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Lifecycle Cost Optimization for Electric Bus
Systems With Different Charging Methods:
Collaborative Optimization of Infrastructure

Procurement and Fleet Scheduling
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Abstract— Battery electric buses (BEBs) have been regarded as
effective options for sustainable mobility while their promotion
is highly affected by the total cost associated with their entire
life cycle from the perspective of urban transit agencies. In this
research, we develop a collaborative optimization model for
the lifecycle cost of BEB system, considering both overnight
and opportunity charging methods. This model aims to jointly
optimize the initial capital cost and use-phase operating cost
by synchronously planning the infrastructure procurement and
fleet scheduling. In particular, several practical factors, such as
charging pattern effect, battery downsizing benefits, and time-
of-use dynamic electricity price, are considered to improve the
applicability of the model. A hybrid heuristic based on the
tabu search and immune genetic algorithm is customized to
effectively solve the model that is reformulated as the bi-level
optimization problem. A numerical case study is presented to
demonstrate the model and solution method. The results indicate
that the proposed optimization model can help to reduce the
lifecycle cost by 7.77% and 6.64% for overnight and opportunity
charging systems, respectively, compared to the conventional
management strategy. Additionally, a series of simulations for
sensitivity analysis are conducted to further evaluate the key
parameters and compare their respective life cycle performance.
The policy implications for BEB promotion are also discussed.

Index Terms— Battery electric buses, public transit systems,
lifecycle cost optimization, collaborative optimization, hybrid
heuristic.
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I. INTRODUCTION

ELECTRIFICATION of city bus systems is becoming a
widespread policy choice to mitigate climate change and

promote sustainable mobility in the field of urban transporta-
tion [1], [2], [3]. As one of the major types of electric
buses, battery electric buses (BEBs) have attracted signifi-
cant attention owing to their environmental benefits, such as,
zero tailpipe emission [4]. In contrast to conventional diesel-
powered buses, BEBs are powered solely by rechargeable
batteries and are able to further reduce system-level emissions
as renewable energy sources are introduced. Therefore, the
promotion of BEB adoption has significance in the future
of public transit systems. During the past decades, thanks
to the ground-breaking technological improvements and rapid
market-share growths for BEBs, there is an increasing trend to
replace diesel buses with BEBs in many cities [5]. However,
the promotion of BEBs in public transit systems is highly
affected by the total cost associated with their entire life cycle
from the perspective of urban transit agencies. For a BEB
system, the lifecycle cost mainly comprises the initial capital
cost and operating cost during the use phase. In addition, the
charging methods also have significant impacts on the life-
cycle cost of BEB systems. In general, two primary charging
methods are implemented in BEB systems, including overnight
charging and opportunity charging [6]. The overnight charging
refers to charging during non-operational periods in the night-
time, and the BEBs are charged when parking at the terminal.
By contrast, the opportunity charging refers to charging during
the service operation, and the BEBs are usually charged on
the bus stops with chargers [7]. These two different charging
methods would contribute to considerable differences in terms
of the lifecycle cost, for both initial capital and operating
costs. For example, the opportunity charging often needs
the charger with relatively higher charging power (i.e. fast
charger) to charge BEBs during operation, which is much more
expensive than that utilized for overnight charging (i.e. slow
charger). Whereas, the on-board battery size with opportunity
charging is relatively smaller in comparison to the ones with
overnight charging, which would reduce the unit battery cost
as well as the energy consumption rate owing to lightweighting
benefits of battery downsizing [8]. Moreover, the transit system
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usually has several routes that need to be served. Different
routes may exert different workloads on a bus fleet, and thus
results in differences in the battery life spans [9]. As the
battery reaches its end-of-life, it should be replaced with a
new one and the operating cost is increased as consequence.
Rationally scheduling the bus fleets to operate on certain
routes has the potential ability to minimize the investment for
battery replacements over the whole life of BEBs and thus
reduce the lifecycle cost. In view of the characteristics of the
lifecycle cost for BEB systems, a comprehensive optimization
framework for the lifecycle cost is in dire need, which should
consider both infrastructure procurement and fleet scheduling
with different charging methods.

Over the years, efforts towards the lifecycle cost in terms
of transportation electrification have attracted more attention
from both the industrial and academic communities [10].
Several studies have discussed the lifecycle cost of electric
vehicles (EVs) based on different analytical frameworks and
EV models [11], [12], [13], [14], [15]. However, most of the
existing literature is focusing on the lifecycle cost analysis
for passenger EVs from the standpoint of individual drivers.
There exist significant differences in the lifecycle cost between
passenger EVs and BEBs. Compared to passenger EVs, for
instance, BEBs generally have larger batteries, which fur-
ther contributes to considerable additional weight and related
energy consumption rate. Considering the features of BEBs,
Cooney et al. [16] carried out the lifecycle assessment study
to compare the environmental impacts of BEBs with diesel
buses. Lajunen [17] further presented a lifecycle analysis of
electric city buses based on extensive simulations in fleet
operation, and the results showed that the energy efficiency
of city buses can be improved by electrification. Nevertheless,
solely focusing on the energy and environmental benefits has
a limited attraction to public transit agencies, because the
lifecycle cost for BEB system investment derives from more
economic burdens, i.e. infrastructure procurement. Consider-
ing the purchase costs correspond to the initial cost of buses,
Lajunen and Lipman [6] proposed the simulation models to
assess the lifecycle cost for the transit systems with BEBs
and other types of city buses. The results indicated that the
bus purchase cost has significant impacts on the lifecycle
cost for BEB systems. To investigate the effects of charger
deployment on lifecycle cost, Bi et al. [18] provided an
optimization framework to evaluate the system-level costs for
BEB systems with opportunity charging, where the energy
consumption reduction benefiting from battery downsizing was
also discussed. Moreover, Bi et al. [19] developed an integrated
lifecycle assessment and lifecycle cost model based on a bus
system simulation. The objective considered both capital and
energy costs, which also evaluated the lifecycle costs for BEB
systems utilizing either overnight or opportunity charging.
Lajunen [20] presented a lifecycle cost analysis for a fleet of
BEBs based on a specific simulation tool. The results showed
that high battery capacity is crucial for the overnight charging
buses, whereas the opportunity charging buses can accept the
batteries with relatively low capacity. The costs associated
with infrastructure procurement, including purchase costs of
buses and charging devices, have considerable impacts on

the lifecycle cost of BEB systems. However, in the previous
studies, the lifecycle cost analysis is mainly based on the basic
consideration that the BEB fleets operate in the fixed routes,
and thus the influences of fleet scheduling are usually ignored.
As a matter of fact, when different BEB fleets operate on
different routes, the daily workloads of the BEBs are different,
which further leads to different battery degradation speed.
Therefore, the scheduling of BEB fleets should be considered
to extend the battery life span, and thus reduce the related
operating costs for battery replacement over the whole life
cycle.

For the scheduling of BEB fleets, several works have been
done to establish the optimization methods to ensure cost-
effective operations [21], [22], [23], [24], [25]. However, most
of existing studies have been focused on the BEB fleet schedul-
ing at the daily operational level, instead of the whole life
cycle perspective. Since the battery degradation is a cumulative
process, it is hard to effectively involve the influence of battery
fading on the lifecycle costs into the daily operational frame-
works. In order to explore the effects of battery degradation
process on the lifecycle costs of BEB fleets, Zhang et al.
[26] developed a long-term fleet management framework that
considers the practical battery fading mechanism within prede-
fined charging and discharge cycling. Furthermore, Wang et al.
[9] proposed an optimization model for BEB fleet scheduling
based on dynamic programming. The objective of the model
was to minimize the battery replacement costs during the
entire service life of the BEB fleets. The research results
implied that the number of battery replacement over the entire
life cycle can be reduced through the optimal scheduling for
BEB fleets. Note that, whilst the aforementioned works have
shown some achievements in the scheduling of BEB fleets for
lifecycle optimization, there are still several challenges need to
be overcame. Firstly, the previous studies only discuss the fleet
scheduling with overnight charging while ignore the influences
of opportunity charging on the lifecycle costs. BEB systems
with different charging methods would result in different
infrastructure procurement, energy consumption, and related
fleet scheduling strategies. Secondly, the impacts of bus fleet
size on the workload sustained by a single BEB and related
battery fading behavior are not considered in the literature.
That is, the number of round-trips that a BEB needs to operate
would be affected by the number of vehicles in the bus fleet,
which further exerts influences on the life span of the batteries
equipped in BEBs. Finally, the existing studies neglected the
effects of charging patterns on the battery fading rate, which
also have significant impacts on the battery degradation and
related costs during the fleet scheduling. The fast-charging
pattern would accelerate the battery aging process, while the
slow-charging pattern has a quite limited impact on the battery
fading [27].

Overall, even though the aforementioned studies have made
achievements in the lifecycle cost optimization of BEB sys-
tems, there are still some limitations that are summarized from
two perspectives: from the perspective of optimization objec-
tive, the previous studies often focused on individual or partial
cost components, whereas the comprehensive consideration for
both initial capital cost and use-phase operating cost received
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little discussion; from the perspective of problem scenario,
the existing studies mainly considered the case for overnight
charging and often neglected the influences of several realistic
factors on the lifecycle costs. In response to the research gaps,
we attempt to advance the research frontier by developing
a more comprehensive optimization framework considering
the lifecycle cost of BEB systems. The major objective of
this work is to optimize the total cost of BEB systems with
different charging methods over a given planning horizon (i.e.
the whole service life of the BEBs). We achieve this by
investigating the collaborative optimization of infrastructure
procurement and fleet scheduling with consideration of the
realistic systems with overnight and opportunity charging
methods, respectively. Collaborative optimization is a mul-
tidisciplinary design architecture that is well-suited to the
collaborative problem with two interrelated objectives, and
able to ensure that the corresponding schemes can match each
other [28]. The factors from real-world scenarios are further
considered in the problem, which has considerable effects on
the lifecycle cost and can improve the applicability of the
optimization results. Some managerial insights are discussed
in detail based on the optimization results. To the best of our
knowledge, this is the first time that the lifecycle costs of BEB
systems with different charging methods are explored by the
collaborative optimization of infrastructure procurement and
fleet scheduling. Indeed, as regard to the lifecycle cost of
BEB systems, it is necessary to deal with the infrastructure
procurement and fleet scheduling at the same time, and the
reasons primarily lie in the following two points. On the one
hand, both the infrastructure procurement and fleet schedul-
ing have significant effects on the lifecycle cost for BEB
systems, which respectively contribute to the initial capital
cost and use-phase operating cost over the entire life cycle.
Ignoring any of them cannot obtain the accurate results for
lifecycle cost optimization. On the other hand, there is a close
interaction between the infrastructure procurement and fleet
scheduling when determining the optimal lifecycle cost for
BEB systems, where the strategy of infrastructure procurement
directly affects the scheduling of BEB fleets, while the latter
can provide guidance to the former. The proposed methods
may be used by public transit agencies and related stakeholders
to construct and manage the BEB-based urban transit systems
in the decision-making process.

To be specific, the contributions of this study are summa-
rized as follows. Firstly, a collaborative optimization frame-
work is constructed for the lifecycle cost of BEB systems
with overnight and opportunity charging methods, respectively.
Both the infrastructure procurement and bus fleet scheduling
are incorporated in the optimization framework, where the
former has a significant impact on the latter and further affects
the total costs over the whole service life, including both the
initial capital cost and use-phase operating cost. Compared
to the existing studies that only discuss the lifecycle costs
under the situation that the BEB fleet operates in the fixed
route, this work further considers the scheduling for BEB fleets
to minimize charging cost and battery replacement cost over
the whole service life of the BEBs. Meanwhile, the realistic
factors from several aspects, such as battery aging mechanism,

battery downsizing benefits, and time-of-use electricity price,
are considered to improve the performance and applicability
of the proposed model in real-world scenarios. Secondly,
with full consideration of the model’s complexity and unique
characteristics, a hybrid heuristic-based algorithm is designed
to search for the optimal solution, which consists of a tabu
search (TS) framework and an immune genetic algorithm
(IGA). Coordinating with the solution method, the original
model is reformulated as a bi-level optimization problem,
where the outer-level objective aims at the infrastructure
procurement planning and the inner-level one responds to
the BEB fleet scheduling. Finally, based on the proposed
model and algorithm, a number of managerial insights that
stemmed from the numerical case study are discussed. Further
sensitivity analysis evaluates the individual contribution of key
parameters to the optimal results and compares their respective
life cycle performance between different charging systems.
Moreover, compared to the existing formulations in previous
literature, the proposed model simultaneously optimizes the
BEB purchase cost, procurement cost of charging devices,
charging cost and battery replacement cost over the whole
planning horizon. The model is the combination of static and
dynamic optimization problems, and several realistic factors
are also considered in the constraints of the model.

The rest of this paper is organized as follows. Section II
presents the problem description. The collaborative optimiza-
tion model for the lifecycle cost of BEB system is built-in
Section III. Section IV elaborates the hybrid TS-IGA method
coupled with related model transformation for solving the
problem. The numerical case study and simulations are fur-
nished in Section V. Conclusions and policy implications are
discussed in Section VI.

II. PROBLEM DESCRIPTION

In this work, we consider a case in which a public transit
agency intends to build an urban transit system with a certain
number of BEB fleets to serve the same number of routes.
The operator optimizes the infrastructure procurement and
fleet scheduling to minimize the lifecycle cost of a BEB
system while satisfying the predefined timetable for each
route. Specifically, planning of infrastructure procurement
refers to the purchase strategy of BEBs and matched charging
devices, which contributes to the initial capital cost. After-
ward, scheduling for the BEB fleets would be performed to
determine the optimal matches between the BEB fleets and
routes to minimize the operating cost during the use phase,
including charging cost and battery replacement cost over
the whole service life of the BEBs. It is noted that the fleet
scheduling involved in this study is a dynamic programming
and different from the fleet scheduling at the daily operational
level, where the former aims to assign a certain number of
bus fleets to serve the same number of routes while the latter
usually determines the trip chains served by different buses
[24]. Notably, we consider that the BEB fleets are fixed and
do not involve the mixing of buses between fleets. Such a
consideration ensures that the batteries equipped in a specific
bus fleet will have the same utilization plan and thus result in
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Fig. 1. Outline of the lifecycle cost optimization for a BEB system.

the similar aging condition over their service lives. This will
not only improve the cost saving for BEB fleet management,
but also help the operator efficiently manage the batteries
in batches. Similar consideration has been discussed in a
number of existing studies in fleet management at long-term
operational level to achieve maximum cost saving [26], [29].
Moreover, two charging methods, i.e. overnight charging and
opportunity charging, could be selected to charge the BEBs,
and the system with different charging methods would result in
significant differences in the lifecycle cost. Note that, in order
to better compare the difference in lifecycle cost between
overnight and opportunity charging systems, this study con-
siders the case that an urban transit system can only select one
kind of charging method, and the hybrid strategy where BEBs
are charged partially by overnight charging and partially by
opportunity charging is not discussed. The charging strategy
with one kind of charging method, i.e. overnight or opportunity
charging method, has been world-widely applied in several
cities and discussed in related literature [20]. The outline of
the lifecycle cost optimization for a BEB system is illustrated
in Fig. 1.

To explicitly elaborate a BEB lifecycle optimization prob-
lem, several essential factors involved in BEB systems with
different charging methods should be fully considered and
will be covered in this section, including the energy consump-
tion, minimum BEB fleet size, number of charging devices,
and battery life span. For simplicity of problem description,
we assume the existence of n routes that need to be satisfied
in an urban transit system ( j = 1, . . . , n), and accordingly,
the same number of BEB fleets, denoted as m, which should
be formed to serve the routes (i = 1, . . . , m; m = n).
The notations used throughout this study are summarized in
Table I.

A. Energy Consumption

Different charging methods considered in this study would
lead to a capacity difference in the battery pack. Specifically,
the battery capacity for the BEB operating in an opportunity
charging system is often smaller than the ones in an overnight
charging system. This is because the opportunity charging
method provides frequent charging opportunities at major bus
stops during operation hours, and thus a battery pack with
a relatively small capacity can be used, compared with the

TABLE I

LIST OF NOTATIONS
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TABLE I

(Continued.) LIST OF NOTATIONS

overnight charging method that only charges the BEB during
non-operational periods in the nighttime. In addition, the
weight of the battery pack would be downsized as the capacity
decreases. As well known, the battery weight accounts for
about 20% of the total weight of BEB, considering the
example of the long-range BEBs manufactured by BYD Auto
Company [30]. It is noted that several existing studies have
demonstrated that the vehicle mass has significant impacts on
the energy consumption rate for a BEB, i.e., [18], [31]. For
example, considering the unique characteristics of BEBs, such
as the regenerative braking and higher powertrain efficiency,
Bi et al. [31] have demonstrated that 10% vehicle mass reduc-
tion contributes to about 4.5% energy consumption reduction
for a BEB. Based on such research results, we calculate the
energy consumption rate of a BEB by considering the battery
downsizing effects, as shown in (1). By this way, the difference
in energy consumption rate between overnight and opportunity
charging systems can be highlighted due to their significant
difference in the battery capacity. The primary idea behind
this equation is that the energy consumption rate (kWh/km)
from baseline case is directly adjusted by the actual battery
weight. The base energy consumption rate can be obtained by
the vehicle performance test from BYD Auto company, where
a reference BEB operates under conventional traffic conditions
in an urban transportation system. This baseline case has also
been adopted in related literature [18].

EC R = EC Rbase ·
(

1 − W bat
base − θ/ρ

W bus
base

× 4.5%

)
(1)

where ECR is the adjusted energy consumption rate; EC Rbase

is the base energy consumption rate of the reference BEB;
W bat

base and W bus
base represent the base battery weight and base

bus weight of the reference BEB, respectively; θ is the
battery capacity (kWh); ρ is the battery specific energy, which
associates the battery capacity with the battery weight, where
the battery weight can be obtained by θ/ρ. Note that, the base
bus weight W bus

base is assumed to comprise the curb weight and
constant average weight for the driver, passengers, and cargo.
The fluctuation of ridership is not involved in this study.

Based on the adjusted energy consumption rate obtained
by (1), the energy consumption for a round-trip (terminal to
terminal) of a specific route can be calculated, as shown in (2).

E j = EC R · l j (2)

where E j is the energy consumption for a round-trip of
route j ; l j represents the driving distance of a round-trip for
route j .

During the daily operation, the number of round-trips that
a BEB needs to operate depends on the bus schedule and fleet
size. Combined with the energy consumption for a round-trip,
the average energy consumption over the yearly operation for
a single BEB from a specific bus fleet is calculated as shown
in (3).

�Eij = τ do
j E j

τ in
j Yi

· D (3)

where �Eij is the average energy consumption over the yearly
operation on route j for a single BEB from bus fleet i ; τ do

j and
τ in

j are the daily total duration and operation interval for the
timetable of route j , respectively; Yi is the number of BEBs
in bus fleet i ; D is the total days for the operation of BEB in
a year.

B. Minimum BEB Fleet Size Required for Each Route

When assigning a BEB fleet to a transit route, the bus fleet
size needs to meet the minimum required number of BEBs
for the route. Since different transit routes from a public
transport system often have different timetables, they may
have different requirements for minimum BEB fleet size to
satisfy their specific bus schedules. Moreover, the overnight
and opportunity charging methods also result in significant
distinction in the minimum required number of BEBs in the
bus fleet, which is discussed as follows.

For the overnight charging method, the minimum required
BEB fleet size for a specific route depends on twofold aspects.
On the one hand, the number of BEBs in a bus fleet should
guarantee that all the operation intervals from the timetable
are covered during the daily operation. On the other hand,
the battery capacity and related driving range limitation also
have impacts on the fleet size, because the BEBs from the
overnight charging system can only be charged during non-
operational periods in the nighttime. The calculation of the
minimum required number of BEBs for a specific route under
the overnight charging is presented in (4)

Num B O N
j = max(

⌈
τ br

j

τ in
j

⌉
,

⌈
τ do

j E j

τ in
j θ O N β

⌉
) (4)
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where Num B O N
j is the minimum required number of BEBs

for the route j under the overnight charging method; τ br
j is

the travel duration of a round-trip on the route j ; θ O N is the
capacity of battery pack equipped in the BEB with overnight
charging, and β is the related usable state-of-charge range
which is widely used to alleviate the range anxiety [32]; �a�
represents the integer that is no less than the value of a.

Unlike overnight charging, the opportunity charging method
can support the BEBs to be charged during the service
operation using charging devices with high charging power
and within a short charging time, i.e. 30s [20]. Therefore, the
battery capacity has a quite limited influence on the BEB
fleet size. The minimum required number of BEBs for a
route under the opportunity charging is solely affected by
the bus schedules, as given in (5). Note that, this equation
is acceptable under the consideration of the short charging
time and suitable to the conventional transit operation, where
the dwelling time at bus stops is often less than 30s to pick
up or drop off passengers. In some special scenarios, the
operator intends to take a few minutes to charge the BEBs,
in which the interaction between battery capacity, fleet size
and schedules become more important [33], [34], [35]. For
example, the travel duration for a trip increases as the charging
time increases, which further result in the increase in the fleet
size, under the specific bus schedule and battery capacity. This
study focuses on the conventional scenario with short charging
times. To consider the longer charging times, a straightforward
way is to adjust the travel duration and charging time by
considering the interaction between battery capacity, fleet size
and schedules in the model.

Num B O P
j =

⌈
τ br

j

τ in
j

⌉
(5)

where Num B O P
j represents the minimum required number of

BEBs for route j under the opportunity charging method.

C. Number of Charging Devices Required for a BEB System

In order to ensure the effective operation of a BEB system,
an adequate number of charging devices should be constructed.
The required number of chargers with different charging meth-
ods depends on different factors. For the overnight charging
method, all the BEBs are charged at the terminal station during
non-operational periods in the nighttime and the charging
devices with relatively low charging power, i.e. slow chargers,
are used to charge the vehicles. In view of this, we reasonably
consider that the charging events are scheduled simultaneously
and thus the number of chargers equals to the total number of
BEBs, as shown in (6). The reasons for such a consideration
mainly lie in the following two points. For one thing, it often
takes more than six hours to charge a BEB due to large battery
size and low charging power, and thus there is not enough
time to complete more than one charging events by a charger
during the non-operational periods in the nighttime [20]. For
another, extra labors are needed to realize the sequential
schedule of charging events, whereas it is difficult to find
the labors who can undertake this work during nighttime in

real-world scenarios.

NumC O N =
m∑

i=1

Yi (6)

where NumC O N is the required number of chargers for the
overnight charging system.

For the opportunity charging method, the BEBs can be
charged when picking up or dropping off passengers at
bus stops. The number of charging devices depends on the
minimum number of chargers for a round-trip to guarantee
the operability of the BEB. In view of this, the energy
consumption, charging power levels, and charging time at bus
stops have significant influences on the number of chargers.
In addition, the route overlapping may occur in a network
of routes, which is commonly seen in some compact cities.
In this case, a bus stop may be covered by different routes,
and thus the charger located in the bus stop may be utilized
by BEB fleets for several different routes. To reflect the route
overlapping, we define the overlapping coefficient in this study.
Moreover, the availability of chargers may be affected by the
route overlapping, because the charger located in a specific
bus stop may be used by a BEB when another BEB from the
different fleet reaching the bus stop at the same time. Let μ
and λ j respectively denote the overlapping coefficient for route
network and the probability of charging availability for route j .
The calculation of the number of chargers for the opportunity
charging system is presented in (7). The calculation result
ensures that the number of chargers can support the BEB
finish each route without energy exhaustion during operation,
and definitely avoids the situation that the BEB is unable to
reach next charging station after charging at current charging
station. Note that, the charging devices used in the opportunity
charging system are chargers with relatively high charging
power, i.e. fast charger. Furthermore, the optimal location
of charging devices is not discussed because it is outside
the scope of this work, and related well-studied methods are
referenced in previous literature [18], [36], [37].

NumC O P = μ ·
n∑

j=1

⌈
E j

P · τ ch · λ j

⌉
(7)

where NumC O P represents the required number of chargers
for the opportunity charging system; P is the charging power
of the chargers; τ ch is the charging time at bus stops.

D. Battery Life Span

The battery has a finite life span and the aging phenomenon
occurs during the BEB operation. The battery embedded in
BEBs should be replaced when reaching its end-of-life. The
battery cycle life is one of the commonly-used indicators to
characterize the battery life span, which is generally defined
as the number of complete charge-discharge cycles that the
battery is able to perform before that its capacity falls under
80% of its original rated capacity [38]. In this section, we use
the battery cycle life to represent the battery life span due to
its adaptation for BEB application. Without loss of generality,
we assume that BEBs studied in this work are equipped with
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the Lithium iron phosphate-based battery that is world-widely
used in BEBs [39]. As has been mentioned before, the BEBs
with different charging methods are equipped with batteries
with different capacities and charged using chargers with dif-
ferent charging power levels. These features contribute to sig-
nificant differences in the battery cycle life between overnight
and opportunity charging methods, as follows. On the one
hand, the rated cycle life (C Lrate) of the battery used in
the overnight charging system is shorter than that in the
opportunity charging system. It is because the battery pack
consists of a large number of battery cells and its cycle life is
affected by the nominal capacity due to the influence of the
inconsistencies caused by cell-to-cell parameter variations: the
larger nominal capacity the battery pack has, the shorter rated
battery cycle life is [40]. On the other hand, the actual battery
cycle life of the battery used in the opportunity charging
system is shorter than its rated battery cycle life. This is
because the fast charging pattern has significant impacts on
the battery aging behavior, and the battery fading rate is
highly related to the charging power: the higher the charging
power level is, the faster battery capacity fades [41]. In order
to clearly reflect the difference in battery life span between
overnight and opportunity charging systems, we calculate the
total energy throughput over the entire lifetime of the battery
by considering the differences in battery capacity, charging
power and rated cycle life between the two charging systems.
Let C L O N

rate and C L O P
rate denote the rated battery cycle life

for overnight and opportunity charging methods, respectively.
Based on the battery cycle life coupled with the capacity,
the amount of total energy that can be stored in the battery
over its whole life span for the overnight charging method is
calculated, as shown in (8). In this way, the battery life span
is converted into the total energy throughput over the entire
lifetime.

QO N
nom = θ O N · C L O N

rate · σ (8)

where QO N
nom is the total energy throughput over the whole life

span of the battery used in the overnight charging system; θ O N

is the nominal capacity of the battery used in the overnight
charging system; σ is a coefficient designed to adjust the
battery capacity due to the capacity loss caused by the battery
fading behavior over the entire lifetime, which also has the
ability to reflect the decision preference of the operator for
the trade-off between the benefit from sufficient utilization and
the risk caused by overuse. According to the general definition
of the battery cycle life, we consider the value of coefficient
σ ranging from 0.8 to 1. By this way, the normal level of
the decision preference can be obtained if σ equals to 0.9,
which shows that the operator gives an equal importance to
the benefit from sufficient utilization and the risk caused by
overuse of the battery.

For the opportunity charging method, we firstly borrow the
empirical model developed by Omar et al. [42] to estimate the
cycle life of the battery charged under a fast charging pattern.
The model reveals the relationship between the number of
cycles that could be achieved by the battery and the charging
current rate used during fast charging processes, as shown

in (9).

C L(Ich) = 5963 · exp(−0.6531 · Ich) + 321.4

· exp(0.03168 · Ich) (9)

where C L(Ich ) is the number of charge-discharge cycles as
the battery is fast charged at a constant charging current rate
before its reference capacity has decreased to 80% of its
original nominal capacity; Ich represents the charging current
rate, which can be deduced by the charging power and battery
capacity, as shown in (10).

Ich = P

θ O P
(10)

where θ O P is the nominal capacity of the battery used in the
opportunity charging system. Afterward, the actual cycle life
can be determined by comparing the rated cycle life and the
result from (9), as given in (11).

C L O P = min{C L O P
rate, C L(Ich )} (11)

where C L O P represents the actual cycle life of the bat-
tery used in the opportunity charging system. Therefore, the
amount of total energy that can be stored in the battery over
its whole life span for the opportunity charging method is
obtained, as presented in (12).

QO P
nom = θ O P · C L O P · σ (12)

where QO P
nom is the total energy throughput over the whole

life span of the battery used in the opportunity charging
system. It is worth noting that, for the battery cycle life,
only the cycling loss is considered and the calendar loss is
neglected. This is reasonable, because the calendar loss in
Lithium iron phosphate battery is very small, and thus has
a negligible effect on the battery life span as compared to
the cycling loss [26]. Moreover, the charging and discharging
frequency would be increased as the battery is downsized,
which is not considered into the estimation of battery cycle
life. It is because the Lithium iron phosphate-based battery
has low memory effect and thus the frequency of charging and
discharging has a limited impact on the battery degradation as
compared to the charging current rate [43]. Several existing
studies have demonstrated that the charging current rate has
adequate ability to estimate the battery cycle life [27], [42].

III. COLLABORATIVE OPTIMIZATION MODEL FOR

LIFECYCLE COST OF BEB SYSTEM

Comprehensive optimization of lifecycle cost is necessary
to explore the economic efficiency of the lifetime operation
of a BEB system. Based on the joint consideration of the
unique features of energy consumption, bus fleet size, charging
device construction, and battery life span for BEB systems
with different charging methods, a lifecycle cost optimization
model is then developed. The two main components of the
lifecycle cost are the initial capital cost and the use-phase
operation cost, the latter of which can be divided into charging
cost and battery replacement cost. In view of this, we establish
a collaborative optimization framework to comprehensively
optimize the infrastructure procurement and fleet scheduling,
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where the former has a significant impact on the latter and
thereby affects the battery replacement cost over the whole
planning horizon. For BEBs, their battery degradation is a
time-dependent dynamic process, which is highly related to the
matching strategy of BEB fleets and routes at each scheduling
period. In this study, we consider the whole service life of the
BEB as the planning horizon, and all the BEBs coupled with
matched charging devices are purchased at same time. This is
an expected scenario for a transit agency as a new BEB-based
urban transit system is constructed [17].

For model formulation, we assume that the operator period-
ically determines the optimal matches of the BEB fleets and
the routes at the beginning of each year, and accordingly the
planning horizon is discretized into finite scheduled periods
of one year. Let {1, . . . , t, . . . , T } denote the set of scheduled
periods with one-year intervals, where T is the whole service
life of the BEB. Furthermore, the collaborative optimization
framework has two decision variables, as follows. For one
thing, the decision variable involved in the planning of the
infrastructure procurement is the integer variable Yi , which
represents the number of BEBs in the bus fleet i , as has been
described in Section II.A. For another, the decision variable
involved in the bus fleet scheduling is denoted as the binary
variable Xij t , which is equal to 1 if the BEB fleet i is
assigned to the route j during the year t; otherwise, this
variable is 0. Based on the definition of Xij t , the mathematical
optimization model for the fleet scheduling can be designed as
the dynamic programming, which aims to search the optimal
values of Xij t to optimize the use-phase operation cost. During
the optimization process, the values assigned to Xij t must
satisfy the predefined timetable that does not change over
the whole planning horizon. To unify the notations with
different charging methods, the uniform notations without
the instruction of charging methods are used for modeling,
and the parameters for different charging methods can be
taken into the corresponding portions. Based on these settings,
the lifecycle cost optimization model for BEB system is
constructed as

min Clc =
m∑

i=1

C̃busYi + C̃chd · NumC

+
T∑

t=1

m∑
i=1

n∑
j=1

�Eij Xi j t Yi C̃ele(1 + drate)
1−t

+
T∑

t=1

m∑
i=1

θ · C̃bat (1 − φbat)
t−1δit Yi (1 + drate)

1−t (13)

s.t .
m∑

i=1

Xij t = 1, ( j = 1, . . . , n; t = 1, . . . , T ) (14)

n∑
j=1

Xij t = 1, (i = 1, . . . , m; t = 1, . . . , T ) (15)

Num B j · Xij t ≤ Yi , (i = 1, . . . , m; j = 1, . . . , n;
t = 1, . . . , T ) (16)

Qit + δit Qnom ≥ �Eij Xi j t , (i = 1, . . . , m;
j = 1, . . . , n; t = 1, . . . , T ) (17)

Qit =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Qnom,

(i = 1, . . . , m; t = 1)

Qit−1 + δit−1 Qnom − �Eij Xi j t−1,

(i =1, . . . , m; j =1, . . . , n; t = 2, . . . , T )

(18)

Xij t ∈ {0, 1} , Yi ∈ Z+, (i = 1, . . . , m; j = 1, . . . , n;
t = 1, . . . , T ) (19)

Objective (13) minimize the lifecycle cost of the BEB
system, which synchronously involves a static programming
for infrastructure procurement and a dynamic programming
for fleet scheduling, where Clc is the lifecycle cost for the
BEB system; C̃bus and C̃chd represent the purchase costs of
a BEB (without battery) and a charging device, respectively;
C̃bat and C̃ele are the unit battery cost and charging cost
per kWh, respectively; drate is the discount rate; φbat is the
annual reduction rate of battery cost, which is necessary to
be considered due to the rapid development of the automotive
battery industry in recent decades [44]; δit is defined as a
binary variable with respect to the battery replacement, which
is equal to 1 if the BEBs from fleet i replace their batteries
during the year t when the old batteries reaching their end-
of-life, and 0 otherwise. In this objective function, the first
term determines the total cost for BEB purchase in the whole
system, where the total number of BEBs is obtained by
summing up the number of BEBs from all the fleets; the
second term focuses on the total procurement cost of the
charging devices, where the number of chargers purchased
for a BEB system is influenced by the type of the charging
methods, as has been discussed in Section II.C; the third term
calculates the total charging cost over the whole planning
horizon, and furthermore, the model considers that the unit
charging cost differs for overnight and opportunity charging
methods due to the influence of time-of-use electricity price,
which presents the clear variations in unit charging cost from
daytime to nighttime [45]; the final term gives the total cost
for battery replacement over the whole service life of the
BEBs, where the total number of batteries used for the lifetime
operation of the BEB fleets is significantly affected by the
matching strategy of BEB fleets and routes during the planning
horizon. Note that, the salvage values are not considered in the
objective function, because they are considered to be quite
small after the expected service life, and thus have fairly
limited impacts on the lifecycle costs [46]. Moreover, since
we consider the service life of BEB as the planning horizon,
the maintenance cost is also neglected. As a matter of fact,
if necessary, it is straightforward to integrate the maintenance
cost into the objective function, for instance, by adjusting the
purchase cost.

Equations (14)-(19) present the constraints for the life-
cycle cost optimization model. To be specific, constraints
(14) and (15) indicate a consistent one-to-one match between
each BEB fleet and each route, where one BEB fleet can
only be assigned to one route, and meanwhile one route
can only accept one BEB fleet for each scheduled period.
Constraint (16) ensures that the number of BEBs from bus
fleet i is no less than the minimum BEB fleet size required
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for route j , if the BEB fleet i is assigned to the route j
during the year t . Constraint (17) guarantees that the maximum
energy obtained by a single BEB from bus fleet i during
the year t is no less than the energy required for its yearly
operation on route j , if the BEB fleet i is assigned to the
route j during the year t , where Qit represents the initial
capability of energy throughput over the remaining useful
life of the battery equipped in the BEB from bus fleet i at
the beginning of year t . Constraint (18) formulates the state
transition equation for Qit , which reveals the dynamic change
trends of the battery’s remaining useful life, represented as
energy throughput, over the whole planning horizon. It is
observed that, the fleet scheduling strategy in current year are
highly related to the remaining useful life of the battery at
the beginning of the subsequent year. Constraint (19) ensures
that the decision variable Xij t is the binary variable, and
meanwhile the decision variable Yi belongs to the integer.

The presented model is nonlinear due to the nonlinearity
existed in both the objective function and constraints, even for
its relaxations in case the decision variable Yi is continuous.
For the objective function, it can be observed that the final
term is nonlinear, where the binary variable δit is highly
related to the decision variable Xij t . For the constraints, the
constraints (17) and (18) are nonlinear, where the variable
�Eij is calculated based on the decision variable Yi , as shown
in (3). Note that, the third term of the objective function
can be regarded as the linear term, because Yi acts as the
denominator in (3) and thus it can be cancelled out in the
calculation process. The nonlinearity of the model results in
significant complexity to solve the problem. This is because
that, the conventional exact algorithms or commercial solvers
have limited ability to solve the complex nonlinear models.
Based on this, the customized solution method should be
designed to obtain the solution of the problem.

IV. MODEL TRANSFORMATION AND SOLUTION

A. Model Transformation Based on Bi-Level Programming

In the proposed model, the solution comprises two parts,
including infrastructure procurement and fleet scheduling. For
the infrastructure procurement part, the solution gives the
number of BEBs purchased for each bus fleet and thus contains
m variables upon the number of bus fleets in a public transit
system. For each variable, the procurement decision is an
integer value greater than zero. For the fleet scheduling part,
the solution determines the BEB fleet scheduling during each
scheduled period and accordingly contains m × n × T
variables upon the number of bus fleets and routes as well
as the whole service life of the BEB. For each variable, the
fleet scheduling is a binary value. Hence, it is difficult to
synchronously search for all the possibilities with respect to
both parts of the solution. Nevertheless, it is worth noting
that there exists a hierarchical relationship between the two
parts of the solution, where the infrastructure procurement
is able to determine the key impacting factors for the BEB
fleet scheduling. The main reasons for such a relationship
are twofold: on the one hand, the number of BEBs in a bus
fleet has a direct influence on the feasibility of the fleet to

be assigned to different routes. In other words, the number of
BEBs from a specific bus fleet should satisfy the minimum
required fleet size for a route, if the BEB fleet could be
matched with the route, as mentioned in Section II.B; on the
other hand, the annual energy consumption for a single BEB
operating on a specific route is affected by the number of BEBs
from the corresponding bus fleet, as presented in (3). This
characteristic further indicates that the BEB fleet size would
influence the battery fading behavior during the scheduling
process, as discussed in Section II.D. In view of the hierar-
chical relationship between the infrastructure procurement and
fleet scheduling, combining the bi-level programming principle
[47], the collaborative optimization model can be regarded as a
bi-level optimization problem, where the outer-level objective
aims to determine the optimal number of BEBs purchased for
each fleet, and the inner-level objective searches the optimal
matches between BEB fleets and routes during each scheduled
period. In this way, the initial objective function, as shown
in (13), can be decomposed into two interrelated functions to
reduce the computational complexity, as given in (20) and (21).
Basically, the outer-level objective function (20) has control
over the decision variable Yi , and the inner-level objective
function (21) has control over the decision variable Xij t .

min Couter
lc =

m∑
i=1

C̃busYi + C̃chd · NumC + Cinner
lc (20)

min Cinner
lc =

T∑
t=1

m∑
i=1

n∑
j=1

�Eij Xi j t Ŷi C̃ele(1 + drate)
1−t

+
T∑

t=1

m∑
i=1

θ ·C̃bat(1−φbat)
t−1δit Ŷi (1+drate)

1−t

(21)

In the above functions, Couter
lc and Cinner

lc are used to denote
the associated costs obtained from outer-level and inner-level
objective functions, respectively. Furthermore, to solve the
bi-level optimization problem, once the outer-level objective
function chooses the values of decision variable Yi , the Yi

of the inner-level objective function become the constants.
Thus, Ŷi represents the decision variable Yi with known values.
It is observed that the final lifecycle cost is obtained as the
outer-level objective is optimized.

B. Hybrid TS-IGA Solution Method

Through model transformation, the collaborative optimiza-
tion model with two categories of decision variables is
reformulated as the bi-level optimization problem that has
two interrelated objectives with single category of decision
variable. By this way, the model can be solved by separately
handling the inner-level and outer-level subproblems. Note
that, even though the computational complexity is reduced
by the model transformation, it is still difficult to deal with
the problem. The primary complexities for determining the
solution of the bi-level optimization problem are summarized
as follows. Firstly, there exists a transitive relation between
the solutions of the two subproblems, where the outer-level
subproblem sends its candidate solution to the inner-level
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subproblem, and then the inner-level subproblem provides its
objective function value to the outer-level subproblem. Indeed,
as regards the problems with the similar characteristic, there
exist some exact algorithms that may have ability to deal with
them. However, the exact algorithms are often available based
on some strict conditions, and thus the heuristic algorithms
are more widely used [48]. For instance, a most possible
technique for solving the similar problems is the Benders
decomposition method, whereas it is unable to solve the
proposed model, because the model structure, e.g., the inner-
level objective function (21), cannot satisfy the conditions of
the Benders decomposition method [49]. Secondly, the scale of
the candidate solution for the outer-level subproblem is large,
which is the combination of a certain number of integers.
Finally, the inner-level subproblem is a dynamic optimization
problem, where the fleet scheduling in the immediately sched-
uled period has effects on that in the subsequent scheduled
period. It is unrealistic to enumerate all the conditions to
evaluate the use-phase operating cost for finding the optimal
matches between BEB fleets and routes, which would increase
exponentially with the increase in the number of scheduled
periods.

Considering the abovementioned complexities in terms of
the model, we attempt to introduce a hybrid heuristic to solve
the bi-level optimization problem, which has been regarded as
an effective combinatorial optimization technique in solving
hard problems [50]. To this end, a hybrid heuristic solution
method based on a TS and an IGA is customized to solve
the model. Just like the characteristic of a bi-level prob-
lem, the framework of the solution method is constructed
as a hierarchical structure, including inner-level and outer-
level procedures. To be specific, the outer-level procedure is
designed based on a TS framework to determine the number
of BEBs in different fleet sizes, i.e., decision variable Yi .
In the outer-level procedure, the objective is to optimize the
lifecycle cost, as shown in (20), where the initial capital
cost can be calculated directly as the candidate solution of
Yi is chosen while the operating costs during use phase are
obtained from the solution of the inner-level procedure. Given
the above features of outer-level procedure, it is appropriate for
TS. This is because TS has relatively high convergence rate
and good adaptability for solving optimization models with
complex solution spaces [51]. By using TS in the outer-level
procedure, the integer variable Yi can be efficiently optimized
considering its interaction with the inner-level procedure.
For the inner-level procedure, an IGA is designed to search
the optimal matches between bus fleets and routes for each
scheduled period, i.e. decision variable Xij t , and determine the
use-phase operating cost, i.e. Cinner

lc . The reason for choosing
IGA lies in its strong ability to search global solution and
good adaptability for dynamic programming with complicated
solution spaces [52]. The inner-level procedure sends Cinner

lc
to the outer-level procedure and thus the lifecycle cost, i.e.
Couter

lc , is obtained under the current candidate solution of Yi .
In this way, the TS and IGA are performed iteratively until
the termination criteria is met. Fig. 2 presents the flowchart
of the hybrid TS-IGA solution method. For the initial solution,
the initial values of Yi can be generated according to the

Fig. 2. Flowchart of the hybrid TS-IGA solution method.

minimum required BEB fleet size. For example, the initial
Yi should ensure that the number of BEBs in each bus fleet
can meet the requirement of all the routes. On this basis, the
corresponding initial value of Xij t can be obtained using the
IGA procedure, which need satisfy the constraints with respect
to the fleet scheduling in the model. As a heuristic-based
solution method, it should be noted that the computational
solution obtained by the hybrid TS-IGA may be a satisfactory
or near-optimal solution. For simplicity, the computational
solution obtained by this hybrid heuristic is experientially
called the optimal solution in this study. The implementations
of IGA and TS for the inner-level and outer-level procedures
are respectively detailed in following subsections.

1) IGA for the Inner-Level Procedure: In the hybrid TS-
IGA framework, a specialized IGA is designed for the inner-
level procedure to search the optimal matches between BEB
fleets and routes. IGA is an improved algorithm based on
the combination of the immune concepts and the genetic
algorithm (GA), which has a better ability to refrain the
degenerative phenomena during evolution, as compared to
the typical GA [53]. To be exact, IGA utilizes the local
information to intervene in the global search process and
restrain or avoid repetitive and useless work to overcome the
blindness in crossover and mutation operations. This advan-
tage inspires several studies use IGA for solving dynamic
scheduling problems, because it significantly increases the
algorithmic performance to find the global optimal solution
in a complicated solution space [52], [54]. Therefore, given
the dynamic characteristic of the fleet scheduling problem, the
IGA is well-suited for the inner-level procedure. In an IGA,
a solution is encoded as an antibody that is often represented
by a chromosome with a certain number of gene bits, similarly
as the canonical GA [55]. In order to accommodate the
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Fig. 3. Toy antibody with three BEB fleets.

problem characteristics of BEB fleet scheduling, we customize
the antibody to represent the matches between BEB fleets and
routes for each scheduled period. To be exact, an antibody is
formed by a one-dimensional array with m × T elements,
where the value of each gene bit is the serial number of
the route that is matched to the corresponding BEB fleet.
For example, Fig. 3 illustrates an antibody corresponding to
the scenario with three BEB fleets. According to the set of
scheduled periods, the antibody chromosome is partitioned
into T groups, and each group has three gene bits representing
the fleet scheduling for the corresponding t . Obviously, within
the group of t = 1, the value of the first gene bit is equal to 1,
which indicates that the BEB fleet 1 is assigned to the route
1 for t = 1; similarly, the value of the second gene bit within
the group of t = 2, which is equal to 3, shows that the BEB
fleet 2 is matched with the route 3 for t = 2.

In the IGA, the number of antibodies is defined as the popu-
lation size. For each antibody, the fitness is calculated based on
the inner-level objective function, as shown in (21). According
to the fitness values, the antibodies from the population are
sorted, and subsequently the best two antibodies are selected
as the vaccines saved into a vaccine library. The vaccine
is the representative of the elitist antibody, which plays a
critical role in the efficiency of the algorithm [56]. In addition,
an iterative operation is applied to update the antibodies
through crossover, mutation and selection operations coupled
with immune operator. The primary principle behind immune
operator utilization is to intervene aptly in the variation of
genes in individual antibody by using vaccines. It can improve
the convergence rate and population diversity during the
evolutionary process. To be specific, in the population of each
generation, the two-point crossover is used in principle for
the crossover operation using a specified crossover probability,
and then the mutation operation is employed to exchange
the values of randomly selected two gene bits according to
a given mutation probability [53]. It is worth noting that,
given the dynamic characteristics of fleet scheduling, both the
crossover and mutation operations would perform T times for
an specific antibody, because the gene bits in each group of
t for the selected antibodies should be updated during the
iterative process. The fitness values of the updated antibodies
are also determined and sorted. Afterwards, the self-adaptive
vaccine selection is introduced to ensure the validity of the
vaccines, which refers to the adaptive capacity for updating
the vaccine library during the evolutionary process. By this
way, the vaccines can be replaced by the antibodies with better
fitness values from the population of current generation.

For the selection operation, an immune operator is adopted
to improve the convergence rate and population diversity,
which composed of two operations: vaccination and immune
balance. The vaccination operation aims to modify the anti-

Fig. 4. Vaccination operation in the IGA.

bodies from the population in accordance with the vaccine
library and thus raise the fitness with greater probability. In this
study, we use both strategies of antibody replacement and gene
modification to realize the vaccination operation, as illustrated
in Fig. 4. As seen, case (a) presents the antibody replacement
strategy, where the antibodies with worst two fitness values in
the population are replaced by the vaccines from the vaccine
library under the reverse order of fitness. By contrast, case
(b) provides the gene modification strategy that modifies the
genes on some bits for an individual antibody based on the
vaccines, where the target antibodies and corresponding vac-
cines are randomly selected from the population and vaccine
library, respectively; in particular, the gene bits marked by
red color in the figure represent that they are selected to
perform injection or modification between the vaccine and
target antibody. A check operation is further implemented to
test antibodies before and after the gene modification, and the
antibody with better fitness value participate in the population.
After the vaccination operation, the antibodies in the updated
population are sorted again according to the fitness.

On the other hand, the immune balance operation can ensure
the diversity of antibodies by simultaneously integrating the
fitness and concentration into the selection probability of an
individual antibody. The concentration is a specific concept
in the immune balance operation, which is related to the
similarity of antibodies. In this work, we use the fitness as
the metric for the similarity of antibodies, and accordingly the
concentration refers to the proportion of the antibodies that
are similar to the target one in the population, including the
target antibody itself. Meanwhile, the probability regarding the
fitness is also determined based on the proportion of the fitness
value for each antibody in the total fitness for all the antibodies
from the population. Combining the probabilities of fitness
and concentration, the selection probability for each antibody
in the population is calculated based on the immune balance
operation. A sketched derivation of the selection probability
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Algorithm 1 IGA for the Inner-Level Procedure
Step 1: Randomly generate the antibodies with m × T gene

bits to constitute the initial population.
Step 2: Determine the fitness value of each antibody-based

on (21) and save the best antibody as the temporary
solution.

Step 3: Establish the vaccine library and save the antibodies
with the best two fitness values into the vaccine
library.

Step 4: Perform the crossover operation to update the pop-
ulation using a specific crossover probability.

Step 5: Perform the mutation operation to update the popu-
lation using a specific mutation probability.

Step 6: Determine the fitness value of each antibody from
the updated population and sort the antibodies in
descending order.

Step 7: Update the vaccine library based on the self-adaptive
vaccine selection approach.

Step 8: Perform the vaccination operation on the population
and then sort the antibodies in a descending order
according to their fitness.

Step 9: Calculate the selection probability for each antibody
based on the immune balance operation.

Step 10: Perform the selection operation using the roulette
wheel selection method to update the population.

Step 11: Determine the fitness value of each antibody from
the updated population and compare the best anti-
body with temporary solution. Save the best antibody
as new temporary solution if its fitness value is better
than the current temporary solution; otherwise, retain
the current temporary solution.

Step 12: Output the optimal solution if the iteration reaches
the maximum number; otherwise, return to Step
4 and continue the iterative repetitions.

with immune balance operation is detailed in Appendix in
the interest of brevity. Afterward, the roulette wheel selection
method is used to perform the selection operation accord-
ing to the selection probability, which is an effective and
commonly-used method in intelligent algorithms [57]. In this
way, the population in the new generation is obtained until
the termination criteria is satisfied. For IGA termination,
we consider that the algorithm halts as the iterations reach the
maximum number, which is often adopted as the termination
criterion in intelligent algorithms [58]. The detailed steps
of the IGA for the inner-level procedure are outlined in
Algorithm 1.

2) TS Algorithm for the Outer-Level Procedure: For the
outer-level procedure, a TS algorithm is customized to deter-
mine the optimal number of BEBs that are purchased for
each bus fleet. TS is an effective heuristic procedure for
guiding search in complex solution spaces, which is able to
ensure the diversified search through the simulation of human
intellectual activities, thereby realize the efficient global opti-
mization [51]. To be exact, TS explores the solution space
by constantly replacing recent solution with new one that

Fig. 5. Movement strategies regarding the candidate solution generation.

escapes from the already visited solutions and their neighbors.
In general, TS algorithm starts the search from an initial
feasible solution. Considering the feature of the proposed
model, we use the 1 × m vector, i.e. (Y1, . . . , Yi , . . . , Ym),
to represent the solution in the TS, where the value of
Yi is the number of BEBs in i th bus fleet. In this study,
we consider that an effective initial solution for the TS need
to ensure the feasibility of the matches between any bus
fleets and routes, thereby the maximum-minimum required
number of BEBs among all the routes could be regarded as
the initial solution, which can be obtained using (4) or (5) for
different charging methods. Afterwards, the solution would
be iteratively improved through the movement of decision
variable Yi , where the candidate solutions corresponding to
the current solution are searched based on the certain strat-
egy. In the TS procedure, two types of movement strategies
regarding the candidate solution generation are introduced,
including the collective movement and individual movement.
To be exact, the collective movement aims to adjust all the
decision variables from the solution, while the individual
movement solely alters one decision variable that is randomly
selected from the solution, as shown in Fig. 5. As seen, cases
(a) and (b) respectively illustrate the collective and individual
movement strategies. For the sake of distinction, we use red
color to highlight the decision variables that are selected from
current solution to perform movement. The reason for such
strategies lies in that the temporary solution is closer to the
global optimal solution as the iterative generation increases,
and accordingly the required movement intensity weakens.
Therefore, the collective movement is mainly applied in the
early iterative generations and the individual movement is used
for the late iterative generations. For each type, a movement
probability is introduced to guide the movement direction for
the decision variable Yi . The number of candidate solutions
generated during each iterative generation is called candidate
solution size.

To circumvent the entrapment that the solution is trapped
into local optimization, the TS procedure incorporates a mem-
ory structure to record the recent movements and whereby
guide the search process. Such a memory structure is realized
by establishing the tabu list in the TS. In the tabu list, each
movement is formed by the 1 × (m + 1) vector in accordance
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TABLE II

ROUTE INFORMATION FROM THE CASE STUDY

with the solution structure, and the maximum number of move-
ments recorded in the tabu list is called the tabu length. For
each movement, the last element records the optimal objective
value obtained based on the corresponding solution which
is recorded in the front m elements. Note that, the optimal
objective value represents the optimal lifecycle cost under the
solution, in which the use-phase operating cost is determined
by the inner-level procedure, as shown in (20). In each
iterative generation, the movement recorded in the tabu list
is forbidden when generating the candidate solutions. By this
way, the TS algorithm could be prevented from revisiting
the solutions that has been accessed in the previous iterative
generations. Moreover, to further improve the optimization
efficiency, the TS procedure also adopts the aspiration criteria
to overrule the tabu movements in certain situations. In this
work, we consider the aspiration criteria in which the candidate
solution from a specific iterative generation is directly regarded
as the temporary solution, if its optimal lifecycle cost is
less than that of the current solution, and meanwhile update
the tabu list by adding the candidate solution coupled with
optimal objective value. As the candidate solutions with given
size are obtained, only the one with minimum lifecycle cost
is considered in the aspiration criteria. On the other hand,
if the aspiration criteria is not satisfied, a check procedure
is implemented to determine whether the candidate solutions
and corresponding optimal objective values exist in the tabu
list. For the situation that all the candidate solutions belong to
the tabu list, the candidate solution with minimum lifecycle
cost is regarded as the temporary solution. On the contrary,
if there exist the candidate solutions that are not prohibited
by the tabu list, use the best one among them to act as the
temporary solution. For both the situations, the tabu list is
updated using the candidate solution with minimum lifecycle
cost and corresponding objective value during each iteration.
For TS termination, we consider that the algorithm halts as the
iterations reach the maximum number. The detailed steps of
the TS for outer-level procedure are outlined in Algorithm 2.

V. NUMERICAL CASE STUDY AND SIMULATIONS

A. Example Scenario Description

In this section, a case study is presented to demonstrate
the proposed model and solution method. Referring to the

Algorithm 2 TS for Outer-Level Procedure
Step 1: Generate the initial feasible solution based on the

maximum-minimum required number of BEBs for
each route.

Step 2: Calculate the optimal lifecycle cost of the initial
feasible solution based on (20) and save it as the
temporary solution, where the use-phase operating
cost is determined using Algorithm 1.

Step 3: Initialize the tabu list with a specific tabu length,
where each movement is set as empty.

Step 4: Check the iterative generation and generate the can-
didate solutions under a specific size for the current
temporary solution: if the current iterative generation
is less than the half of the maximum number of
iterations, perform the collective movement strategy
to generate the candidate solutions; otherwise, per-
form the individual movement strategy to generate the
candidate solutions.

Step 5: Calculate the optimal lifecycle cost of each candidate
solution and sort the candidate solutions in an ascend-
ing order.

Step 6: Select the candidate solution with minimum optimal
lifecycle cost and determine whether the aspiration
criteria is satisfied: if it is satisfied, save the candidate
solution as the new temporary solution and go to Step
8; otherwise, go to Step 7.

Step 7: Check whether all the candidate solutions and cor-
responding optimal lifecycle cost exist in the tabu
list: if they all exist, save the candidate solution with
minimum optimal lifecycle cost as the new temporary
solution; otherwise, check the candidate solutions that
do not exist in the tabu list and then select one with
minimum optimal lifecycle cost among them as the
new temporary solution.

Step 8: Update the tabu list by adding the candidate solution
with minimum optimal lifecycle cost and correspond-
ing objective value, and meanwhile deleting the ear-
liest added movement from current tabu list.

Step 9: Output the optimal solution if the iteration reaches
the maximum number; otherwise, return to Step 4 and
continue the iterative repetitions.

real-life scenario from a major city in China, we apply the
lifecycle optimization model to a public transit system with
six yet-to-be electrified bus lines, i.e. routes 1-6. TABLE II
lists the information in terms of the studied routes in the case
study, which exhibit considerably high heterogeneity for both
length and the travel duration. Accordingly, six BEB fleets are
considered in the case study, i.e. fleets 1-6.

Besides the route information, the basic scenario parameters
of the case study for overnight and opportunity charging meth-
ods are respectively presented in TABLE III, such as the para-
meters related to the purchase cost, energy consumption, and
specific coefficients in the proposed model. Observably, most
of the basic scenario parameters are assigned by reference
to the related literature and the other ones are experientially



WANG et al.: LIFECYCLE COST OPTIMIZATION FOR ELECTRIC BUS SYSTEMS WITH DIFFERENT CHARGING METHODS 2855

TABLE III

SCENARIO PARAMETERS OF THE CASE STUDY

given. Note that, TABLE III only presents the basic scenario
parameters. Besides these basic scenario parameters, there are
other parameters that can be deduced by the basic scenario
parameters, as has been discussed in Section II. For instance,
the battery weight can be obtained from battery nominal
capacity θ and battery specific energy ρ, as shown in (1).

For the hybrid TS-IGA solution method, the primary para-
meters are given as follows: for the TS algorithm applied in the
outer-level procedure, the candidate solution size, tabu length,

Fig. 6. Optimal fleet scheduling and battery replacement for the case study.

and movement probability are respectively set as 20, 10, and
0.3; for the ICA applied in the inner-level procedure, the pop-
ulation size, crossover probability, and mutation probability
are set as 50, 0.9, 0.1, respectively. The maximum number
of iterations for both the procedures is set as 100. These
parameters are obtained by referring to the typical parameter
settings in the existing literatures that present similar logical
structure behind the problem formulation [53], [59].

B. Optimal Results and Analysis

For the BEB system with overnight charging method, the
optimal numbers of BEBs that are purchased for the fleets 1-6
are 5,5,6,7,7,7, respectively; for the BEB system with opportu-
nity charging method, the optimal number of purchased BEBs
for the fleets 1-6 are 6,6,7,5,5,5, respectively. Accordingly, the
optimal scheduling of the BEB fleets is illustrated in Fig. 6.
The battery replacement during the planning horizon for each
BEB fleet is also obtained based on the fleet scheduling results
and presented in the figure. In addition, to clearly distinguish
the different BEB fleets, we utilize different colors to mark
the fleet scheduling coupled with battery replacement for the
fleets 1-6 in the figure.

Based on the optimal solution of the case study, we can
obtain the corresponding lifecycle cost of the BEB systems
with overnight and opportunity charging methods, respectively.
In total, the optimal lifecycle costs for overnight and oppor-
tunity charging systems are 30.20 M£e and 47.96 M£e,
respectively. This result indicates a significant difference in
the lifecycle costs between overnight and opportunity charging
systems. To further explore the underlying causes of the differ-
ence, Fig. 7 presents the components of the optimal lifecycle
cost for the two charging systems, which include the charging
cost, BEB purchase cost, charger phase cost, and battery
replacement cost. On one hand, it is observed that the BEB
purchase cost and battery replacement cost for the overnight
charging are higher than the ones for the opportunity charging.
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Fig. 7. Components of the optimal lifecycle costs.

The result indicates that the overnight charging system requires
a larger number of BEBs than the opportunity charging system.
Meanwhile, the cost of batteries used in the overnight charging
system is larger than that used in the opportunity charging
system, because of higher battery capacity. Even though the
number of battery replacements for overnight charging is less
than that for opportunity charging during the whole service
life of the BEBs, the higher cost of batteries still contributes
to a higher total cost of battery replacement. On the other
hand, the opportunity charging results in higher charging cost
and charger purchase cost than the overnight charging. The
difference in charging cost is mainly affected by the differ-
ence in unit charging cost between overnight and opportunity
charging systems. This result also indicates that the time-of-
use electricity price has a harsher influence on the charging
cost as compared to the energy consumption reduction arising
from battery downsizing effects. When it comes to the charger
purchase cost, there exhibits a striking difference between the
two charging systems, where the opportunity charging system
costs 17.01 M£emore than the overnight charging system.
Such a result mainly lies in that the purchase cost of the fast
charger for opportunity charging is significantly higher than
the slow charger for overnight charging. More importantly,
it is worth noting that the difference in charger purchase cost is
highly close to the difference in the total lifecycle cost between
the two charging systems, i.e. 17.76 M£e. Therefore, it is
concluded that the lifecycle cost difference stems primarily
from the difference in the purchase cost of charging devices
between overnight and opportunity charging systems.

Fig. 8 further provides the component proportion of the
optimal lifecycle cost for overnight and opportunity charging
systems, respectively. As can be seen, the BEB purchase
cost and battery replacement cost dominate the lifecycle cost
for the overnight charging system, where the sum of them
accounts for 83% of the total cost. By contrast, for the oppor-
tunity charging system, the sum of BEB purchase and battery
replacement costs only accounts for 41% of the lifecycle cost.
On the contrary, the charger purchase cost occupies the largest
proportion of the lifecycle cost for the opportunity charging
system, whereas it has a negligible influence on the lifecycle
cost for the overnight charging system.

Fig. 8. Component proportion of the optimal lifecycle costs.

As mentioned before, this study customizes the hybrid
TS-IGA solution method to solve the model, thereinto IGA
is the improved algorithm based on the combination of
the immune concepts and GA. To evaluate the performance
of the proposed algorithm, we further solve the model by
using the hybrid heuristic algorithm based on the TS and
canonical GA, i.e., hybrid TS-GA, and accordingly carry
out the comparative assessment. The primary parameters of
the hybrid TS-GA are consistent with the proposed hybrid
TS-IGA to ensure the fair and valid comparison. The optimal
solution derived from the hybrid TS-GA exhibits that the
lifecycle costs for overnight and opportunity charging systems
are 31.37 M£eand 49.43 M£e, respectively. By comparison,
it is concluded that the proposed hybrid TS-IGA algorithm
has the better performance to solve the model, which can
reduce the lifecycle cost by 3.73% and 2.97% compared to
the hybrid TS-GA algorithm for overnight and opportunity
charging systems, respectively.

In a real-world scenario, public transit agencies often tend to
adopt the conventional management strategy for BEB system,
where all the fleets have a unified fleet size and keep driving on
the fixed route pre-determined at the beginning of the planning
horizon [9]. To evaluate the effectiveness of the proposed
model, we compare the optimal lifecycle cost from the model
with that from the conventional management strategy in which
the fleet size meets the requirements for all the routes. To be
specific, the conventional management strategy uniformly pur-
chases seven BEBs for the fleets 1-6, and each fleet only serves
one route without scheduling over the whole planning horizon.
The results indicate that the proposed methods can reduce
the lifecycle cost by 7.77% and 6.64% compared to the con-
ventional management strategy for overnight and opportunity
charging systems, respectively. Thereinto, for the overnight
charging system, the proposed model can save 11.90% of BEB
and charger purchase costs and 5.36% of battery replacement
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cost compared with the conventional management strategy;
for the opportunity charging system, the proposed model can
save 19.05% of BEB purchase cost and 7.29% of battery
replacement cost as compared to the conventional management
strategy. The above results show that the collaborative opti-
mization of infrastructure procurement and fleet scheduling
can help to reduce both the initial capital cost and use-phase
operating cost.

C. Sensitivity Analysis

In the numerical case study, several key parameters of the
example scenario are given by considering the real-life condi-
tions referenced in existing studies, as shown in TABLE III.
On this basis, we further carry out a series of simulations for
sensitivity analysis to explore the relative importance of the
key parameters for the optimal lifecycle cost. The parameters
considered in the sensitivity analysis include the purchase
cost of BEB, purchase cost of charger, unit battery cost,
battery nominal capacity, charging power, and unit charging
cost. The sensitivity analysis evaluates these parameters by
changing their values individually. To be exact, the values
of each parameter in sensitivity analysis are determined by
respectively increasing and decreasing 20% from the base
value that is presented in the aforementioned case study. The
results of sensitivity analysis are summarized in Fig. 9, which
presents the percentage difference of lifecycle costs obtained
from the optimal results with variation of each parameter for
both overnight and opportunity charging systems.

In Fig. 9, cases (a) and (b) provide the results of sensitiv-
ity analysis for overnight and opportunity charging systems,
respectively. For the overnight charging system, the optimal
lifecycle cost is most sensitive to the battery nominal capacity,
because the battery nominal capacity can not only affect
the battery replacements but indirectly influence the required
number of BEBs and energy consumption rate. The optimal
results are also sensitive to the purchase cost of BEB and unit
battery cost, which have primary effects on the BEB purchase
cost and battery replacement cost, respectively. Since the unit
charging cost and purchase cost of the charger is relatively
low, the changes in them have comparatively limited impacts
on the optimal results. In addition, the optimal lifecycle cost
is least sensitive to the charging power, because the slow
charging pattern used in overnight charging systems has an
ignorable effect on battery fading rate as well as battery
replacement costs. On the other hand, for the opportunity
charging system, the optimal lifecycle cost is significantly
sensitive to the battery nominal capacity, purchase cost of the
charger, and charging power. Specifically, the battery nominal
capacity has significant influences on the battery replacements
and indirect influences on energy consumption rate. More
importantly, unlike the overnight charging system, the changes
in battery nominal capacity further affect the battery aging
behavior, because the battery fading rate is highly related
to the charging current rate under the fast charging pattern
used in the opportunity charging system, which is associated
with the battery nominal capacity and charging power. Thus,
the charging power also has a considerable impact on the

Fig. 9. Percentage difference of lifecycle costs with variation of each
parameter.

battery replacement cost. The purchase cost of charger has a
significant impact on the optimal results owing to its relatively
expensive price and large proportion in the lifecycle cost.
Moreover, the optimal results are also sensitive to the purchase
cost of BEB and unit charging cost, which directly affect the
BEB purchase cost and charging cost from the lifecycle cost,
respectively. The optimal lifecycle cost is least sensitive to
the unit battery cost, because the battery used in opportunity
charging system often has a relatively small nominal capacity.
Moreover, the results also present that the battery performance
improvement has greater benefits on the overnight charging
system compared with the opportunity charging system. This
is because the increase of driving range can reduce the fleet
size for overnight charging system and thus save the BEB
purchase cost. Therefore, it is better to charge using overnight
charging method than opportunity charging method as the
battery performance is improved.

Besides the aforementioned key parameters, we design an
adjustment coefficient σ , ranging from 0.8 to 1, to adjust the
battery capacity considering the battery fading behavior, and
meanwhile reflect the decision preference of the operator for
the trade-off between the benefit from sufficient utilization
and the risk caused by overuse, as presented in (8) and (12)
from Section II.D. If the adjustment coefficient σ is assigned
a relatively large value, it indicates that the operator attaches
greater importance to the benefit from sufficient utilization of
the battery than that to the risk caused by its overuse. On the
contrary, a relatively small value of the adjustment coefficient
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Fig. 10. Optimal lifecycle costs and related percentage differences under
different adjustment coefficient σ .

σ indicates that the operator is more inclined to avoid the risk
caused by overuse of battery than achieve additional benefit
from its sufficient utilization. The normal level of the decision
preference is obtained if the adjustment coefficient σ is equal
to 0.9, which is applied in the numerical case study. Here,
we further consider other two conditions with σ = 0.8 and
σ = 1.0 to explore the impacts of the decision preference
of the operator on the optimal results. Fig. 10 illustrates
the optimal lifecycle costs and related percentage differences
under different conditions with σ = 0.8, σ = 0.9 and σ =
1.0 for both overnight and opportunity charging systems,
where the result under the condition with σ = 0.9 is obtained
by the case study and thus regarded as the base case.

In Fig. 10, cases (a) and (b) present the optimal results
and corresponding percentage differences for overnight and
opportunity charging systems, respectively. It is observed that
the optimal lifecycle costs for both the charging systems show
a trend of change with the variation of adjustment coefficient
σ . Specifically, a decrease of the adjustment coefficient σ
would increase the lifecycle cost while an increase of that
would reduce the lifecycle cost. This is because the adjustment
coefficient σ significantly affects the battery replacements.
Moreover, since the battery used in overnight charging system
has a larger capacity and thus higher purchase cost than
that used in opportunity charging system, the variation of
adjustment coefficient σ has a slightly harsher impact on the
optimal lifecycle cost of overnight charging system than that
of opportunity charging system from the perspective of the
percentage difference.

VI. CONCLUSION AND POLICY IMPLICATIONS

This study investigates the lifecycle cost optimization for
BEB system by considering overnight and opportunity charg-
ing methods, respectively. A collaborative optimization model
that simultaneously plans the infrastructure procurement and
fleet scheduling are developed to comprehensively explore the
economic efficiency of the lifetime operation of BEB system.
Before modeling, we systematically analyze the essential
factors involved in the BEB systems with the two different
charging methods, including the energy consumption, BEB
fleet size, number of chargers, and battery life span. In par-
ticular, the impacts of battery downsizing, charging patterns,
and charging current rate on these factors are discussed and
considered in the problem formulation. To effectively solve the
proposed model, the collaborative optimization model is refor-
mulated as the bi-level optimization problem and subsequently
a hybrid heuristic solution method based on a TS and an
IGA is customized by considering the hierarchical relationship
between the infrastructure procurement and fleet scheduling.
Moreover, a numerical case study is performed to demonstrate
the proposed model and solution method, where most of the
scenario parameters are assigned by reference to the real-
life conditions and existing literature. The optimal BEB fleet
sizes coupled with the optimal matches between fleets and
routes are simultaneously obtained, and the optimal lifecycle
cost can be reduced by 7.77% and 6.64% for overnight and
opportunity charging systems, respectively, compared to the
conventional management strategy. A series of simulations are
further carried out to conduct sensitivity analysis and evaluate
the key parameters on the optimal results. The results reveal
the relative importance of the parameters for lifecycle cost and
indicate the significant differences in their life cycle perfor-
mance between overnight and opportunity charging methods,
especially in that of the charger purchase cost and charging
power, which is able to provide the managerial insights to
public transit agencies and related stakeholders to construct
and manage the BEB system. In addition, the research results
can also contribute to the policy proposal for BEB promotion
in the urban transit system under various regional features.
Some of the policy implications are drawn as follows:

1) The construction of overnight charging systems often
requires adequate land resources to provide long-term parking
[61]. The results from the study indicate that the BEB purchase
cost accounts for 93.48% of the initial capital cost for the
overnight charging system. Therefore, for the regions that are
suitable for the overnight charging method, introducing the
purchasing subsidy policies of BEBs is an effective means to
promote the electrification of the city bus system.

2) Frequent charging under fast charging patterns would
bring challenges to the load capacity of the power grid, and
the construction of an opportunity charging system has a high
requirement to local power resources as consequence [61].
The results from the study imply that the charger purchase
cost accounts for 59.68% of the initial capital cost for the
opportunity charging system. Thus, the construction subsidy
of charging devices can provide effective guidance to improve
the attraction of BEBs in the regions that are suitable for the
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opportunity charging method. Moreover, by introducing the
appropriate construction subsidy of fast chargers, the transfor-
mation from overnight charging to opportunity charging can be
guided to improve the energy and environmental performance
of BEB system, because the bus weight reduction can induce
the reduction of battery-to-wheel energy consumption and
greenhouse gas emissions [31].

3) Even though the cost of Lithium iron phosphate batteries
has been experiencing a gradually declining trend owing to its
technological development, the battery replacement cost still
accounts for a considerable proportion of the lifecycle cost for
both charging methods. For some regions that are difficult to
introduce subsidy policies, improving the battery efficiency is
an effective method to enhance the competitiveness of BEBs
in the urban transit system. Therefore, this is necessary to
introduce targeted incentive policies to encourage operators to
optimize the fleet scheduling over the whole life cycle and the
battery replacement cost would be reduced as consequence.

Notably, the policy implications are inspired by the numer-
ical results from the case study coupled with the sensitivity
analysis considering a specific variation range of the parame-
ters, whereas the realistic extent of potential changes in the
values of the parameters are not comprehensively discussed.
Our future work will further deal with the uncertainty of the
parameters by using Monte Carlo analysis or other effective
methods [62]. Moreover, this study considers the impacts
of route overlapping on the required number of chargers
with the opportunity charging method, which are reflected by
defining the overlapping coefficient and probability of charging
availability in the proposed model. Such definitions can reduce
the model complexity yet leaves out the potential complexities
of route network structure and traffic conditions. The structure
of route network has potential effects on the location of
chargers while the traffic conditions may fluctuate the travel
duration between different bus stops. Therefore, built upon
the collaborative optimization model, an in-depth investigation
regarding the route overlapping effects will be carried out
in future research based on real-world data. Meanwhile, the
more realistic energy consumption models will also be applied
in extending the lifecycle cost optimization of BEB system
based on the real-world driving profile of different bus routes.
In addition, this study evaluates the overnight and opportunity
charging methods separately to better compare their impacts
on lifecycle cost of BEB systems, while does not discuss
the hybrid strategy with combination of different charging
methods. The hybrid strategy may lead to lower lifecycle cost,
which will be discussed in our future research.

APPENDIX

DERIVATION OF SELECTION PROBABILITY WITH IMMUNE

BALANCE OPERATION IN THE IGA

Assume that fa1 and fa2 are the fitness values of any two
antibodies a1 and a2 in the population. If the antibodies a1
and a2 are similar to each other, the following condition with
a given similarity threshold ε should be satisfied:

−ε < fa1 − fa2 < ε (A1)

Based on the similarity, the concentration of an antibody
can be determined, which is the proportion of the antibodies
that are similar to it in the population. Let conak denote the
concentration of antibody ak , the probability in terms of the
concentration is defined as shown in (B2).

pdak =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − scona−1
numa

numa
,

if conak ≥ max(conak ) + min(conak )

2
(1 + scona−1

numa
) × scona−1

numa−scona+1

numa
,

if conak <
max(conak ) + min(conak )

2

(A2)

where p fak is the probability regarding the concentration of
antibody ak ; scona represents the number of antibodies whose
concentration is less than the mean value of the maximum
and minimum concentration values of the antibodies from the
population; numa is the population size.

Furthermore, the probability in terms of the fitness is
denoted as p fak , which is defined as the proportion of the
fitness value for antibody ak in the total fitness of all the anti-
bodies from the population. Therefore, combining the proba-
bilities of fitness and concentration, the selection probability
for antibody ak is calculated based on the immune balance
operation, as shown in (B3).

psak = εpsak + (1 − ε)p fak (A3)

where psak is the selection probability for antibody ak ; ε is
the trade-off coefficient between fitness and concentration.
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[34] Ş. Yıldırım and B. Yıldız, “Electric bus fleet composition and
scheduling,” Transp. Res. C, Emerg. Technol., vol. 129, Aug. 2021,
Art. no. 103197.

[35] Y.-T. Hsu, S. Yan, and P. Huang, “The depot and charging facility
location problem for electrifying urban bus services,” Transp. Res. D,
Transp. Environ., vol. 100, Nov. 2021, Art. no. 103053.

[36] Y. He, Z. Song, and Z. Liu, “Fast-charging station deployment for battery
electric bus systems considering electricity demand charges,” Sustain.
Cities Soc., vol. 48, Jul. 2019, Art. no. 101530.

[37] K. An, “Battery electric bus infrastructure planning under demand
uncertainty,” Transp. Res. C, Emerg. Technol., vol. 111, pp. 572–587,
Feb. 2020.

[38] X. Han, M. Ouyang, L. Lu, J. Li, Y. Zheng, and Z. Li, “A comparative
study of commercial lithium ion battery cycle life in electrical vehicle:
Aging mechanism identification,” J. Power Sources, vol. 251, pp. 38–54,
Apr. 2014.

[39] O. A. Hjelkrem, K. Y. Lervåg, S. Babri, C. Lu, and C.-J. Södersten,
“A battery electric bus energy consumption model for strategic purposes:
Validation of a proposed model structure with data from bus fleets
in China and Norway,” Transp. Res. D, Transp. Environ., vol. 94,
May 2021, Art. no. 102804.

[40] Z. Chen, L. Li, X. Hu, B. Yan, and C. Yang, “Temporal-difference
learning-based stochastic energy management for plug-in hybrid electric
buses,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 6, pp. 2378–2388,
Jun. 2019.

[41] A. Tomaszewska et al., “Lithium-ion battery fast charging: A review,”
eTransportation, vol. 1, Aug. 2019, Art. no. 100011.

[42] N. Omar et al., “Lithium iron phosphate based battery—Assessment
of the aging parameters and development of cycle life model,” Appl.
Energy, vol. 113, pp. 1575–1585, Jan. 2014.

[43] S. M. Lukic, J. Cao, R. C. Bansal, F. Rodriguez, and A. Emadi, “Energy
storage systems for automotive applications,” IEEE Trans. Ind. Electron.,
vol. 55, no. 6, pp. 2258–2267, Jun. 2008.

[44] B. Nykvist and M. Nilsson, “Rapidly falling costs of battery packs for
electric vehicles,” Nature Climate Change, vol. 5, no. 4, pp. 329–332,
Mar. 2015.

[45] H. Yang, S. Yang, Y. Xu, E. Cao, M. Lai, and Z. Dong, “Electric vehicle
route optimization considering time-of-use electricity price by learnable
partheno-genetic algorithm,” IEEE Trans. Smart Grid, vol. 6, no. 2,
pp. 657–666, Mar. 2015.

[46] R. Laver, D. Schneck, D. Skorupski, S. Brady, and L. Cham, “Useful life
of transit buses and vans,” Federal Transit Admin., U.S. Dept. Transp.,
Washington, DC, USA, Tech. Rep. FTA-VA-26-7229-07.1, Oct. 2007.

[47] R. J. Kuo, Y. H. Lee, F. E. Zulvia, and F. C. Tien, “Solving bi-level linear
programming problem through hybrid of immune genetic algorithm and
particle swarm optimization algorithm,” Appl. Math. Comput., vol. 266,
pp. 1013–1026, Sep. 2015.

[48] K. Lachhwani and A. Dwivedi, “Bi-level and multi-level programming
problems: Taxonomy of literature review and research issues,” Arch.
Comput. Methods Eng., vol. 25, no. 4, pp. 847–877, Nov. 2018.

[49] R. Rahmaniani, T. G. Crainic, M. Gendreau, and W. Rei, “The ben-
ders decomposition algorithm: A literature review,” Eur. J. Oper. Res.,
vol. 259, no. 3, pp. 801–817, Jun. 2017.

[50] R. Guo, W. Zhang, W. Guan, and B. Ran, “Time-dependent urban
customized bus routing with path flexibility,” IEEE Trans. Intell. Transp.
Syst., vol. 22, no. 4, pp. 2381–2390, Apr. 2021.

[51] J. Bi, Z. Wu, L. Wang, D. Xie, and X. Zhao, “A Tabu search-based
algorithm for airport gate assignment: A case study in Kunming, China,”
J. Adv. Transp., vol. 2020, pp. 1–13, Nov. 2020.

[52] B. Mohammadi-Ivatloo, A. Rabiee, and A. Soroudi, “Nonconvex
dynamic economic power dispatch problems solution using hybrid
immune-genetic algorithm,” IEEE Syst. J., vol. 7, no. 4, pp. 777–785,
Dec. 2013.

[53] L. Jiao and L. Wang, “A novel genetic algorithm based on immunity,”
IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 30, no. 5,
pp. 552–561, Sep. 2000.



WANG et al.: LIFECYCLE COST OPTIMIZATION FOR ELECTRIC BUS SYSTEMS WITH DIFFERENT CHARGING METHODS 2861

[54] J. Ma, Y. Zhu, and G. Shi, “Immune genetic algorithm for flexible job-
shop scheduling problem,” in Proc. IEEE Int. Conf. Autom. Logistics,
Hong Kong, Aug. 2010, pp. 486–489.

[55] Y. Wang, J. Bi, W. Guan, and X. Zhao, “Optimising route choices for the
travelling and charging of battery electric vehicles by considering multi-
ple objectives,” Transp. Res. D, Transp. Environ., vol. 64, pp. 246–261,
Oct. 2018.

[56] G.-Z. Tan, D.-M. Zhou, B. Jiang, and M. I. Dioubate, “Elitism-based
immune genetic algorithm and its application to optimization of complex
multi-modal functions,” J. Central South Univ. Technol., vol. 15, no. 6,
pp. 845–852, Dec. 2008.

[57] K. Jebari and M. Madiafi, “Selection methods for genetic algorithms,”
Int. J. Emerg. Sci., vol. 3, no. 4, pp. 333–344, Dec. 2013.

[58] B. Liang, Y. Li, J. Bi, C. Ding, and X. Zhao, “An improved adaptive
parallel genetic algorithm for the airport gate assignment problem,”
J. Adv. Transp., vol. 2020, Dec. 2020, Art. no. 8880390.

[59] A. Landrieu, Y. Mati, and Z. Binder, “A Tabu search heuristic for the
single vehicle pickup and delivery problem with time windows,” J. Intell.
Manuf., vol. 12, no. 5, pp. 497–508, Oct. 2001.

[60] N. Hoofrman, M. Messagie, and T. Coosemans, “Analysis of the poten-
tial for electric buses: A study accomplished for the European Copper
Institute,” Mobility Automot. Technol. Res. Group, Vrije Univ. Brussel,
Brussels, Belgium. Accessed: Jun. 22, 2021. [Online]. Available:
https://leonardo-energy.pl/wp-content/uploads/2019/02/Analysis-of-the-
potential-for-electric-buses.pdf

[61] M. Yang, L. Zhang, and W. Dong, “Economic benefit analysis of charg-
ing models based on differential electric vehicle charging infrastructure
subsidy policy in China,” Sustain. Cities Soc., vol. 59, Aug. 2020,
Art. no. 102206.

[62] J. Yang, “Convergence and uncertainty analyses in Monte–Carlo based
sensitivity analysis,” Environ. Model. Softw., vol. 26, no. 4, pp. 444–457,
Apr. 2011.

Yongxing Wang received the B.S. degree from Inner
Mongolia University, Hohhot, China, in 2014, and
the Ph.D. degree from Beijing Jiaotong University,
Beijing, China, in 2020. He was a Post-Doctoral
Researcher at the Department of Civil and Environ-
mental Engineering, Norwegian University of Sci-
ence and Technology, Trondheim, Norway, in June
2022. He is currently an Assistant Professor with
the School of Traffic and Transportation, Beijing
Jiaotong University. His research interests include
intelligent transportation systems and transportation
electrification.

Chaoru Lu received the B.S. degree in civil engi-
neering from the Hunan University of Science and
Technology, in 2011, the M.S. degree in civil engi-
neering from Texas A&M University–Kingsville,
in 2014, and the Ph.D. degree in civil engineering
from Iowa State University, in 2017. He is currently
an Associate Professor with the Department of Built
Environment, Oslo Metropolitan University, Oslo,
Norway. His research interests include connected
and automated vehicles, traffic flow theory, and
intelligent transportation systems.

Jun Bi received the B.S. and M.S. degrees from
Shandong Polytechnic University (currently, Shan-
dong University), Jinan, China, in 1995 and 1998,
respectively, and the Ph.D. degree in control sci-
ence and engineering from the Beijing Institute of
Technology, Beijing, China, in 2003. He is currently
a Professor with the School of Traffic and Trans-
portation, Beijing Jiaotong University, Beijing. His
current research interests include intelligent trans-
portation systems, control science and engineering,
and transportation electrification.

Qiuyue Sai received the B.S. degree from Nanjing
Agricultural University, Nanjing, China, in 2017,
and the M.S. degree from Beijing Jiaotong Univer-
sity, Beijing, China, in 2019, where she is currently
pursuing the Ph.D. degree with the School of Traffic
Transportation. Her research interests include opera-
tions and management in urban traffic and intelligent
transportation systems.

Xiaobo Qu (Senior Member, IEEE) received the
B.Eng. degree from Jilin University, Changchun,
China, the M.Eng. degree from Tsinghua Univer-
sity, Beijing, China, and the Ph.D. degree from the
National University of Singapore, Singapore. He is
currently a Chair Professor of the urban mobility
systems with Chalmers University of Technology,
Gothenburg, Sweden. His research interests include
integrating emerging technologies into urban trans-
port system. He is an Elected Member of Academia
Europaea—the Academy of Europe.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


