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Multicopters in Structured Free Flight Concepts
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Abstract—Unmanned Aerial Vehicles (UAVs) are now
becoming increasingly accessible to amateur and com-
mercial users alike. Several types of airspace structures
are proposed in recent research, which include several
structured free flight concepts. In this paper, for simplic-
ity, distributed coordinating the motions of multicopters in
structured airspace concepts is focused. This is formulated
as a free flight problem, which includes convergence to
destination lines and inter-agent collision avoidance. The
destination line of each multicopter is known a priori.
Further, Lyapunov-like functions are designed elaborately,
and formal analysis and proofs of the proposed distributed
control are made to show that the free flight control problem
can be solved. What is more, by the proposed controller,
a multicopter can keep away from another as soon as
possible, once it enters into the safety area of another
one. Simulations and experiments are given to show the
effectiveness of the proposed method.

Index Terms—swarm; collision avoidance; distributed
control; free flight; air traffic.

I. INTRODUCTION

A
IRSPACE is utilized today by far lesser aircraft than

it can accommodate, especially low-altitude airspace.

There are more and more applications for Unmanned Aerial

Vehicles (UAVs) in low-altitude airspace, ranging from the on-

demand package delivery to traffic and wildlife surveillance,

inspection of infrastructure, search and rescue, agriculture,

and cinematography. Moreover, since UAVs are usually small

owing to portability requirements, it is often necessary to

deploy a team of UAVs to accomplish specific missions. All

these applications share a common need for both navigation

and airspace management. One good starting point is NASA’s

Unmanned Aerial System Traffic Management (UTM) project,

which organized a symposium to begin preparations of a

solution for low-altitude traffic management to be proposed

to the Federal Aeronautics Administration (FAA). What is

more, the design of Low-Altitude Air city Transport (LAAT)

systems has attracted more and more research [1], [2]. Several

centralized and decentralized control approaches are pro-

posed for LAAT systems. A conclusion is that centralized

architecture is suitable for route planning and traffic flow

control but lacks scalability for conflict detection and collision

avoidance [3]; in other words, the computational complexity

is higher to solve a large amount of conflicts among UAVs
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by centralized programming-based methods [4]. To address

such a problem, free flight is a developing air traffic control

method that uses decentralized control [5]. Parts of airspace

are reserved dynamically and automatically in a distributed

way using computer communication for separation assurance

among aircraft. This new system may be implemented into the

U.S. air traffic control system in the next decade. Airspace may

be allocated temporarily by UTM system for a particular task

within a given time interval. In this airspace, these aircraft have

to be managed to complete their tasks, i.e., arrive at the specific

region while avoiding collisions. Moreover, different airspace

structures are investigated in recent research. In the Metropolis

project, layers-, zones-, and tubes-based airspace concepts are

investigated experimentally to benefit the airspace capacity [6].

In the AIRBUS’s Skyways project, the tubes-based airspace

concepts are focused on. The regions called ‘virtual tubes’

are designed to enable Vertical TakeOff and Landing (VTOL)

UAVs flights over the cities [7]. Another airspace concept

similar to the road network called ‘sky highway’ is proposed in

[8], where aircraft are only allowed inside the following three:

airways, intersections, and nodes. More specifically, airways

play a similar role to roads or virtual tubes, intersections are

formed by at least two airways, and nodes are the points of

interest reachable through an alternating sequence of airways

and intersections. It is worth pointing out that the temporary

target of each UAV is always a chain of lines or planes

rather than a chain of points corresponding to the boundary

of regions, which is in contrast to the unstructured airspace

concept. For example, under the sky highway structure, the

task of each UAV is to pass the finish line of the airway at

which it is located [8], [9]. Similarly, under the zones airspace

concept [6], the task of a UAV is from its origin to another

region while avoiding collision with other UAVs. For each

UAV, a feasible path will be given a priori as a chain of regions

by the centralized path planning algorithms (e.g., A-star or

Dijkstra algorithm). The UAV will choose the temporary target

as the boundary line or plane from the current to the next

region, as shown in Fig. 1(a) and (b).

In this paper, distributed coordinating the motions of mul-

ticopters in low-altitude structured airspace is focused on.

Within the VTOL ability, an important ability that might be

mandated by authorities in high traffic areas such as lower

altitude in the urban airspace [1], multicopters are highly

versatile and can perform tasks in an environment with very

confined airspace available to them. The main problem here,

called the free flight control problem, is to coordinate the mo-

tions of distributed multiple multicopters include convergence

http://arxiv.org/abs/2111.11049v1
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(a) (b)

Fig. 1. Flying from a region to another under the zones-based airspace
concept, each UAV should switch its destination line corresponding to
the next region to complete its route.

to destinations (a plane or a line) and inter-agent collision

avoidance, which is very common in practice. For example, the

free flight area can be farmland or an area for package delivery.

The scenario mentioned above is also applicable to mobile

multi-robot systems or swarm robots. Such coordination prob-

lems of multiple agents have been addressed partly using

different approaches, various stability criteria, and numerous

control techniques [10], [11], [12], [13] (e.g., formation control

methods [14], [15], [16], [17], Lyapunov-like function methods

[18], [19], [20], [21], [22], optimal control methods [4], [23]).

It is worth pointing out that these approaches have their own

strengths and weaknesses. For example, the formation control

methods perform well in scenarios where multiple UAVs have

the same task but have limitations in LAAT systems because of

their dependence on communication stability and connectivity

among multicopters, which is in contradiction with each UAV

performing its own task. The optimal control method trades for

optimal objectives (the cost of time, distance, or energy) at the

expense of time complexity using Linear Programming (LP) or

Mixed-Integer Linear Programming (MILP) algorithms, which

is more suitable for centralized control but lacks scalability for

increasing UAVs.

Based on the reasons above, the proposed problem is mainly

solved using Lyapunov-like function methods in this paper

because of its ease of use and low time complexity. The control

laws use the negative gradient of mixing of attractive Lya-

punov functions and barrier functions to produce vector fields

that ensure convergence and conflict avoidance, respectively. It

is similar to the Artificial Potential Field (APF) based methods.

However, for such type method, the deadlock and livelock will

exist, namely undesired equilibria appear. One conclusion is

stated in [24] that true global convergence is not achieveable

under APF based methods, i.e., there must exist additional

undesired equilibria; further, Rimon-Koditschek sense is pro-

posed as a design principle for Lyapunov-like functions to

avoid collision for single agent with obstacles, which implies

that all undesired local minima disappear. This implies that

global convergence is achievable with probability 1, namely

deadlock avoidance is ensured. However, the limitation is that

livelock may happen under cooperative multi-agent cases. This

is the first problem for distributed coordination with only

partial information.

Besides this problem, the second problem about conflict

resolution will also be encountered in practice. The conflict

between two agents is often defined in control strategies that

their distance is less than a safety distance. In most literature,

under the condition that the initial distance among agents

is more than the safety distance, conflict avoidance among

agents is proved formally rather than conflict resolution [19],

[22]. However, a conflict will happen in practice because of

uncertainties such as estimated noise, communication delay,

and control delay. Due to the limitation of the designed

barrier function’s domain, these strategies cannot handle the

‖pi − pj‖ < R situations (pi, pj are two multicopters’

positions, and R > 0 is the defined safety distance). This is a

big difference from some indoor robots with a highly accurate

position estimation and control. For such a similar problem, in

[25], a barrier function is proposed for controlling a nonlinear

system to operate within the safe set, but also outside the

safe set with some robustness margin. In [26], a preliminary

designed controller for multicopter is investigated to avoid a

singer non-cooperative moving obstacle, but the conclusion

also has limitations to extend to the case of multiple moving

obstacles.

Motivated by the two problems, a distributed controller is

proposed to solve the free flight control problem for multiple

cooperatives multicopters in low-altitude structured airspace.

The contributions lie on the following properties of the pro-

posed method.

• Neighboring information used without ID required. In

practice, active detection devices such as cameras can

only detect neighboring multicopters’ position and ve-

locity but no IDs, because these multicopters may look

similar. Under this case, the proposed controller can still

work without considering the fixed topology, which is

quite different from the formation control methods.

• Practical model used. A kinematic model with the given

velocity command as input is proposed for multicopters.

Compared to the single or double integrator, the maneu-

verability for each multicopter has been taken into con-

sideration in this model. This model is simple and easy

to obtain in practice. What is more, distributed control is

developed for various tasks based on commercial semi-

autonomous autopilots.

• Control saturation. The maximum velocity command in

the proposed distributed controller is confined accord-

ing to the requirement of semi-autonomous autopilots.

Moreover, the maximum speed for each multicopter ap-

proaching its destination line is further saturated so that

the contribution to the velocity command will not be

dominated by the term of approaching to destination line

in the case of a multicopter is very close to another.

This avoids a danger that multicopters start to change

the velocity to avoid conflict too late.

• Conflict-free under extreme situations. Formal proofs

about conflict avoidance are given. Moreover, the de-

signed controller has a larger domain; even if a multi-

copter enters into the safety area of another multicopter, it

can keep away from the neighboring multicopters rapidly.
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• Convergence. Formal proofs about the convergence for

multiple multicopters to the desired destination lines

without deadlock are given.

• Low time complexity. The proposed control protocol is

simple and can be computed at high speed, which is more

suitable for increasing agents than other approaches.

II. PROBLEM FORMULATION

In this section, a multicopter control model is introduced

first, including the position model, the filtered position model,

and the safety radius model. For simplicity, these models are

considered under the 2-dimensional case. Then, the free flight

control problem is formulated.

A. Multicopter Control Model

1) Position Model: There are M multicopters in local

airspace at the same altitude satisfying the following model

[9], [26]

ṗi = vi

v̇i = −li (vi − vc,i) (1)

where pi ∈ R
2 , vi ∈ R

2, vc,i ∈ R
2 and li > 0 are the

position, velocity, velocity command and horizontal control

gain of the ith multicopter respectively, i = 1, 2, · · · ,M. This

model can also be adopted when a VTOL UAV takes flight

with the altitude hold mode. Similarly, the destination of the

ith multicopter is a line called the destination line as shown

in Figure 1(a) and (b), which is defined as

Li =
{

x ∈ R
2

∣

∣

∣(x− pl,i)
T
ni = 0

}

where pl,i ∈ R
2 is a point located at Li, and ni denotes the

unit normal vector of Li. The control gain li indicates the

maneuverability of the ith multicopter, which depends on the

semi-autonomous autopilot and can be obtained through flight

experiments. From the model (1), limt→∞ ‖vi (t)− vc,i‖ = 0
if vc,i is constant. Considering vm,i > 0 is the maximum speed

of the ith multicopter. The velocity command vc,i for the ith
multicopter is subject to a saturation function defined as

sat (v, vm,i) = κvm,i
(v)v (2)

where v ,
[

v1 v2
]

T ∈ R
2, and

κvm,i
(v) ,

{

1,
vm,i

‖v‖ ,
‖v‖ ≤ vm,i

‖v‖ > vm,i
. (3)

Without loss of generality, the Euclidean norm is used in

the definition of saturation function sat (v, vm,i). Note that

sat (v, vm,i) and the vector v are parallel all the time so

the multicopter can keep the same flying direction under

the case ‖v‖ > vm,i [22, pp.260-261]. It is obvious that

0 < κvm,i
(v) ≤ 1. According to this, if and only if v = 0,

then

vTsat (v, vm,i) = 0. (4)

Fig. 2. Intuitive interpretation for the definition of filtered position.

2) Filtered Position Model: In this section, the motion

of each multicopter is transformed into a single integrator

form to simplify the controller design and analysis. As shown

in Figure 2, although the position distances are the same,

namely a marginal avoidance distance, the case in Figure

2(b) needs to carry out avoidance urgently by considering the

velocity. However, the case in Figure 2(a) does not need to be

considered to perform collision avoidance in fact. With such

an intuition, a filtered position is defined as follows:

ξi , pi +
1

li
vi. (5)

Then

ξ̇i = ṗi +
1

li
v̇i = vc,i (6)

where i = 1, 2, · · · ,M . Define the position error and the

filtered position error between two multicopters as

p̃m,ij , pi − pj

ξ̃m,ij , ξi − ξj .

Proposition 1 [9] indicates that the position error is large

enough as long as the filter position error is also large enough,

which is shown as follows:

‖p̃m,ij (t)‖ ≥
∥

∥

∥ξ̃m,ij (t)
∥

∥

∥−max
i

vm,i

li
. (7)

3) Safety Radius Model: Three types of areas used for con-

trol for the ith multicopter, namely safety area Si, avoidance

area Ai, and detection area Di, are defined, as shown in Figure

3. The safety area Si (to avoid a conflict) and avoidance area

Ai (to start avoidance control) of the ith multicopter are circles

(spheres in 3-dimensional case) both centered in its filtered

position ξi with the safety radius rs and the avoidance area ra,

respectively. In addition, the detection area Di only depends

on the detection range of the used devices (by cameras, radars,

4G/5G mobile, or Vehicle to Vehicle (V2V) communication),

which is centered in its position pi with the detection radius

rd. The specific design principles of the safety radius are

investigated in [27].

Remark 1. Intuitively, the basic design principle of safety

radius is guided in (7). For two multicopters satisfying the

model (1), the error between

∥

∥

∥
ξ̃m,ij (t)

∥

∥

∥
and ‖p̃m,ij (t)‖ has

the upper bound maxi
vm,i

li
. The condition for obtaining this

upper bound is that two multicopters move on the same line

and in opposite directions with maximum speed. To guarantee

safety in this extreme case, the safety radius should be at

least larger than the physical radius with maxi
vm,i

2li
for each

multicopter. This indicates that the larger safety radius should
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be designed for the multicopter with higher speed or lower

maneuverability if its physical radius is fixed.

Remark 2. It should be pointed out that the 2-dimensional

case is just for simplicity of description, while similar analysis

can also be extended to the 3-dimensional case. Specifically,

the model (1) can add the z-axis kinematic function for each

multicopter

ṗz = vz

v̇z = −lz (vz − vc,z) (8)

where pz, vz, vc,z ∈ R and lz > 0 are the z-axis position, ve-

locity, velocity command and control gain of this multicopter,

respectively. Note that the z-axis control gain lz is different

from the horizontal control gain for multicopters in general.

Further, the safety radius model can also be extended to the

3-dimensional case, while the safety area, avoidance area and

detection area of a multicopter can be modeled as a sphere, a

cylinder, or an ellipsoid rather than a circle. As for the stability

analysis under the 3-dimensional case, similar proof can be

given.

ii

ii

ii

ii

iii

ii

i i

r

r

r

r

r

r

i

i

i

Fig. 3. Safety area, avoidance area and detection area of a multcopter
[9].

B. Problem Formulation

The following assumptions are further needed. The position

error and the filtered position error between the ith multicopter

and its destination line Li is defined as

p̃l,i , Al,i (pi − pl,i)

ξ̃l,i , Al,i (ξi − pl,i)

where Al,i = nin
T
i is the projection operator [28, p. 480]. By

(6), the derivative of the filtered errors above are

˙̃
ξl,i = Al,ivc,i (9)

˙̃
ξm,ij = vc,i − vc,j (10)

where i 6= j, i, j = 1, · · · ,M.
Assumption 1. For each multicopter, the avoidance radius

satisfies ra > rs, and the detection radius satisfies rd > rs +
ra + 2max

i

vm,i

li
.

Assumption 2. The multicopters’ initial positions satisfy
∥

∥

∥ξ̃m,ij (0)
∥

∥

∥ > 2rs, i 6= j

where i, j = 1, 2, · · · ,M.

Assumption 3. Mathematically, a multicopter arrives at its

destination line Li if

‖vi‖ < ǫa and ‖p̃l,i‖ ≤ ǫd. (11)

where the sufficiently small ǫa, ǫd > 0 are given a priori. It

implies that the multicopter arrives at the next region. Further,

the multicopter will switch its destination line corresponding

to its route, as shown in Figure 1.

Definition 1. Let the set Nm,i be the collection of all mark

numbers of other multicopters whose safety aeras enter into

the avoidance area of the ith multicopter, namely

Nm,i = { j| Sj ∩ Ai 6= ∅, j = 1, · · · ,M, i 6= j} .

According to Assumption 1, multicopters in Nm,i can be

detected by the ith multicopter. For example, if the safety areas

of the 1st, 2nd multicopters enter into in the avoidance area

of the 3rd multicopter, then Nm,3 = {1, 2}.

Based on Assumptions 1-3, for cooperative multicopters, we

have the free flight control problem stated in the following.

Objective. Let pi and the line Li be be the position

and the destination line of the ith multicopter, respectively.

Under Assumptions 1-3, design the velocity input vc,i for

the ith multicopter with the information of its neighboring

set Nm,i to guarantee collision-avoidance and convergence

to the destination line Li, i.e.,

∥

∥

∥ξ̃l,i

∥

∥

∥ converges to zero and
∥

∥

∥ξ̃m,ij (t)
∥

∥

∥ > 2rs holds for t > 0, i = 1, · · · ,M .

Remark 3. According to Assumption 1, for the ith multi-

copter, any other multicopter entering into its avoidance area

can be detected by the ith multicopter and will not conflict

with the ith multicopter initially, i = 1, 2, · · · ,M. Assumption

2 implies that any pair of two multicopters are not close too

much initially. Assumption 3 is also reasonable in practice

for air traffic, which is illustrated by the following example.

Suppose that the ith and jth multicopters are located at two

adjacent regions with the boundary line, while the task of

each multicopter is to arrive at another region, as shown in

Figure 4. To achieve this, the destination lines Li and Lj can

be chosen parallel to the boundary line of these two regions,

and the distance between Li, Lj and the boundary line are

both larger than ǫd. Therefore, ‖p̃l,i‖ ≤ ǫd implies that the

ith multicopter has arrived at the jth region and the same for

another multicopter.

III. FREE FLIGHT CONTROL PROBLEM FOR MULTIPLE

COOPERATIVE MULTICOPTERS

The idea of the proposed method is similar to that of the

APF method. In this method, the airspace is formulated as

an APF. For a given multicopter, only is the corresponding

destination line assigned attractive potential, while other mul-

ticopters are assigned repulsive potentials. A multicopter in

the field will be attracted to the destination line, while being

repelled by other multicopters.
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Region 1 Region 2

i
th

multicopter

j
th

multicopter

dd

boundary 

 line

Fig. 4. The intuitive explanation for Assumption 3. To achieve the next
region, the destination line for each multicopter can be chosen parallel
to the boundary line of two regions.

A. Preliminaries

In the following, two designed smooth functions σ (·) and

s (·) are used for the following Lyapunov-like function design,

which are defined as

σ (x, d1, d2) =







1
Ax3 +Bx2 + Cx+D

0

if

if

if

x ≤ d1
d1 ≤ x ≤ d2

d2 ≤ x
(12)

with A = −2
/

(d1 − d2)
3
, B = 3 (d1 + d2)

/

(d1 − d2)
3
,

C = −6d1d2

/

(d1 − d2)
3

, D = d22 (3d1 − d2)
/

(d1 − d2)
3

and

s (x, ǫs) =











x

(1− ǫs) +

√

ǫ2s − (x− x2)
2

1

0 ≤ x ≤ x1

x1 ≤ x ≤ x2

x2 ≤ x

(13)

with x2 = 1 + 1

tan 67.5◦
ǫs and x1 = x2 − sin 45◦ǫs. The defi-

nition and properties of these designed functions is analyzed

in [9]. A new type of Lyapunov functions for vectors, called

Line Integral Lyapunov Function, is designed as

Vl,i (y) =

∫

Cy

sat (x, a)
T

dx (14)

where a > 0, x ∈ R
n, Cy is a line from 0 to y ∈ R

n. In the

following lemma, we will show its properties.

Lemma 1 [9]. Suppose that the line integral Lyapunov

function Vl,i is defined as (14). Then (i) Vl,i (y) > 0 if ‖y‖ 6= 0;

(ii) if ‖y‖ → ∞, then Vl,i (y) → ∞; (iii) if Vl,i (y) is bounded,

then ‖y‖ is bounded.

B. Lyapunov-Like Function Design and Analysis

Define a smooth curve C
ξ̃l,i

from 0 to ξ̃l,i. Then, the line

integral of sat
(

ξ̃l,i, vm,i

)

along C
ξ̃l,i

is

Vl,i

(

ξ̃l,i

)

=

∫

Cξ̃l,i

sat
(

k1ξ̃l,i, vm,i

)T

dx (15)

where k1 > 0, i = 1, 2, · · · ,M . Note that the reason of

using closed form of line integral in (15) includes avoiding

specifying the norm in the saturation function (2) and making

the physical meaning more intuitive. From the definition and

Lemma 1, Vw,i ≥ 0. Furthermore, define a barrier function as

Vm,ij

(∥

∥

∥ξ̃m,ij

∥

∥

∥

)

=
k2σm

(∥

∥

∥ξ̃m,ij

∥

∥

∥

)

(1 + ǫ)
∥

∥

∥
ξ̃m,ij

∥

∥

∥
− 2rss

(

‖ξ̃m,ij‖
2rs

, ǫs

)

(16)

where k2, ǫ > 0. Here σm (x) , σ (x, 2rs, ra + rs), where

σ (·) is defined in (12). The function Vm,ij has the following

properties: (i) ∂Vm,ij

/

∂
∥

∥

∥
ξ̃m,ij

∥

∥

∥
≤ 0; (ii)

∥

∥

∥
ξ̃m,ij

∥

∥

∥
≥ ra + rs

is a sufficient and necessary condition for Vm,ij = 0; (iii) if

0 <
∥

∥

∥ξ̃m,ij

∥

∥

∥ < 2rs, namely Sj ∩Si 6= ∅ (they may not collide

in practice), then there exists a sufficiently small ǫs > 0 such

that

Vm,ij =
k2

ǫ
∥

∥

∥ξ̃m,ij

∥

∥

∥

=
k2
2ǫrs

. (17)

The objective of the designed velocity command is to make

Vl,i

(

ξ̃l,i

)

and Vm,ij

(∥

∥

∥ξ̃m,ij

∥

∥

∥

)

be zero or as small as pos-

sible. According to Lemma 1 and property (ii), this implies
∥

∥

∥ξ̃l,i

∥

∥

∥ → 0 and

∥

∥

∥ξ̃m,ij

∥

∥

∥ > ra + rs, namely the ith multicopter

will arrive at the destination line Li and not conflict with the

jth multicopter.

C. Controller Design

The velocity command is designed as

vc,i = −sat



sat
(

k1ξ̃l,i, vm,i

)

−
∑

j∈Nm,i

bij ξ̃m,ij , vm,i



 (18)

where i = 1, 2, · · · ,M. Here bij = 0, i, j = 1, · · · ,M, i 6= j
if (11) holds1; otherwise2

bij = −
∂Vm,ij

∂
∥

∥

∥ξ̃m,ij

∥

∥

∥

1
∥

∥

∥ξ̃m,ij

∥

∥

∥

. (19)

In (18), the parameters ra, rs appear in σm (x) included in (16)

and further (19), where Assumption 1 has to be satisfied.

Remark 4. The saturation the term sat
(

k1ξ̃l,i, vm,i

)

in

(18) is very necessary in practice. Without the saturation, the

velocity command (18) becomes

vc,i = −sat



k1ξ̃l,i −
∑

j∈Nm,i

bij ξ̃m,ij , vm,i



 .

In this case, if

∥

∥

∥ξ̃l,i (0)
∥

∥

∥ is very large, then the term k1ξ̃l,i

will dominate until the multicopter is very close to another

so that bij ξ̃m,ij will dominate. At that time, the multicopter

will start to change the velocity to avoid the conflict. In

practice, it may be too late by taking various uncertainties

into consideration. The use of the maximum speeds vm,i in

1It is used to represent that the ith multicopter quits the airspace.
2bij ≥ 0 according to the property (i) of Vm,ij .
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the term sat
(

k1ξ̃l,i, vm,i

)

of the velocity command (18) will

avoid such a danger.

Remark 5. It should be noted that, in most literature,

if their distance is less than a safety distance, then their

control schemes either do not work or even push the agent

towards the center of the safety area rather than leaving

the safety area. Theses have been explained in Introduction.

The proposed controller can also handle the case such as
∥

∥

∥ξ̃m,iji

∥

∥

∥ < 2rs, which may still happen in practice due to

unpredictable uncertainties. However, this may not imply that

the ith multicopter have collided with the jith multicopter

physically, because the redundancy is always considered when

we design the safety radius rs, i.e., rs is larger than the physical

radius of the multicopter. In this case, there exists a sufficiently

small ǫs > 0 such that

biji = bjii =
k2
ǫ

1
∥

∥

∥ξ̃m,iji

∥

∥

∥

3
.

Since ǫ is chosen to be sufficiently small, the terms biji ξ̃m,iji

and bjiiξ̃m,jii will dominate so that the velocity commands

vc,i and vc,ji become

vc,i = sat







k2
ǫ

1
∥

∥

∥
ξ̃m,iji

∥

∥

∥

2

ξ̃m,iji
∥

∥

∥ξ̃m,iji

∥

∥

∥

, vm,i







vc,ji = sat







k2
ǫ

1
∥

∥

∥ξ̃m,jii

∥

∥

∥

2

ξ̃m,jii
∥

∥

∥ξ̃m,jii

∥

∥

∥

, vm,ji






.

This implies that, by recalling (10),

∥

∥

∥ξ̃m,iji

∥

∥

∥ will be increased

fast so that the ith multicopter and the jith multicopter can

keep away from each other immediately. This implies that the

proposed controller still works when Assumption 2 is violated,

which indicates the robustness of the proposed controller and

makes it more feasible in practice.

D. Stability Analysis

In order to investigate the convergence to the destination

line and the multicopter avoidance behaviour, a function is

defined as follows

V1 =

M
∑

i=1



Vl,i +
1

2

M
∑

j=1,j 6=i

Vm,ij



 (20)

where Vl,i is defined in (15) and Vm,ij is defined in (16).

According to Thomas’ Calculus [29, p. 911], one has

V1 =

M
∑

i=1





∫ t

0

sat
(

k1ξ̃l,i, vm,i

)T ˙̃
ξl,idτ +

1

2

M
∑

j=1,j 6=i

Vm,ij



 .

The derivative of V1 along the solution to (9) and (10) is

V̇1 =

M
∑

i=1



sat
(

k1ξ̃l,i, vm,i

)

−
M
∑

j=1,j 6=i

bij ξ̃m,ij





T

vc,i

where the property bij = bji defined in (19) is used. If j /∈
Nm,i, one has Aj ∩ Si = ∅. Then bij = 0 according to the

property (ii) of Vm,ij . Consequently,

∑

j∈Nm,i

bij ξ̃m,ij =
M
∑

j=1,j 6=i

bij ξ̃m,ij .

By using the velocity input (18), V̇1 becomes

V̇1 = −
M
∑

i=1



sat
(

k1ξ̃l,i, vm,i

)

−
∑

j∈Nm,i

bij ξ̃m,ij





· sat



sat
(

k1ξ̃l,i, vm,i

)

−
∑

j∈Nm,i

bij ξ̃m,ij , vm,i





≤ 0.

Further, the main result is stated.

Theorem 1. Under Assumptions 1-3, suppose the velocity

command is designed as (18) for model (1). Then there exist

positive parameters k1, k2, ǫ, ǫs > 0 in the proposed controller

such that limt→∞ ‖p̃l,i (t)‖ < ǫd and

∥

∥

∥ξ̃m,ij (t)
∥

∥

∥ > 2rs, t ∈

[0,∞) for almost p̃l,i(0), i 6= j, i, j = 1, 2, · · · ,M .

Proof. Due to limited space, similar to Lemma 2 [9], we

can prove that these multicopters are able to avoid conflict

with each other, namely

∥

∥

∥ξ̃m,ij (t)
∥

∥

∥ > 2rs, i 6= j, i, j =

1, 2, · · · ,M. In the following, the reason why each multicopter

is able to arrive at the destination Li is given. The invariant

set theorem [30, p. 69] is used to do the analysis.

• First, we will study the property of function V1. Let

Ω = {ξ1, · · · ξM |V1 (ξ1, · · · ξM ) ≤ l} , l > 0. According

to Lemma 2, Vm,ij > 0. Therefore, V1 (ξ1, · · · ξM ) ≤ l

implies
M
∑

i=1

Vl,i ≤ l. Furthermore, according to Lemma

1(iii), Ω is bounded. When
∥

∥

[

ξ
1

· · · ξM
]∥

∥ → ∞,

then
M
∑

i=1

Vl,i → ∞ according to Lemma 1(ii), namely

V1 → ∞.
• Secondly, we will find the largest invariant set. Then

show all multicopters can arrive at their corresponding

destination lines. Now, recalling the property (4), V̇1= 0
if and only if

sat
(

k1ξ̃l,i, vm,i

)

−
∑

j∈Nm,i

bij ξ̃m,ij = 0 (21)

for i = 1, 2, · · · ,M. Then vc,i = 0 according to (18).

Consequently, the equation (1) only holds if vi = 0

for i = 1, 2, · · · ,M . Obviously, the equilibrium points

are stable if

∥

∥

∥ξ̃l,i

∥

∥

∥ = 0 and

∥

∥

∥ξ̃m,ij

∥

∥

∥ > 2ra, i, j =

1, 2, · · · ,M. The objective here is to prove that the other

equilibrium points ‖p̃l,i‖ ≥ ǫd are unstable. According to

(3), define

κi = κvm,i

(

k1ξ̃l,i

)

=







1,
vm,i

k1‖ξ̃l,i‖
,

∥

∥

∥ξ̃l,i

∥

∥

∥ ≤ vm,i

k1
∥

∥

∥ξ̃l,i

∥

∥

∥ >
vm,i

k1

.

(22)
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Note that the parameter k1 can be sufficiently large such

that the relation k1 >
vm,i

ǫd
holds, which implies that the

input k1p̃l,i can keep saturated according to Assumption

3, and only the case

∥

∥

∥
ξ̃l,i

∥

∥

∥
>

vm,i

k1

in (22) should be

considered. Then the equation (21) can be further written

as

sat
(

k1ξ̃l,i, vm,i

)

−
∑

j∈Nm,i

bij ξ̃m,ij

=vm,i

ξ̃l,i
∥

∥

∥ξ̃l,i

∥

∥

∥

−
∑

j∈Nm,i

bij ξ̃m,ij = 0.

Define

v∗
c,i , vm,i

ξ̃l,i
∥

∥

∥
ξ̃l,i

∥

∥

∥

−
M̄
∑

j=1,j 6=i

bij ξ̃m,ij . (23)

For the M̄ multicopters, substituting (18) into (6) results

in






ξ̇
1

...

ξ̇M̄






= f (ξ

1
, · · · , ξM̄ ) = −







κ′
vm,1

v∗
c,1

...

κ′
vm,M̄

v∗
c,M̄






(24)

where
∑

j∈Nm,i

bij ξ̃m,ij =

M̄
∑

j=1,j 6=i

bij ξ̃m,ij is used and κ′
vm,i

is defined as

κ′
vm,i

=

{

1,
∥

∥v∗
c,i

∥

∥ ≤ vm,i
vm,i

‖v∗

c,i‖
,

∥

∥v∗
c,i

∥

∥ > vm,i
. (25)

Note that v∗
c,i

∣

∣

ξi=p∗

i

= 0 holds at the equilibrium point

ξi = p∗
i , then κ′

vm,i

∣

∣

∣

ξi=p∗

i

= 1 holds. Then we can

get the derivative of f (ξ1, ξ2, · · · , ξM̄ ) with respect to

[ξ
1
, ξ

2
· · · , ξM̄ ] is

∂f (ξ
1
, ξ

2
, · · · , ξM̄ )

∂ (ξ1, ξ2 · · · , ξM̄ )

∣

∣

∣

∣

ξi=p∗

i

= (Λ1 + Λ2)|ξi=p∗

i

where the matrice Λ1,Λ2 are defined in the following

Λ1 =











b1 −b12 · · · −b1M̄
−b21 b2 · · · −b2M̄

...
...

. . . · · ·
−bM̄1 −bM̄2 · · · bM̄











⊗ I2

Λ2 =





















M̄
∑

j=2

ξ̃m,1j
∂b1j
∂ξ

1

· · · −ξ̃m,1M̄
∂b

1M̄

∂ξM̄

...
. . .

...

−∂bM̄1

∂ξ
1

ξ̃m,M̄1

∂bM̄1

∂ξ
1

...

M̄−1
∑

j=1

ξ̃m,M̄j

∂bM̄j

∂ξM̄





















.

where ⊗ denotes Kronecker product, and the relationship

∂

(

ξ̃l,i

‖ξ̃l,i‖

)

∂ξi
=

∂ni

∂ξi
= 0

is utilized according to the definition of ξ̃l,i. Note that the

equilibrium point ξi = p∗
i is unstable if and only if the

matrix Λ|ξi=p∗

i
has at least one positive eigenvalue. By the

definition of bij in (19), the equation
∂bij
∂ξj

ξ̃m,ij =
∂bji
∂ξi

ξ̃m,ji

holds. Further, since bij = bji, the matrice Λ1 and Λ2 are

both symmetric. Note that Λ1 has the form of Laplacian matrix

of a directed graph since bij > 0 holds, so it is a positive

semidefinite matrix according to Lemma 1 [31]. Further, define

a column vector α =
[

(Rξ1)
T · · · (RξM̄ )

T
]T

, where

R =

[

0 1
−1 0

]

is the rotation matrix. Note that αTΛ2 = 0,

which implies that α is the eigenvector of Λ2 corresponding

to zero eigenvalue. Then we have

αT (Λ1 + Λ2)|ξi=p∗

i
α = αT Λ1|ξi=p∗

i
α

=

M̄
∑

i=1

M̄
∑

j=1,j 6=i

bij

∥

∥

∥ξ̃m,ij

∥

∥

∥

2

.

This implies that one eigenvalue of (Λ1 + Λ2)|ξi=p∗

i
at least

has a positive real part. Therefore, the equilibrium point

ξi = p∗
i is unstable, which is in fact a saddle point (an intuitive

explanation can be found in [22, pp. 325-326]), i = 1, · · · , M̄ .

For a saddle point, it is stable in a subspace but unstable in the

other space. The measure of the stable subspace in the whole

space equals 0 or the stability probability is 0. Therefore,

the equilibrium point p∗
i is unstable with probability 1, i.e.,

any small deviation will drive the multicopter away from p∗
i .

Therefore, limt→∞ ‖p̃l,i (t)‖ < ǫd, t ∈ [0,∞). This complete

the proof. �

Remark 6. In Theorem 1, the uncertainties of systems are

ignored, which implies the system is autonomous. Therefore,

the condition of the invariant set theorem is satisfied to do

the analysis. However, this does not mean that our method

is infeasible to the environment subject to uncertainties such

as noise, communication delay, packet loss, etc. A method

is proposed in [27] with a principle that separates the safety

radius design and controller design. In other words, we can

design the controller under the ideal conditions and consider

all the uncertainties in the safety radius design process. The

safety radius should be larger than the physical radius of

multicopters; in other words, the margin of safety radius design

should take uncertainties into consideration. This also explains

why the case

∥

∥

∥ξ̃m,iji

∥

∥

∥ < 2rs may happen in practice if the

safety radius is designed inappropriately or the uncertainties

violate the assumption for the safety radius design, as stated

in Remark 5.

IV. SIMULATION AND EXPERIMENTS

Simulations and experiments are given in the following

to show the effectiveness of the proposed method, where

a video about simulations and experiments is available on

https://youtu.be/NWysjgzBP6s.

A. Numerical Simulation

A scenario of a 250m× 250m square region is considered.

Each multicopter will enter the region from a random side
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Fig. 5. The dynamic inflow process of the 250m × 250m square region.

of the square with the safety radius rs = 10m, the avoidance

radius ra = 15m, the maximum speed vm = 20m/s, the control

gain li = 5, and the destination line opposite to it entered.

To show the effectiveness of the proposed controller clearly,

M = 420 multicopters will enter the region with a dynamic

inflow, which is shown in Figure 7. A multicopter will be

randomly placed on a boundary line of the region it will

enter, which implies that Assumption 2 may be violated and

cause a conflict suddenly; however, the proposed controller

still works. This is to simulate the situation a multicopter

appears in another’s safety area accidently. The snapshots

of the region are shown in Figure 6, while the route of

each multicopter is plotted. By the proposed controller, each

multicopter will keep the safe distance larger than 2rs = 20m

with other cooperative multicopters almost the whole process

(except the case that a confliction suddenly happens as the

reason explained above). Without loss of generality, the min-

imum distance min
j 6=i,j=1,2,··· ,M

∥

∥

∥
ξ̃m,ij

∥

∥

∥
for i = 1, 2, · · · , 40 is

shown in Figure 7(a). Note that the minimum distance for a

multicopter may be less than 2rs = 20m when it encounters

another multicopter which just enters the region. To indicate

that each multicopter finally converges to its destination line,

the distance between the ith multicopter and its destination

line

∥

∥

∥ξ̃l,i

∥

∥

∥ for i = 1, 2, · · · , 40 is shown in Figure 7(b). The

result is consistent with the properties of the controller we

proposed.

B. Experiments

An indoor motion capture system called OptiTrack is in-

stalled in the lab, from which we can get the ground truth

of the position, velocity and orientation of each multicopter.

The laptop is running the proposed controller on MATLAB

2020a. The laptop obtains the position and velocity of each

multicopter collected by optitrack through the local network,

and further controls the multicopters through the UDP pro-

tocol. Based on the above conditions, a flight experiment is

designed similarly to the simulation scenario, which contains

eight multicopters located at four sides of a 2.5m×2.5m square

region initially. The multicopters used for the experiment

Fig. 6. Simulation snapshots of the 250m×250m square region. The
color of each multicopter is consistent with its destination line.

is Tello multicopters released by DJI, where rs = 0.2m,
ra = 0.4m, vm = 0.15m/s are set. The destination line of each

multicopter is directly opposite to its origin. The positions and

the routes of multicopters during the whole flight experiment

are shown in Figure 8. Finally, each multicopters can reach

its destination line at about t = 63s, keeping a safe distance

from other multicopters without any conflict.

C. Discussion

The proposed control method can be easily extended to

three-dimensional situations. Different from most formation

control methods, the proposed method is more scalable and

ensures that each agent completes its own independent mis-

sion. The agent uses only the navigation information of neigh-

boring nodes to avoid potential collisions, so the topology

can be arbitrary rather than limited to a set. Compared to

the optimization based methods [32] and trajectory planning

methods [33], the proposed method is convenient to implement

in practical applications since it has low time complexity and

avoids the computation-consuming iterative optimization pro-

cedure. Moreover, the designed controller has a larger domain

than other Lyapunov-like function methods [19], [22], which

improves safety under unpredictable uncertainties. Therefore,
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Fig. 7. Minimum distance between the ith multicopter to others and
distance between the ith multicopter to its destination line for i =

1, 2, · · · , 40.

indoor robots and air traffic are both included in potential

applications.

V. CONCLUSIONS

The free flight control problem, which includes convergence

to destination line and inter-agent conflict avoidance with each

multicopter, is studied in this paper. Based on the velocity

control model of multicopters with control saturation, practical

distributed control is proposed for multiple multicopters to

fly freely. Each multicopter has the same and simple control

protocol. Lyapunov-like functions are designed with formal

analysis and proofs showing that the free flight control prob-

lem can be solved. Besides the functional requirement, the

safety requirement is also satisfied. By the proposed distributed

control, a multicopter can keep away from another as soon

as possible, once it enters into the safety area of another

multicopter accidentally, which is very necessary to guarantee

safety. Simulations and experiments are given to show the

effectiveness of the proposed method from the functional and

safety requirements.
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