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Abstract—Deep learning-based pavement cracks detection
methods often require large-scale labels with detailed crack
location information to learn accurate predictions. In practice,
however, crack locations are very difficult to be manually
annotated due to various visual patterns of pavement crack. In
this paper, we propose a Deep Domain Adaptation-based Crack
Detection Network (DDACDN), which learns domain invariant
features by taking advantage of the source domain knowledge
to predict the multi-category crack location information in the
target domain, where only image-level labels are available. Specif-
ically, DDACDN first extracts crack features from both the source
and target domain by a two-branch weights-shared backbone
network. And in an effort to achieve the cross-domain adaptation,
an intermediate domain is constructed by aggregating the three-
scale features from the feature space of each domain to adapt
the crack features from the source domain to the target domain.
Finally, the network involves the knowledge of both domains
and is trained to recognize and localize pavement cracks. To
facilitate accurate training and validation for domain adaptation,
we use two challenging pavement crack datasets CQU-BPDD
and RDD2020. Furthermore, we construct a new large-scale
Bituminous Pavement Multi-label Disease Dataset named CQU-
BPMDD, which contains 38994 high-resolution pavement disease
images to further evaluate the robustness of our model. Extensive
experiments demonstrate that DDACDN outperforms state-of-
the-art pavement crack detection methods in predicting the crack
location on the target domain.

Index Terms—Pavement Crack Detection, Domain Adaptation,
Multi-Features Adaptation, Convolutional Neural Network

I. INTRODUCTION

CRACKS are common pavement diseases that seriously
threaten driving safety. In densely distributed pavement

traffic, pavement cracks have become an important part of
pavement detection and maintenance. In practice, due to var-
ious external forces, pavement cracks would present different
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Fig. 1. Illustration of the intermediate domain in DDACDN. We first enhance
the target dataset in the method we proposed. Then, we utilize multiple
methods to augment the source dataset and the target dataset. Finally, a new
intermediate domain is constructed by features figigm both the augmented
two domains, which is shown in the middle right part of the figure. Please
refer to section III for specific details.

types of visual patterns, such as longitudinal cracks, transverse
cracks, alligator cracks, and potholes. Some of them are very
small relative to the entire image, and some are hardline
cracks on the rough ground. Hence, effectively detecting
pavement cracks is quite challenging and has been studied for
decades. Traditionally, pavement cracks are detected manually
by pavement maintenance workers, which consumes a lot of
manpower and resources, and has disadvantages of large per-
sonal subjective factors and low detection accuracy. Whereas
automated detection will not only reduce detection cost, but
also improve detection efficiency. However, pavement cracks
are irregular and non-rigid objects, which have different sizes,
shapes, and various discontinuous patterns. All these problems
increase the difficulty of crack detection, and the detected
cracks are far from reaching the expected results.

Current pavement crack recognition is mainly based on road
images collected by CCD cameras mounted on vehicles or un-
manned aerial vehicles using image processing technologies.
The existing traditional crack detection methods can be divided
into two categories: image processing-based methods and
machine learning methods. Image processing-based methods
[1]–[3] mainly rely on hand-crafted and low-level features in
pavement cracks; they enhance the continuity of the detected
cracks. Machine learning method was introduced by Koch et
al. [4] for crack detection. [5]–[8] utilized low-level features
extracted from road images to train classifiers, such as Support
Vector Machine (SVM), Bayesian, and AdaBoost, greatly
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improving the robustness of crack detection. However, the
low-level features for training only obtain shallow abstraction
of cracks and cannot fully perceive the complex pavement
surface.

Different from traditional crack detection methods, recent
deep learning-based methods learn different levels of pave-
ment crack features for localization from annotated datasets,
which can be roughly grouped into two categories: one-stage
methods and two-stage methods. The one-stage methods [9],
[10] usually predict crack category and location by regressing
the features extracted in the network. The two-stage methods
[11]–[13] usually generate region proposals, classify them
in turn, and correct the position. These deep learning-based
methods have achieved better performance than traditional
crack detection methods. However, they usually require a large
number of annotated data with detailed location information of
pavement cracks. Vishal et al. [14] classify more than seven
categories of cracks by training the network on a location-
labeled dataset. [15] proposes a multi-label neural network
for road scene recognition and builds a large dataset of over
110,000 images. In [16], [17], more than 7000 images are man-
ually annotated with location information for training. How-
ever, obtaining such a large number of labels is quite labor-
intensive and time-consuming. In addition, manual annotation
may cause unexpected label deviation. Aiming at reducing the
workload of manual annotation, a label augmentation method
is proposed in [18], to generate partially accurate labels for
training. In practice, however, the partially inaccurate labels
are prone to interfere with the model training. Therefore, we
propose a domain adaptation-based pavement crack detection
method by annotating a small amount of data on the target
domain. Domain adaptation [19] is a representative method
in transfer learning. The source domain represents a domain
that is different from the test set, and has rich crack location
information annotations. The target domain represents the
domain where the test samples have no location label or only
a few labels. Moreover, most of the current pavement crack
detection methods do not use multi-scale features of crack
images for transfer learning, thus cannot transfer features of
cracks with different scales from source domain to target
domain well. Finally, to our best knowledge, previous works
have not explored domain adaptation-based pavement crack
detection methods to detect various pavement cracks, such as
potholes and transverse, etc. As far as this issue is concerned,
we are the first to conduct multi-category crack detection
through domain adaptation transfer with only image-level
labels being available in the target domain.

In this study, to save the cost of labeling crack location
information and solve crack disease detection problems on
datasets without location annotation, we propose a Deep Do-
main Adaptation-based Crack Detection Network (DDACDN)
for multi-category pavement crack detection, which effectively
bridges domain discrepancy and obtains similar features on
the two domains. Specifically, the proposed method converts
the road image from the source domain, and the target
domain to their corresponding feature space. A Multi-scale
Domain Adaptation (MDA) strategy is designed to constrain
the distance between multi-scale features from both domains

by following the Multi-Kernel Maximum Mean Discrepancy
(MK-MMD) method in [20] to make the model adapt the
feature patterns of cracks in the target domain. Furthermore,
the two domain features are aggregated in an intermediate do-
main for further training to aggregate aligned domain features
for domain invariant feature extraction, as shown in Fig. 1.
Finally, through the constraint training of source domain data
and target domain data, the model obtains the discriminative
knowledge in the target domain, and can learn the domain
invariant features to effectively recognize cracks with few
labeled data in the target domain. In addition, to deal with the
noise caused by the illumination of the target domain data, we
design a simple image adaptive enhancement method.

The contributions of this paper can be summarized in the
following aspects:
• To the best of our knowledge, we are the first to apply

deep domain adaptation idea in pavement crack detec-
tion, which provides a solution to the problem of crack
detection without annotation of crack location.

• We propose a Deep Domain Adaptation-based pavement
Crack Detection Network (DDACDN), which uses the
knowledge of the source domain to perform detection on
the target domain. Specifically, feature spaces that contain
multi-scale features extracted from both the source and
target domains are first aligned by using the proposed
Multi-scale Domain Adaptation (MDA) strategy, and an
intermediate domain is then constructed to aggregate the
aligned domain features and facilitate the whole net-
work for domain invariant feature extraction. Moreover,
a simple yet effective image enhancement method is
designed to effectively suppress the negative effects of
illumination.

• We release a new, large-scale bituminous pavement dis-
ease dataset that is acquired from various real pavement
scenarios. The dataset contains more than 38000 high-
resolution pavement crack images and involves various
types of diseases.

• We conduct extensive experiments and systematically
compare our model with recent pavement detection meth-
ods, in terms of localization accuracy, robustness and
cross-data generalization ability, etc. All experimental
results demonstrate the superiority of our method in
pavement crack detection.

II. RELATED WORK

A. Crack Detection Methods

In the past decades, automatic pavement crack detection has
been well researched. Generally, the proposed methods can be
roughly divided into two streams: traditional crack detection
methods and deep learning-based methods.

Traditional crack detection method: Intensity threshold-
ing methods [21] is based on the difference between the
grayscale value of the crack pixels and the surrounding pixels,
which is particularly sensitive to the noise in the image.
Hanzaei et al. [22] and Zhao et al. [23] use edge detection
methods for crack detection, which utilize the jump change of
the pixel value near the crack. However, it is shown only a set
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of disjoint crack fragments can be detected by these methods,
which is not applicable in low-contrast images.

Traditional methods can be combined with machine learning
methods. For example, Quintana et al. [24] utilize support
vector machines to train the classifier based on local feature
descriptors, such as Local Binary Pattern (LBP), for crack
recognition. Prasanna et al. [25] and Pan et al. [26] adopt
random forest (RF) for crack detection, which is a special
bagging method that randomly extracts a part of features from
features and finds the optimal solution among the extracted
features. [27] uses texture descriptors measured by color
channel statistics, gray-level co-occurrence matrices, and local
ternary patterns to extract texture information from pavement
images to help SVM classification. Moreover, the combination
of three classifiers (SVM, RF, and artificial neural network)
[28] has achieved good crack recognition results as well. These
methods, however, usually extract feature vectors from sub-
images, which only involve local receptive field and cannot
accurately segment the complete cracks.

Deep learning-based method: As a part of machine learn-
ing, deep learning has the advantage of learning high-level
semantic features. It has made great breakthroughs in the
field of crack detection and classification. Zhang et al. [29]
first propose a shallow neural network composed of four
convolutional layers and two fully connected layers for patch-
based image crack detection. In [30], a convolutional neural
network (CNN) is designed for crack detection, which includes
a feature extraction network and a classification network. The
first network is responsible for extracting features, and the
second network is used for identification. In [31], a patch-
based deep learning method is proposed for crack detection
research on small datasets. [32] adopts YOLOv3 and ResNet18
to efficiently detect and classify crack images. In [33], [34], the
VGG16 [35] backbone that has been pretrained on ImageNet
[36] dataset, is finetuned for crack classification. In [37], a
pixel-level network based on FCN is proposed, which com-
bines the segmentation stage with the detection stage. In [38],
R-CNN is proposed to perform object detection and obtain the
final object position through bounding box regression, which
is a two-stage algorithm. In [39], [40], to better detect cracks,
many improvements have been made based on the YOLO
network, which is similar to the innovation made by [41], [42]
based on Single Shot MultiBox Detector (SSD), and both of
them are one-stage algorithms.

These deep learning-based methods can achieve excellent
performance in practical applications, but large-scale datasets
annotated with detailed location information are required dur-
ing the training process. In this paper, with the help of the
knowledge transferred from the source domain, we attempt
to utilize a few samples with location annotations for crack
detection in the target domain.

B. Domain Adaptation

Domain Adaptation (DA) [43]–[45] is a representative
method of transfer learning [46], which aims to map the
data of the source domain and target domain into a common
feature space and make them as close as possible in the space.

Therefore, to improve the accuracy on the target domain, the
target function, which is trained on the source domain in
the feature space, can be transferred to the target domain.
In general, the data distributions of the source and target
domains are different, and the source domain has a large
amount of labeled data, while the target domain has no (or few)
labeled data. DA-Faster-RCNN [47] designs domain adapta-
tion components of two branches, image-level and instance-
level, respectively, to alleviate the invariant domain difference
at different annotation levels. By integrating an image-level
multi-label classifier on the detection backbone, DA-Faster-
ICR-CCR [48] can obtain sparse yet critical image regions
corresponding to the classification information. Meanwhile, at
the instance level, it exploits the class consistency between
image-level and instance-level predictions as a regularization
factor to automatically find hard-aligned instances of the target
domain. In [49], an end-to-end graph convolutional adversarial
network (GCAN) is proposed to achieve unsupervised domain
adaptation through joint modeling data structures, domain
labels, and class labels in a unified depth framework. In
[50], a principled framework for conditional adversarial DA
is proposed, which is designed with two novel conditioning
strategies: multilinear conditioning and entropy conditioning.
The former captures the cross-covariance between feature
representations and classifier predictions to improve the identi-
fiability of the classifier, and the latter controls the uncertainty
of classifier predictions to ensure transferability.

III. METHODOLOGY

A. Problem Formulation and Overview

Most existing deep learning-based crack detection methods
use datasets with detailed annotations, but in most cases, we do
not have such annotations and they are very difficult to obtain.
On the contrary, image-level annotation is easy to obtain and
has great value in practical applications. The method proposed
in this paper carries out detection for pavement crack images in
the target domain, where there is no crack location annotation,
by taking advantage of the rich location information in the
source domain.

Specifically, given a labeled source domain Ds and some
manually labeled data belonging to target domain Dt, we map
them to the corresponding feature space respectively. To make
the distribution more approximate, it is necessary to calculate
the feature distances of different scales of the two domains
respectively. Then, we construct the intermediate domain Di

to further train the network to improve the ability to extract
domain invariant features. Fig. 2 illustrates the architecture of
our method. We will give a detailed introduction in the next
subsections.

Formally, we denote the domain adaptation-based pavement
crack detection as follows: domain D includes the feature
space X and the marginal probability distribution P (X). Xs

and Xt represent the feature spaces of Ds and Dt. For given
Ds and Dt, tasks on the two domains are the same. Task
contains the category space Y and the conditional probability
distribution P (Y |X). Ys and Yt are used to represent the
category space of Ds and Dt respectively. Source domain
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Fig. 2. The architecture of the proposed method. Part one is the data preprocessing part, including the APAGE module and enhancement module. Part two
is the feature extraction module. Part three is a domain adaptation mining module. We first send the data of the source domain and target domain into the
network for training, and extract the features of both on three scales for domain adaptation. Then, we calculate the similarity of features in the two domains.
Finally, an intermediate domain has been constructed to train the network.

Ds can be formulated as: Ds = {xl, yl}nl=1, where yl ∈ Ys
and xl ∈ Xs. Target domain Dt lacks annotated information,
which can be formulated as: Dt = {xu}ru=1.

B. Adaptive Patch Augmentation and Global Equalization

Since the pavement images of Dt are captured from dif-
ferent road conditions and at different times, cracks in the
pavement images usually present seriously uneven illumination
and noise. As a preprocessing method, CNN will have difficul-
ties such as insufficient datasets and missing data annotation.
And because the dataset cannot cover all the variations of
road conditions, there is a bottleneck of using CNN in the
performance of preprocessing. Conventional linear transfor-
mations can only brighten or darken the whole image and
do not improve the overall mean square error of the image,
while nonlinear transformations will enhance or reduce the
region of extreme gray value, but cannot achieve the overall
enhancement in the entire gray value interval.

In order to enhance balanced pavement images, we propose
a simple and effective preprocessing method called Adaptive
Patch Augmentation and Global Equalization (APAGE), which
is based on Gamma Correction and CLAHE method proposed
in [51]. APAGE is based on the traditional digital image
method, which relies on manual processing experience, and
has relatively low data requirements. At the same time, this
manual compensation can take as many road variations as
possible into account. Specifically, APAGE can be divided into
the following two steps:

1) Patch Augmentation: The input image is divided into
Rrow×Rcol small patches, and each patch has a size of 100×

100 pixels. Then, for each patch, we use Gamma correction to
enhance the dark part of each patch, where the Gamma Γ is
set from 0.5 to 2, and the incremental step size is 0.1. Finally,
the Γ that makes the patch has the largest variance is used as
the exponent.

2) Global Equalization: When all patches are transformed,
the gray value transition between adjacent patches may be
discontinuous. Therefore, CLAHE is used to equalize the
overall image to suppress the negative effects of discontinuous
gray value transitions.

In our experiment, to make full use of each pixel of the
image, we empirically design the image blocking strategy and
the patch size according to the resolution size of the pavement
image.

C. Domain Adaptation Mining

The pavement images from the target domain Dt is firstly
enhanced by using APAGE. Then, we augment it together with
the data of Ds and input them into the backbone network for
feature extraction, respectively. To learn the essential crack
features, we intentionally make the two backbone network
with shared weights.

To solve the problem of less labeled data in the target do-
main, we should transfer the discriminative knowledge in the
source domain to the target domain for recognition. Moreover,
selecting suitable hidden layers is very important to calculate
the domain loss, which can obtain similar features extracted
by the model on the two domains. In this study, we adopt
the Multi-scale Domain Adaptation (MDA) strategy to extract
the features on the two domains from three scales, as shown
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in the second part of Fig. 2. Hence, the fine-grained crack
discriminative features can be learned to solve the problem
that some cracks account for extremely small proportion in
the image. Specifically, MK-MMD is introduced to calculate
the domain loss from the three-scale features, namely, the 4-th,
6-th, and 9-th hidden layers of the backbone network, that is,
the second, third, and fourth downsampling layers in Fig. 2.
Experiments have proven that the lower-level layers can well
represent the edge information of cracks. Also, the deeper the
convolutional layer of the network, the more domain private
domain features are extracted. We use MK-MMD to combine
high-level and low-level domain losses to train the network.
MK-MMD assumes that the optimal kernel can be obtained
by the linear combination of multiple kernels, and its squared
formulation is defined as:

d2k(Ds, Dt) =

wwwwww 1

N

n∑
i=1

φ(xl)−
1

R

r∑
j=1

φ(xu)

wwwwww
2

Hk

, (1)

where Hk denotes the reproducing kernel Hilbert space en-
dowed with a characteristic kernel k. The feature kernel,
k(xl, xu) = 〈φ(xl), φ(xu)〉, associated with the feature map
φ, is defined as the convex combination of m positive-definite
kernel. The advantages of using multiple kernel functions to
calculate the correlation and combining the crack features at
three different scales are as follows. First, it essentially bridges
the domain discrepancy underlying the conditional distribu-
tion. Second, it avoids the problem that a single kernel function
may cause poor MMD with different domain distributions of
crack features in Hilbert space.

Algorithm 1 DDACDN-based Pavement Crack Detection
Input: Labled source domain Ds, A few labeled target domain
Dt

Output: A discriminative backbone model
1: Initialise: Model parameters; θ
2: for i=1→Max Iteration do
3: for c=1→Nc do
4: Randomly selecting some data dct = {xu|xu ∈
Dt, u = 1, 2, · · · ,Mc};

5: Utilizing APAGE to suppress negative effects of
illumination in Dt;

6: end for
7: Augmenting images from dt = {dct |c ∈ Nc} and Ds;
8: Inputing dt and the data of Ds into the network to

extract features;
9: Calculating the MK-MMD of dt and Ds on the three

feature scales and using it as the domain loss;
10: Using these features from dt and Ds to construct

intermediate domain Di to continue training the network;
11: Updating the network parameters θ through the overall

loss function L in Equation 9;
12: end for
13: return θ = θ∗

For feature space and category space, equations Xi ⊂
Xs, Xi ⊂ Xt and Yi ⊂ Ys, Yi ⊂ Yt are true, where Xi

and Yi represent the feature space and category space of Di

respectively. Due to Xs 6= Xt and Ys ≈ Yt, we apply the
MDA strategy to each batch of data and use the domain losses,
which are obtained by the feature extraction module on the
three scales, to make Xs and Xt be closer. Furthermore, to
aggregate aligned domain features for domain invariant feature
extraction, we construct a new intermediate domain through
the feature space on the two domains to aggregate features
for further training. The intermediate domain contains the
features of the two domains due to the multi-scale domain
alignment by MDA; thus, we can obtain Xi ⊂ (Xs ∩Xt) and
Yi ≈ Ys ≈ Yt. Algorithm 1 presents the specific steps of our
method, where Nc represents the total number of categories,
and Mc represents the total number of data required for each
category.

The Logical relation of conditional probability distributions
Ps (Ys|Xs), Pt (Yt|Xt), and Pi (Yi|Xi) can be described in
Fig. 3. Although Ps (Ys|Xs) and Pt (Yt|Xt) are different, there
is an intersection between the two domains because the data
types in Ds have corresponding types in Dt. We randomly
select some data from Dt and construct Di together with Ds.
Therefore, Di contains the feature space and category space
on both domains, and the domain loss calculated by MK-
MMD is used to iteratively train the network. The domain
invariant features extracted by the network are more abundant
than before, and it can be approximated that Di aligns the
conditional probability distribution of Ds and Dt.

MK-MMD

Pi

Domain Loss

Pt

Ps

Fig. 3. Process of domain adaptation. Although the conditional probability
distributions of Ds and Dt are different in general, there are still some
similarities, because the category spaces are similar. The network is constantly
trained by calculating the domain loss by MK-MMD, and the domain
invariant features of two domains can be extracted. Therefore, the conditional
probability distributions on the two domains are aligned, as shown by Pi.

D. Loss Function
The loss function L of our model contains 4 components:

classification loss Lcls, confidence loss Lobj , bounding box
loss Lbox and domain loss Ldom. To better detect small
crack objects, we start end-to-end training from S = 3
scales, and each scale divides the input image into Si × Si
grids. Furthermore, each grid is responsible for predicting M
bounding boxes.

1) Lcls and Lobj: Lcls and Lobj are calculated by Focal
Loss (FL) [52], which is modified on the basis of the binary
cross-entropy loss with logits,

Lbcel(p, p̂) = −{p log(σ(p̂))

+(1− p) log(1− σ(p̂)} .
(2)
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The p̂ and p denote the predictive value and target value. σ(p̂)
is a sigmod function. Therefore, FL can be expressed as:

FL(pcj ,p̂
c
j) = α{1− [(1− pcj)(1− σ(p̂cj))

+ pcjσ(p̂cj)]}γ ∗ Lbcel(pcj , p̂cj),
(3)

where pcj and p̂cj indicate the target label and the results
of model predictions for the c category of the j-th grid,
respectively. In this paper, we set γ to 1.5 throughout all
the experiments. α represents the category weight, which is
related to pcj and is initialized to 0.25. Therefore, Lcls can be
mathematically denoted as follows:

Lcls =

3∑
i=1

S2
i∑

j=1

Iobjj
∑

c∈classes

FL(pcj , p̂
c
j), (4)

where Iobjj = 1 indicate that the j-th grid is responsible for a
real object obj, otherwise Iobjj = 0. Due to the fact that Lobj
uses the same loss as Lcls, we can express it as:

Lobj =

3∑
i=1

Hi
S2
i∑

j=1

M∑
m=1

IobjjmFL(Cmj , Ĉ
m
j ), (5)

where Cmj and Ĉmj indicate the true confidence and predictive
confidence of the m-th bounding box of the j-th grid respec-
tively, and Hi is the balance parameter of the i-th scale.

2) Lbox: GIoU loss [53] is used to calculate Lbox, which
sets IoU [54] directly as the regression loss and can be
expressed in:

Lgiou =
Btjm

⋂
Bpjm

Btjm
⋃
Bpjm

−
Bcjm − (Btjm

⋃
Bpjm)

Bcjm
, (6)

where Btjm and BPjm are the target box and the prediction box
of the m-th bounding box of the j-th grid respectively. Bcjm
is the minimum bounding box in which Btjm and BPjm can be
wrapped. Therefore, Lbox can be denoted as follows:

Lbox =

3∑
i=1

S2
i∑

j=1

M∑
m=1

Iobjjm(1− Lgiou). (7)

3) Ldom: Ldom is calculated using MK-MMD, which is
shown in equation 1. We think that domain adaptation on three
scales can well maximize domain confusion, which can be
expressed as:

Ldom =

3∑
i=1

βid
2
k(Ds, Dt), (8)

where βi represents the weight coefficients of the domain loss
in the three scales. Hence, we get the total loss function L,
which can be expressed as:

L = ηboxLbox + λobj(ηclsLcls + ηobjLobj) + Ldom, (9)

where ηbox, ηcls and ηobj represent their weight in L respec-
tively. λobj indicates whether the batch size has an object, if
there is an object, λobj = 1, otherwise λobj = 0.

IV. EXPERIMENT

A. Datasets and Setup

We evaluate the proposed method on two datasets, CQU-
BPDD [55] and RDD2020 [56]. A commonly used pavement
crack segmentation dataset, namely CFD [3], is used to
validate the cross-data generalization ability of DDACDN.
However, CFD is a small dataset with only 118 crack images
and the cracks are mainly large cracks. Therefore, to verify

Fig. 4. Some examples in CQU-BPMDD dataset which involves various
pavement distress such as transverse crack, longitudinal crack, massive crack,
repair, loose, wave crowding, pothole.

the cross-data generalization of DDACDN more comprehen-
sively, we construct a new large-scale Bituminous Pavement
Multi-label Disease Dataset called CQU-BPMDD. F1-score,
Precision, Recall, and Accuracy are used for evaluation.

0 10000 20000 30000 40000

Diseases

Normal

Longitudinal crack (3886)

Transverse crack (1074)

Repair (4876)

Fig. 5. The sample distribution of CQU-BPMDD dataset, which is provided
by China Merchants Road Information Technology (Chongqing) Co.,Ltd and
Chongqing university. It contains 29143 normal images and 9851 diseases
images. Note that the other four disease categories are not shown due to the
current number of them is too less.

1) Datasets: In our method, CQU-BPDD and RDD2020
always represent Dt and Ds respectively. CQU-BPDD con-
tains 60059 crack images of bituminous pavement and includes
seven kinds of pavement diseases. The training set has 49919
images, and the test set has 10140 images. Each pavement
image corresponds to a 2×3 meters pavement patch of high-
ways with a resolution of 1200×900, which has only image-
level labels. RDD2020 consists of 26620 pavement images
collected from Japan, India, and the Czech Republic, including
a training set with a size of 21041, and there are four pavement
disease categories. The resolution of each image in the training
set is 600×600.
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TABLE I
THE COMPARISON OF DIFFERENT ADVANCED PAVEMENT CRACK DETECTION MODELS ON CQU-BPDD DATASET. RES50 AND RES101 REPRESENT

RESNET50 AND RESNET101, RESPECTIVELY.

Methods
Longitudinal crack Transverse crack Alligator crack Pothole

Acc
P R F1 P R F1 P R F1 P R F1

Faster-RCNN (Res50) [12] 67.2% 33.8% 44.9% 92.2% 27.4% 42.2% 68.4% 90.1% 77.8% 75.3% 41.7% 53.7% 59.3%

Faster-RCNN(VGG16) [12] 77.7% 52.9% 62.9% 90.7% 58.3% 71.0% 90.5% 83.3% 86.8% 59.6% 47.4% 52.8% 66.2%

Faster-RCNN (Res101) [12] 86.5% 53.0% 65.7% 92.4% 66.0% 77.1% 90.8% 86.6% 88.6% 55.9% 45.3% 50.1% 68.9%

RFCN [57] 73.6% 65.3% 69.2% 91.3% 54.6% 68.4% 91.3% 84.9% 88.0% 59.9% 67.1% 63.3% 72.8%

FPN [58] 87.2% 62.0% 72.5% 93.6% 73.8% 82.5% 88.9% 91.0% 89.9% 54.9% 43.5% 48.5% 74.2%

Cascade-FPN [59] 92.7% 63.0% 75.1% 95.3% 75.5% 84.3% 95.5% 88.9% 92.1% 76.1% 56.1% 64.5% 75.5%

DA-Faster-RCNN [47] 95.9% 68.8% 80.1% 96.9% 78.7% 86.9% 99.3% 86.0% 92.2% 90.2% 42.6% 57.8% 74.5%

DA-Faster-ICR-CCR [48] 96.5% 74.5% 84.1% 96.3% 82.1% 88.6% 99.3% 88.2% 93.5% 90.9% 45.9% 61.0% 77.9%

YOLOv4 [10] 89.5% 68.6% 77.7% 87.8% 63.7% 73.8% 95.1% 82.0% 88.0% 83.0% 39.6% 53.6% 75.8%

Baseline 96.4% 70.6% 81.5% 97.4% 80.1% 87.9% 99.5% 88.2% 93.5% 87.7% 48.0% 62.1% 76.9%

DDACDN (Ours) 97.5% 78.3% 86.9% 97.5% 86.3% 91.5% 99.6% 91.9% 95.6% 93.7% 55.8% 70.0% 82.6%

TABLE II
THE CATEGORY CORRESPONDENCE BETWEEN RDD2020 AND

CQU-BPDD.

RDD2020 CQU-BPDD

Longitudinal crack Longitudinal crack

Transverse crack Transverse crack

Alligator crack Crack and Massive crack

Pothole Loose

CFD initially consists of 118 images with a resolution of
480×320. Since CFD dataset is designed to study the so-called
road crack detection task which is essentially a road crack
segmentation task from the perspective of computer vision,
and all samples are actually diseased images.

The common characteristic of the aforementioned three
datasets is that the proportion of cracks in the image is rela-
tively large, however, in practice, the crack targets usually look
very small in the captured image. Hence, RDD2020 and CQU-
BPDD are used as the source domain and target domain of
our experiment, respectively, while CFD is used for cross-data
generalization, which is not comprehensive enough. In order to
better reflect the authenticity of the experiment, we construct
a new dataset called CQU-BPMDD1, which is provided by
China Merchants Road Information Technology (Chongqing)
Co.,Ltd and Chongqing University. CQU-BPMDD contains
9851 diseases images and 29143 normal images, collected
from highways at different regions in southwestern China.
There are seven categories of diseases images, including longi-
tudinal crack, transverse crack, repair, loose, pothole, massive
crack, and wave crowding, as shown in Fig. 4. Different
from CQU-BPDD, CQU-BPMDD is a crack disease dataset
with all images are imaged using exposure compensation,
and most of them are small crack images, which are more
in line with the actual scene and difficult to detect. Cross-

1The Dataset website: https://github.com/ychxff/CQU-BPMDD

Dataset validation on this dataset can better reflect cross-
dataset generalization ability of our model. The resolution of
each image is 3692×2147, and the data distribution is shown
in Fig. 5. The usage of this dataset is described in the Cross-
Dataset Validation section.

2) Evaluation Metrics: We conducted experiments on the
above datasets. For each image, we calculate the Precision,
Recall, F1-score, and Accuracy by comparing the detected
results with the true labels. F1-score can reflect the overall
index of performance evaluation. Accuracy can reflect the
ability of the model to detect four categories. These values
are calculated based on TP , TN , FP , and FN , which can
be mathematically represented as follows,

P =
TP

TP + FP
, R =

TP

TP + FN
,

F1 =
2× P ×R
P +R

, Acc =
TP + TN

TP + TN + FP + FN
,

where TP , FP , FN , and TN indicate the numbers of true
positives,false positives, false negatives, and true negatives
respectively.

3) Implementation Details: We implement our method on
PyTorch, which is a well-known deep learning framework in
object detection. We adopt YOLOv5 [60] as the baseline and
refer to the official training method of YOLOv5. YOLOv5
has three main parts: backbone, neck, and head as shown in
Fig. 2. The backbone is responsible for extracting features
on three scales. The neck collects these features from three
different scales through upsampling layers, and inputs them
into the head. The head predicts the bounding box around the
crack and the class probability associated with each bounding
box. The number of training epochs is set to be 300 in the
training stage. YOLOv5 will automatically adjust the image
size to multiples of 32×32, and the adjusted size is 800×704.
During training, Adam optimizer and SGD optimizer are used
to update the weights of the network. After getting Di, we train
the network in the same hyperparameter settings as before.
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Fig. 6. The Precision-Recall curves of compared methods on four categories. Six methods are included for comparison, in which the backbone network of
Faster-RCNN is ResNet101.

Pothole

      Transverse crack       Massive crack

Fig. 7. Comparison of Pothole and other categories on CQU-BPDD. The
images in each column correspond to different categories, but they have similar
crack structures.

To make better use of the knowledge of Ds, we select
five categories in Dt that are similar to Ds for experiments,
as shown in Table II. We randomly select 200 images for
each category in Dt and label them with ImageLabel2, which
is an open-source annotation tool. Then, after APAGE has
been applied in Dt, Dt are augmented in six approaches:
regular image sharpening, image channel numerical scaling,
additive Gaussian noise, rotation, translation, and contrast
transformation. Ds is randomly augmented in one of six
approaches. Therefore, we obtain 6000 annotated crack images
of Dt and 42082 crack images of Ds as the training set. In
the test set, 3622 crack images from Dt are used to test the
performance of the DDACDN model, which are corresponding
to the categories in Table II.

4) Compared Methods: We compare the DDACDN model
with state-of-the-art methods, which are all trained on the
training dataset, and test them on the Dt test set. In general,
ten well-known methods are used to detect cracks. The first
six are two-stage detection methods, including Faster-RCNN
[12] with ResNet50, ResNet101 [61], and VGG16 backbone
networks, RFCN [57], FPN [58], and Cascade-FPN [59]. The
next two are transfer learning methods, namely DA-Faster-
RCNN and DA-Faster-ICR-CCR. The latter two are one-stage
detection methods, namely YOLOv4 and YOLOv5 (Baseline).
All the hyper-parameters involved in the compared methods
have been well adjusted. And the IoU threshold in these
methods is first increased from 0.1 to 0.9, each time increasing

2The ImageLabel website: https://github.com/lanbing510/ImageLabel

(a) True positives. (b) False negatives. (c) False positives.

Fig. 8. The true positives, false negatives, and false positives of Pothole.
Note that the false negatives are of the Pothole category, which is mistakenly
detected as Massive crack. And the false positives are of the Transverse crack
category, which is mistakenly detected as Pothole.

by 0.1, and the value that makes the experiment results the best
is taken as the final value of IoU threshold.

B. Results on CQU-BPDD

Table I lists the detection performance of eight deep learning
methods and two transfer learning methods. It can be clearly
seen from these results that our work consistently outperforms
the compared methods on different evaluation metrics. Fig. 6
shows the P-R curves of deep learning methods, YOLOv5
achieves the best performance among compared deep learning
methods and serves as the backbone network of our DDACDN
model. Even so, our method outperforms YOLOv5 on P, R, F1

in the four categories and Acc. Among them, in F1, they have
been increased by 5.4%, 3.6%, 2.1%, and 7.9%, respectively,
and Acc has an increase of about 5.7%. Furthermore, DA-
Faster-ICR-CCR [48] performs the best over the two transfer
learning methods, and DDACDN also outperforms it on all
metrics, with F1 score increasing over 2% for each category.
These results demonstrate that the domain invariant features
extracted by the model can help crack detection on the target
domain, which verifies the effectiveness of our method. In
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(a) Longitudinal crack (b) Transverse crack (c) Massive crack (d) Crack (e) Loose

Fig. 9. Part of the test results on the CQU-BPDD test set. D00, D10, and D40 represent Longitudinal crack, Transverse crack, and Loose respectively. In
particular, D20 represents Crack and Massive crack. In order to facilitate discrimination, our detection box uses different colors to distinguish each category.

DDACDN model, the R of the Pothole category is lower than
Cascade-FPN and RFCN, and all the evaluation metrics of
other categories have been significantly improved. The main
possible reason is that our method starts from a multi-scale
perspective, so it can better extract detailed feature patterns
of cracks. Therefore, DDACDN could better classify cracks in
specific categories, e.g., the fine-grained classification patterns
can be learned better. However, through observation, we find
that some Pothole images incorrectly labeled or similar to
other categories, such as massive crack and transverse crack,
are classified to crack by our proposed DDACDN, which may
cause the low recall for Potholes. The details are shown in
Fig. 7, where each column of cracks is similar, but they are
different categories.

In most scenarios, DDACDN is able to accurately detect
and classify crack categories. However, for some particularly
difficult or ambiguously labeled crack categories, detection
errors may occur. Fig. 8 shows some true positives, false
negatives, and false positives of Pothole, where FN and
FP are images of Pothole and Transverse crack categories,
respectively. We can see that they are mistakenly detected as
Massive crack and Pothole. Compared with Massive crack,

it can be clearly seen from Fig. 8 that FN has similar
crack structures with them, which may lead to a decrease
in R of Pothole. Likewise, FP also has similar structures to
Pothole. However, the P and F1 of the Pothole category have
been greatly improved by DDACDN model with more than
6% and 5.5% increasement respectively, which illustrates that
DDACDN model reduces the number of FP in the Pothole
category.

The overall experimental results indicate that compared
to the cascade-based method and the region-based full con-
volution structure, domain adaptation has a better effect in
solving the problem of insufficient information in Dt. The
visualization of detection results of the DDACDN model on
the test set is shown in the Fig. 9. It is obvious to observe
that our method has excellent performance not only in the
detection of large cracks, but also in the detection of small
cracks.

C. Cross-Dataset Validation

In an effort to verify the generalization ability of this method
to other data, a commonly used pavement crack segmentation
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(a) Diseased images on CFD. (b) Normal images on CFD.

Fig. 10. The pavement image examples on CFD dataset. Note that the normal
images are recovered from the disease images via replacing the disease pixels
with the average gray value.

dataset, namely CFD, and CQU-BPMDD are adopted for
validation. However, labels of the diseased categories are
different from the category of our experiment. On CFD dataset,
we select these 118 diseased images as negative samples and
generate positive samples for each image via replacing the
disease pixels with their average gray values. Normal images
generated in the method are not always applicable. Therefore,
we manually filter out some low-quality generated normal
images, and only retain high-quality images. Finally, there
are a total of 118 diseased images and 104 restored normal
images in CFD dataset, and Fig. 10 shows some examples.
However, the CFD dataset alone can not sufficiently verify
cross-dataset generalization ability due to the small amount of
data and the large proportion of cracks in the image. A larger
dataset with smaller cracks is urgently needed for more robust
generalization.

Among the eight categories of CQU-BPMDD dataset, two
categories correspond to the category of CQU-BPDD dataset,
namely Longitudinal crack and Transverse crack, with 3886
and 1074 images respectively. Hence, we only detect these
two categories on this dataset. Note that the number of Loose
and Massive crack categories is too few to be considered. The
images on these datasets are only used for testing. The road
disease detection model involved in this section is only trained
on Ds and Dt without any fine-tuning of these two datasets.
This can well compare the cross-dataset generalization abilities
between DDACDN model and baseline. Note that we select
the first label in the CQU-BPMDD dataset for cross-data
generalization experiments.

Table III shows the performance of DDACDN and Baseline
on CFD and CQU-BPMDD datasets, where FC1 , FN1 , FL1 ,
and FT1 respectively represent the F1 scores of crack, normal,
Longitudinal crack and Transverse crack. The experimental
results confirm that the performance of DDACDN model is
still better than Baseline in terms of F1 and Acc. Specifically,
compared with the Baseline, DDACDN model on the CFD
dataset exceeds 0.9%, 0.8%, and 0.9% respectively on the
three evaluation metrics. Even if the baseline is already at
a very high level of F1 and Acc on this dataset, our model

TABLE III
THE PERFORMANCE COMPARISON BETWEEN OUR METHOD AND THE

BASELINE ON CQU-BPMDD AND CFD DATASETS.

Validation Dataset Methods FC
1 FN

1 Acc

CFD [3]
Baseline 96.2% 95.7% 95.9%

Ours 97.1% 96.5% 96.8%

Validation Dataset Methods FL
1 FT

1 Acc

CQU-BPMDD
Baseline 83.0% 98.8% 76.7%

Ours 87.2% 99.3% 82.0%

can still improve it. Moreover, on the CQU-BPMDD dataset,
DDACDN model exceeds the Baseline by 4.2% and 5.3%
on the first and third metrics, which more fully shows that
our method has better cross-data generalization ability than
Baseline.

D. Robustness Analysis

In this section, we analyze the robustness of our method on
Dt (CQU-BPDD). Specifically, Gaussian noise is randomly in-
troduced to each image on Dt test set, destroying some pixels.
The noise ratios represent the proportion of damaged pixels in
the image, which are 10%, 20%, and 30% respectively. Fig. 11
shows the performance of our method and Baseline at different
noise ratios. It can be clearly seen from the observation that
our method consistently outperforms Baseline under all noise
ratios. The maximum gains of F1 under the four categories are
6.5%, 5.8%, 4.9%, and 11.6% respectively. As the proportion
of noise increases, so does the gain. The top gain is the F1 of
Pothole category, which increases from 8% at 10% noise ratio
to 11.6% at 30% noise ratio. All these phenomena show that
our method has stronger advantages even in noisy scenarios.
Compared with the baseline, YOLOv5, our method enjoys the
stronger robustness to noise.

TABLE IV
THE ABLATION ANALYSIS OF EACH MODULE OF OUR METHOD ON

CQU-BPDD DATASET.

Methods FL
1 FT

1 FA
1 FP

1

Baseline 81.5% 87.9% 93.5% 62.1%

Baseline+APAGE 83.6% 89.7% 94.2% 65.6%

Baseline+APAGE+DA 86.9% 91.5% 95.6% 70.0%

E. Ablation Study

Table IV shows the results of ablation analysis, where
APAGE represents our proposed adaptive patch augmentation
and global equalization, FA1 and FP1 indicate the F1 scores of
Alligator crack and Pothole, respectively. DA represents our
proposed domain adaptation method, including two modules
of feature extraction and domain adaptation mining in Section
III. Through observation, we can find that the APAGE module
and DA module proposed by us have significantly increased
all metrics compared with the Baseline. The improvement of
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Fig. 11. The performances of DDACDN and Baseline under different noise ratios in F1 of four categories on CQU-BPDD dataset.

TABLE V
THE EFFECT OF PREPROCESSING ON THE PERFORMANCE OF OUR METHOD

ON CQU-BPDD DATASET.

Methods FL
1 FT

1 FA
1 FP

1

Original Image 84.7% 88.9% 93.9% 62.0%

CLAHE [51] 85.4% 91.2% 95.0% 67.7%

APAGE 86.9% 91.5% 95.6% 70.0%

TABLE VI
COMPARISON BETWEEN THE SHARED WEIGHT AND UNSHARED WEIGHTS.

NOTE THAT THE UNSHARED WEIGHTS PRE-TRAINED WITH A FEW
SAMPLES OF THE TARGET DOMAIN DATASET.

Weight FL
1 FT

1 FA
1 FP

1 Acc

Shared 86.9% 91.5% 95.6% 70.0% 82.6%

Unshared 84.6% 89.7% 94.3% 64.5% 80.5%

two modules in Pothole category is as high as 3.5% and 7.9%
respectively.

Moreover, we also empirically discussed the effect of differ-
ent preprocessing methods on the performance of our method.
Table V lists the performance of different preprocessing meth-
ods on our model. It can be seen that CLAHE and our method
outperform the original unprocessed image in terms of all
evaluation metrics. However, compared with CLAHE, our
method has an improvement of 3.3%, 1.8%, 1.4%, and 4.4%
on the four metrics respectively. All these results demonstrate
show the effectiveness of our method.

Finally, we perform ablation experiments on whether the
weights of the DDACDN backbone network are shared or
not. Specifically, we use the weights pre-trained with a few
samples of the target domain dataset to evaluate the network
performance under different weights of the backbone. The
results are shown in Table VI. Experiments show that under the
same training parameters, crack feature patterns on the source
domain cannot transfer well to the target domain with unshared
weights backbones, and resulting in insufficient performance
compared to sharing weights. Specifically, in the Pothole
category, the F1 score has a decrease of 5.5% than the shared
weight.

F. Visualization of Domain Adaptation

In this section, we focus on visualizing the features that
are preserved during domain adaptation. As shown in Fig. 12,
after domain adaptation, the deep network feature map not
only focuses on the crack structure, but also pays attention

(a) Original crack image. (b) 4-th hidden layer

(c) 6-th hidden layer (d) 9-th hidden layer

Fig. 12. Visualization of Crack Feature Map in Target Domain, where a, b,
c, and d represent the original crack image, feature maps of the 4-th, 6-th,
and 9-th hidden layers, respectively. Note that the depth of feature maps is
from shallow to deep, and each layer retains 64 images.

to the background of the crack. Because our purpose is to
transfer the crack feature pattern on the source domain to the
target domain, so that cracks can also be well detected in the
background of the target domain, and it is necessary to transfer
the background features to assist the detection while retaining
the crack features. In this adaptation mode, if the model is
able to detect a certain category of crack in the background
of the source domain, it will also be able to identify it in
the background of the target domain as well. In summary, the
simultaneous adaptation to cracks and background enables the
model to detect cracks in different backgrounds.

V. CONCLUSION

In this paper, we have proposed a novel Deep Domain
Adaptation-based Crack Detection Network (DDACDN) for
multi-category crack detection, which takes advantage of the
knowledge of the source domain to help detect the target
domain without annotated information. DDACDN adopts a
Multi-scale Domain Adaptation (MDA) strategy, which uses
MK-MMD to update domain loss on the feature space of
three scales in two domains. Then, it takes advantage of
the features extracted from the source domain and the target
domain to construct an intermediate domain and use it to train
the network. Moreover, in order to effectively suppress the
negative effects of illumination, we proposed a novel and a
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simple preprocessing method called APAGE to enhance the
image through patch augmentation and global equalization.
Four datasets are used to evaluate the DDACDN model.
More specifically, A large-scale Bituminous Pavement Multi-
label Disease Dataset named CQU-BPMDD is constructed
to evaluate the cross-data generalization ability of our work.
Experimental results demonstrate that DDACDN has superior
detection performance to some state-of-the-art CNN methods
on CQU-BPDD dataset. Furthermore, excellent performance is
achieved on other datasets, such as CQU-BPMDD and CFD.
In addition, DDACDN not only provides accurate pavement
disease location information in real scenes, which is conve-
nient for maintenance, but also provides a domain adaptive
idea for solving cross-domain crack detection.

In the future, for the problem of data annotation, we will
explore the method based on active learning to solve the
detection problems of difficult samples and noisy samples. In
addition, we will make sufficient analysis on the quantitative
evaluation of different crack detection methods, and further
investigate methods to improve the detection performance of
multi-scale crack objects.
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