configuration (other configurations, such as
side-looking, are also possible). To have a MIMO SAR,
we first observe that at each slow time τ we can form a
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Fig. 3: SAR image focussed using an aperture length of T = 150
ms. The angular resolution is greatly improved with respect to the
standard MIMO image. The amplitudes are normalized and in linear
scale.

low resolution MIMO image by simple spectral analysis (see
Section II-B) or by TDBP leading to:

Im(x, τ)=

N∑
n=1

src[r(n, τ ;x), n, τ ;x0]exp

{
j

4π

λ
r(n, τ ;x)

}
,

(13)
where Im(x, τ) is the low resolution image obtained by the
focusing of the N signals received at time instant τ . The
final SAR image is then obtained by coherently summing all
the complex-valued low-resolution MIMO images along the
synthetic aperture:

I(x) =
∑
τ∈T

Im(x, τ). (14)

The angular resolution of SAR systems improves significantly
compared to conventional MIMO radars, where the effective
aperture N∆y is substituted by the synthetic aperture length
As = vxτ :

ρSAR
φ =

λ

2As sinφ
[rad] (15)

The angular resolution is then converted into spatial res-
olution in the direction of motion with a linear relationship
ρx ≈ rρsar

φ . Notice that the maximum spatial resolution of a
MIMO radar is for φ = 0 deg, while for a SAR corresponds
to φ = 90 deg (orthogonal to the synthetic aperture). For a
system operating at 77 GHz munted on a vehicle traveling at
14 m/s (54 km/h), we obtain a resolution of 0.2 deg at the
synthetic aperture boresight by exploiting 50 cm of aperture.
The cross-range spatial resolution is 11 cm at r = 30 m of
distance. Figure 3 shows the same scene of Figure 2, but this
time exploiting the car’s motion to form a synthetic aperture
of T = 150 ms (As ≈ 90 cm). Notice that Figure 3 is a
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Fig. 4: The same scene of Figure 3, but now corrupted by a severe
trajectory error along x. The image collapses inwards. (∆vx = 35
cm/s). The amplitudes are normalized and in linear scale.

normalized SAR image (i.e., the amplitude value is between 0
and 1). The angular resolution is greatly improved allowing for
better recognition and localization of the targets. The usage of
such a synthetic aperture is equivalent to an equivalent array
of ≈ 930 real/virtual channels.

III. MOTION ERROR ANALYSIS

We recall that each SAR processor, described by (10),
requires the knowledge of the APC positions at each slow time
τ for the computation of the range values r(τ ;x). In principle,
the vehicle trajectory must be known with an accuracy within
the wavelength (millimeters for typical automotive radars). In
practice, it is sufficient to track the relative APC motion along
a synthetic aperture, i.e., to know the position displacement. In
this section, we focus on velocity errors, as stationary position
errors do not affect the quality of the SAR images, while linear
position errors due to velocity errors lead to image distortion.
We first analytically derive the effect of a velocity error on
the focused SAR image I(x), then we set the theoretical
requirement on velocity estimation accuracy, discussing the
implications for typical automotive SAR systems and justify-
ing the usage of both navigation and radar data to properly
perform the residual motion estimation and compensation.

In the following, we model the navigation output as a noisy
biased estimate of the true vehicle’s position p(τ) and velocity
v(τ) = [vx(τ), vy(τ), vz(τ)]T. Let us define the vehicle’s
instantaneous velocity provided by the navigation system as:

vnav(τ) = v(τ) + ∆v(τ), (16)

where ∆v(τ) = [∆vx(τ),∆vy(τ),∆vz(τ)]T is the velocity
error. From hereafter, we assume that the vehicle is travelling
at constant speed v within a single synthetic aperture, namely
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Fig. 5: The same scene of Figure 3, but now corrupted by a severe
trajectory error along y. The image is rotated (∆vy = 35 cm/s). The
amplitudes are normalized and in linear scale.

we neglect the acceleration. This assumption is reasonable
in typical urban scenarios, where the velocity is limited, the
dynamics of the vehicle is moderate, and As ranges from few
to tens of centimeters. For the same reason, we also consider a
constant velocity estimation error ∆v. Therefore, the synthetic
aperture can be approximated as

As =

∫
τ∈T

‖v(τ)‖ dτ ≈ ‖v‖T. (17)

From (11), we observe that a constant velocity error maps
to a linear range over time, and therefore to a linear phase.
If the trajectory is perfectly known (∆v = 0), the complex
exponential in the TDBP integral of (10) will perfectly com-
pensate the phase term of (9) on the pixel x0 where the target
is located, leading to a constructive sum and to a well focused
image. Conversely, if the estimate of the trajectory contains
an error ∆v 6= 0, the phase term in (9) will not be perfectly
compensated in (10), thus leading to a destructive sum and to
a defocused image. Moreover, there is an angular displacement
of the target in the SAR image leading to a wrong localization.

To gain insight on the role of velocity errors in automotive
SAR imaging, consider a 2D geometry, with a vehicle travel-
ling along x at ground level (q = 0) at velocity vx and a target
placed in x0 = [0, r0, 0]T. For a velocity error in the direction
orthogonal to the motion (∆vy 6= 0), the range expression (11)
for small angles ξ becomes:

r(τ ;x) ≈ r0 + ξvxτ + ∆vyτ (18)

and the TDBP (12) can be then rewritten as:

I(x) ≈
∫
τ∈T

C exp

{
−j 4π

λ

(
ξ − ξ0 −

∆vy
vx

)
vxτ

}
dτ, (19)
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that is again a Fourier integral resulting in a sinc function, but
now centered in ξ0 − (∆vy/vx). The error is in the angular
localization of the target, ∆ξ = ∆vy/vx, converts into a
position error:

∆x = r0∆ξ, (20)

hindering the precise target localization especially for
medium/long ranges. For instance, in Figure 4 we image the
same scenario of Figure 3, but corrupted by a strong velocity
error along the direction of motion ∆vx = 35 cm/s. The
SAR image seems to collapse inward, with defocused and
mis-localized targets. A similar observation can be made for
Figure 5, where the velocity error is in the direction orthogonal
to the nominal motion (∆vy = 35 cm/s). The scene is rotated
as predicted by (19). The analysis can be generalized to the
3D domain with target position x = [x, y, z]T (at range
r =

√
x2 + y2 + z2 from the center of the synthetic aperture)

and 3D velocity of the vehicle v = [vx, vy, vz]
T. The phase

of the received signal in (9) can be linearized as:

ψ(x, τ) ≈ 4π

λ
r −

(
k(x)Tv

)
τ (21)

where

k(x) =
4π

λ
[sin θ cosφ, sin θ sinφ, cos θ]T. (22)

An error in the velocity is therefore transferred into a phase
error

∆ψv(x, τ) =
∂ψ(x, τ)

∂v
∆v =

(
k(x)T∆v

)
τ. (23)

When ∆v = 0, the residual phase ∆ψv(x, τ) over a target at
x is zero; conversely, when ∆v 6= 0, the phase shows a linear
behavior with τ , representing a residual Doppler frequency. It
is also interesting to notice that the phase error is higher in
those areas of the FOV pointed by vector ∆v. If the dominant
contribution of the velocity error is in the direction of motion
x, for instance, the area of the final image that will be more
corrupted by the velocity error is the one around x.

It is now useful to assess the maximum tolerable velocity
error. From (19), a velocity error results in a positioning error
in the final SAR image. The maximum tolerable velocity error
is defined as the one that induces a localization error within
the angular resolution. Eq. (19) can be extended as:

∆vmax
r

v⊥
=

λ

2A⊥s
(24)

where ∆vmax
r is the maximum tolerable radial velocity error

in an arbitrary direction defined by (θ, φ) (line of sight), v⊥
and A⊥s are, respectively, the nominal vehicle’s velocity and
the component of the synthetic aperture orthogonal to the line
of sight. In Figure 6 the geometry of acquisition is depicted
with the quantities just mentioned highlighted. We can also
express the absolute tolerable velocity by recognizing that
A⊥s = v⊥T , where T is the integration time, thus:

∆vmax
r =

λ

2T
(25)

Figure 7 depicts the maximum tolerable radial velocity error
as function of the total integration time and for different
operational wavelengths. For a long integration time (i.e,
thus high azimuth resolution) and shorter wavelengths, the
requirements on the accuracy become very strict, in the order
of 1 cm/s. For instance, for a car moving at 15 m/s, an angular
resolution of ρsar

φ = 0.2 deg at φ = 90 deg (allowing 1 m of
cross-range resolution at 30 m at 77 GHz) implies T ≈ 40
ms, therefore the velocity error shall be within vmax

r = 5 cm/s.
Notice that, reducing the frequency of operation, e.g., to 24
GHz, does not relax the requirement: an angular resolution of
ρsar
φ = 0.2 deg requires an aperture time T ≈ 125 ms, leading

again to ∆vmax
r ≈ 5 cm/s. Automotive-legacy navigation

systems can provide an average velocity error ranging from 5
cm/s down to 2−3 cm/s for expensive commercial Real-Time
Kinematic (RTK) setups, possibly integrating GNSS, inertial
sensors and magnetometers [28]. However, these systems
heavily rely on GNSS signals, that may be absent or inaccurate
in some scenarios (urban canyons with strong multipath or
tunnels). Moreover, car navigation systems must deal with
unpredictable driver’s maneuverings, leading to a velocity
error that could be as high as 10 − 20 cm/s [29]. Although
the fusion of inexpensive heterogeneous in-car sensors data
was demonstrated to provide accurate imaging in moderate
dynamics [15], a reliable SAR imaging for autonomous driving
applications calls for the integration of navigation and radar
data.
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IV. MOTION ERROR ESTIMATION AND COMPENSATION

This section outlines the proposed residual motion estima-
tion and compensation technique to estimate and compensate
trajectory errors starting from a set of low resolution MIMO
images {Im(x, τ)}τ∈T . After the estimation of the motion
error, each MIMO image is first corrected by a phase term
referred to as Trajectory Phase Screen (TPS), then a well-
focused SAR image is obtained by (14). Figure 8 shows the
complete SAR data processing and autofocus workflow. In the
following, we detail each portion of the block diagram and we
outline some guidelines for a practical implementation of the
algorithm.

A. From raw data to a stack of low-resolution images

The vehicle is equipped with a MIMO FMCW array able
to generate an equivalent array of N elements (either virtual
or real). At each slow time, each one of the N elements of
the array receives a radar echo. Each received signal is first
RC and then subject to the TDBP for the generation of the M
low resolution images in the duration of the synthetic aperture
T : each image Im(x, τ) is formed by back-projecting in the
FOV the N signals received at each APC of the array at
the time instant τ . Notice that the combination of PRI and
number of MIMO channels of the radar must ensure to have
unambiguous low resolution images. If the TDBP is performed
over a common grid (FOV) for all the slow time instants,
all the images are already compensated for range migration.
Conversely, if the focusing of the MIMO image is done using
a simple Fourier transform as discussed in Section II-B, the
images must be then co-registered to a common grid through
an interpolation step [26].
The former approach has been used in this work.

B. Autofocus

The core of the procedure, i.e., the autofocus routine, takes
as input the set of M low resolution images {Im(τ,x)}τ∈T .
As discussed in Section III, the presence of a constant error
in the estimated velocity ∆v by navigation leads to a linear
residual range (or phase) after TDBP, leading to a distorted

image. The autofocus procedure starts from the linear residual
phase ∆ψv(x, τ) in (23), representing a complex sinusoid of
angular frequency:

∆ω(x) = k(x)T∆v, (26)

that provides a single equation for three unknowns (the
three components of the velocity error). Exploiting the low-
resolution images at each slow time, it is sufficient to detect
few stable GCPs in the scene to have an overdetermined linear
system of equations. If we consider a total of P GCPs we can
write:

∆ω(x0)
∆ω(x1)
∆ω(x2)

...
∆ω(xP )


︸ ︷︷ ︸

∆ω

=


k0
x k0

y k0
z

k1
x k1

y k1
z

k2
x k2

y k2
z

...
...

...
kPx kPy kPz


︸ ︷︷ ︸

K

∆vx
∆vy
∆vz


︸ ︷︷ ︸

∆v

+


n0

n1

n2

...
nP


︸ ︷︷ ︸

n

(27)

where n ∼ CN (0, σ2
nI) is the circularly complex Gaussian

noise vector of power σ2
n representing the uncorrelated noise

on the estimates of the residual frequencies ∆ω. The process
of selection of stable GCPs can be performed by looking at
the amplitude statistics of the scene. In particular, we opt for
the computation of the incoherent average (i.e., the average
of the amplitudes) of all the M low resolution images and
take just the brightest targets (i.e., the ones with the higher
phase stability). Since the linear system (27) has only three
unknowns, it is typically sufficient to detect 20 to 50 GCPs
to obtain a reliable estimate. Therefore, the thresholding on
the amplitude for the GCP selection can be very stringent.
Another key aspect in the selection of GCP is the accuracy
on their localization. An error in the focusing height and/or
an error in the estimation of the angular position of the GCPs
can prevent a correct estimation of the residual motion error.

1) Error in the focusing height: In (10), the 3D coordinate
x of every pixel of the backprojection grid can be arbitrarily
chosen. It is common practice to choose a fixed focusing
height, i.e., x = [x, y, z = z′]T. In a real scenario, however,
the height of the target is not known and it is possibly different
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Fig. 9: Maximum tolerable focusing height error on GCP. The
nominal vehicle velocity is set to 15 m/s along x, the nominal radar
height over ground is 0.5 m, the maximum radar slant range is 30
m. Notice that in far range, the system becomes tolerable to focusing
heights errors.

from z′ [30]. The difference between the true position and
the focusing plane is denoted by ∆z. If the target is not
truly at that position, another linear residual phase term arises.
The expression of such residual phase can be easily derived
considering that an error on z is equivalent to an error on the
elevation angle θ, thus:

∆ψz(x, τ) =
∂ψ(x, τ)

∂θ
∆θ =

[(
k′θ(x)Tv

)
∆θ
]
τ (28)

where k′θ(x) = (4π/λ)[cos θ cosφ, cos θ sinφ, − sin θ]T is
the derivative of k(x) with respect to θ and

∆θ =
∆z

r sin θ
. (29)

Notice that (28) is again linear in slow time: both an error in
the velocity and an error in the focusing height manifest as
a linear phase in time. The residual linear phase over a GCP
depends on the nominal velocity of the vehicle v, the angles
(θ, φ), the range r and the error of focusing height ∆z. It is
now possible to compute the maximum tolerable error in term
of ∆z which will again depend on the GCP position (r, θ, φ)
and on the vehicle velocity v. Exploiting the requirement on
the radial velocity (25), the maximum tolerable height error is
the one that generates a Doppler frequency corresponding to
∆vmax

r . In Figure 9, we show the maximum tolerable height
error for 77 GHz radar with T = 200 ms integration time,
represented for each pixel in the scene. Notice that, according
to (29), in far range the system is very robust even to big
elevation errors. This is a direct consequence of large r and
steep incidence angles (θ ≈ 90 deg). The suggestion is then
to select GCPs in the far range of the scene. In any case,
the residual linear phase due to target’s elevation can be also
estimated and compensated by an interferometric processing,
disposing of at least two ULAs displaced along z.

2) Error in the angular localization of GCP: The same
reasoning used for an error in the focusing height can be

applied to an error in the angular localization of a GCP.
Without velocity focusing height errors, the residual Doppler
frequency is exactly zero over a given target. Due to the finite
sampling of the MIMO images, however, it can happen that the
peak of the Impulse Response Function (IRF) representing the
target is not detected, as shown in Figure 10. The mis-detection
could happen also due to the in-avoidable presence of noise.
In blue, the continuous IRF with an angular resolution given
by the physical length of the array, the sampling positions
being depicted in red while the detected GCP in purple. If the
detected GCP is not at the peak of the cardinal sine function,
a residual Doppler frequency is present.

Let us call ∆φ the error on the angular localization of a
GCP. We have:

∆ψφ(x, τ) =
∂ψ(x, τ)

∂φ
∆φ =

[(
k′φ(x)Tv

)
∆φ
]
τ (30)

where k′φ(x) = (4π/λ)[− sin θ sinφ, sin θ cosφ, 0]T is the
derivative of k(x) with respect to φ. The residual angular
Doppler frequency is then:

∆ωφ =
∂ψ(x, τ)

∂φ
∆φ =

(
k′φ(x)Tv

)
∆φ =

4π

λ
v⊥∆φ. (31)

Again, the maximum tolerable angular error is the one
that will generate a Doppler frequency corresponding to
∆vmax

r . In Figure 11, the maximum tolerable angular error
∆φ is depicted for every pixel in the field of view. The
car is supposed to travel along x at 15 m/s. In this case,
v⊥ is ≈ 0 for the pixels exactly in front of the car, thus
allows for a larger ∆φ. The worst case is for φ ≈ 90 deg,
where the accuracy in GCP detection must be the maximum.
GCP detection accuracy can be refined with a parabolic
interpolation to reduce unwanted phase effects.
It is important to highlight that, with a sufficient number
of GCPs, the angular error becomes irrelevant since the
errors will be both positive and negative and the average will
approach zero. The same is not true for elevation error where
a significant bias towards positive or negative errors may be
present.

Once the GCPs have been detected, a frequency estimation
is performed through a Fast Fourier Transform (FFT) of the
phase of each GCP, and the position of the peak in the
frequency domain is extracted to form ∆ω in (27). It is
possible that a moving target (bike, another vehicle, pedestrian,
etc.) is detected as a GCP, preventing a correct residual motion
estimation. It is mandatory to discard outliers before the
inversion of (27), by imposing a threshold on the maximum
frequency that is possible to find on a given GCP. As a
rule of thumb, the value of the threshold can be derived
from the accuracy of the navigation data: if the the nominal
accuracy is, for instance, 20 cm/s, it is unlikely to find a
GCP with a residual Doppler frequency much higher than
the one corresponding to 20 cm/s. It is worth to stress that,
the more accurate the navigation data, the more robust is the
outlier rejection and, consequently, the better the performance
of the whole procedure. The linear system (27) can therefore
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be solved using the Weighted Least Square (WLS) method:

∆̂v = (KTWK)−1KTW∆ω (32)

where W is a proper weighting matrix. Each GCP can be
weighted according to some specific figure of merit such as
the amplitude of the GCP or the prominence of the peak
in the frequency domain (i.e., how much that GCP shows
a sinusoidal behavior in the frequency domain). It is worth
remarking that the matrix inversion (32) might be unstable.
In a typical automotive environment, the radar is mounted
close to the road, thus θ ≈ 90 deg for every GCP. The direct
consequence is that the residual radial velocity vector of any
given GCP has components only in the x, y plane and not
in the z direction, therefore a residual velocity along z has
no possibility to be detected with satisfactory accuracy. It is
even more straightforward from (21): if ∆vz 6= 0 there is
no consequence on the residual phase if θ = 90 deg. The
solution can be to avoid the estimation of ∆vz by removing
the last column of K and the last row of ∆v. The quality of
the velocity estimate ∆̂v can be assessed by its covariance
matrix, that is:

C
∆̂v

= (KTWK)−1σ2
n. (33)

Notice that, in practice, the exact value of σ2
n is unknown, but

with a sufficient number of GCP it can be roughly estimated
from the residual of (27), providing some realistic values for
the accuracy of the velocities’ estimates. Equation (33) can
provide also some insights on how to choose GCP in the scene.
For the sake of simplicity, we assume equal unitary weights for
each GCP (W = I), we normalize the noise power (σ2

n = 1)
and we consider a 2D geometry (θ = 90 deg). In this scenario
we have:

C
∆̂v

=
1

|KTK|

[
kT
y ky −kT

xky
−kT

y kx kT
xkx

]
(34)

where kx = [k0
x, k

1
x, . . . , k

P
x ]T, ky = [k0

y, k
1
y, . . . , k

P
y ]T, and

|·| denotes the determinant of a matrix. If we choose all the
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Fig. 11: Maximum tolerable angular error in GCP detection. The
nominal vehicle velocity is set to 15 m/s along x, the nominal radar
height over ground is 0.5 m, the maximum radar slant range is 30
m. The system is tolerable to angular errors in the direction of the
motion.

GCPs closely spaced in front of the car (i.e., φ → 0 deg),
the estimation of ∆vy will be much more unreliable than the
estimate of ∆vx since kT

xkx � kT
y ky . The same reasoning

is valid for GCPs closely spaced at the side of the car (i.e.,
φ → 90 deg): the only reliable estimate is on ∆vy . The
extreme case is when all the GCP are closely grouped together:
in this case the matrix K is close to be singular and the
estimates of the residual velocities are useless. Notice that
the residual velocities estimated in (32) can be also used to
improve the ego-motion estimation of the vehicle. In this case
it is sufficient to integrate the residual velocities to obtain
the residual trajectory and then compensate the error in the
original trajectory provided by the navigation unit.

C. SAR image formation

Once the residual velocities have been found, it is possible
to compute the forward problem for each pixel x in the scene
and for each τ (i.e., each one of the M low resolution MIMO
images). This leads to a set of estimated TPS:

∆̂ψ(x, τ) =
(
k(x)T∆̂v

)
τ (35)

Each low resolution image is phase-compensated using the
estimated TPS:

Îm(x, τ) = Im(x, τ) exp
{
−j∆̂ψ(x, τ)

}
. (36)

and then coherently summed to obtain the final high-resolution
SAR image

I(x) =
∑
τ∈T

Îm(x, τ). (37)

The final SAR image is now properly focused, localized and
ready to be used in safety critical systems such as advanced
autonomous driving systems.
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Fig. 12: (12a) Vehicle navigation equipment; (12b) optical image of the field of view gathered by a camera mounted on to the vehicle.

TABLE I: System parameters used in the campaign

Parameter Value
Carrier frequency (fc) 77 GHz

Bandwidth (B) 3 GHz
Pulse length (Tp) 55 µs

PRI 1 ms
Active TX channels 2
Active RX channels 4

Maximum range 27 m
Geometry (Mode) forward looking

V. RESULTS WITH REAL DATA

To validate the proposed technique, we carried out an
acquisition campaign using a fully equipped vehicle. The
radar system is a proprietary ScanBrick® by Aresys® and
it is based on the Texas Instruments AWR1243 Single-Chip
77- and 79-GHz FMCW transceiver [31]. The maximum
available bandwidth is 4 GHz for a range resolution up to
3.75 cm. The mounting position of the radar on the vehicle
is precisely known. The entire radar equipment is based on
standard automotive hardware suitable for future mass-market
production.
The radar is mounted in a forward looking geometry, thus
the boresight of the MIMO array is pointing in the direction
of motion, as it can be seen from Figure 12b. We employed
just 2 out of 3 Tx antennas and all the 4 Rx ones, leading
to a virtual array of N = 8 elements, spaced by λ/4. The
angular resolution of the low-resolution images Im(τ ;x) is
approximately 16 deg. The transmitted signal has 3 GHz of
bandwidth leading to a range resolution of 5 cm. All the
system’s parameters are summarized in Table I. Notice that in
all the previous works in literature, the radar was mounted side
looking. In fact, a SAR in forward looking geometry, without
an array displaced along the direction orthogonal to the motion
(y) would lead to a totally left/right ambiguous SAR image.
The presence of a ULA with the elements displaced along y
helps to unambiguously reconstruct the image (as in our case
study).

The car equipment (Figure 12a) is complemented by navi-
gation sensors to provide the estimated trajectory as input to

the procedure. The on-board navigation equipment comprises:
(i) two internal 3 Degrees of Freedom (DoF) IMUs, measuring
lateral and longitudinal acceleration, along with heading rate;
(ii) an occupant restraint controller, consisting in a 3 DoF
IMU placed in the rear part of the car, measuring longitudinal
and lateral acceleration as well as heading rate, the purpose is
the airbag activation during a crash; (iii) four wheel encoders,
measuring the odometric velocity of each wheel; (iv) a steering
angle sensor at the frontal wheels; (v) an on-radar IMU+GNSS
sensor [28]. The sensors’ data are fused with an Unscented
Kalman Filter (UKF) approach described in our previous
work [15].

The acquisition campaign has been carried out in a straight
road with several targets in the FOV of the radar, as depicted
in Figure 12b, showing the environment image acquired by a
camera mounted on top the vehicle. We selected a portion of
the trajectory made by M = 200 slow time samples and we
processed the dataset with and without running the autofocus
workflow. The nominal speed of the vehicle in the selected
synthetic aperture was 25 km/h, thus, for a PRI of 1 ms, leads
to an average synthetic aperture length As ≈ 1.4 m.

The result of the SAR processing without autofocus (only
navigation-based MoCo) is depicted in Figure 13. It is inter-
esting to notice how, in far range, the image is completely
corrupted by an error on the estimated trajectory. The image
seems to collapse inward (i.e., towards the line at x = 0).
Some details are still preserved and not totally defocused in
near range, such as the bikes and the cars parked at y = ±5
m. Nevertheless, the localization accuracy of the targets might
not sufficient for safety-critical autonomous driving systems.

The autofocus workflow starts from the detection of a set
of GCPs from the incoherent average of all the low resolution
images. In Figure 14, the incoherent average is represented
along with the detected GCPs (highlighted in red). The first
observation is that, as expected, the spatial resolution of the
MIMO image formed with the ULA is greatly lower than
Figure 13). The second and most important observation is
that the low-resolution images are not severely corrupted by
trajectory error as the SAR one. While the cars parked in
the scene at y = −5 m and x ∈ [35, 45] m are tilted
inwards in Figure 13, they are correctly straight (but with
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Fig. 13: SAR intensity image without employing any autofocus
procedure. The amplitudes are normalized and in linear scale.
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Fig. 14: Incoherent mean of all the low resolution images. The
selected anchors are depicted with yellow diamonds.

lower resolution) in Figure 14. Over the detected GCPs, the
residual Doppler frequency is then estimated through FFT. In
Figure 15a, the unwrapped residual phase over all the GCPs is
depicted. The phase is linear for every GCP and the slope is
proportional to the residual radial velocity of the car as seen
by the position of the GCP. The result of the FFT is depicted
in Figure 15b and the red dots are the detected frequency
peaks. The position of such peaks will form the observation
vector ∆ω in (27). The frequency resolution depends on

TABLE II: Residual velocity estimated by autofocus and related
accuracy

Parameter Estimate (cm/s) Accuracy (cm/s)
∆vx 22.78 1.27
∆vy 1.07 2.24

the observation time, in our case the length of the synthetic
aperture T . A trade off is now evident: longer synthetic
apertures allows for higher spatial resolution and, from the
autofocus perspective, a higher residual Doppler resolution.
The price to be paid is the possibility of non-constant velocity
errors in longer apertures (acceleration errors) and increased
computational burden. It is also important to notice that Figure
15b shows the sampled version of the Doppler spectrum of a
GCP. The sampling in the frequency domain can be made finer
by zero-padding the time domain signal before the FFT. This
guarantees that the position of the peak of the cardinal sine
function is precisely detected.

The inverse problem (32) is solved for the detected GCPs
leading to the residual velocities in Table II, reported with
the theoretical accuracy. First of all, the estimated residual
velocities are within the confidence bound of the employed
navigation sensors [15]. As expected, the error is higher in
the direction of motion: in a forward looking geometry, all the
GCPs are distributed in front of the car, thus higher accuracy
is expected in this direction. On the other hand, the error
in the direction orthogonal to the motion is much lower and
estimated with more uncertainty.

Once the residual velocities are estimated, each low reso-
lution image is TPS-compensated and the coherent average
forms the final SAR image as from (37). The image is
represented in Figure 16. While Figure 13 reports a collapsed
scene towards the center of the image, now the profile given
by the parked cars is correctly straight also in far range. A few
details are depicted in Figure 17. On the left of the figure, a
zoomed version is presented. In this portion of the image it is
possible to distinguish the five bicycles parked at the right of
the road (orange, yellow, green, red and purple arrows), the
lighting pole (blue arrow), the marble column (pink arrow) and
the next bicycle after the lighting pole (light green arrow). On
the right, the optical image is depicted for comparison. Moving
forward in the trajectory (Figure 18) other details appear, such
as the corner reflector placed on the ground (orange arrow),
the marble stele (yellow arrow) and the two garbage cans
(red and green arrows). The SAR image can now be used as
an input product along with LiDAR or cameras in advanced
autonomous driving systems. It is interesting to notice that the
proposed algorithm is fast and parallelizable, since it requires
just the computation of a set of Fourier transforms. This
characteristic makes it suitable for a real time implementation
in automotive scenarios.

VI. CONCLUSION

The generation of SAR images requires a precise knowledge
of the trajectory of the moving platform. For automotive
applications and synthetic apertures of tens of centimeters to
few meters length, velocity estimation errors from inaccurate
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Fig. 15: (15a) Unwrapped phase over the selected GCP: a residual phase is linear in slow time indicating the presence of a residual motion
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Fig. 16: SAR intensity image after employing the proposed autofocus
procedure. The amplitudes are normalized and in linear scale.

navigation data are the major source of SAR image quality
degradation, causing defocusing and targets’ mis-localization.
The higher the carrier frequency and the synthetic aperture
length, the higher the accuracy needed on velocity estima-
tion, with maximum tolerable errors as low as 1 cm/s. In
these cases, inexpensive automotive-legacy navigation systems
based on in-car sensors are not accurate enough, as the
accuracy is typically not lower than 10 cm/s.

This paper analytically derives the effect of typical residual
motion estimation errors on automotive SAR focusing, setting
the theoretical required accuracy on velocity estimation to
avoid image degradation. In addition, we propose a complete
residual motion estimation and compensation workflow based
on both navigation data and a set of low-resolution images
generated by a physical or virtual radar array mounted on the
car. First, a frequency analysis is carried out over a set of
static GCPs detected in the low-resolution images, retrieving
the residual vehicle’s velocity. The latter is then used to a
phase-compensate the low-resolution images, obtaining well-
focused SAR images. We evaluate the impact of errors in
both the estimated target’s height and angular sampling of
low-resolution radar images, providing guidelines on how to
properly choose GCPs. As a rule of thumb, it is recommended
to choose a sparse set of GCP in far range, allowing for a better
estimate of both longitudinal and transversal components of
the residual velocity and minimizing the effects of a wrong
focusing height of the GCPs. Moreover, the more accurate
are navigation data, the more robust is the selection of GCPs
against outliers, justifying the joint usage of navigation and
radar data.

The entire workflow is validated using a real dataset ac-
quired using a forward-looking MIMO radar working in W-
band mounted on a vehicle moving in an open road. The pro-
posed workflow has proven to be able to estimate centimetric
velocity errors and then to correctly recover the SAR image.
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Fig. 17: (left) SAR intensity image after autofocusing. A few details are recognizable from the figure on the right (optical image). Five
bicycles (orange, yellow, green, red and purple arrows), a lighting pole (blue arrow), a marble column (pink arrow) and another bicycle
(light green arrow). The amplitude is not normalized.

Fig. 18: (left) SAR intensity image after autofocusing. Some other details are recognizable from the figure on the right (optical image). One
corner reflector (orange arrow), a marble stele (yellow arrow) and two garbage cans (red and green arrows). The amplitude is not normalized.
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