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Abstract—This study presents a vehicle-level distributed 
coordination strategy to control a mixed traffic stream of 
connected automated vehicles (CAVs) and connected human-
driven vehicles (CHVs) through signalized intersections. We use 
CAVs as mobile traffic controllers during a newly introduced 
“white phase”, during which CAVs will negotiate the right-of-
way to lead a group of CHVs while CHVs must follow their 
immediate front vehicle. The white phase will not be activated 
under low CAV penetration rates, where vehicles must wait for 
green signals. We have formulated this problem as a distributed 
mixed-integer non-linear program and developed a methodology 
to form an agreement among all vehicles on their trajectories and 
signal timing parameters. The agreement on trajectories is 
reached through an iterative process, where CAVs update their 
trajectory based on shared trajectory of other vehicles to avoid 
collisions and share their trajectory with other vehicles. 
Additionally, the agreement on signal timing parameters is 
formed through a voting process where the most voted feasible 
signal timing parameters are selected. The numerical 
experiments indicate that the proposed methodology can 
efficiently control vehicle movements at signalized intersections 
under various CAV market shares. The introduced white phase 
reduces the total delay by 3.2% to 94.06% compared to 
cooperative trajectory and signal optimization under different 
CAV market shares in our tests. In addition, our numerical 
results show that the proposed technique yields reductions in 
total delay, ranging from 40.2% - 98.9%, compared to those of a 
fully-actuated signal control obtained from a state-of-practice 
traffic signal optimization software.  

 
Index Terms—White phase, Joint signal and trajectory 

optimization,  Autonomous vehicles, Mixed autonomy traffic 

I.INTRODUCTION 
ecent advancements in connected automated vehicle (CAV) 
technologies have the promise of significant improvements in 
traffic operations [1]–[3]. Obtaining online vehicle data can 
reduce delay at signalized intersections (e.g., [4], [5]) and 
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signal-head-free control logic in a 100% CAV environment 
can maximize the intersection capacity [6], [7]. Similarly, 
optimally controlling the movements of CAVs through 
roundabouts can significantly increase their capacity [8], [9]. 
Since safety and policy-related challenges can hinder the 
transformative potential of CAVs, a smooth transition from 
CHVs to CAVs is critical. In fact, a rich body of literature has 
dealt with this transition in signalized intersections [10]–[12]. 
Such studies have mainly considered existing signal phases: 
green, yellow, and red, with various CAV market penetration 
rates. They either (a) optimize CAV trajectories to go through 
the intersection more efficiently [13], [14] or (b) jointly 
optimize trajectories and signal timing parameters [15], [16]. 
These studies have reported significant improvements in 
traffic operations, but they only allow one of the conflicting 
movements to be processed at a time regardless of the CAV 
market penetration rate. Besides, the existing studies mostly 
focus on intersections with simple layouts (e.g., one-way 
streets [15], [17], no turning movements [18]), or low traffic 
volumes [12]–[14] to tackle the complexities, particularly 
those of joint optimizations. Therefore, some studies form 
platoons of vehicles and optimize the trajectories of platoon 
leaders to reduce the complexity of the problem [20], [21]. 

There is research evidence that sufficient CAVs in traffic 
stream can participate in traffic control as mobile traffic 
controllers [22], [23] by forming platoons of vehicles and 
navigating them through the intersection, see Fig. 1. This 
paper utilizes the mobile controller paradigm and benefits 
from the white phase concept introduced in Niroumand et al. 
[22]. CAVs form platoons of CHVs, communicate with other 
CAVs to negotiate a safe trajectory and navigate the platoons 
through the intersection. CHVs only follow their immediate 
front vehicle to go through the intersection. This cannot 
happen during a green phase as CHVs may collide, which 
highlights the need for the newly introduced signal indication 
to communicate with CHVs. Note that other signal indications 
such as flashing green may be used to avoid the need for a 
change in signal heads. In-vehicle communications can be 
used as well. We used white phase in this paper for the ease of 
communication.  

This study first modifies the white phase formulation 
presented in Niroumand et al. [22] to increase the possibility 
of activation of simultaneous white phases for conflicting 
movements that can lead to reduction in intersection total 
delay. Then, presents a vehicle-level distributed coordination 
strategy that leverages the computational power of each 
vehicle to address the real-time and scalability requirements of 
intersection traffic control. Therefore, intersections with more 
realistic layouts and higher traffic demand levels can be 
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addressed. Each CAV receives the planned trajectory of other 
CAVs and the estimated trajectory of all CHVs to optimize its 
own trajectory. To ensure solution feasibility and moving 
toward system-level optimality, CAVs form agreement on 
their trajectories. The trajectory of each CHV is estimated 
using a customized car-following model. Additionally, all 
vehicles vote on signal timing parameters (i.e., white, green, 
or red) for all intersection movements based on their 
planned/estimated trajectories and form an agreement on 
signal indications to be displayed on signal heads. The 
vehicles’ mixed-integer non-linear programs (MINLPs) are 
linearized and embedded into a receding horizon control to 
capture the dynamic nature of signal and trajectory 
optimizations. The proposed distributed methodology 
iteratively solves the problem to reach agreement on both 
signal indications and trajectory plans. 

The remainder of the paper is organized as follows. A 
review of the relevant literature is presented in section II. 
Section III describes the details of the problem formulation. 
Then, the proposed solution technique is described in section 
IV. In section V, the case study is introduced, and numerical 
results are discussed. Finally, section VI provides a summary 
of the paper and concludes the findings. 

 
Fig. 1. Coordination among CAVs and CHVs. 

II.BACKGROUND 
The studies on intersection control with CAVs can be 

categorized into three groups (a) CAV trajectory optimization, 
(b) signal-head-free control for 100% CAVs, and (c) joint 
signal timing and trajectory optimization in a mixed 
automated traffic stream. We have visited the first two 
categories in the introduction very briefly and will focus on 
the third group, which is the most relevant to this study.  

A. Joint trajectory and signal optimization in mixed-
autonomy environments 

Li and Zhou [10] have jointly optimized signal timing plans 
and CAV trajectories in a mixed-autonomy environment. They 
represented the traffic dynamics and signal timing constraints 
with a phase-time traffic hypernetwork model to reduce the 
complexity of the problem. They developed a sequential 
branch and bound search algorithm to solve the problem more 
efficiently. Their case study results indicate their proposed 
framework can reduce the intersection total delay by 4.2% in 
comparison with fixed-time signal control with a 5% CAV 
market share. Li et al. [24] have optimized the trajectory of 
CAVs and signal timing plans with the presence of 

conventional vehicles. They used a bi-objective and multi-
stage model to minimize the traffic delay by optimizing signal 
timing plans and provide optimal trajectories for that signal 
timing plan. They utilized a hybrid heuristic method that 
combines genetic algorithm and particle swarm optimization. 
Their methodology provides optimal trajectories from each 
vehicle’s perspective without coordination among vehicles, 
therefore, the solution may not improve system-level 
performance. Their numerical experiments on an arterial street 
with four intersections show 9.7%-12.2% and 0.6%-7.9% 
reduction in travel delay and energy consumption, respectively 
compared to fixed-time signal control with 10% electric 
vehicles. 

Liang et al. [12] have developed a bi-level rolling-horizon 
methodology to jointly optimize signal phase and timing plan 
and CAV trajectories while considering traditional human-
driven vehicles, connected human-driven vehicles, connected 
human-driven vehicles which receive speed guidance (human-
cooperative vehicles), and autonomously-driven connected 
vehicles. The proposed methodology enumerates all possible 
departure sequences of naturally happening platoons to find 
the departure sequence with the least delay at the upper level. 
At the lower level, they first convert each departure sequence 
to a signal phase and timing and find the appropriate speed 
guidance for autonomous and cooperative human-driven 
vehicles to minimize the total number of stops. Then, the 
signal timings are adjusted based on the calculated speed 
guidance and the delay associated with the signal phase, and 
timing is calculated and sent back to the upper level. They 
tested the proposed methodology on an isolated intersection 
with exclusive left-turning lanes and showed that the 
intersection total delay and number of stops decreases as CV 
penetration rate increases and autonomous and cooperative 
human-driven vehicle penetration rate increases, respectively. 
Pourmehrab et al. [25] have proposed a framework to adjust 
an adaptive intersection control considering vehicles’ arriving 
time to maximize the utilization of green phases. Their 
methodology provides a feasible signal phase and timing plan 
by using a set of rules to process all incoming vehicles. In 
addition, they split the fleet into platoons and only optimize 
the trajectories of automated leaders to minimize their travel 
delay. Their numerical experiments on a four-leg isolated 
intersection show a 38%-52% reduction in average travel time 
in comparison with a fully actuated signal control. Guo et al. 
[11] have proposed a two-step approach to find near-optimal 
signal timing plans and CAV trajectories with different CAV 
market penetration rates. The proposed approach finds near-
optimal signal timing plans to minimize intersection delay in 
the first step using dynamic programming. In the second step, 
they generate CAV trajectories and estimate movements of 
CHVs based on the determined signal plans using shooting 
heuristic. Their case study results indicate that the proposed 
approach reduces average travel time and fuel consumption by 
up to 35.7% and 31.5%, respectively compared to adaptive 
signal control. A sensitivity analysis also shows that 
increasing the CAV penetration rate significantly contributes 
to improvements in intersection performance. This study can 
handle a mixed-autonomy traffic stream with different CAV 
penetration rates, however, it stops vehicles behind the red 
light even in a fully automated environment which leads to 
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higher delay compared to signal-free intersection control 
methods. Qian et al. [23] extended a priority-based signal-free 
control logic to accommodate human-driven vehicles (HVs) 
while producing collision-free trajectories. Each CAV sends a 
request to the intersection controller once entered the 
cooperative area, in addition, infrastructure sensors are 
assumed to detect HVs and send a virtual request on behalf of 
HVs. A human-driven vehicle can enter the intersection if it is 
assigned the highest priority among vehicles behind the 
intersection stop bar or it is assigned to a virtual platoon led by 
a CAV. Note that admitted human driven vehicles are notified 
by the green signal indication. This framework can operate 
fully automated fleets like signal-free intersection control 
methods and can handle mixed-autonomy fleets by using red 
and green signal indications. However, using a priority-based 
method and forming long platoons can reduce the efficiency of 
the proposed framework. Moradi et al. [26] have developed an 
integrated platoon-based round-robin algorithm for 
intersections within a mixed-autonomy environment while 
prioritizing special vehicles. They further improved their 
methodology by incorporating a speed advisory mechanism 
for CAVs. Their methodology outperforms fixed-time and 
actuated intersection control methods with 5% and 35% CAV 
penetration rate, respectively. Du et al. [27] have proposed a 
joint signal and trajectory optimization framework that 
improves the traffic efficiency and energy saving. Their 
methodology optimizes the signal timing plans to minimize 
vehicle delay at the macro level and optimizes the CAV 
trajectories to minimize fuel consumption at the micro level. A 
comparison with the Cooperative Adaptive Cruise Control 
(CACC) with a fixed time signal control shows 6%-14.5% 
fuel consumption reduction with 20% CAV penetration rate. 
Tajalli et al. [28] Have developed a methodology to jointly 
optimize the signal timing plans and CAV trajectories in 
mixed autonomy environments. Their methodology 
decomposes the joint signal and trajectory optimization 
program into smaller lane-level optimization problems using a 
Lagrangian relaxation technique. They reported 5%-51% 
reduction in average travel time while having duality gaps of 
at most 0.1%. 

Rey and Levin [29] have proposed an intersection control 
method for mixed-autonomy traffic streams. They have 
introduced a new “blue phase” during which only CAVs can 
access the intersection through dedicated lanes and their 
movements are controlled to prevent collisions with 
conflicting vehicles. Note that, both CAVs and HVs can enter 
the intersection during green phases. Their case study on a 
network with 25 intersections revealed that their framework 
can outperform existing optimized signalized intersections 
with at least 60% CAVs. Including CAV-dedicated lanes can 
dramatically decrease intersection capacity in low CAV 
penetration rates. Moreover, stopping all approaches to 
operate CAVs will require a high CAV market penetration rate 
to be beneficial to the intersection performance as confirmed 
in their case study. Niroumand et al. [22] have developed a 
methodology to operate a mixed-autonomy fleet through 
isolated signalized intersections. They have introduced a new 
“white phase” that is activated when there are enough CAVs 
in the intersection neighborhood to form vehicle-groups. 
During white phases, groups of CHVs led by CAVs are 

operated from conflicting movements simultaneously and their 
safety are preserved by controlling the movements of CAVs. 
Conventional red and green signal indications are used when 
there are not enough CAVs to guarantee the safety of the 
traffic stream by controlling the movements of CAVs. Their 
case studies on an isolated intersection indicate that the 
proposed framework works under all CAV market penetration 
rates. They reported a 19.6% - 96.2% reduction in intersection 
total delay compared to fully-actuated signal control. They 
further analyzed the effects of the white phase, autonomous 
driving behavior, and connectivity on the intersection mobility 
and safety performances ([30]–[32]) using the formulation and 
solution technique introduced in [22]. The proposed 
framework is flexible to operate vehicles during green phases 
or assign white phases to the conflicting movements and 
operate the intersection like a signal-free intersection. 
However, their case study results show that the white phase 
activation rate is low even in relatively high CAV penetration 
rates due to limited flexibility of phase transitions. In addition, 
they have used a central approach that does not scale well with 
the size of the problem. Moreover, their framework requires a 
central computation unit while CAVs have computational 
powers to be used.  

B. Summary of the literature and contribution of the paper 
Some existing studies focus on signal-free intersection 

control logics to utilize the maximum capacity of 
intersections. Although signal-free control logics promise 
significant improvements in intersection performance 
measures, they require 100% CAV market share. Several 
studies in the literature jointly optimized the signal timing 
plans and CAV trajectories in mixed-autonomy traffic 
streams. However, they have used central methodologies to 
solve the joint signal and trajectory optimization program. 
These studies either (1) lead to reductions in intersection 
capacity at low CAV market penetration rates, (2) must stop 
vehicles behind the intersection stop bar even with 100% 
CAVs, and (3) do not scale well with the size of the problem. 

This paper enhances the white phase formulation proposed 
by Niroumand et al. [22] to increase the possibility of the 
white phase activation and develops a vehicle-level 
agreement-based distributed methodology to solve it. To this 
end, we assumed that all vehicles are connected and have 
computational power to solve a simple vehicle-level 
optimization program. We hypothesize that the approach 
improves intersection capacity at low CAV market shares, 
reduces the need to use red phases, and finds solutions in real-
time. Each CAV solves an MINLP to plan for its safe passage 
through the intersection and proposes a signal timing plan for 
the entire intersection movements. In addition, CHVs estimate 
their trajectories using a customized car-following model and 
participate in the voting process by solving an optimization 
problem with trajectory and signal timing variables. Unlike 
existing studies, this framework uses the available 
computational power of vehicles and solves the signal timing 
and trajectory optimization problem in a distributed manner. 
Therefore, the framework scales well with the size of the 
problem and can produce real-time solutions to be 
implemented in the real world. 
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III.METHODOLOGY 
This section first introduces a distributed vehicle-level 

MINLP for intersection control with a mixed fleet of CAVs 
and CHVs. Each vehicle-level model optimizes/estimates the 
trajectory of a single vehicle. The solutions of vehicle-level 
models do not necessarily lead to the system-level optimality. 
Therefore, subsection B introduces a coordination scheme 
where the system-level solutions are achieved by solving 
vehicle-level optimization models and coordinating their 
decisions via information exchange. 

A. Problem Formulation 
The program aims to jointly optimize the (i) signal timing 

plan of each intersection and (ii) trajectory of each CAV using 
shared vehicle states (i.e., vehicle locations and speeds over a 
planning horizon) in the intersection neighborhood. 
Furthermore, CHVs are assumed to follow the vehicle 
immediately in front of them and react to signal indications.  

The spatial and temporal elements of the problem are 
defined as follows. We let 𝑇𝑇 and 𝑇𝑇�  respectively denote the sets 
of discrete time steps for making trajectory and signal timing 
decisions (similar to [22]). Note that the size of 𝑇𝑇 and 𝑇𝑇�  are 
determined based on the study period 𝑁𝑁 and signal and 
trajectory updating time step lengths Δ𝑇𝑇 and Δ𝑇𝑇� . Traffic in the 
intersection is defined by ℋ(𝐿𝐿, 𝐼𝐼), where 𝐿𝐿 denotes the set of 
all lanes in the intersection neighborhood and 𝐼𝐼 represents the 
set of all vehicles. Additionally, 𝐼𝐼𝑙𝑙 ⊂ 𝐼𝐼 defines the set of all 
vehicles on lane 𝑙𝑙 ∈ 𝐿𝐿, where 𝐼𝐼𝑙𝑙′ and 𝐼𝐼𝑙𝑙 represent CAVs and 
CHVs on lane 𝑙𝑙, respectively. We define 𝐶𝐶𝑙𝑙 as a set of all lanes 
in conflict with lane 𝑙𝑙 ∈ 𝐿𝐿 and use 𝑃𝑃𝑙𝑙  to represent the set of all 
vehicle-groups on lane 𝑙𝑙 ∈ 𝐿𝐿. 

We define two state variables: 𝑥𝑥𝑖𝑖𝑙𝑙𝑡𝑡  represents the location of 
vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 on lane 𝑙𝑙 ∈ 𝐿𝐿 at time 𝑡𝑡 ∈ 𝑇𝑇 and 𝑣𝑣𝑖𝑖𝑙𝑙𝑡𝑡  denotes the 
speed of vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 on lane 𝑙𝑙 ∈ 𝐿𝐿 at time 𝑡𝑡 ∈ 𝑇𝑇. State 
variable 𝑥𝑥𝑖𝑖𝑙𝑙𝑡𝑡  identifies vehicles who pass the intersection stop 
bar using binary variable 𝛾𝛾𝑖𝑖𝑙𝑙𝑡𝑡 , where 𝛾𝛾𝑖𝑖𝑙𝑙𝑡𝑡 = 0 if 𝑥𝑥𝑖𝑖𝑙𝑙𝑡𝑡 ≤ 𝑏𝑏 or 1 
otherwise (the intersection stop bar is passed) for all 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 , 𝑡𝑡 ∈
𝑇𝑇. We let decision variable 𝑎𝑎𝑖𝑖𝑙𝑙𝑡𝑡  denote the acceleration rate of 
vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 on lane 𝑙𝑙 ∈ 𝐿𝐿 at time 𝑡𝑡 ∈ 𝑇𝑇. We estimate the 
movements of CHVs with a given set of signal timing 
parameters using a customized linear car-following model 
[22], [33]: 

 
∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇,𝑛𝑛 ∈ 𝑇𝑇� , (1) 

where 𝑀𝑀𝛾𝛾𝑖𝑖𝑙𝑙𝑡𝑡  eliminates the connection between signal and 
vehicles when they pass the intersection stop bar. 

We also define decision variables 𝑔𝑔𝑙𝑙𝑛𝑛 = {0,1} and 𝑤𝑤𝑙𝑙𝑛𝑛 =
{0,1} to represent the green and white signal timing decisions 
for all 𝑙𝑙 ∈ 𝐿𝐿 and 𝑛𝑛 ∈ 𝑇𝑇� , respectively. TABLE I defines the 
remaining variables and parameters used in the proposed 
formulation. Fig. 2 shows some defined notations in the layout 
of an isolated intersection. 

TABLE I NOTATIONS USED IN THE PROPOSED FORMULATION. 
Sets 
𝐿𝐿 Set of all lanes 
𝑇𝑇 Set of all time steps for trajectory decisions (𝑇𝑇 = {1,2, … , N/Δ𝑇𝑇}) 
𝑇𝑇� Set of all time steps for signal timing decisions (𝑇𝑇� = {1,2, … , N/Δ𝑇𝑇�}) 
𝐼𝐼𝑙𝑙 Set of all vehicles on lane 𝑙𝑙 ∈ 𝐿𝐿 
𝐼𝐼𝑙𝑙′ Set of all CAVs on lane 𝑙𝑙 ∈ 𝐿𝐿 
𝐼𝐼𝑙𝑙 Set of all CHVs on lane 𝑙𝑙 ∈ 𝐿𝐿 
𝐶𝐶𝑙𝑙 Set of all conflicting lanes with lane 𝑙𝑙 ∈ 𝐿𝐿 
𝑃𝑃𝑙𝑙 Set of vehicle-groups on lane 𝑙𝑙 ∈ 𝐿𝐿 
Decision Variables 
𝑎𝑎𝑖𝑖𝑙𝑙𝑡𝑡  Acceleration of vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙  on lane 𝑙𝑙 ∈ 𝐿𝐿 at time 𝑡𝑡 ∈ 𝑇𝑇 

𝑔𝑔𝑙𝑙𝑛𝑛 Binary green signal status; 1 if signal for lane 𝑙𝑙 ∈ 𝐿𝐿 at time 𝑛𝑛 ∈ 𝑇𝑇� is 
green or 0 otherwise 

𝑤𝑤𝑙𝑙
𝑛𝑛 Binary white signal status; 1 if signal for lane 𝑙𝑙 ∈ 𝐿𝐿 at time 𝑛𝑛 ∈ 𝑇𝑇� is 

white or 0 otherwise 

𝑦𝑦𝑙𝑙𝑛𝑛 Binary white signal status; 1 if signal for lane 𝑙𝑙 ∈ 𝐿𝐿 at time 𝑛𝑛 ∈ 𝑇𝑇� is 
yellow or 0 otherwise 

Variables 
𝑥𝑥𝑖𝑖𝑙𝑙𝑡𝑡  The location of vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 on lane 𝑙𝑙 ∈ 𝐿𝐿 at time 𝑡𝑡 ∈ 𝑇𝑇 
𝑣𝑣𝑖𝑖𝑙𝑙𝑡𝑡  The speed of vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 on lane 𝑙𝑙 ∈ 𝐿𝐿 at time 𝑡𝑡 ∈ 𝑇𝑇 

𝛾𝛾𝑖𝑖𝑙𝑙𝑡𝑡  1 if vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙  on lane 𝑙𝑙 ∈ 𝐿𝐿 has passed intersection by 𝑡𝑡 ∈ 𝑇𝑇 or 0 
otherwise 

ℎ𝑞𝑞𝑙𝑙𝑡𝑡  The head location of vehicle-group 𝑞𝑞 ∈ 𝑃𝑃𝑙𝑙 on lane 𝑙𝑙 ∈ 𝐿𝐿 at time 𝑡𝑡 ∈
𝑇𝑇 

𝑒𝑒𝑞𝑞𝑙𝑙𝑡𝑡  The tail location of vehicle-group 𝑞𝑞 ∈ 𝑃𝑃𝑙𝑙 on lane 𝑙𝑙 ∈ 𝐿𝐿 at time 𝑡𝑡 ∈ 𝑇𝑇 
𝜁𝜁𝑞𝑞𝑙𝑙𝑡𝑡  The length of vehicle-group 𝑞𝑞 ∈ 𝑃𝑃𝑙𝑙 on lane 𝑙𝑙 ∈ 𝐿𝐿 at time 𝑡𝑡 ∈ 𝑇𝑇 
Parameters 
𝑎𝑎, 𝑎𝑎  Lower and upper bounds for acceleration 
𝑣𝑣, 𝑣𝑣 Minimum and maximum speeds 
ℒ Fixed vehicle length 

𝐷𝐷 Minimum safety distance between two consecutive vehicles on the 
same lane 

𝑆𝑆 Minimum distance between vehicles and the intersection stop bar 

𝜌𝜌 Minimum safety distance between vehicle-groups of conflicting 
lanes 

�̂�𝜏 Reaction time for CHVs 
𝜏𝜏′ Reaction time for CAVs 

𝐹𝐹𝑘𝑘𝑘𝑘′ 
The location of conflict point between lane 𝑘𝑘 ∈ 𝐿𝐿 and lane 𝑘𝑘′ ∈ 𝐶𝐶𝑘𝑘 
based on the coordination of lane 𝑘𝑘 

𝑏𝑏 The location of intersection (i.e., the distance of intersection stop bar 
from origin) 

𝐺𝐺 Maximum green time 
𝐺𝐺 Minimum active time (green plus subsequent white phase) 
𝑊𝑊 Minimum white time 
𝑌𝑌 Yellow time duration 
∆𝑇𝑇 Time step size for trajectory decisions 
∆𝑇𝑇� Time step size for signal decisions 
𝑟𝑟𝑙𝑙 The destination location of vehicles on lane 𝑙𝑙 ∈ 𝐿𝐿 
α1, α2 Car-following parameters 
ℛ Duration of all-red time 
𝜉𝜉𝑞𝑞𝑙𝑙 The order of the first vehicle of vehicle-group 𝑞𝑞 ∈ 𝑃𝑃𝑙𝑙 on lane 𝑙𝑙 ∈ 𝐿𝐿 
𝜇𝜇𝑞𝑞𝑙𝑙 The order of the last vehicle of vehicle-group 𝑞𝑞 ∈ 𝑃𝑃𝑙𝑙 on lane 𝑙𝑙 ∈ 𝐿𝐿 

𝛽𝛽𝑖𝑖𝑙𝑙𝑡𝑡  1 if vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙  on lane 𝑙𝑙 ∈ 𝐿𝐿 is a member of a vehicle-group or 0 
otherwise 

𝛾𝛾�𝑗𝑗𝑙𝑙𝑡𝑡  Shared input parameter: 1 if vehicle 𝑗𝑗 ∈ 𝐼𝐼𝑙𝑙  on lane 𝑙𝑙 ∈ 𝐿𝐿 has passed 
intersection by 𝑡𝑡 ∈ 𝑇𝑇 or 0 otherwise 

𝑥𝑥�𝑗𝑗𝑙𝑙𝑡𝑡  Location of vehicle 𝑗𝑗 ∈ 𝐼𝐼𝑙𝑙 on lane 𝑙𝑙 ∈ 𝐿𝐿 as shared input parameter 

𝑔𝑔�𝑙𝑙𝑗𝑗𝑘𝑘𝑛𝑛  Green signal indications on lane 𝑙𝑙 ∈ 𝐿𝐿 at time 𝑛𝑛 ∈ 𝑇𝑇� voted by vehicle 
𝑗𝑗 ∈ 𝐼𝐼𝑙𝑙 on lane 𝑘𝑘 ∈ 𝐿𝐿 

𝑤𝑤�𝑙𝑙𝑗𝑗𝑘𝑘𝑛𝑛  White signal indications on lane 𝑙𝑙 ∈ 𝐿𝐿 at time 𝑛𝑛 ∈ 𝑇𝑇� voted by vehicle 
𝑗𝑗 ∈ 𝐼𝐼𝑙𝑙 on lane 𝑘𝑘 ∈ 𝐿𝐿 

𝒯𝒯 Iteration counter for agreement process 
𝜁𝜁 ̅ The maximum length of vehicle-groups 

 

𝑎𝑎𝑖𝑖𝑙𝑙𝑡𝑡 =max 
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⎪
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𝑎𝑎, 𝑣𝑣−𝑣𝑣𝑖𝑖𝑙𝑙
𝑡𝑡
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Δ𝑇𝑇
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α1�𝑣𝑣𝑖𝑖𝑙𝑙𝑡𝑡 − 𝑣𝑣�𝑖𝑖−1,𝑙𝑙
𝑡𝑡 �+ α2�(𝑥𝑥𝑖𝑖𝑙𝑙𝑡𝑡 − 𝑥𝑥�𝑖𝑖−1,𝑙𝑙

𝑡𝑡 − ℒ) −𝐷𝐷 − 𝑣𝑣𝑖𝑖𝑙𝑙𝑡𝑡 𝜏𝜏��,
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⎪
⎬

⎪
⎫

⎭
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⎬

⎪
⎫
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Fig. 2. An isolated intersection layout including some of the 
notations  

The problem formulation follows. The objective is to 
minimize the distance between the location of human-driven 
vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 (or automated vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙′) and its pre-defined 
destination. A term 𝜔𝜔|𝑣𝑣𝑖𝑖𝑙𝑙𝑡𝑡+1 − 𝑣𝑣𝑖𝑖𝑙𝑙𝑡𝑡 | is added to the objective 
function 𝑍𝑍𝑖𝑖𝑙𝑙′  of CAVs to minimize the speed variation of 
vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙′ for driving comfort purposes. Parameter 𝜔𝜔 is the 
speed-location conversion factor. 
�̂�𝑍𝑖𝑖𝑙𝑙 =  min

𝒂𝒂,𝒈𝒈,𝒘𝒘
∑ (𝑟𝑟𝑙𝑙 − 𝑥𝑥𝑖𝑖𝑙𝑙𝑡𝑡 )𝑡𝑡∈𝑇𝑇 ,  ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿, (2) 

𝑍𝑍𝑖𝑖𝑙𝑙′ =  min
𝒂𝒂,𝒈𝒈,𝒘𝒘

∑ (𝑟𝑟𝑙𝑙 − 𝑥𝑥𝑖𝑖𝑙𝑙𝑡𝑡 )𝑡𝑡∈𝑇𝑇 + 𝜔𝜔|𝑣𝑣𝑖𝑖𝑙𝑙𝑡𝑡+1 − 𝑣𝑣𝑖𝑖𝑙𝑙𝑡𝑡 |,  

                                                              ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙′, 𝑙𝑙 ∈ 𝐿𝐿. 

(3) 

Subject to (1) and: 
𝑥𝑥𝑖𝑖𝑙𝑙𝑡𝑡+Δ𝑇𝑇 = 𝑥𝑥𝑖𝑖𝑙𝑙𝑡𝑡 + 𝑣𝑣𝑖𝑖𝑙𝑙𝑡𝑡 Δ𝑇𝑇 + 1

2
𝑎𝑎𝑖𝑖𝑙𝑙𝑡𝑡 Δ𝑇𝑇2, 

                                                     ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇, 
(4) 

𝑣𝑣𝑖𝑖𝑙𝑙𝑡𝑡+Δ𝑇𝑇 = 𝑣𝑣𝑖𝑖𝑙𝑙𝑡𝑡 + 𝑎𝑎𝑖𝑖𝑙𝑙𝑡𝑡 Δ𝑇𝑇, ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇, (5) 

𝑎𝑎 ≤ 𝑎𝑎𝑖𝑖𝑙𝑙𝑡𝑡 ≤ 𝑎𝑎, ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙′, 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇, (6) 

𝑣𝑣 ≤ 𝑣𝑣𝑖𝑖𝑙𝑙𝑡𝑡 ≤ 𝑣𝑣, ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙′, 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇, (7) 

𝑥𝑥�𝑖𝑖−1,𝑙𝑙
𝑡𝑡 − 𝑥𝑥𝑖𝑖𝑙𝑙𝑡𝑡 ≥ 𝐷𝐷 + ℒ + 𝜏𝜏′𝑣𝑣𝑖𝑖𝑙𝑙𝑡𝑡 , ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙′, 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇, (8) 

𝑏𝑏 − 𝑥𝑥𝑖𝑖𝑙𝑙𝑡𝑡 ≥ 𝑆𝑆 + 𝛥𝛥𝑇𝑇𝑣𝑣𝑖𝑖𝑙𝑙𝑡𝑡 − (𝑔𝑔𝑙𝑙𝑛𝑛 + 𝑤𝑤𝑙𝑙𝑛𝑛)𝑀𝑀 − 𝛾𝛾𝑖𝑖𝑙𝑙𝑡𝑡𝑀𝑀, 
                                           ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙′, 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇,𝑛𝑛 ∈ 𝑇𝑇� , (9) 

ℎ𝑞𝑞𝑗𝑗𝑡𝑡 = 𝑥𝑥�𝜉𝜉𝑞𝑞𝑞𝑞𝑗𝑗
𝑡𝑡 , 

                                          ∀𝑞𝑞 ∈ 𝑃𝑃𝑗𝑗 , 𝑗𝑗 ∈ 𝐶𝐶𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇, 
(10) 

𝑒𝑒𝑞𝑞𝑗𝑗𝑡𝑡 = 𝑥𝑥�𝜇𝜇𝑞𝑞𝑞𝑞𝑗𝑗
𝑡𝑡 − ℒ, 

                                          ∀𝑞𝑞 ∈ 𝑃𝑃𝑗𝑗 , 𝑗𝑗 ∈ 𝐶𝐶𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇, 
(11) 

𝜁𝜁𝑞𝑞𝑗𝑗𝑡𝑡 = ℎ𝑞𝑞𝑗𝑗𝑡𝑡 − 𝑒𝑒𝑞𝑞𝑗𝑗𝑡𝑡 , 
                                          ∀𝑞𝑞 ∈ 𝑃𝑃𝑗𝑗 , 𝑗𝑗 ∈ 𝐶𝐶𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇, (12) 

�ℎ𝑞𝑞𝑗𝑗𝑡𝑡 − 𝐹𝐹𝑗𝑗𝑙𝑙� + �𝑒𝑒𝑞𝑞𝑗𝑗𝑡𝑡 − 𝐹𝐹𝑗𝑗𝑙𝑙� + �𝑥𝑥𝑖𝑖𝑙𝑙𝑡𝑡 − 𝐹𝐹𝑙𝑙𝑗𝑗� + �𝑥𝑥𝑖𝑖𝑙𝑙𝑡𝑡 − ℒ −
𝐹𝐹𝑙𝑙𝑗𝑗� ≥ 𝜁𝜁𝑞𝑞𝑗𝑗𝑡𝑡 + ℒ + 2𝜌𝜌+𝑀𝑀(𝛾𝛾𝑖𝑖𝑙𝑙𝑡𝑡 + 𝛾𝛾�𝜉𝜉𝑞𝑞𝑞𝑞𝑗𝑗

𝑡𝑡 + 𝑤𝑤𝑙𝑙𝑛𝑛+𝑤𝑤𝑗𝑗𝑛𝑛 − 4), 
                    ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙′, 𝑙𝑙 ∈ 𝐿𝐿, 𝑞𝑞 ∈ 𝑃𝑃𝑗𝑗  , 𝑗𝑗 ∈ 𝐶𝐶𝑙𝑙 , 𝑡𝑡 ∈ 𝑇𝑇,𝑛𝑛 ∈ 𝑇𝑇� , 

(13) 

𝑔𝑔𝑙𝑙𝑛𝑛 + 𝑔𝑔𝑙𝑙′𝑛𝑛 + 𝑤𝑤𝑙𝑙′
𝑛𝑛 ≤ 1, 

                                                    ∀𝑙𝑙 ∈ 𝐿𝐿, 𝑙𝑙′ ∈ 𝐶𝐶𝑙𝑙 ,𝑛𝑛 ∈ 𝑇𝑇� , 
(14) 

∑ 𝑔𝑔𝑙𝑙𝑧𝑧
𝑛𝑛+𝐺𝐺
𝑧𝑧=𝑛𝑛+1 + 𝑤𝑤𝑙𝑙𝑧𝑧 ≥ (𝑔𝑔𝑙𝑙𝑛𝑛+1 − 𝑔𝑔𝑙𝑙𝑛𝑛)𝐺𝐺, 

                                                               ∀𝑙𝑙 ∈ 𝐿𝐿 ,𝑛𝑛 ∈ 𝑇𝑇� , 
(15) 

∑ 𝑤𝑤𝑙𝑙𝑧𝑧
𝑛𝑛+𝑊𝑊
𝑧𝑧=𝑛𝑛+1 ≥ (𝑤𝑤𝑙𝑙𝑛𝑛+1 − 𝑔𝑔𝑙𝑙𝑛𝑛 − 𝑤𝑤𝑙𝑙𝑛𝑛)𝑊𝑊, 

                                                               ∀𝑙𝑙 ∈ 𝐿𝐿 ,𝑛𝑛 ∈ 𝑇𝑇� , 
(16) 

∑ 𝑔𝑔𝑙𝑙𝑧𝑧𝑛𝑛+𝐺𝐺 
𝑧𝑧=𝑛𝑛 ≤ 𝐺𝐺,          ∀𝑙𝑙 ∈ 𝐿𝐿 ,𝑛𝑛 ∈ 𝑇𝑇� , (17) 

∑ 𝑦𝑦𝑙𝑙𝑧𝑧𝑛𝑛+𝑌𝑌
𝑧𝑧=𝑛𝑛 ≤ 𝑌𝑌,          ∀𝑙𝑙 ∈ 𝐿𝐿 ,𝑛𝑛 ∈ 𝑇𝑇� , (18) 

∑ 𝑦𝑦𝑙𝑙
𝑧𝑧𝑛𝑛+𝑌𝑌

𝑧𝑧=𝑛𝑛+1 ≥ (𝑔𝑔𝑙𝑙𝑛𝑛 − 𝑔𝑔𝑙𝑙𝑛𝑛+1 − 𝑤𝑤𝑙𝑙
𝑛𝑛+1)𝑌𝑌,  

                                                               ∀𝑙𝑙 ∈ 𝐿𝐿 ,𝑛𝑛 ∈ 𝑇𝑇� , 
(19) 

∑ 𝑦𝑦𝑙𝑙
𝑧𝑧𝑛𝑛+𝑌𝑌

𝑧𝑧=𝑛𝑛+1 ≥ (𝑤𝑤𝑙𝑙
𝑛𝑛 − 𝑤𝑤𝑙𝑙

𝑛𝑛+1 − 𝑔𝑔𝑙𝑙𝑛𝑛+1)𝑌𝑌,  
                                                               ∀𝑙𝑙 ∈ 𝐿𝐿 ,𝑛𝑛 ∈ 𝑇𝑇� , 

(20) 

∑ (𝑔𝑔𝑙𝑙𝑧𝑧 + 𝑔𝑔𝑙𝑙′
𝑧𝑧𝑛𝑛+ℛ−1

𝑧𝑧=𝑛𝑛 + 𝑤𝑤𝑙𝑙𝑧𝑧 + 𝑤𝑤𝑙𝑙′
𝑧𝑧) − 2ℛ𝑦𝑦𝑙𝑙𝑛𝑛 + 2ℛ𝑦𝑦𝑙𝑙𝑛𝑛−1 ≤

2ℛ, 
                                                    ∀𝑙𝑙 ∈ 𝐿𝐿, 𝑙𝑙′ ∈ 𝐶𝐶𝑙𝑙 ,𝑛𝑛 ∈ 𝑇𝑇� , 

(21) 

∑ (𝑛𝑛+ℛ−1
𝑧𝑧=𝑛𝑛 𝑤𝑤𝑙𝑙′

𝑧𝑧) − 2ℛ𝑔𝑔𝑙𝑙𝑛𝑛 + 2ℛ𝑔𝑔𝑙𝑙𝑛𝑛−1 ≤ 2ℛ, 
                                                    ∀𝑙𝑙 ∈ 𝐿𝐿, 𝑙𝑙′ ∈ 𝐶𝐶𝑙𝑙 ,𝑛𝑛 ∈ 𝑇𝑇� , 

(22) 

𝑤𝑤𝑙𝑙𝑛𝑛 ≤ 1 − �𝛾𝛾�𝑗𝑗−1,𝑙𝑙
𝑡𝑡 − 𝛾𝛾�𝑗𝑗𝑙𝑙𝑡𝑡 � + 𝑤𝑤𝑙𝑙𝑛𝑛−1, 

                                            ∀𝑗𝑗 ∈ 𝐼𝐼𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿,𝑛𝑛 ∈ 𝑇𝑇� , 𝑡𝑡 ∈
𝑇𝑇, 

(23) 

𝑤𝑤𝑙𝑙𝑛𝑛 ≤ 1 − �𝛾𝛾�𝑗𝑗−1,𝑙𝑙
𝑡𝑡 − 𝛾𝛾�𝑗𝑗𝑙𝑙𝑡𝑡 � + 𝛽𝛽𝑗𝑗𝑙𝑙𝑡𝑡 , 

                                            ∀𝑗𝑗 ∈ 𝐼𝐼𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿,𝑛𝑛 ∈ 𝑇𝑇� , 𝑡𝑡 ∈
𝑇𝑇, 

(24) 

Constraints (4) and  (5) define fundamental motion 
equations to update the location 𝑥𝑥𝑖𝑖𝑙𝑙𝑡𝑡+Δ𝑇𝑇  and speed 𝑣𝑣𝑖𝑖𝑙𝑙𝑡𝑡+Δ𝑇𝑇 of 
vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 at time 𝑡𝑡 + Δ𝑇𝑇 based on acceleration rate 𝑎𝑎𝑖𝑖𝑙𝑙𝑡𝑡  at 
time 𝑡𝑡. Constraints (6) and (7) ensure that CAVs are enforced 
to take their acceleration and speed within the threshold of 
pre-defined minimum and maximum values. Constraints (8) 
ensure the safety of vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙′ on lane 𝑙𝑙 ∈ 𝐿𝐿 at time 𝑡𝑡 ∈ 𝑇𝑇 
based on its distance from preceding vehicle 𝑖𝑖 − 1 ∈ 𝐼𝐼𝑙𝑙 , where 
𝐷𝐷 is a constant safety distance between two consecutive 
vehicles on the same lane, 𝐿𝐿𝑣𝑣 is the vehicle length, and 𝜏𝜏′𝑣𝑣𝑖𝑖𝑙𝑙𝑡𝑡  is 
the distance traveled by the CAV during reaction time 𝜏𝜏′, 
given the location of vehicle 𝑖𝑖 − 1 ∈ 𝐼𝐼𝑙𝑙  on lane 𝑙𝑙 at time 𝑡𝑡 
(𝑥𝑥�𝑖𝑖−1,𝑙𝑙

𝑡𝑡 ) that is fed to the optimization program as an input 
parameter. 

Constraints (9) will force CAVs to stop behind the 
intersection stop bar, keeping a distance 𝑆𝑆 when the signal 
indication is red. Note that vehicles are allowed to enter the 
intersection conflicting area during green and white phases. 
Since the formulation uses discrete time steps, a vehicle can 
jump from one side of the intersection stop bar to the other 
side during one time step when the signal is red, therefore, we 
add the term 𝛥𝛥𝑇𝑇𝑣𝑣𝑖𝑖𝑙𝑙𝑡𝑡  to prevent this jump. Besides, the term 
−𝛾𝛾𝑖𝑖𝑙𝑙𝑡𝑡𝑀𝑀 ensures that CAVs who have already passed the 
intersection stop bar will not react to any signal indication. 
Note that 𝑆𝑆 can be as small as zero. Constraints (10) – (12) 
define a group of CHVs led by a CAV as a vehicle-group that 
starts with the CAV and ends with the last CHV in the group, 
where ℎ𝑞𝑞𝑗𝑗𝑡𝑡 , 𝑒𝑒𝑞𝑞𝑗𝑗𝑡𝑡 , and 𝜁𝜁𝑞𝑞𝑗𝑗𝑡𝑡  respectively denote the head location, 
tail location, and length of vehicle-group 𝑞𝑞 ∈ 𝑃𝑃𝑗𝑗  on lane  𝑗𝑗 ∈ 𝐶𝐶𝑙𝑙 
at time 𝑡𝑡 ∈ 𝑇𝑇. Each vehicle group starts with a CAV as the 
group leader and continues until it reaches the maximum 
predefined vehicle group length 𝜁𝜁  ̅ or the next CAV in that 
lane. Note that each vehicle-group contains only one CAV as 
its leader. For instance, vehicle 1 shown in Fig. 3 is a vehicle 
group by itself since the next vehicle is also a CAV. The next 
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vehicle group starts with vehicle 2 as the vehicle group leader 
and has vehicle 3 as its follower. The third vehicle group starts 
with vehicle 4 and has vehicle 5 as its follower, however, 
vehicle 6 is not a member of the third vehicle group since the 
third vehicle group has reached its maximum predefined 
length before reaching vehicle 6. Finally, vehicle 7 is a vehicle 
group by itself since it is a CAV and there is no vehicle after 
vehicle 7. These constraints aim to connect the vehicle-level 
variables (i.e., 𝑥𝑥𝑖𝑖𝑙𝑙𝑡𝑡 ) and vehicle-group-level variables (i.e., ℎ𝑞𝑞𝑗𝑗𝑡𝑡 , 
𝑒𝑒𝑞𝑞𝑗𝑗𝑡𝑡 , and 𝜁𝜁𝑞𝑞𝑗𝑗𝑡𝑡 ). Constraints (13) enforce collision-free 
movements based on the topology of conflicting vehicle-
groups in the intersection zone when the signal is white [22]. 
The additional term 𝑀𝑀(𝛾𝛾𝑖𝑖𝑙𝑙𝑡𝑡 + 𝛾𝛾�𝜉𝜉𝑞𝑞𝑞𝑞𝑗𝑗

𝑡𝑡 ) relaxes the constraints 
when at least one of the vehicle-groups has not entered the 
conflicting area.  

 
Fig. 3. Vehicle group formation 

Additionally, constraints (14) ensure that green-white and 
green-green signals will not activate simultaneously for 
conflicting lane-groups (see Fig. 4). Note that white-white is 
safe for conflicting lane-groups. However, green and white 
signal indications can be used for non-conflicting movements 
simultaneously since they don’t share any conflicting points. 

  
a) green-green × b) green-white × 

 
White-white √ 

Fig. 4. Different signal combinations for conflicting lane groups 
 

We introduced a set of constraints to impose a lower bound 
on the minimum green time in the central formulation. This set 
of constraints state that if a lane group starts receiving green 
signal indication, it should receive green signal indication for 
a minimum period 𝐺𝐺. However, these constraints can hinder 
the activation of white phases, which is not beneficial in terms 
of intersection delay. The first vehicle behind the intersection 

stop bar of east bound movement shown in Fig. 5.a is a CHV, 
therefore, it is not possible to give white indication to east 
bound movement. The only option to clear the east bound 
queue is to give green indication to that movement and red 
indication to the north bound movement. Based on the 
minimum green constraints, this signal plan should be active 
for at least 𝐺𝐺 minutes. However, if we switch the signal 
indication from green to white after operating the first vehicle 
behind the east bound stop bar, we can operate both east 
bound and north bound movements under simultaneous white 
phases as shown in Fig. 5.b. Hence, we replaced the minimum 
green time constraints by minimum active time constraints 
presented as constraints (15) which imposes a lower bound on 
the active time (green and following white times) of a lane-
group when its signal indication switches from red to green. 
Similarly, constraints (16) impose a minimum duration for the 
white phase for a lane-group when its signal switches from red 
to white. constraints (17) define an upper bound for the green 
signal duration of a lane group. 

  
a) Minimum green time b) Minimum active time 
Fig. 5. Minimum green and active times 

 
Constraints (18) define the yellow time duration while 

constraints (19) and (20) ensure that signal turns from green to 
yellow at the end of green and from white to yellow at the end 
of the white time, respectively. Constraints (21) impose all-red 
indication ℛ when a lane-group switches from yellow to red. 
Constraints (22) are introduced to clear the intersection 
conflicting area while switching the signal from green to 
white. In particular, if the signal is green for lane 𝑙𝑙 ∈ 𝐿𝐿 at time 
𝑛𝑛 ∈ 𝑇𝑇�  and the lane is to receive white signal at time 𝑛𝑛 + 1 ∈
𝑇𝑇� , constraints (22) will prevent conflicting lanes with lane 𝑙𝑙 ∈
𝐿𝐿 from receiving white signal for ℛ duration. Therefore, the 
last vehicle that entered the intersection conflicting area will 
clear the intersection before letting the conflicting vehicle-
groups enter the conflicting area during white phases.  

Constraints (23) – (24) define the initiation and termination 
of the white phase. The phase can initiate only when the first 
vehicle behind the intersection stop bar is a CAV. 
Additionally, the white phase will be terminated for lane 𝑙𝑙 ∈ 𝐿𝐿 
if the first vehicle behind the intersection stop bar is not a 
member of a vehicle-group. For instance, the third vehicle 
shown in Fig. 6 is the first vehicle behind the intersection stop 
bar and is not a member of the vehicle-group, therefore, its 
lane-group cannot receive white.  

Lane 1
=1=0=1 =1 =1 =1 =1
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Fig. 6. The relative location of vehicles in reference to intersection 

stop bar and vehicle-groups 
 
In summary, CAVs optimize objective function (3) subject 

to constraints (4) - (24). On the other hand, CHVs estimate 
their movements using the car-following model (1) with a 
given signal, or optimize objective function (2) subject to 
constraints(1), (4), (5), and (14) - (24) to estimate their 
trajectories while finding the optimal signal timing plans for 
themselves. 

B. Solution Technique 
The proposed vehicle-level MINLP in (1) contains non-

linear terms in the objective function (3) and constraints (1and 
(13); and seeks agreement on trajectories among vehicles with 
conflicting movements. This subsection first linearizes the 
aforementioned non-linear terms and then introduces a 
receding horizon structure over a planning horizon 𝑁𝑁� to 
capture the dynamics of distributed trajectory and signal 
timing plans. We first define auxiliary non-negative variables 
𝜆𝜆+𝑖𝑖𝑙𝑙

𝑡𝑡  and 𝜆𝜆−𝑖𝑖𝑙𝑙
𝑡𝑡  to linearize objective function (3) as follows. 

𝑍𝑍�𝑖𝑖𝑙𝑙′ =  min
𝒂𝒂,𝒈𝒈,𝒘𝒘

∑ (𝑟𝑟𝑙𝑙 − 𝑥𝑥𝑖𝑖𝑙𝑙𝑡𝑡 )𝑡𝑡∈𝑇𝑇 + 𝜔𝜔(𝜆𝜆+𝑖𝑖𝑙𝑙
𝑡𝑡+1 + 𝜆𝜆−𝑖𝑖𝑙𝑙

𝑡𝑡+1), 

                                                                 ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙′, 𝑙𝑙 ∈ 𝐿𝐿, 

(25) 

𝑣𝑣𝑖𝑖𝑙𝑙𝑡𝑡+1 − 𝑣𝑣𝑖𝑖𝑙𝑙𝑡𝑡 = 𝜆𝜆+𝑖𝑖𝑙𝑙
𝑡𝑡+1 − 𝜆𝜆−𝑖𝑖𝑙𝑙

𝑡𝑡+1, 
                                                      ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙′, 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇, 

(26) 

𝜆𝜆+𝑖𝑖𝑙𝑙
𝑡𝑡+1, 𝜆𝜆−𝑖𝑖𝑙𝑙

𝑡𝑡+1 ≥ 0, 
                                                      ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙′, 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇, 

(27) 

where (25) ensures that one of the auxiliary variables gets 
the value of zero and the other equals the absolute value 
function. Similar to [22], car-following constraints (1) will 
also be linearized. Additionally, we replace the safety 
constraints (13) by: 
𝜑𝜑+

𝑗𝑗𝑙𝑙
𝑡𝑡𝑞𝑞 + 𝜑𝜑−

𝑗𝑗𝑙𝑙
𝑡𝑡𝑞𝑞 + 𝜙𝜙+

𝑗𝑗𝑙𝑙
𝑡𝑡𝑞𝑞 + 𝜙𝜙−

𝑗𝑗𝑙𝑙
𝑡𝑡𝑞𝑞 + 𝜑𝜑+

𝑙𝑙𝑗𝑗
𝑡𝑡𝑖𝑖 + 𝜑𝜑−

𝑙𝑙𝑗𝑗
𝑡𝑡𝑖𝑖 +

𝜙𝜙+
𝑙𝑙𝑗𝑗
𝑡𝑡𝑖𝑖 + 𝜙𝜙−

𝑙𝑙𝑗𝑗
𝑡𝑡𝑖𝑖 ≥ 𝜁𝜁𝑞𝑞𝑗𝑗

𝑡𝑡 + ℒ + 2𝜌𝜌 + 𝑀𝑀�𝛾𝛾𝑖𝑖𝑙𝑙
𝑡𝑡 + 𝛾𝛾�𝜉𝜉𝑞𝑞𝑗𝑗𝑗𝑗

𝑡𝑡 +

𝑤𝑤𝑙𝑙
𝑛𝑛+𝑤𝑤𝑗𝑗

𝑛𝑛 − 4�,  

                 ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙′, 𝑙𝑙 ∈ 𝐿𝐿, 𝑞𝑞 ∈ 𝑃𝑃𝑗𝑗  , 𝑗𝑗 ∈ 𝐶𝐶𝑗𝑗 , 𝑡𝑡 ∈ 𝑇𝑇,𝑛𝑛 ∈ 𝑇𝑇�, 

(28) 

where 𝝋𝝋 and 𝝓𝝓 are auxiliary non-negative variables that 
help linearize the absolute value functions corresponding to 
the head location and tail location of vehicle-groups, 
respectively. 

Since the proposed optimization program contains binary 
variables, it is possible to provide some cuts to expedite the 
solution process of the optimization program. For instance, 
binary variable 𝛾𝛾𝑖𝑖𝑙𝑙𝑡𝑡  takes the value of one if vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙  on 
lane 𝑙𝑙 ∈ 𝐿𝐿 has passed the intersection stop bar by time 𝑡𝑡 ∈ 𝑇𝑇 
and takes the value of zero otherwise. Based on the definition 
of this variable, we can provide following cuts to reduce the 
computation time of the problem. 

𝛾𝛾𝑖𝑖𝑙𝑙𝑡𝑡
′ ≤ 𝛾𝛾𝑖𝑖𝑙𝑙𝑡𝑡 , ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇, 𝑡𝑡′ < 𝑡𝑡, (29) 

𝛾𝛾𝑖𝑖′𝑙𝑙
𝑡𝑡 ≤ 𝛾𝛾𝑖𝑖𝑙𝑙𝑡𝑡 , ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇, 𝑖𝑖′ > 𝑖𝑖, (30) 

𝛾𝛾𝑖𝑖𝑙𝑙𝑡𝑡 = 1,       𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑙𝑙0 ≥ 𝑏𝑏 ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇, (31) 

Constraints (29) state that if vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙  on lane 𝑙𝑙 ∈ 𝐿𝐿 has 
not passed the intersection location by time 𝑡𝑡 ∈ 𝑇𝑇 (i.e., 𝛾𝛾𝑖𝑖𝑙𝑙𝑡𝑡 =
0), the state variable 𝛾𝛾 for that vehicle should take the value of 
zero for time period 𝑡𝑡′ ∈ [0, 𝑡𝑡]. Similarly, constraints (30) 
indicates that if vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙  on lane 𝑙𝑙 ∈ 𝐿𝐿 has not passed the 
intersection location by time 𝑡𝑡 ∈ 𝑇𝑇, the state variable 𝛾𝛾 for its 
following vehicles should take the value of zero at time 𝑡𝑡 ∈ 𝑇𝑇. 
Finally, constraints (30) states that if a vehicle has already 
passed the intersection location (i.e., 𝑥𝑥𝑖𝑖𝑙𝑙0 ≥ 𝑏𝑏) the state variable 
𝛾𝛾 for that vehicle should take the value of one for the entire 
planning horizon. Note that 𝑥𝑥𝑖𝑖𝑙𝑙0  is the current location of the 
vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 on lane 𝑙𝑙 ∈ 𝐿𝐿 which is a parameter. Although 
these constraints seem primitive, they can reduce the 
computation time by pruning unnecessary branches in the 
branch and cut process used by CPLEX. Similar cuts are also 
introduced for the binary variables used for linearizing the 
safety constraints (13). 

1) Receding horizon technique 
Similar to our previous studies ([34]–[36]), a receding 

horizon control is implemented to solve the proposed 
formulation over a finite planning horizon 𝑁𝑁�. We first 
initialize the state variables 𝑥𝑥𝑖𝑖𝑙𝑙

𝑡𝑡0 and 𝑣𝑣𝑖𝑖𝑙𝑙
𝑡𝑡0 of vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 on 

lane 𝑙𝑙 ∈ 𝐿𝐿 at time 𝑡𝑡0 ∈ 𝑇𝑇. We also capture the current signal 
status, i.e., green 𝑔𝑔𝑙𝑙

𝑛𝑛0  and white 𝑤𝑤𝑙𝑙
𝑛𝑛0  on lane 𝑙𝑙 ∈ 𝐿𝐿 at time 

𝑛𝑛0 ∈ 𝑇𝑇� . The algorithm proceeds iteratively to form agreement 
among all vehicles on trajectories as well as signal timing 
plans. Since the update time steps for trajectory and signal 
timing plans are different (following sets 𝑇𝑇 and 𝑇𝑇� , 
respectively), the algorithm reaches agreement on either (i) 
trajectories with given signal timing plans at time 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡0 +
𝑁𝑁�/∆𝑇𝑇] or (ii) both signal timing plans and trajectories at times 
𝑛𝑛 ∈ [𝑛𝑛0,𝑛𝑛0 + 𝑁𝑁�/∆𝑇𝑇�] and 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡0 + 𝑁𝑁�/∆𝑇𝑇]. Post 
agreement, the selected actions in the first time step that are 
(1) acceleration rate 𝑎𝑎𝑖𝑖𝑙𝑙𝑡𝑡  of CAV 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙′ on lane 𝑙𝑙 ∈ 𝐿𝐿 at time 
𝑡𝑡0 + 1 and (2) signal indications 𝑤𝑤𝑙𝑙𝑛𝑛 and 𝑔𝑔𝑙𝑙𝑛𝑛 on lane 𝑙𝑙 ∈ 𝐿𝐿 at 
time 𝑛𝑛0 + 1 will be implemented. Note that the trajectories of 
CHVs are updated by Vissim and the car-following model (1) 
is only used to estimate the trajectories of the CHVs to be used 
in the trajectory optimization of CAVs. Tis mismatch between 
the estimated and implemented trajectories for CHVs results 
in a stochastic error which is captured using the receding 
horizon framework. After updating the acceleration rates and 
signal indications, the same process is repeated to reach 
agreement on signal timing plans and CAV trajectories at 
times 𝑛𝑛 ∈ [𝑛𝑛0 + 1,𝑛𝑛0 + 1 + 𝑁𝑁�/∆𝑇𝑇�] and 𝑡𝑡 ∈ [𝑡𝑡0 + 1, 𝑡𝑡0 + 1 +
𝑁𝑁�/∆𝑇𝑇]. The same process is repeated until the end of the study 
period. The proposed framework is detailed in Fig. 7.  
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Fig. 7. Receding horizon framework. 
2) Agreement  

Each vehicle optimizes/estimates its own trajectory and 
proposes a signal timing plan for all intersection lane-groups 
based on the shared information obtained from the rest of the 
vehicles in the intersection neighborhood. The decision 
variables of the vehicle-level optimization models are the 
acceleration rate of the vehicle 𝑎𝑎 and green 𝑔𝑔 and white 𝑤𝑤 
signal statuses for the lane groups. As a result, each vehicle 
chooses the signal status to maximize its own objective 
function. The value of the signal timing variables optimized 
by each vehicle is considered as its vote on signals. If the 
signals proposed by vehicles do not change in two consecutive 
iterations, an optimization model is solved to find the most 
voted feasible signal timing parameters to be implemented.  
Note that there is no need for CHVs to be assigned to a 
vehicle-group to be able to vote on signal timing parameters. 
Vehicle movements are subject to safety constraints (28) 
during white phases to avoid conflicting vehicle-groups. 
Therefore, vehicles tend to vote for a green signal for their 
lane-groups. Hence, vehicle-level objective functions 
incentivize voting for white signals. We also relax constraints 
(28) by introducing slack variable 𝛿𝛿𝑖𝑖𝑙𝑙

𝑡𝑡𝑞𝑞𝑗𝑗 in the CAVs’ objective 
function with a big coefficient 𝜓𝜓 to promote high coordination 
levels among CAVs. Therefore, objective functions �̂�𝑍𝑖𝑖𝑙𝑙 and 𝑍𝑍�𝑖𝑖𝑙𝑙′  
are rewritten as follows. 

 

𝑍𝑍𝑐𝑐�𝑖𝑖𝑙𝑙 =  min
𝒂𝒂,𝒈𝒈,𝒘𝒘

∑ (𝑟𝑟𝑙𝑙 − 𝑥𝑥𝑖𝑖𝑙𝑙𝑡𝑡 )𝑡𝑡∈𝑇𝑇 + 𝑀𝑀(𝑎𝑎𝑖𝑖𝑙𝑙𝑡𝑡 − 𝑑𝑑𝑖𝑖𝑙𝑙𝑡𝑡 ) −

𝜇𝜇∑ ∑ 𝑤𝑤𝑗𝑗𝑛𝑛𝑗𝑗∈𝐿𝐿𝑛𝑛∈𝑇𝑇� ,                                       ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿, 
(32) 

𝑍𝑍𝑐𝑐�′
𝑖𝑖𝑙𝑙 = min

𝒂𝒂,𝒈𝒈,𝒘𝒘
∑ (𝑟𝑟𝑙𝑙 − 𝑥𝑥𝑖𝑖𝑙𝑙𝑡𝑡 )𝑡𝑡∈𝑇𝑇 + 𝜔𝜔(𝜆𝜆+𝑖𝑖𝑙𝑙

𝑡𝑡+1 + 𝜆𝜆−𝑖𝑖𝑙𝑙
𝑡𝑡+1) 

−𝜇𝜇∑ ∑ 𝑤𝑤𝑗𝑗𝑛𝑛𝑗𝑗∈𝐿𝐿𝑛𝑛∈𝑇𝑇� +   𝜓𝜓∑ ∑ ∑ 𝛿𝛿𝑖𝑖𝑙𝑙
𝑡𝑡𝑞𝑞𝑗𝑗

𝑗𝑗∈𝐶𝐶𝑙𝑙𝑞𝑞∈𝑃𝑃𝑞𝑞𝑡𝑡∈𝑇𝑇 , 
                                                              ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙′, 𝑙𝑙 ∈ 𝐿𝐿, 

(33) 

Similarly, safety constraints (28) are reformulated as: 
𝜑𝜑+

𝑗𝑗𝑙𝑙
𝑡𝑡𝑞𝑞 + 𝜑𝜑−

𝑗𝑗𝑙𝑙
𝑡𝑡𝑞𝑞 + 𝜙𝜙+

𝑗𝑗𝑙𝑙
𝑡𝑡𝑞𝑞 + 𝜙𝜙−

𝑗𝑗𝑙𝑙
𝑡𝑡𝑞𝑞 + 𝜑𝜑+

𝑙𝑙𝑗𝑗
𝑡𝑡𝑖𝑖 + 𝜑𝜑−

𝑙𝑙𝑗𝑗
𝑡𝑡𝑖𝑖 + 𝜙𝜙+

𝑙𝑙𝑗𝑗
𝑡𝑡𝑖𝑖 +  

𝜙𝜙−
𝑙𝑙𝑗𝑗
𝑡𝑡𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑙𝑙

𝑡𝑡𝑞𝑞𝑗𝑗 ≥ 𝜁𝜁𝑞𝑞𝑗𝑗
𝑡𝑡 + ℒ + 2𝜌𝜌 + 𝑀𝑀�𝛾𝛾𝑖𝑖𝑙𝑙

𝑡𝑡 + 𝛾𝛾�𝜉𝜉𝑞𝑞𝑗𝑗𝑗𝑗
𝑡𝑡 +

𝑤𝑤𝑙𝑙
𝑛𝑛+𝑤𝑤𝑗𝑗

𝑛𝑛 − 4�, 

                 ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙′, 𝑙𝑙 ∈ 𝐿𝐿, 𝑞𝑞 ∈ 𝑃𝑃𝑗𝑗  , 𝑗𝑗 ∈ 𝐶𝐶𝑗𝑗, 𝑡𝑡 ∈ 𝑇𝑇,𝑛𝑛 ∈ 𝑇𝑇� , 

(34) 

We implement the following steps to reach agreement 
among vehicles on trajectories and signal timing plans. 

Step i Update CAV trajectories 
Given the signal timing plans, CAVs solve problem 𝓏𝓏 with 

objective (33) and constraints (4)-(12), (14)-(24), (26)-(27), 
and (34) to optimize their trajectories at each iteration 𝒯𝒯. The 
trajectory of vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙′ on lane 𝑙𝑙 ∈ 𝐿𝐿 at time 𝑡𝑡 ∈ 𝑇𝑇 at 
iteration 𝒯𝒯 + 1 will be updated by averaging ([37]) the 
trajectory from iteration 𝒯𝒯 (i.e., 𝑥𝑥�𝑖𝑖𝑙𝑙𝑡𝑡𝒯𝒯) and the optimized 
trajectory 𝑥𝑥𝑖𝑖𝑙𝑙𝑡𝑡  to push the trajectories toward system-level 
agreement after a finite number of iterations 𝒯𝒯. The maximum 
allowable value for the slack variable 𝜹𝜹 is reduced at each 
iteration to ensure feasible trajectories. 
𝑥𝑥�𝑖𝑖𝑙𝑙
𝑡𝑡,𝒯𝒯+1 = �1 − 1

𝒯𝒯
� 𝑥𝑥�𝑖𝑖𝑙𝑙𝑡𝑡𝒯𝒯 + �1

𝒯𝒯
� 𝑥𝑥𝑖𝑖𝑙𝑙𝑡𝑡 |𝓏𝓏, 

                                                       ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙′, 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇. 
(35) 

Step ii Update CHV trajectories 
CHVs use car-following model (1) to estimate their 

trajectories based on given signal timing plans and shared 
information from the rest of the fleet. Note that, the 
trajectories of CHVs are not averaged since human drivers do 
not use the exchanged information among vehicles and only 
react to the implemented trajectories of CAVs. Therefore, the 
trajectory of vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙  on lane 𝑙𝑙 ∈ 𝐿𝐿 at time 𝑡𝑡 ∈ 𝑇𝑇 at 
iteration 𝒯𝒯 + 1 is updated only based on the obtained 
trajectories as follows. 
𝑥𝑥�𝑖𝑖𝑙𝑙
𝑡𝑡,𝒯𝒯+1 = 𝑥𝑥𝑖𝑖𝑙𝑙𝑡𝑡 |𝓏𝓏′, ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇. (36) 

Step iii Share trajectory data 
All vehicles share their updated trajectory 𝑥𝑥�𝑗𝑗𝑙𝑙

𝑡𝑡,𝒯𝒯+1 with the 
rest of the vehicles in the intersection neighborhood to be used 
at iteration 𝒯𝒯 + 1.  

Step iv Subroutine for trajectory agreement  
A trajectory agreement is reached when the trajectory 

changes at two consecutive iterations do not exceed a pre-
defined value 𝜀𝜀; i.e., 
|𝑥𝑥�𝑖𝑖𝑙𝑙

𝑡𝑡,𝒯𝒯+1 − 𝑥𝑥�𝑖𝑖𝑙𝑙
𝑡𝑡,𝒯𝒯| ≤ 𝜀𝜀, ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇, (37) 

Step v Subroutine for signal agreement  
At time steps 𝑡𝑡 where joint optimization is involved; each 

vehicle optimizes its own trajectory and proposes a signal 
timing plan for all lane-groups. To this end, CAVs solve 
problem 𝓏𝓏 while CHVs solve problem 𝓏𝓏′ with objective (32) 
and constraints (1), (4)-(5), and (14)-(24). Note that vehicles 
that have arrived the intersection earlier must clear the 
conflicting area before their following vehicles can access the 
intersection. Therefore, we introduce constraints (38) and (39) 
to make sure that vehicles respect to the votes proposed by 
their preceding vehicles. Constraints (38) and (39) ensure that 
vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 on lane 𝑙𝑙 ∈ 𝐿𝐿 accepts the signal timing plan 
proposed by its preceding vehicles on the same lane; this 
guarantees that preceding vehicles have cleared the 
intersection by the time vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙  enters the intersection. 
Note that constraints (38) and (39) are defining priorities only 
for the vehicles on the same lane group while the negotiation 
for signal timing parameters happens between conflicting lane 
groups. Green and white signal indications on lane 𝑗𝑗 ∈ 𝐿𝐿 at 
time 𝑛𝑛 ∈ 𝑇𝑇�  voted by vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 on lane 𝑙𝑙 ∈ 𝐿𝐿 is denoted by 
𝑔𝑔�𝑙𝑙𝑗𝑗𝑙𝑙𝑛𝑛  and 𝑤𝑤�𝑙𝑙𝑗𝑗𝑙𝑙𝑛𝑛 . The term 1 − 𝛾𝛾�𝑗𝑗𝑙𝑙𝑡𝑡  will relax the two constraints 
after vehicle 𝑗𝑗 passes the intersection stop bar. For instance, 
assume that vehicle 3 shown in Fig. 6 proposes green signal 

Initialize
Define values for , and . Set and .

Update States
Update set and the current states , , , .  

Start

? 

Signal timing and trajectory optimization
Form agreement on trajectories & signal timings 
over & .

Determine:
 acceleration rates for vehicle ,
 signal timing plans and on lane . 

Trajectory optimization

Determine:
 acceleration rates for vehicle .

Given signal timing plans, form agreement on 
trajectories over .

Implement the trajectories for .

Implement the signal timing plan for .

= ?

End
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indication for lane 1 from time 𝑛𝑛 = 0 to 𝑛𝑛 = 10. In addition, 
assume that vehicle 3 is planning to cross the intersection stop 
bar by the time 𝑡𝑡 = 8 which leads to 𝛾𝛾�3,1

8 = 1. Please note that 
signal time step 𝑛𝑛 = 2 starts at the same time as the trajectory 
time step 𝑡𝑡 = 8 since we update trajectories and signal 
indications every 0.5 and 2 seconds, respectively. Constraints 
(38) and (39) ensure that vehicle 4 proposes the same signal 
indications that vehicle 3 proposed for lane 1 to ensure that 
vehicle 3 has cleared the intersection by the time that vehicle 4 
enters the intersection. Furthermore, the term (1 − 𝛾𝛾�𝑗𝑗𝑙𝑙𝑡𝑡 ) is 
multiplied to the right-hand side of these constraints to relax 
them after the preceding vehicle has passed the intersection 
stop bar. Therefore, vehicle 2 should propose green signal 
indication for lane 1 from time step 𝑛𝑛 = 0 to time step 𝑛𝑛 = 2. 

𝑤𝑤𝑙𝑙𝑛𝑛 ≥ 𝑤𝑤�𝑙𝑙𝑗𝑗𝑙𝑙𝑛𝑛 (1 − 𝛾𝛾�𝑗𝑗𝑙𝑙𝑡𝑡 ), 𝑗𝑗 < 𝑖𝑖, 𝑙𝑙 ∈ 𝐿𝐿,𝑛𝑛 ∈ 𝑇𝑇� , 𝑡𝑡 ∈ 𝑇𝑇, (38) 

𝑔𝑔𝑙𝑙𝑛𝑛 ≥ 𝑔𝑔�𝑙𝑙𝑗𝑗𝑙𝑙𝑛𝑛 (1 − 𝛾𝛾�𝑗𝑗𝑙𝑙𝑡𝑡 ), ∀𝑗𝑗 < 𝑖𝑖, 𝑙𝑙 ∈ 𝐿𝐿,𝑛𝑛 ∈ 𝑇𝑇� , 𝑡𝑡 ∈ 𝑇𝑇. (39) 

If the voted signal timing plans remain unchanged in 
consecutive iterations, each vehicle will solve the following 
problem to optimize the signal timings. The signal plans are 
incorporated into the optimization program of vehicles as 
input parameters for the next iteration. The objective is to find 
the signal status for each lane-group with the highest vote 
from vehicles on the same lane-group. 
ℤ =  min

𝒈𝒈, 𝒘𝒘
∑ ∑ ∑ (Ɗ𝑖𝑖𝑙𝑙 + 1)(1 −i∈𝐼𝐼𝑙𝑙l∈𝐿𝐿𝑛𝑛∈𝑇𝑇�

𝛾𝛾�𝑖𝑖𝑙𝑙𝑡𝑡 )(�𝑔𝑔𝑙𝑙𝑛𝑛 − 𝑔𝑔�𝑙𝑙𝑖𝑖𝑙𝑙𝑛𝑛𝒯𝒯� + �𝑤𝑤𝑙𝑙𝑛𝑛 − 𝑤𝑤�𝑙𝑙𝑖𝑖𝑙𝑙𝑛𝑛𝒯𝒯�)  
(40) 

𝑠𝑠. 𝑡𝑡. (14)-(24), (38)-(39)  
where Ɗ𝑖𝑖𝑙𝑙 is the delay of vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 on lane 𝑙𝑙 ∈ 𝐿𝐿, 

obtained from Vissim [38] as an input parameter, which 
imposes greater weight to vehicles with higher delay. For 
instance, if the delay of vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙  on lane 𝑙𝑙 ∈ 𝐿𝐿 is 1, its 
vote will be multiplied by Ɗ𝑖𝑖𝑙𝑙 + 1 = 2. Additionally, 𝑔𝑔�𝑙𝑙𝑖𝑖𝑙𝑙𝑛𝑛𝒯𝒯 and 
𝑤𝑤�𝑙𝑙𝑖𝑖𝑙𝑙𝑛𝑛𝒯𝒯 respectively denote green and white signal indications on 
lane 𝑙𝑙 ∈ 𝐿𝐿 at time 𝑛𝑛 ∈ 𝑇𝑇�  voted by vehicle 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙  on lane 𝑙𝑙 ∈ 𝐿𝐿 
at iteration 𝒯𝒯. Multiplying 1 − 𝛾𝛾�𝑖𝑖𝑙𝑙𝑡𝑡  captures vehicle 𝑖𝑖’s vote as 
far as it has not passed the intersection stop bar. 

We utilize a linearized version of ℤ and associated 
constraints as follows. 
ℤ� =  min

𝒈𝒈, 𝒘𝒘
∑ ∑ ∑ (Ɗ𝑖𝑖𝑙𝑙 + 1)(1 − 𝛾𝛾�𝑖𝑖𝑙𝑙𝑡𝑡 )(ℊ+𝑙𝑙𝑖𝑖𝑙𝑙

𝑛𝑛𝒯𝒯 +i∈𝐼𝐼𝑙𝑙l∈𝐿𝐿𝑛𝑛∈𝑇𝑇�

ℊ−𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛𝒯𝒯 + ɯ+

𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛𝒯𝒯 + ɯ−

𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛𝒯𝒯)  

(41) 

𝑔𝑔𝑙𝑙𝑛𝑛 − 𝑔𝑔�𝑙𝑙𝑖𝑖𝑙𝑙𝑛𝑛𝒯𝒯 = ℊ+𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛𝒯𝒯 − ℊ−𝑙𝑙𝑖𝑖𝑙𝑙

𝑛𝑛𝒯𝒯, ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿 ,𝑛𝑛 ∈
𝑇𝑇� , (42) 

𝑤𝑤𝑙𝑙𝑛𝑛 − 𝑤𝑤�𝑙𝑙𝑖𝑖𝑙𝑙𝑛𝑛𝒯𝒯 = ɯ+
𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛𝒯𝒯 − ɯ−

𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛𝒯𝒯, ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿 ,𝑛𝑛 ∈

𝑇𝑇� , (43) 

ℊ+𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛𝒯𝒯 ,ℊ−𝑙𝑙𝑖𝑖𝑙𝑙

𝑛𝑛𝒯𝒯,ɯ+
𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛𝒯𝒯 ,ɯ−

𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛𝒯𝒯 ≥

0, 
∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿 ,𝑛𝑛 ∈ 𝑇𝑇� . 

(44) 

The agreement subroutine for trajectories and signal timing 
plans is further detailed in Fig. 8. 
Agreement subroutine 
Step 1: Set 

 𝒯𝒯 ← 1 
 𝑎𝑎�𝑖𝑖𝑙𝑙𝑡𝑡𝒯𝒯 ← 𝑎𝑎𝑖𝑖𝑙𝑙𝑡𝑡                         ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡0 + 𝑁𝑁�/∆𝑇𝑇] 
 𝑔𝑔�𝑙𝑙𝑖𝑖𝑙𝑙𝑛𝑛𝒯𝒯 ← 𝑔𝑔𝑙𝑙𝑛𝑛 , 𝑤𝑤�𝑙𝑙𝑖𝑖𝑙𝑙𝑛𝑛𝒯𝒯 ← 𝑤𝑤𝑙𝑙𝑛𝑛        ∀ 𝑙𝑙 ∈ 𝐿𝐿,𝑛𝑛 ∈ [𝑛𝑛0,𝑛𝑛0 + 𝑁𝑁�/∆𝑇𝑇�] 

Step 2: Loop until agreements are reached 
2.1. Optimization 

       2.1.1. Solve problem 𝓏𝓏 for CAVs 
       2.1.2. Solve problem 𝓏𝓏 ′ for CHVs 
2.2. Update 
       2.2.1. Update CAV trajectories using equations (35) 
       2.2.2. Update CHV trajectories using equations (36) 
2.3. Signal Agreement 
       2.3.1. If signal parameters are fixed go to step 2.4. 
       2.3.2. If votes on signals do not change solve problem 
                 (14)-(24), (38)-(39), and (41)-(44) and fix 
                 signal variables 
       2.3.3. Set 𝒯𝒯 ← 𝒯𝒯 + 1 and go to step 2.1. 
 2.4. Trajectory Agreement 
       2.4.1. If |𝑥𝑥�𝑖𝑖𝑙𝑙

𝑡𝑡,𝒯𝒯+1 − 𝑥𝑥�𝑖𝑖𝑙𝑙
𝑡𝑡,𝒯𝒯| ≤ 𝜀𝜀   ∀𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇 end 

       2.4.2. Set 𝒯𝒯 ← 𝒯𝒯 + 1 and go to step 2.1. 
End Loop 

Fig. 8. Agreement formation subroutine 

IV.NUMERICAL EXPERIMENTS 
This section first introduces the case study intersection and 

then discusses the results including mobility, safety, and 
convergence performances. The proposed problem framework 
is run on a desktop computer with a Core i9 CPU and 64 GB 
of memory. Vissim microscopic traffic simulator [38] is used 
to implement the obtained solutions in order to measure 
mobility and safety performance measures. We overwrite 
Vissim’s car following logic for CAVs based on the 
trajectories that our methodology finds. On the other hand, we 
let the Vissim car-following to update the trajectories of CHVs 
and use the car-following model (1) to only estimate the 
movements of CHVs. 

A. Case Study 
The proposed problem methodology is applied to a four-

legged isolated intersection with exclusive through and left-
turn movements. We assume that vehicles are in their 
preferred lanes prior to entering the intersection neighborhood 
and thus, lane changing can be ignored. Please note that each 
phase is associated with one lane since the intersection has one 
lane for each movement. The communication range is 
assumed to be 650 𝑖𝑖𝑡𝑡 which is within the maximum 1000 𝑖𝑖𝑡𝑡 
dedicated short-range communication range. The maximum 
speed for all vehicles is assumed to be 42.5 𝑖𝑖𝑡𝑡/𝑠𝑠. We update 
trajectories and signal indications every Δ𝑇𝑇 = 0.5 𝑠𝑠 and Δ𝑇𝑇� =
2 𝑠𝑠, respectively. In addition, the maximum length of vehicle-
groups must allow  a vehicle group to clear the intersection 
with the minimum white phase time plus yellow transition 
time. Therefore, the maximum vehicle group length should be 
greater than 𝜁𝜁 ̅ ≥ 𝑣𝑣�𝑊𝑊 + 𝑌𝑌� + 𝐷𝐷 = 351.8 𝑖𝑖𝑡𝑡, which is 
rounded up to 360 𝑖𝑖𝑡𝑡. TABLE II summarizes the value of the 
parameters used in the case studies.  
 
 
TABLE II  VALUE OF THE PARAMETERS USED IN THE CASE 

STUDY. 
Parameters Value 
Maximum and minimum speeds (𝑖𝑖𝑡𝑡/𝑠𝑠) 42.5 & 0 
Maximum acceleration (𝑖𝑖𝑡𝑡/𝑠𝑠2) 13 
Minimum acceleration (𝑖𝑖𝑡𝑡/𝑠𝑠2) -11.5 
Human driver reaction time (𝑠𝑠) 1 
Automated vehicle reaction time (𝑠𝑠) 0.1 
Detection range (𝑖𝑖𝑡𝑡) 650 
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Intersection location (𝑖𝑖𝑡𝑡) 650 
Maximum length of vehicle-groups (𝑖𝑖𝑡𝑡) 360 
Average length of vehicles (𝑖𝑖𝑡𝑡) 13 
Safety distance between consecutive vehicles (𝑖𝑖𝑡𝑡) 11.8 
Safety distance between CAVs and red signal light (𝑖𝑖𝑡𝑡) 1 
Safety distance between vehicle-groups of conflicting lane-
groups (𝑖𝑖𝑡𝑡) 40 

Car-following parameter 𝛼𝛼1 (𝑠𝑠−1) 0.95 
Car-following parameter 𝛼𝛼2 (𝑠𝑠−2) 0.25 
Trajectory updating interval (𝑠𝑠) 0.5 
Signal status updating interval (𝑠𝑠) 2 
All red time (𝑠𝑠) 2 
Yellow time (𝑠𝑠) 4 
Minimum active (green + following white) time for through 
movements (𝑠𝑠) 12 

Minimum active (green + following white) time for left-turns 
(𝑠𝑠) 4 

Minimum white duration for through movements (𝑠𝑠) 6 
Minimum white duration for left-turning movements (𝑠𝑠) 4 
Maximum green time for through and left-turning movements 
(𝑠𝑠) 60 

Planning time horizon (𝑠𝑠) 20 
Study period (𝑠𝑠) 900 

The problem is solved for a 900 𝑠𝑠 study period and three 
different demand levels as shown in Fig. 9. Note that the 
demand for left-turn movements is 8% of the through 
movements. Eight different CAV market penetration rates are 
considered for each demand level, ranging from low (0% and 
10), medium (30%, 50%, and 70%), to high (80%, 90%, and 
100%) to capture the effects of CAVs on the intersection 
performance measures.  

 
Fig. 9. Demand levels for case studies. 

B. Results 
3) Mobility 

Fig. 10 shows the average delay for the fully-actuated signal 
timing plan found in Vissim [38] and the proposed agreement-
based signal timing and trajectory optimization for different 
demand levels and CAV market penetration rates. The results 
indicate that the proposed methodology reduces the 
intersection average delay by 40.2% - 98.9% compared to the 
fully-actuated signal timing plan for various demand levels 
and CAV penetrations rates. Increasing the CAV penetration 
rate contributes to reductions in the average delay in all 
demand levels. This reduction can be caused by (i) more 
efficient operation of CAVs and (ii) increasing the possibility 
of activation of white phases. The significant reduction in 
intersection average delay from 80% to 90% CAV penetration 
rate in demand level 3 supports the hypothesis of the 
effectiveness of the white phase for a mixed autonomy 
environment. In addition, the difference between average 
delay for different demand levels decreases as the CAV 
market penetration rate increases. This can be due to efficient 
operation of vehicles during white phases which increases the 
intersection capacity significantly. 

 
Fig. 10. Average delay for all demand levels with different CAV 

market penetration rates. 
Fig. 11 shows the signal timing plans for all lane groups 

with different CAV market penetration rates in demand level 
3. As shown in this figure, white phase activation increases 
with the CAV market penetration rate. We observe frequent 
white phase use for conflicting movements when the market 
penetration rate reaches 50%.  The white phase becomes the 
dominant signal indication when the market share reaches and 
exceeds 70%; however, red and green signal indications 
appear even at a 90% CAV penetration rate. 

 
a) 0% CAV market penetration rate 

 
b) 30% CAV market penetration rate 

 
c) 50% CAV market penetration rate 

 
d) 70% CAV market penetration rate 

 
e) 80% CAV market penetration rate 

 
f) 90% CAV market penetration rate 

Fig. 11. Signal timing plans for demand level 3 with different CAV 
market penetration rates 

A comparison between the activation rate of white phases 
with the central formulation proposed by Niroumand et al. 
[22] and the distributed formulation proposed in this study is 
presented in Fig. 12. One limitation of the previous work was 
that the white phase was not activated as frequently as it was 
expected. As such, in the present study, the formulation was 
enhanced. As it is shown in this figure, our proposed 
formulation leads to significantly higher rates of white phase 
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activation than previous formulation for all CAV penetration 
rates due to the changes made to the formulation. The 
difference between the white phase activation rates affirms 
that our proposed formulation could successfully increase the 
feasible area of the problem. 

 

 
Fig. 12.  White phase activation rate comparison between central 

and distributed formulations for demand level 3 
TABLE III compares the average run time and total delay 

achieved by executing the central ([22], [30], [31]) and 
distributed methodologies for different CAV penetration rates 
under demand level 3. The average run time for the distributed 
methodology is always less than the updating time interval 
while the run time for the central methodology is much longer 
than the updating time interval by two orders of magnitude. 
Furthermore, the distributed methodology yielded shorter total 
delays than the central methodology when CAV penetration 
rate is between 50% and 90%. This is because of the higher 
white phase activation rate in the distributed formulation due 
to the enhancement we have made in the optimization model 
used in the central methodology. Note that with 0%, 10%, 
30%, and 100% CAV penetration rates the signal timing plans 
cannot be significantly different between the central and 
distributed formulations since the possibility of activation of 
the white phases are low with 0%, 10%, and 30% CAV 
penetration rates while the white phase is the only phases used 
with 100% CAV penetration rates. Therefore, the total delay 
of the distributed methodology is more than the central one 
due to the decentralized methodology. 
 

TABLE III TOTAL DELAY AND AVERAGE RUN TIME 
COMPARISON BETWEEN CENTRAL AND DISTRIBUTED 

METHODOLOGIES UNDER DEMAND LEVEL 3 
 

Average run time (ms) Total delay (s) 
Distributed Central Distributed Central 

C
A

V
 p

en
et

ra
tio

n 
ra

te
 (%

) 0 167 10315 4905.7 4701.6 
10 144 10649 3739 3604.4 
30 165 10822 2644 2610.3 
50 161 11034 2374 2436.1 
70 104 13380 1602.6 1800 
80 160 67684 1194 1356.3 
90 128 115063 347.4 362.9 

100 173 60930 85.2 82.31 

 
 
 
 
Fig. 13 shows the trajectory of CHVs and CAVs on the 

eastbound lane of the intersection shown in Fig. 2 with 
different CAV penetration rates in demand level 3. The 

trajectory of CHVs and CAVs are shown with solid red and 
blue lines, respectively. Instead of stopping behind the red 
light, vehicles adjust their speed during white phases and pass 
the conflicting zone with a fewer number of stops. Therefore, 
traffic flow becomes smoother with an increase in the CAV 
market share. 

 
a) 0% CAV market penetration rate 

 
c) 30% CAV market penetration rate 

 
d) 50% CAV market penetration rate 

 
e) 70% CAV market penetration rate 

 
f) 80% CAV market penetration rate 

 
h) 100% CAV market penetration rate 

 
Fig. 13. Trajectories of vehicles in lane 2 for demand level 3 with 

different CAV penetration rates 
4) Safety 

We have analyzed traffic safety considering rear-end and 
crossing conflicts using the surrogate safety assessment model 
(SSAM) software [39]. The time to collision (TTC) is used as 
the surrogate safety assessment measure. The results indicate 
that there is no near collision case for both considered 
conflicts with different CAV market penetration rates and 
demand levels assuming 1.5 𝑠𝑠 TTC threshold. Fig. 14 shows 
the TTC for rear-end conflicts under the TTC threshold of 10 
𝑠𝑠. The median of TTC shows a decreasing trend by increasing 
the CAV penetration rate up to 80% due to co-existence of 
CHVs and CAVs with shorter reaction time. On the other 
hand, the median of the rear-end TTC decreases from 80% to 
100% CAV penetration rates since most of the vehicles are 
operated during simultaneous white phases which leads to a 
smaller number of stops compared to green and red phases. On 
the other hand, interquartile dispersion increases as CAV 
penetration rate increases up to 80% and decreases from 80% 
to 100%. This can be due to mixed fleet of CAVs and CHVs 
and mixed use of green and white signal indications. However, 
the interquartile dispersion decreases as the fleet and signal 
indications become uniform in 90% and 100% CAV 
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penetration rates. Note that, no crossing near-crash condition 
was reported by SSAM. 

 
Fig. 14.  Rear-end time to collision for demand level 3 with different 

CAV penetration rates 
5) Rider Comfort 

Fig. 15 shows the trajectory, speed, and acceleration profiles 
of a sample CAV and its following CHV that go through the 
intersection during the white phase. As it is shown, the CAV 
reduces its speed to prevent a potential collision with 
conflicting vehicle-groups. However, it does not need to come 
to a complete stop to avoid the collision. The following CHV 
(Fig. 15. (d), (e), and (f)) goes through the intersection even 
smoother than the leading CAV since the CAV is responsible 
for the collision avoidance. 

 
a) CAV trajectory 

 
b) CAV speed profile 

 
c) CAV acceleration profile 

 
d) CHV trajectory 

 
e) CHV speed profile 

 
f) CHV acceleration profile 

Fig. 15.  Trajectory, speed, and acceleration profiles of a CAV and 
its following CHV 

 
TABLE III summarizes the driving comfort parameters 

including average and standard deviation of speed, average 
acceleration and deceleration, average positive and negative 
jerk. Note that we did not include zero values in our analysis 
for the positive and negative jerk, acceleration, and 
deceleration. As shown in the table, the average speed 
increases for both types of vehicles as the CAV market 
penetrations rate increases. The average speeds for CAVs are 
higher than CHVs for all CAV penetration rates since CAVs 
have smaller reaction times and consider the future states of 
the signal and other CAVs in their trajectory optimization 
program. On the other hand, speed variances show a 
decreasing trend with increasing the CAV penetration rate 
since the speed difference of CAVs is minimized in their 
optimization program. Therefore, the speed difference of 
CAVs is always less than CHVs. In addition, average positive 
and negative acceleration and jerk are much lower than their 
maximum and minimum values which shows smooth changes 
in variations of speed and acceleration rate. 
 
TABLE IV DRIVING COMFORT PARAMETERS UNDER DEMAND 
LEVEL 3 AND DIFFERENT CAV PENETRATION RATES FOR CAVS 

AND CHVS 
Driving Comfort Measure CAV Market Share (%) 

0 30 50 70 80 100 

CAVs 

Average speed (𝑖𝑖𝑡𝑡/𝑠𝑠) - 25.66 26.47 28.93 35.68 38.74 

Speed standard deviation (𝑖𝑖𝑡𝑡/𝑠𝑠) - 18.19 17.87 16.69 12.01 5.87 

Average acceleration (𝑖𝑖𝑡𝑡/𝑠𝑠2) - 3.89 3.80 4.54 5.12 4.98 

Acceleration standard deviation (𝑖𝑖𝑡𝑡/𝑠𝑠2) - 4.23 4.12 4.49 4.66 4.29 

Average deceleration (𝑖𝑖𝑡𝑡/𝑠𝑠2) - -4.03 -3.92 -4.74 -5.34 -7.17 

Deceleration standard deviation (𝑖𝑖𝑡𝑡/𝑠𝑠2) - 5.07 4.93 5.10 5.29 5.85 

Average positive jerk (𝑖𝑖𝑡𝑡/𝑠𝑠3) - 3.89 3.98 5.15 7.55 8.31 

Positive jerk standard deviation (𝑖𝑖𝑡𝑡/𝑠𝑠3) - 5.99 5.91 6.91 8.62 8.14 

Average negative jerk (𝑖𝑖𝑡𝑡/𝑠𝑠3) - -3.83 -4.39 -5.20 -7.66 -10.90 

Negative jerk standard deviation (𝑖𝑖𝑡𝑡/𝑠𝑠3) - 6.04 6.18 7.13 8.82 9.20 

CHVs 
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Average speed (𝑖𝑖𝑡𝑡/𝑠𝑠) 21.72 24.39 24.97 25.71 31.39 - 
Speed standard deviation (𝑖𝑖𝑡𝑡/𝑠𝑠) 19.81 19.08 18.82 18.19 16.52 - 
Average acceleration (𝑖𝑖𝑡𝑡/𝑠𝑠2) 3.39 2.99 3.07 2.84 1.94 - 
Acceleration standard deviation (𝑖𝑖𝑡𝑡/𝑠𝑠2) 4.45 4.17 4.18 4.03 3.27 - 
Average deceleration (𝑖𝑖𝑡𝑡/𝑠𝑠2) -3.39 -2.45 -2.15 -1.95 -1.29 - 
Deceleration standard deviation (𝑖𝑖𝑡𝑡/𝑠𝑠2) 4.29 3.63 3.27 2.79 1.95 - 
Average positive jerk (𝑖𝑖𝑡𝑡/𝑠𝑠3) 2.33 2.35 2.36 2.08 1.22 - 
Positive jerk standard deviation (𝑖𝑖𝑡𝑡/𝑠𝑠3) 4.25 4.66 4.91 4.72 3.78 - 
Average negative jerk (𝑖𝑖𝑡𝑡/𝑠𝑠3) -2.52 -2.30 -2.30 -1.91 -1.14 - 
Negative jerk standard deviation (𝑖𝑖𝑡𝑡/𝑠𝑠3) 3.80 4.17 4.38 3.97 2.85 - 

6) White Phase Effect on Traffic Operations 
We study the effects of the white phase on total delay by 
creating two scenarios of (1) no white phase activation and (2) 
optimized white phase activation. The no white phase scenario 
represents joint CAV trajectory and signal optimization. In  
Fig. 16 we summarize the results for demand level 3 with 900 
vehicle/h/lane on each through lane and 8% left turns. At 0% 
CAV market penetration rates, the total delays found for each 
scenario were identical as expected. In fact, the white phase is 
never activated in either scenario. At 10% CAV market share, 
we observed the white phase in 6.03% of the study period, 
which led to a 3.2% reduction in total delay due to reducing 
the number of phase transitions. With an increase in the CAV 
market share, the total delay reduction increases because, 
white phase allows much fewer phase transitions, which leads 
to less lost time and less delay. 

   
Fig. 16.  No white phase and Optimized white phase total delay 

comparison for demand level 3 
 

7) Fuel Consumption 
Fig. 17 shows the average fuel consumption for different 

CAV penetration rates and white phase activation scenarios 
under demand level 3. As it is shown, average fuel 
consumption strictly decreases as the CAV penetration rate 
increases for both white phase activation scenarios. In 
addition, fuel consumption under optimized white phase 
activation scenario is always lower than no white phase 
activation scenario due to the presence of simultaneous white 
phases, which lead to fewer phase transitions and lost time. 
Average fuel consumption decreases with a relatively high 
rate from 0% to 30% CAV penetration rates due to higher 
performances of CAVs. The reduction rate decreases from 
30% to 80% and further increases from 80% to 90% due to the 
dominance of the simultaneous white phases under optimized 
white phase activation scenario. On the other hand, the 
reduction in average fuel consumption under no white phase 
activation scenario is not significant in high CAV penetration 

rates since vehicles still need to decelerate to stop behind the 
red signal indications and accelerate to pass the conflicting 
area during green signals. 

 
Fig. 17.  No white phase and Optimized white phase average fuel 

consumption comparison for demand level 3 
 

8) Convergence 
The convergence of the proposed methodology is studied by 

comparing the trajectories of vehicles at different iterations. 
Fig. 18 shows the trajectory from 180th to 190th second. Note 
that this vehicle entered the detection area at the 170th second. 
The vehicle smoothly reduced its speed to enter the conflicting 
area at the proper time, however, it had to make a minor 
change in its trajectory prior to entering the conflicting area to 
avoid collisions. We also observe that the trajectory changes 
over iterations and the amount of change decreases over 
iterations until it becomes negligible. This is the point that the 
agreement is reached among CAVs on their trajectories. Fig. 
19 shows the difference in trajectories between two 
consecutive iterations. The difference between iterations one 
and two is large; however, the difference decreases as the 
algorithm proceeds in iterations. Fig. 18 and Fig. 19 show that 
the trajectory of the vehicle is converged at iteration 7 with no 
considerable fluctuations. Note that, similar trends are 
observed for all the vehicles and we show this trajectory as a 
sample.  

 

 
Fig. 18.  Trajectory of a vehicle across different iterations 
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Fig. 19. The difference of trajectories at consecutive iterations 
 

9) Computation time 
Fig. 20 shows the computation time for demand level 3 with 

a 100% CAV penetration rate which is the most complicated 
scenario due to the presence of the highest number of vehicle-
groups. As it is displayed, the algorithm converged with less 
than 0.4 seconds of computation time which represents the 
possibility of real-world implementation of the proposed 
methodology considering 0.5 seconds of updating time 
interval. 

 

 
Fig. 20.  Computation time for demand level 3 with 100% CAV 

penetration rate 

V.CONCLUSION 
This paper introduces an agreement-based distributed 

methodology to control a mixed traffic stream of CAVs and 
CHVs at signalized intersections. The proposed solution 
technique aims to design CAV trajectories and signal timings 
more accurately while reducing the computational complexity 
of the decision-making process. We have incorporated a new 
white phase into traffic lights during which, CAVs act as 
mobile traffic controllers by forming and leading groups of 
CHVs and navigating through the intersection. The white 
phase will not be activated when the CAV market penetration 
rate is not high enough and instead, the green signal indication 
is utilized. We have formulated the joint signal timing and 
trajectory optimization problem as vehicle-level MINLPs. To 
reduce the complexity of the vehicle-level problems, the 
formulation is first linearized and then embedded into a 
receding horizon framework. The distributed methodology 
achieves agreement among all vehicles on vehicles’ 
trajectories and signal timing parameters through an iterative 
process. Our case study results indicate that the proposed 
methodology can efficiently solve the problem, where the 
intersection total delay is reduced by 40.2% - 98.9% compared 
to a fully-actuated intersection control. In addition, the 
methodology produces solutions in real-time, which makes it 
suitable for real-world applications. Moreover, white phases 
are occasionally assigned to conflicting movements from a 
30% CAV penetration rate and become the dominant signal 
status from a 70% rate.  
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