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Abstract

For both visible and infrared images have their own advantages and
disadvantages, RGBT tracking has attracted more and more attention.
The key points of RGBT tracking lie in feature extraction and feature
fusion of visible and infrared images. Current RGBT tracking methods
mostly pay attention to both individual features (features extracted from
images of a single camera) and common features (features extracted and
fused from an RGB camera and a thermal camera), while pay less atten-
tion to the different and dynamic contributions of individual features and
common features for different sequences of registered image pairs. This
paper proposes a novel RGBT tracking method, called Dynamic Fusion
Network (DFNet), which adopts a two-stream structure, in which two
non-shared convolution kernels are employed in each layer to extract in-
dividual features. Besides, DFNet has shared convolution kernels for each
layer to extract common features. Non-shared convolution kernels and
shared convolution kernels are adaptively weighted and summed accord-
ing to different image pairs, so that DFNet can deal with different contri-
butions for different sequences. DFNet has a fast speed, which is 28.658
FPS. The experimental results show that when DFNet only increases the
Mult-Adds of 0.02% than the non-shared-convolution-kernel-based fusion
method, Precision Rate (PR) and Success Rate (SR) reach 88.1% and
71.9% respectively.

1 Introduction
Object tracking is a popular computer vision task, whose purpose is to contin-
uously track the position of the object in the subsequent frames when given in
the first frame. Tracking in a complex visual scenery, including rain, smoke,
or night, is one of the most difficult computer vision tasks [1, 2], especially for
visible-image-based tracking [2, 3]. However, infrared sensors can work around
the clock, infrared has a strong ability to penetrate smoke, which can supplement
the deficiencies of visible images in bad visual conditions [4, 5, 6, 7]. Therefore,
RGBT tracking has attracted more and more attention.
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Since 2018, due to the powerful learning ability, Deep Learning (DL) models,
especially Convolutional Neural Networks (CNN), are widely used to address
RGBT tracking [8, 9, 10, 11, 12, 13, 14, 15]. DL-based tracking methods have
demonstrated their capabilities over traditional fusion tracking methods [16, 17,
18, 19] or other tracking methods (e.g., sparse representation-based methods [20,
21, 22], and graph-based methods [23, 24, 25, 26]). The advantage of DL-based
tracking methods is their ability to learn more effective and robust features than
hand-crafted features [27, 28, 3]. DL-based tracking methods can be divided into
pixel-level [8, 9, 10], feature-level [11, 12, 13, 14], and decision-level [15] fusion
tracking. Compared with the pixel-level fusion method, the feature-level fusion
method has lower requirements for image registration and can tolerate a certain
amount of noise [12, 13]. Compared with the decision-level fusion method, it
has lower computational complexity and faster speed [29, 3]. Recently research
works of DL-based RGBT tracking mainly focus on feature-level fusion [3].

Due to visible light reflection and infrared radiation have different imaging
properties, visible and infrared images have different individual features [30],
which can be used to track objects based on single-modal images. In visible-
image-based tracking, objects can be distinguished through rich textures and
different colors. While in infrared-image-based tracking, objects can be distin-
guished by high-contrast light-dark changes that reflect the heat of the object.
In order to fully utilize the individual features from the two different modali-
ties, feature-level fusion methods are often adopted, in which two Convolutional
Neural Networks (CNNs) were often employed to handle visible and infrared
images, respectively. For example, Zhang et al. [11] utilized two different CNNs
to respectively extract individual features from visible and infrared images. In
their work the visible and infrared features were concatenated and sent to fol-
low layers for tracking the object. ConvNet [13] and SiamFT [12] employ fusion
sub-networks to select discriminative features after extracting the individual
features. DSiamMFT [31] and FANet [32] focus on multi-layer feature fusion to
achieve more effective hierarchical feature aggregation. For simplicity, this pa-
per denotes the basic feature-level fusion method without any bells and whistles,
which only uses two different CNNs to respectively handle visible and infrared
images, as non-shared-convolution-kernel-based fusion method.

In addition to individual features, since visible and infrared images are shot
in the same scene and are used to track the same object, there are common
features in the two modalities [33]. Common features reflect the size, location,
contour, and so on, which are also important information in object tracking
[34]. When individual features are not enough to achieve good tracking per-
formances, it is necessary to use common features such as the semantics of the
object, and other characteristics of the object at the corresponding position of
the visible and infrared images for object tracking. Both MANet [14] , CAT
[30] , IVFuseNet [34], and SiamIVFN [29] use a shared convolution kernel to
extract common features. Their experimental results show that the shared-
convolution-kernel-based fusion methods can extract common features that are
more informative than the non-shared-convolution-kernel-based fusion method.
But in their networks, the contributions of individual features and common fea-
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(a) GTOT: OccCar (b) GTOT: OccBike

Figure 1: Two registered image pairs with different contributions of individual
features and common features. The two images in the first row are visible images
and the other two images in the second row are the corresponding registered
infrared images. The images in (a) are from GTOT: OccCar. The visible image
is clear but the infrared image is not clear because of noise, so the tracking task
should pay more attention to the individual features of the visible image. The
images in (b) are from GTOT: OccBike. the target is not easy to detect in both
visible and infrared images due to the messy background. The tracking task
should pay more attention to the common features.

tures are prefixed and have no consideration of adaption to the registered image
pairs captured in different scenes.

However, the contributions of individual features and common features are
not always fixed. Visible images are greatly affected by the illumination and
prone to overexposure or underexposure. Infrared images are easy to be in-
terfered with by the external scenery and internal systems and prone to noise
[35, 36]. In other words, the reliability of different modalities is not always
fixed. For different reliable modalities, individual features and common features
contribute to different degrees. When one modality is reliable, the individual
features of the reliable modality contribute more, as shown in Figure 1 (a).
When it is impossible to track based on single-modal images, more attention
needs to be paid to common features, as shown in Figure 1 (b). Therefore,
the tracker needs to adaptively calculate different contributions of individual
features and common features in different scenes.

To solve the performance limitation of the network in changing scenes, dy-
namic convolution has natural advantages. The concept of dynamic convolution
(e.g., CondConv [37], Dynamic Convolution [38], and WeightNet [38]) usually
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adopts the method of attention over convolution kernels. Dynamic convolution
has been applied in scene segmentation, scene synthesizing, image inpainting,
biomedical imaging, and so on [39, 40, 41, 42]. Due to aggregating multiple
convolution kernels adapted to each input, dynamic convolution has more rep-
resentation power without increasing the width and depth of the network. The
aggregation of multiple convolution kernels in convolution kernel space makes it
possible to make full use of multiple convolution kernels only by one convolution
operation. Therefore, dynamic convolution is computationally efficient. But dy-
namic convolution is designed for integration into existing CNN architectures,
cannot aggregate individual features and common features in fusion tasks.

Motivated by the above analysis, we propose a novel RGBT tracking method
called dynamic fusion network (DFNet). DFNet adopts a two-stream structure,
which has non-shared convolution kernels to extract individual features. One
CNN is utilized to extract features from infrared images, and the other one is for
handle visible images. Besides, DFNet has shared convolution kernels to extract
common features. DFNet adaptively merges the shared convolution kernels and
the non-shared convolution kernels in convolution kernel space through the dy-
namic convolution. To satisfy strict latency requirements for object tracking,
DFNet only needs two convolution operations in each layer to extract the indi-
vidual and common features of visible and infrared images. Since the weights
of shared and non-shared convolution kernels are dynamically computed, it can
adaptively calculate the contributions of individual features and common fea-
tures to different scenes.

Specifically, the proposed method has the following advantages:

1. DFNet has shared kernels and non-shared kernels that separately extract
the common features and individual features. DFNet has a strong repre-
sentation power.

2. DFNet adaptively calculates the contributions of individual features and
common features according to different registered image pairs.

3. By fusing multiple kernels in convolution kernel space, DFNet boosts the
PR/SR by 1.1%/0.9% with only 0.02% additional Mult-Adds.

2 Related Work
Section 1 overviews DL-based RGBT tracking. This section focuses on three
most related works to ours: ConvNet [13], MANet [14], IVFuseNet [34]. Their
simplified feature extraction layer diagrams are shown in Figure 2.

2.1 ConvNet
ConvNet [13] uses different convolutional networks to extract the individual
features of visible and infrared images and then fuses them, its feature extraction
layer can be expressed as:
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(a) Conv Layer (b) MA Layer (c) IVFuse Layer (d) DF Layer (ours)

Figure 2: Simplified feature extraction layer diagrams of (a) ConvNet. The
blue and gray branches respectively handle visible and infrared images. (b)
MANet. The yellow block represents the shared convolution kernel which is
used to extract common features. (c) IVFuseNet. The shared and the non-
shared convolution kernels are concatenated to form a new convolution kernel for
feature extraction. (d) DFNet (ours) The shared and the non-shared convolution
kernels are weighted and summed to form a new convolution kernel for feature
extraction. The weights are calculated based on the input.

Table 1: Expressions of different fusion methods. WRGB and WT represent the
non-shared convolution kernel for RGB features and the convolution kernel for
thermal features respectively. Wshare represents the shared convolution kernel.
FRGB and FT represent the input of visible and infrared branch respectively. ∗
represents convolution operation. σ (·) represents activation function.

Fusion method Expression

ConvNet σ

([
WRGB WT

]
∗
[
FRGB

FT

])
=
[
σ (WRGB ∗ FRGB) σ (WT ∗ FT )

]
MANet

[
σWRGB σWshare σWT

]
∗

( [
1
1 1

1

] [
FRGB

FT

] )
=
[
σ (WRGB ∗ FRGB) + σ (Wshare ∗ FRGB) σ (Wshare ∗ FT ) + σ (WT ∗ FT )

]
IVFuseNet σ

(([
WRGB Wshare WT

] [ 1
1 1

1

])
∗
[
FRGB

FT

])
=
[
σ
([

WRGB Wshare

]
∗ FRGB

)
σ
([

Wshare WT

]
∗ FT

) ]
DFNet σ

(([
WRGB Wshare WT

] [ a
b c

d

])
∗
[
FRGB

FT

])
=
[
σ ((aWRGB + bWshare) ∗ FRGB) σ ((cWshare + dWT ) ∗ FT )

]
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σ

([
WRGB WT

]
∗
[
FRGB

FT

])
=
[
σ (WRGB ∗ FRGB) σ (WT ∗ FT )

] (1)

where WRGB and WT represent the convolution kernel for RGB features and
the convolution kernel for thermal features respectively, FRGB and FT represent
the input of visible and infrared branch respectively, ∗ represents convolution
operation, σ (·) represents activation function, such as ReLU.

In ConvNet, different convolution kernels are used to extract individual fea-
tures from visible and infrared images. Then these two features are fused and
sent to domain-specific layers for binary classification and identification of the
target. Besides, ConvNet designs a fusion sub-network, which adaptively fuses
two individual features to removing redundant noise. The feature extraction
process performed two convolution operations in one layer, therefore the speed
of ConvNet is fast. ConvNet focuses on individual features but does not fully
consider the common features.

2.2 MANet
Li, et al. [14] argue that common features of visible and infrared images is
crucial to the effectiveness of the fusion. Therefore, MANet employs a shared
convolution kernel to extract the common features of visible and infrared images.
The feature extraction layer of MANet can be expressed as:

[
σWRGB σWshare σWT

]
∗

( [
1
1 1

1

] [
FRGB

FT

] )
=
[
σ (WRGB ∗ FRGB) + σ (Wshare ∗ FRGB) σ (Wshare ∗ FT ) + σ (WT ∗ FT )

] (2)

where Wshare represents the shared convolution kernel.
Before respective convolution operations, visible and infrared features must

both undergo a shared convolution operation, which uses the same convolution
kernel. It is worth noting that MANet fuses shared and non-shared features in
the feature space. Please note that the activation function σ (·) is not a linear
operation, and we have:

σ (WRGB ∗ FRGB) + σ (Wshare ∗ FRGB) 6= σ ((WRGB +Wshare) ∗ FRGB) (3)

σ (Wshare ∗ FT ) + σ (WT ∗ FT ) 6= σ ((Wshare +WT ) ∗ FT ) (4)

Therefore, four convolution operations are needed. The complexity of the op-
eration is large, which is not conducive to the real-time requirements of the
tracking task. In addition, the weights of the shared and non-shared convolu-
tion kernel are equal, so that they cannot be adjusted in real-time in the face
of different contributions of individual features and common features.
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2.3 IVFuseNet
Unlike the fusion of shared and non-shared features in feature space, IVFuseNet
[34] merges the shared and non-shared convolution kernels in convolution kernel
space. IVFuseNet concatenates two small-sized convolution kernels, one of them
is a shared convolution kernel. The visible and infrared images are respectively
convolved with different spliced convolution kernels. The feature extraction
layer of IVFuseNet can be expressed as:

σ

[ WRGB Wshare WT

]  1
1 1

1

 ∗ [ FRGB

FT

]
=
[
σ
([

WRGB Wshare

]
∗ FRGB

)
σ
([

Wshare WT

]
∗ FT

) ] (5)

Since the shared and non-shared convolution kernels are fused in convolution ker-
nel space, IVFuseNet only needs to perform two convolution operations. How-
ever, due to the shared and non-shared convolution kernels are concatenated
in advance, the size of the convolution kernel is smaller than that of MANet,
which means IVFuseNet has weak representation power than MANet. For ex-
ample, in MANet, the size of the shared and non-shared convolution kernel in
the first layer is 96× 3× 7× 7 and 96× 3× 3× 3; while in IVFuseNet, the size
of the shared and non-shared convolution kernel in the corresponding layer is
24 × 3 × 7 × 7 and 72 × 3 × 3 × 3. Besides, the channel size of the shared and
non-shared convolution kernel needs to be prefixed, and the coupling rate can-
not be adjusted in real-time in the face of different contributions of individual
features and common features.

We summarize the related works below:

1. the speed of ConvNet is fast, but ConvNet does not have shared convolu-
tion kernel to ectract common features.

2. Although MANet has both shared and non-shared convolution kernels, the
speed of MANet is much slower than that of ConvNet. Moreover, MANet
has no design to deal with the different contributions of the individual
features and common features.

3. IVFuseNet have both shared and non-shared convolution kernels, and the
speed of IVFuseNet is fast. However, compared with MANet, IVFuseNet
has weak representation power. Moreover, IVFuseNet also has no proce-
dure to handle the different contributions of the individual features and
common features.

3 Our Method
In this section, we will introduce a novel RGBT tracking method called dynamic
fusion network (DFNet). We first introduce the dynamic fusion layer. Dynamic
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convolution is used in the convolution kernel space to fuse shared and non-shared
convolution kernels. Then we use the dynamic fusion layer as the basic module
to construct DFNet for RGBT tracking. DFNet has the advantages of MANet
and IVFuseNet, which has shared convolution kernels to extract common fea-
tures. We highlight the differences of the network structures between DFNet
and the related models in Table 1. Due to the fusion of shared and non-shared
convolution kernels in convolution kernel space, DFNet has high inference effi-
ciency. Besides, adaptive convolutional features can be extracted in the face of
changes in the scene because of its dynamic nature.

3.1 Dynamic Fusion Layer
Dynamic fusion layer fuses the shared convolution kernel and non-shared con-
volution kernels in convolution kernel space. That is, the convolution kernels
are merged, then the convolution operation is performed:

σ

[ WRGB Wshare WT

]  a
b c

d

 ∗ [ FRGB

FT

]
=
[
σ ((aWRGB + bWshare) ∗ FRGB) σ ((cWshare + dWT ) ∗ FT )

] (6)

Its structure diagram is shown in Figure 2 (d). In feature extraction, dynamic
fusion layer only needs to perform two convolution operations on the visible and
infrared inputs respectively to obtain common features and individual features,
which greatly reduces computational cost.

The fusion of shared and non-shared convolution kernels is a weighted addi-
tion: {

W̃RGB = aWRGB + bWshare

W̃T = cWshare + dWT

s.t. 0 < {a, b, c, d} < 1 a+ b = 1 c+ d = 1

(7)

In this way, the size of the convolution kernels is not changed, and no additional
artificially set parameters are introduced. The weights a, b, c, and d are adap-
tive, which can be obtained from the input through Global Average Pooling
(GAP), two-layer full connection (FC), and softmax:{

[a, b] = F (FRGB)
[c, d] = F (FT )

F (X) = Softmax ◦ FC ◦ ReLU ◦GAP(X)
(8)

The weights are input-dependent so that the dynamic fusion layer can use differ-
ent convolution kernels for different image pairs, which enhances the expressive
ability of the model. Compared with the convolution layer without weights, the
dynamic fusion layer only increases the Mult-Adds of 0.02%, which can guaran-
tee the real-time performance of the network. For details, please refer to Section
5.4.
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Figure 3: The overall architecture of DFNet. DFNet uses a multi-domain learn-
ing framework. Three dynamic fusion layers are used to extract and fuse the
features of visible and infrared images. PrRoiPooling is used to unify the fea-
tures into a 3 × 3 size. Three fully connected layers are used to determine
whether the candidate is the object or background.

In the dynamic fusion layer, the convolution kernel is updated through the
back-propagation algorithm. In each iteration, the convolution kernel of visible
and infrared features iterates as follows:

W̃
(i)
RGB = a

(
W

(i−1)
RGB + lr ∂L

∂W
(i−1)

RGB

)
+ b

(
W

(2i−1)
share + lr ∂L

∂W
(2i−1)

share

)
(9)

W̃
(i)
T = c

(
W

(2i−2)
share + lr

∂L

∂W
(2i−2)
share

)
+ d

(
W

(i−1)
T + lr

∂L

∂W
(i−1)
T

)
(10)

where i is the iteration numbers, lr is the learning rate, and L is the loss function.
In each iteration, the non-shared convolution kernels are updated once, and the
shared convolution kernel are updated twice.

3.2 The Architecture
The overall architecture of DFNet is shown in Figure 3. The features of visible
and infrared images are first extracted and fused through three dynamic fusion
layers. After PrRoiPooling [43], the features of different sizes are unified into
3 × 3. Then, features enter three fully connected networks to determine the
object or background. At the end of the tracking process, DFNet takes the
candidate with the highest network output score as the object:

x∗t = arg maxF
(
xit
)

(11)

where xit represents the i-th candidate frame in the t-th frame, F (·) represents
the score of network output, and x∗t represents the final object result of the t-th
frame.

9



Inspired by RT-MDNet [44], DFNet adopts a multi-domain learning frame-
work. During training, all video sequences share three dynamic fusion layers,
FC4 and FC5. Each video sequence uses a domain-specific FC6. During testing,
the multiple domain-specific FC6s are replaced with a reinitialized FC6.

4 Implementation Details
We train and test DFNet on the PyTorch platform with i7-10700K CPU and
TITAN RTX GPU. We will introduce the details of training and online tracking
process in this section.

4.1 Offline Training
The pre-trained network in VGG-M [45] is adopted to initialize the model and
use ImageNet [46] and RGBT (GTOT [47] or RGBT234 [48]) mixed dataset
to train DFNet. We train the network using stochastic gradient descent with
momentum. The momentum is set to 0.9, the learning rate is set to 1e-4, and
the weight decay is set to 5e-4. The number of epochs is set to 60.

4.2 Online Tracking
In the online tracking phase, we initialize the model with the trained three
dynamic fusion layers, FC4, and FC5. We reinitialize a new FC6 and use the first
frame to train FC6. Specifically, we collect 500 positive samples (IOU>0.7) and
5000 negative samples (IOU<0.3) from the first frame as training samples, and
use stochastic gradient descent with momentum for training. The momentum
is set to 0.9, the learning rate is set to 1e-4, and the weight decay is set to 5e-4.

In the follow-up tracking phase, three dynamic fusion layers are fixed, but
FC4, FC5, and FC6 are fine-tuned online. We collect 50 positive samples and
200 negative samples, perform long-term updates every 10 frames, and perform
short-term updates when tracking fails. The learning rate of FC6 is set to 1e-
3, and the learning rate of FC4 and FC5 is set to 5e-4. At time t, we use a
Gaussian sampler to collect 256 candidates around the object position in the
previous frame and calculate their respective classification scores through the
network. Then, the Multi-layer Perceptron (MLP) is used to regress the average
value of the top five bounding boxes of the classification score to obtain the final
bounding box.

5 Experiment

5.1 Dataset and Evaluation Matrix
We use two RGBT datasets, GTOT [47] and RGBT234, [48] to compare DFNet
with other tracking methods. We use ImageNet and GTOT mixed dataset as
the training set when evaluating on RGBT234; we use ImageNet and RGBT234
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Table 2: RGBT234 dataset PR/SR scores based on attributes. The best, second-
best, and third-best PR/SR are shown in red, yellow, and blue.

Tracker SiamFC SiamRPN MDNet RTMDNet
RTMDNet

-pixel

RTMDNet

-feature

RTMDNet

-IVFuseNet

RTMDNet

-MANet
DFNet

BC 0.496/0.333 0.187/0.116 0.683/0.462 0.630/0.402 0.582/0.375 0.705/0.439 0.659/0.397 0.697/0.437 0.714/0.452

CM 0.564/0.407 0.321/0.226 0.689/0.497 0.637/0.438 0.626/0.429 0.690/0.467 0.663/0.438 0.676/0.448 0.692/0.471

DEF 0.591/0.431 0.281/0.212 0.685/0.497 0.654/0.451 0.611/0.419 0.679/0.466 0.651/0.448 0.682/0.445 0.661/0.462

FM 0.518/0.374 0.276/0.155 0.690/0.448 0.679/0.404 0.595/0.330 0.637/0.365 0.618/0.356 0.621/0.374 0.640/0.378

HO 0.521/0.367 0.261/0.164 0.654/0.459 0.634/0.422 0.586/0.369 0.621/0.403 0.592/0.381 0.644/0.409 0.641/0.412

LI 0.495/0.356 0.231/0.154 0.674/0.451 0.605/0.391 0.609/0.404 0.763/0.504 0.742/0.492 0.756/0.497 0.789/0.528

LR 0.603/0.404 0.295/0.159 0.734/0.502 0.683/0.447 0.727/0.464 0.794/0.492 0.787/0.471 0.730/0.446 0.797/0.496

MB 0.554/0.405 0.310/0.209 0.702/0.517 0.669/0.467 0.633/0.442 0.676/0.470 0.670/0.450 0.635/0.433 0.702/0.489

NO 0.765/0.564 0.404/0.282 0.862/0.636 0.842/0.576 0.828/0.557 0.859/0.582 0.856/0.564 0.868/0.569 0.871/0.599

PO 0.629/0.446 0.275/0.188 0.810/0.567 0.754/0.513 0.714/0.508 0.856/0.569 0.838/0.554 0.817/0.544 0.857/0.575

SV 0.634/0.461 0.308/0.210 0.767/0.549 0.747/0.508 0.697/0.461 0.751/0.499 0.743/0.494 0.762/0.505 0.749/0.501

TC 0.681/0.488 0.233/0.155 0.801/0.585 0.763/0.551 0.727/0.487 0.771/0.520 0.737/0.490 0.743/0.490 0.796/0.543

ALL 0.610/0.435 0.295/0.197 0.756/0.536 0.718/0.485 0.691/0.458 0.761/0.504 0.741/0.485 0.756/0.493 0.772/0.513

mixed dataset as the training set when evaluating on GTOT. The GTOT and
RGBT234 datasets have 50 and 234 RGBT sequences of image pairs aligned
in space and time, respectively. In one-pass evaluation (OPE), we use Preci-
sion Rate (PR) and Success Rate (SR) as evaluation indicators to evaluate the
tracking results. PR refers to the proportion of frames whose difference between
the output position and the ground truth bounding box is within the thresh-
old. The thresholds of GTOT is set to 5, The thresholds of RGBT234 is set to
20. SR is the proportion of frames where the overlap ratio between the output
position and the ground truth bounding box is greater than the threshold. The
area under the curves (AUC) is employed to calculate the SR score.

5.2 Comparison with Other Methods
We compared DFNet with visible tracking methods (MDNet [49], RT-MDNet
[44], SiamFC [50], and SiamRPN [51]) and fusion tracking methods (pixel-
level fusion [8, 9, 10], feature-level fusion [11, 12], MANet [14], and IVFuseNet
[34]). To be fair, all fusion methods have been implemented on the RT-MDNet
tracking framework, represented below as RTMDNet-pixel, RTMDNet-feature,
RTMDNet-MANet, and RTMDNet-IVFuseNet, respectively. The overall track-
ing performance is shown in Figure 4. For all the indicators of these two bench-
marks, our DFNet has clearly outperformed other tracking methods. Specifi-
cally, on the GTOT benchmark, our DFNet reached 88.1%/71.9% on PR/SR.
While on the RGBT234 benchmark, our DFNet reached PR/SR 77.2%/51.3%.
To further show the effectiveness of DFNet, we list the performance of each
attribute of the RGBT234 dataset. The specific tracking results are shown in
Table 2. It can be concluded from the table that our proposed DFNet outper-
forms other trackers in 8 cases with higher PR.
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(a) comparison on GTOT

(b) comparison on RGBT234

Figure 4: Overall performance compared with other trackers on GTOT (a) and
RGBT234 (b).
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Figure 5: Comparison of visible, infrared, and fusion tracking

5.3 Ablation Study
5.3.1 The Importance of Fusion

In order to show the importance of fusion for tracking, we compared the track-
ing performance of DFNet+RGB, DFNet+T, and DFNet. DFNet+RGB and
DFNet+T respectively indicate that DFNet solely relies on visible or infrared
images for tracking. The tracking performance of DFNet is shown in Figure 5.
The PR/SR of RGBT tracking are 8.6%/8.0% higher than tracking using visible
image alone, and 21.4%/16.8% higher than tracking using infrared image alone.
Experimental results show that the performance of DFNet is significantly better
than that of methods based on single-modal images.

5.3.2 Dynamic Fusion at Different Layers

We perform a number of ablation studies on RT-MDNet to verify the perfor-
mance of the dynamic fusion layer at three different layers. The results are
shown in Table 3. it can be found that the more the dynamic fusion layer is
used, the better the performance is. Using dynamic fusion layers for all three
layers produces the best results. And the later the dynamic fusion layer used in
the network, the better the performance is.

We visualized the weights of the dynamic fusion layer in the order of the
videos in GTOT, as shown in Figure 6. In Figure 6 (a), the blue solid line rep-
resents the average of the visible non-shared convolution kernel weights, and the
blue shading represents the range of the visible non-shared convolution kernel
weights. The red solid line represents the average of the visible shared convolu-
tion kernel weights, and the red shade represents the range of the visible shared
convolution kernel weights. In Figure 6 (b), the red solid line represents the av-
erage of the infrared non-shared convolution kernel weights, and the red shade
represents the range of the infrared non-shared convolution kernel weights. The
blue solid line represents the average of the infrared shared convolution ker-
nel weights, and the blue shading represents the range of the infrared shared
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Table 3: Dynamic fusion at different layers in RT-MDNet. √ indicates this layer
uses a dynamic fusion layer to replace the vanilla convolution, while - indicates
not.

Network C1 C2 C3 PR SR
Feature-level fusion - - - 0.860 0.693

√ - - 0.860 0.689
Feature-level fusion - √ - 0.863 0.695

+ - - √ 0.866 0.691
Dynamic fusion layer √ √ - 0.867 0.699

√ - √ 0.866 0.699
- √ √ 0.872 0.702

DFNet √ √ √ 0.881 0.709

(a) Weights of visible images (b) Weights of infrared images

Figure 6: Weights for different video sequences across the GTOT dataset in
DFNet.

convolution kernel weights. It can be found that the dynamic fusion layer can
calculate different weights according to videos. In this way, the dynamic fu-
sion layer makes the fusion tracker adaptively calculates the contributions of
individual features and common features.

In addition, we visualized the weights of the dynamic fusion layer in two
video sequences, as shown in Figure 7. Figure 7 (a) is from OccCar-2. It can be
found that in this video sequence, the contributions of individual features and
common features are also different. At the beginning of the video, the car is
clear in the visible images, and the contributions of individual features of visible
images are large. When the car is blocked by leaves, visible images cannot clearly
distinguish the car, so the contributions of the individual features reduce, while
the contributions of the common features increase. As the car comes out of the
leaves, the contributions of individual features of visible images increase. Figure
7 (b) is from FastMotorNig. When the bicycle is blocked by a street light, the
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(a) Weights of visible images (b) Weights of infrared images

Figure 7: Dynamic fusion layer weights of different frames of (a) OccCar-2 and
(b) FastMotorNig

contributions of the individual features reduce, while the contributions of the
common features increase. In the later stage of the video sequence, because the
bicycle is close to the crowd, thermal crossover [47] occurs, so the contributions
of the individual features of the infrared images are low. As the bicycle moves
away from the crowd, the contributions of the individual features of the infrared
images increase.

5.4 Efficiency Analysisdifferent fusion methods
The speed of DFNet is 28.658 FPS. We compared the speed and performance
of DFNet with other fusion tracking methods, the results are shown in Figure
8. The computational cost of DFNet is O(X) = 2(HWCin + CinChidden +
2Chidden +HWCinCoutk

2) Mult-Adds, where H, W are the height and width
of the input. Cin, Cout, and Chidden are the channel numbers of the input,
output, and hidden layer, respectively. k is the size of the convolution ker-
nel. Correspondingly, the computational cost of baseline (RTMDNet-feature) is
O(X) = 2HWCinCoutk

2 Mult-Adds. Since the fusion of shared and non-shared
convolution kernels is performed in convolution kernel space, compared with the
non-shared-convolution-kernel-based fusion method, no additional calculations
to increase. The increase of computational cost is mainly due to the attention
which calculates weights according to the input. The computational cost caused
by the attention is much smaller than convolution. In DFNet, it is less than
0.02%. While, compared with the baseline, MANet fuses the shared and non-
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(a) Comparison of precision rate and speed (b) Comparison of success rate and speed

Figure 8: Comparison of speed and PR/SR.

Table 4: The computational cost of different fusion methods. C1, C2, C3, and
total indicate the computational cost of the first, second, third, and all convo-
lutional layers, respectively. Percent indicate computational cost expressed as
a percentage of the non-shared-convolution-kernel-based fusion method.

Model C1 C2 C3 total percent
RTMDNet-feature (baseline) 323.14M 768.00M 285.47M 1376.61M 100.00%

RTMDNet-IVFuseNet 323.14M 768.00M 285.47M 1376.61M 100.00%
RTMDNet-MANet 382.49M 798.72M 317.19M 1498.40M 108.85%

DFNet (ours) 323.21M 768.12M 285.57M 1376.90M 100.02%

shared features in feature space, which causes calculations to increase by 8.85%.
The specific computational cost is shown in the Table 4.

Based on all the experiments performed in this section, we conclude that:

1. Compared with the visible tracking method (MDNet, RT-MDNet, SiamFC,
and SiamRPN) and the fusion tracking method (pixel-level fusion, feature-
level fusion, MANet, and IVFuseNet), DFNet achieves the best PR and
SR.

2. The performance of fusion method is better than that of methods based
on single-modal images, which shows the advantage of fusion.

3. With consideration of the contributions of individual features and common
features, DFNet can adaptively calculate the weights of shared and non-
shared convolution kernels to cope with changes in modality reliability.

4. Compared with the fusion of shared and non-shared features in the feature
space, the fusion of shared and non-shared convolution kernels in the con-
volution kernel space can effectively reduce the computational complexity
and improve the tracking speed.

16



6 Conclusion
In this paper, we propose a novel RGBT tracking method, called dynamic fusion
network (DFNet). DFNet is essentially a feature-level fusion method, which can
use non-shared convolutions to respectively extract individual features accord-
ing to the different characteristics of visible and infrared images. Furthermore,
DFNet takes the advantage of shared convolution kernels to extract common
features. In addition, because attention is used to adaptively calculate different
convolution kernel weights according to inputs, DFNet can dynamically calcu-
late the contributions of individual features and common features in the face of
changes in modality reliability. The shared convolution kernels and non-shared
convolution kernels are concatenated in convolution kernel space, so that, the
computational cost is small. Extensive experiments on two RGBT datasets
validate the effectiveness of DFNet. Future work will focus on adopting more
advanced architectures, designing other adaptive weighting methods, and re-
ducing the redundancy of features between different modalities.
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