
Matching supply and demand in online parking
reservation platforms

Merkouris Karaliopoulos, Member, IEEE, Orestis Mastakas and Wei Koong Chai, Senior Member, IEEE

Abstract—Our work concerns online parking reservation plat-
forms proposed in the last decade to cope with the parking
challenge in cities worldwide. Enlisting parking resources from
commercial operators (e.g., lots) and individuals (e.g., doorways)
and letting drivers make online reservations through mobile apps,
the goal of those platforms is to ease transactions between the
two sides and best match parking supply with parking demand.
This way they maximize their value for drivers and parking space
providers but also their revenue out of charged commissions.

We distinguish between two types of commissions these plat-
forms typically charge, fixed per transaction and proportional
to its value, and formulate the respective optimization problems
for the platform revenue maximization. We show that the two
problems are NP-hard and design a novel algorithm that can
treat both, combining greedy and dynamic programming prin-
ciples. We study its optimality properties both analytically and
experimentally, showing that the algorithm closely tracks optimal
solutions for small and moderate problem sizes at run times that
are several orders of size smaller than off-the-shelf ILP solvers.
We then analyze real parking data we collected for the period
2018-2020 from the Bournemouth city in UK to realistically
model the rich spatiotemporal dynamics of parking demand such
as the location, start times and duration of parking events. These
data drive the experimental evaluation of the proposed algorithm,
which reports gains of up to 35% compared to the de facto
reservation policy in use in such platforms. Notably, these gains
are higher when the platform operates under constrained supply
conditions.

Index Terms—Parking reservation, resource sharing, optimiza-
tion, sharing economy

I. INTRODUCTION

Despite the huge progress made in transportation and in-
formation/communication technologies over the last decades,
parking still marks a societal challenge that we have not
managed to convincingly cope with. In 2017 alone, in the
pro-Covid era, British drivers spent, on average, 44 hours and
an equivalent £733 per year in terms of wasted time, fuel
and emissions [1]. In Covid-19 times, as people avoid public
transportation and return to the use of private cars to protect
against Covid [2], the situation tends to get worse.

At the heart of the problem lies the general imbalance
between parking demand and parking supply across time and
space. This imbalance gets particularly problematic in areas of
high parking demand (e.g., city hotspot areas), where parking
space is not only harder to find but also more expensive [3].
The deployment of new infrastructures that could curb park-
ing demand (public transportation infrastructure) or increase
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parking supply is costly, not least because they need to occupy
urban space that is typically very scarce in those areas.

The obvious alternative to deploying new infrastructures is
maximizing the efficiency in the management of existing park-
ing resources. This is the goal of online parking reservation
platforms that have emerged during the last decade, such as
Justpark1, Parkopedia2, YourParkingSpace3 to mention but a
few. These platforms attempt to ease transactions between
parking resource providers and drivers seeking for parking
space in the same way Airbnb does for lodging: they register
parking spots from parking lot operators with dedicated park-
ing infrastructure but also individuals or businesses willing to
share parking spots in their backyard, doorway or private prop-
erty, respectively. Hence, those platforms attack the parking
problem in two ways: first, they augment the parking supply
by recruiting and enlisting more parking resources that are
not directly “visible”; second, they let drivers reserve parking
space, circumventing the parking cruising problem [4].

In this paper, we study these online parking reservation
platforms focusing on their algorithmic challenges. We model
parking demand as a set of requests with specific spatial and
timing context and an upper bound on the price they are
willing to pay for being served. Parking supply, on the other
hand, is abstracted as a set of parking spots, each associated
with a distinct location, specific hours within the day that
it is available for use and the parking fee it charges as a
function of time. The platform then is responsible for matching
the submitted parking requests with proper parking spots and
directing the drivers to them. Each such transaction bears a
commission for the platform, whose goal is to maximize its
revenue while keeping both drivers and spot owners happy to
secure its long-term sustainability.

Proposed solutions in literature have followed different
directions. Auction-based solutions (e.g., [5][6]) let high
flexibility in the matching process but their complexity has
prohibited their adoption in parking reservation platforms, in
line with a broader decline in their use in online markets [7].
On the other hand, under simpler pricing mechanisms, the
matching process is almost always (e.g., [8][9][10]) reduced
to Mixed-Integer Linear Program (MILP) instances. To the
best of our knowledge, the research community has overlooked
the need for smart algorithmic solutions to these problems
routinely pointing to off-the-shelf solvers that cannot scale to
practical scenarios.

1https://www.justpark.com
2https://www.parkopedia.com
3https://www.yourparkingspace.co.uk
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Main contributions and paper organization: We con-
tribute to this research thread in three ways. First, we formu-
late optimization problems for the two ways online parking
platforms may charge commissions for their services, as a
fixed amount or a fixed percentage of the price paid by the
driver for parking. We characterize the complexity of the prob-
lems showing that they are NP-hard. We lay out our modeling
assumptions for the parking demand and supply in section II
and continue with the problem formulation and its complexity
characterization in section III. Secondly, in section IV, we
design a lightweight algorithm that treats both, combining
greedy and dynamic programming principles. We study its
optimality analytically for one special case of the problem and
experimentally for small and moderate problem sizes. In the
latter case, the algorithm closely tracks the optimal solutions at
run times that are several orders of size smaller than those off-
the-shelf ILP solvers achieve. Finally, we provide a thorough
evaluation of our proposed algorithm that draws on real data
about parking supply and demand. These data are collected
from various parking facilities run by the municipality of
Bournemouth, in UK, a touristic location recording over 17
million visitors each year that is often plagued with traffic
and parking issues especially during the peak holiday season4.
We analyze these data to parameterize our models of parking
demand and supply and capture their strong spatiotemporal
variations in section V. Then in section VI we compare our
solution with the de-facto policy for handling parking requests
and we obtain platform revenue gains of up to 35%. At the
same time, we evaluate the benefits of the algorithm for the
other two parties involved in the platform, i.e., the parking
spot owners and the drivers.

We position our work with respect to related work in this
area in section VII. Finally, we conclude in section VIII with
a summary of our findings.

II. SYSTEM MODEL

We consider a parking reservation system, which is run by
an online platform and roughly works as follows:

• It maintains a list of available parking resources, which
may include spots in parking lots, on street parking spots
as well as privately owned parking spots (e.g., in a private,
garage, backyard or doorway). For each parking resource,
the platform logs its location, the hours it is available and
the parking fee it charges for different stay durations.

• Users registered with the platform issue requests for park-
ing, specifying the time interval of interest, destination
area and what they are they willing to pay.

• The platform periodically (could be once per day or
more frequently) considers the availability of parking
resources and the demand for parking space and makes
allocations/reservations. Drivers who have issued parking
requests and the owners of parking spots are notified
about the reservations in due time.

The platform essentially gives rise to a two-sided market
where owners of parking resources (“sellers”) can serve the

4https://www.bournemouthecho.co.uk/news/19369584.parking-chaos-
bournemouth-thousands-flock-beach/

demand raised by drivers (“buyers”). It matches drivers with
the parking resources taking into account the preferences of
the drivers and the constraints of the resources.

Formally, let R be the set of parking requests submitted to
the platform, with |R| = n. Each request r ∈ R is a tuple
r = ([sr, er], dr, pr), where [sr, er] is the time interval of the
requested parking event (sr: start time, er: end time), dr is
the driver’s travel destination (possibly obfuscated) and pr is
the maximum amount she is willing to pay for a parking spot.

Let also S denote the set of parking resources that listed
in the platform and |S| = m. Each spot s ∈ S is a tuple
s = ([as, bs], ls, cs) described by its window of availability
[as, bs] (as/bs : start/end of availability time), its location ls
and cs(t) is the tariff function of parking spot s yielding the
amount charged by the spot for parking stay of time t. The
minimum assumption we make about these functions is that
they are weakly increasing functions of parking stay duration:
for all s ∈ S, t1 ≤ t2 implies that cs(t1) ≤ cs(t2). In practice,
these functions typically exhibit decreasing returns to scale,
i.e., the marginal cost of parking decreases as the parking stay
duration decreases.

The platform seeks to match the parking requests with the
available spots under constraints related to:

• the physical distance between spots and users’ travel
destinations: the requirement is that

dist(dr, ls) ≤ ϵd (1)

namely, their distance should not exceed a threshold ϵd
so that spot s be relevant for the parking request r.

• the time context of the parking request r: the time interval
of the parking event should lie within the availability of
the spot s, i.e.,

as ≤ sr and bs ≥ er (2)

• financial (mis)matches: a match between request r and
spot s is feasible only if the fees charged by s is less
than what the user issuing the request is willing to pay,

cs(er − sr) ≤ pr (3)

Hence, for each request r, we can define the set Cr of
candidate spots as

Cr = {s : (1) ∩ (2) ∩ (3)} (4)

and, likewise, for each parking spot s, we can define the set
As of admissible parking requests as

As = {r : (1) ∩ (2) ∩ (3)} (5)

III. THE PARKING RESERVATION PROBLEM

The platform makes its revenue by charging commissions
for each transaction (a parking request served by a parking
resource) carried out through it. We distinguish between
two types of commission: (a) fixed commission, hf , per
transaction; and (b) commission as a fixed percentage, hr,
of the transaction value. The way the platform charges its
commissions directly affects its overall goal when matching
parking requests to resources. When the platform earns a



fixed amount out of each transaction, its goal is to maximize
the number of distinct transactions it facilitates. When its
commission is proportional to the revenue produced out of a
transaction, it favors matchings that generate higher revenue.

Formally, let us introduce binary control variables

xrs =

{
1 if request r is matched with spot s
0 otherwise

(6)

and define the RxS matrix X = [xrs]. When the platform
charges a fixed commission per transaction, we can formulate
the optimization problem (OPT1) it faces as:

max
X

∑
s∈S

∑
r∈As

xrs (OPT1)

s.t.
∑
s∈Cr

xrs ≤ 1 ∀r ∈ R (7)

xrs ∈ {0, 1} r ∈ R, s ∈ S (8)

where constraint (7) reflects that each request can only be
served once or not at all.

On the other hand, when its commission is a fixed portion
of the transaction value, the platform seeks to

max
X

∑
s∈S

∑
r∈As

xrs · cs(er − sr) (OPT2)

s.t. (7), (8) (9)

In the special case that all parking resources charge the same
constant rate c per hour, i.e., cs(t) = c·t in OPT2, maximizing
the aggregate revenue out of the parking resources coincides
with maximizing their utilization.

We can show that:

Theorem 1. Problems OPT1 and OPT2 are NP-hard.

Proof. It suffices to show that the corresponding decision
problems are NP-complete. The proof proceeds in three steps.

First, we formulate the decision problems that correspond
to these optimization problems, say OPT1,d and OPT2,d:
“Given a set R of requests and a mapping between R and
the set of parking spots S, as defined by sets Cr, r ∈ R, can
we satisfy at least k requests (for OPT1,d) or can we achieve
a revenue of at least K (for OPT2,d)?”.

Then, we construct the problem that can emerge as a special
case of the more general OPT2,d problem when all parking
spots have identical availabilities and charge the same constant
fee for every parking request they serve, irrespective of its
duration. In this case, the two problems coincide, whether
we consider their maximization or decision variant. Hence,
problem OPT2,d “degenerates” to OPT1,d.

In the third step, we prove that:

Lemma 1. Problem OPT1,d is NP-complete.

Proof. To prove NP-completeness for OPT1,d, we need to
show that (a) OPT1,d is in NP; (b) there is an NP-complete
problem Y that reduces to OPT1,d.

The reduction part is trivial. If parking requests are mapped
to jobs with fixed start and end times and parking resources
correspond to non-identical machines that are only appropriate

for subsets of the full job set, we can identify the OPT1,d

problem with the job scheduling problem that is introduced
and shown to be NP-complete in [11].

Regarding the first requirement, we need to establish that
for any input of the decision problem it is possible to verify in
polynomial time whether it responds positively or negatively
to the decision problem. In ([11], Thm. 3), the authors explain
how a weighted Directed Acyclic Graph (DAG) can be con-
structed in polynomial time for every instance of the OPT1,d

problem. We can then find the value V of the longest path in
this DAG. If V ≥ k, then the decision problem is answered
in the affirmative; otherwise, the reply is negative.

IV. AN APPROXIMATE ALGORITHM FOR OPT1,2

A. Description of the algorithm

In Algorithm 1, we present an algorithm that can be used
for both problems OPT1 and OPT2. The algorithm parses
sequentially the parking resources and seeks to assign to each
of them the optimal set of parking requests. To this end, for
each parking resource (spot) s, Algorithm 1 calls the dynamic
programming (DP) algorithm in Algorithm 2.

Input to the DP algorithm are the availability start and end
times of s, the set As of admissible parking requests and a
switch variable (mod) that specifies whether Algorithm 2 is
used for problem OPT1, when mod = 1, or problem OPT2,
when mod = 2. All times passed to the DP algorithm are
discretized by dividing the actual continuous values with the
minimum booking duration parameter T (typical values for
T are 30min or 1hr). We use accents to denote the discrete
values, i.e., b

′

s = ⌈ bs
T ⌉.

The DP algorithm first ranks the admissible requests in
order of increasing start times. It then parses them one by
one to row-wise fill the (|As|+1)× (b

′

s − a
′

s) matrix u, after
initializing its first row to zero. The entry u(k, t) holds the
maximum utility that can be accumulated by (discretized) time
t after considering the first k parking requests: for OPT1, this
is the number of served requests by the spot, whereas for
OPT2 the total generated revenue out of them. If the parking
request r is kth in order of parsing, with value vr = 1 for
OPT1 and vr = cs

(
(er − sr)

′ ·T
)

for OPT2, then the entries
of the kth row of matrix u are given by

u(k, t) =


u(k − 1, t) t ∈ [a

′

s, s
′

r)

max
(
u(k − 1, t), u(k − 1, s

′

r) + vr
)

t ∈ [s
′

r, e
′

r]

max
(
u(k − 1, t), u(k, e

′

r)
)

t ∈ (e
′

r, b
′

s]

The maximum achievable utility after processing all |As|
parking requests is stored at the matrix element u(|As|+1, b

′

s).
Algorithm 2 is essentially an adaptation of the DP for the 0-
1 Knapsack Problem (e.g., see [12], 6.4) to the constraints
induced by the fixed start and end times of parking requests.
Moreover, it logs the booked requests qs as it runs rather than
in a separate computational step after the matrix u is filled
in. After each run of Algorithm 2, those requests are removed
from further consideration and the admissible request sets of
the remaining resources are updated (Algorithm 1, line 5).



The order in which the different parking resources are
parsed is a degree of freedom of the algorithm. One possibility
is to run Algorithm 1 many times, each parsing the parking
resources in a different random order, and keep the best of
the resulting solutions. This is a technique that is practised
broadly in randomized algorithms. An alternative is to use
heuristic rules for ranking the parking resources. For instance,
when commissions are charged per transaction OPT1, we can
rank the spots in order of increasing availability windows
(bs−as), s ∈ S, thus prioritizing resources that are less flexible
in serving parking requests. We call this the Least Flexible
First (LFF) rule. Likewise, when commissions are charged as
a fixed part of the transaction value OPT2, we can rank spots
in order of decreasing (average) fees they charge. We call this
the Most Profitable First (MPF) rule.

Algorithm 1 Algorithm for solving problems OPT1 and
OPT2

Input: Set of parking resources S; set of admissible requests,
As, s ∈ S; time discretisation step T ; switch variable mod

Output: Booked requests bs, s ∈ S; platform revenue Rev

1: Rev = 0
2: for s ∈ S do
3: (Time discretisation:) as = ⌊as/T ⌋, bs = ⌊bs/T ⌋ and

sr = ⌊sr/T ⌋, er = ⌊er/T ⌋, r ∈ As

4: [qs, Us] = Algorithm2 (s,As,mod)
5: for s′ ∈ S \ s do
6: As′ = As′ \ qs
7: end for
8: if mod == OPT1 then
9: Rev = Rev + hf · Us

10: else
11: Rev = Rev + hr · Us

12: end if
13: end for

B. Properties of the algorithm
1) Accuracy: We first derive a bound for the worst-case

performance of the Algorithm 1 in the special case that the
tariff function is proportional to the parking time and identical
across all parking spots, i.e., cs(t) = c · t ∀s ∈ S. This could
be the case if the platform determined itself the parking fees
for the parking spots, much as ride-sharing platforms do [13].

Approximation ratio: We can prove the following result.

Proposition 1. Under identical parking charging rates, Algo-
rithm 1 yields an approximation ratio equal to 1/2.

Proof. Let q =
⋃
qs, s ∈ S be the requests booked under

Algorithm 1 and q∗ =
⋃
q∗s the respective ones under the

optimal algorithm. Then the overall revenue achieved by
Algorithm 1 is

R(q) =
∑
s∈S

R(qs) (10)

whereas it is
R(q∗) =

∑
s∈S

R(q∗s ). (11)

Algorithm 2 Finding the optimal set of requests that can be
served by a single parking resource s

Input: Discretized availability start and end times (as, bs) and
tariff function cs(t) for slot s; discretized start/end times
(sr, er), r ∈ As; switch variable mod

Output: Set of booked requests qs; achieved spot utility Us

1: Sort the set As in order of increasing start times
2: Initialize: u(0, t) = 0, as ≤ t ≤ bs, k = 0
3: for every r ∈ As do
4: k = k + 1
5: if mod == OPT1 then
6: vr = 1
7: else
8: vr = cs(er − sr)
9: end if

10: u(k, t) = u(k − 1, t), 1 ≤ t ≤ er − 1
11: if ur + u(k, sr) > u(k − 1, er) then
12: u(k, er) = vr + u(k, sr)
13: q(er) = q(sr) ∪ r
14: else
15: u(k, er) = u(k − 1, er)
16: end if
17: for t = er + 1 : bs do
18: if u(k − 1, t) ≥ u(k, er) then
19: u(k, t) = u(k − 1, t)
20: else
21: u(k, t) = u(k, er)
22: q(t) = q(er)
23: end if
24: end for
25: end for
26: return Us = u(|As|+ 1, bs), qs = q(bs)

We need to show that it always holds

R(q) ≥ R(q∗)/2. (12)

Let us split the requests booked under the optimal algorithm
into two parts q∗ = q∗1 + q∗2 , with

R(q∗) = R(q∗1) +R(q∗2) (13)

such that q∗1 ⊆ q are the requests that are also booked by
Algorithm 1, not necessarily on the same parking resources,
and q∗2 ̸⊆ q, are those which are not. Then, it apparently holds

R(q∗1) ≤ R(q). (14)

Assume that the remaining requests q∗2 are booked under the
optimal algorithm at resources s1, s2, ...sm as q∗2 = q∗2,s1 +
q∗2,s2 + ... + q∗2,sm . Since these requests are not chosen by
Algorithm 1 at the respective resources, for sure it holds:

R(q∗2,s1) ≤ R(qs1), R(q∗2,s2) ≤ R(qs2), ..., R(q∗2,sm) ≤ R(qsm)

and summing on both sides of these inequalities, we get

R(q∗2) ≤ R(q). (15)

Then (12) follows directly from (13)-(15).



Table I: Approximation error of Algorithm 1 for OPT1 under
three ways to order parking spots: 104 problem instances.

Spots’ parsing Approximation error, η, statistics num instances
order median 95th prctile worst with η = 0

random once 0.107 0.142 0.213 734
LFF rule 0.088 0.125 0.195 1619

multiple random 0.022 0.073 0.1714 3008keep the best

Table II: Approximation error of Algorithm 1 for OPT2 under
three ways to order parking spots: 104 problem instances.

Spots’ parsing Approximation error, η, statistics num instances
order median 95th prctile worst with η = 0

random once 0.123 0.28 0.76 86
MPF rule 0.081 0.18 0.727 259

multiple random 0.069 0.16 0.727 488keep the best

Extending this bound to more general settings, where the
revenue each served parking request generates depends on the
assigned parking spot, is not trivial. Hence, to get insights to
the accuracy of the algorithm, we experimentally assess how
closely it matches the optimal solution.

Experimental comparison with the optimal solution:
We compare the solutions of Algorithm 1 with the optimal
ones, obtained for “small” problem instances of a few tens of
parking spots and requests with an off-the-shelf ILP solver,
the MATLAB R2018a intlinprog solver. We run two sets of
simulations, one to assess the accuracy of Algorithm 1 for
problem OPT1 and one to do the same for OPT2. In each
set, the number m of parking spots uniformly samples the
interval {20, 40} and for each value of m, we let the number
n of parking requests vary in [1.5m, 4m]. We set T = 1hr
and match requests with spots over intervals of 24hrs. The
start and end times of the spot availability windows, the
endpoints of the parking request intervals and the spot fees are
generated randomly from uniform distributions and determine
the candidate spot set of each request5. We generate 10000
distinct problem instances.

Tables I and II report the comparison outcomes for the two
simulation experiments. We run three variants of Algorithm
1 corresponding to three different ways to parse parking
spots: once randomly (or), multiple times randomly keeping
the best solution (mrb), and according to the LFF/MPF
rule (lff/mpf ), depending on whether we solve (OPT1)
or (OPT2), respectively. If opt is the optimal solution and
approxj , j ∈ {or,mrb, lff/mpf} the solution of Algorithm
1 when parking spots are parsed in line with variant j, the two
tables report statistics of the approximation error, defined as

ηj =
opt− approxj

opt
. (16)

Overall, Algorithm 1 performs much better on average than
the worst-case bound obtained for the special case in Proposi-
tion 1 or the worst-case encountered over these experiments, in
line with what we know about greedy algorithms (e.g., [14]).

5In these experiments, the emphasis is on assessing the accuracy of the
algorithm. We take into account the physical layout of spots and user travel
destinations in section V.

0 100 200 300 400 500 600

Number of parking requests, n

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n
ti
m

e
 (

s
e
c
)

m = 50, Algo 1

m = 100, Algo 1

m = 200, Algo 1

m = 50, OPT

m = 100, OPT

m = 200, OPT

Figure 1: Run times of Algorithm 1 for (OPT1): each point
is the average over 150 problem instances.

Moreover, in line with intuition, the LFF and MPF heuristics
clearly improve over a naive random choice of parsing order,
while trying many different random orders yields the best
scores. The approximation error statistics of Algorithm 1 for
(OPT1) are consistently better than for (OPT2). Its solutions
are optimal for roughly an order of magnitude more (OPT1)
problem instances than (OPT2) ones.

2) Complexity: The algorithm first indexes requests in order
of increasing start times in time O(nlogn). Then, for each spot
s, (a) it determines its set of admissible requests As in time
O(n); it runs an instance of the DP algorithm in Algorithm 2 in
time O(nWs), where Ws = bs−as+1; and reduces the set of
requests by the set that was assigned to s in time O(n). Over-
all, it takes time O(nlogn)+mO(nW ) = O(n(logn+mW )),
where W = maxs∈S Ws. Fig. 1 reports how the runtimes of
Algorithm 1 scale from small to moderate problem instances
with a couple of hundred spots and requests. Runtimes are
measured on a desktop PC with an Intel Core i7-7700 CPU
at 3.60GHz and 16GB installed RAM and each plot point is
the average over 150 problem instances. Even for the bigger
problem size, (n,m) = (200, 550), the runtime of Algorithm
1 remained a fraction of a second, when we measured worst-
case runtimes of ∼30mins with the MATLAB ILP solver.

V. DATA-DRIVEN EVALUATION METHODOLOGY

In this section, we describe our overall methodology for
evaluating the proposed algorithm, insisting on our models for
parking supply and demand and how we parameterize them
after real-world parking data.

A. Parking demand

To characterize parking demand, we obtained parking data
spanning the period 2018-2020 from the Bournemouth city
council. The data concerns various council-managed parking
facilities including multi-storey lots and on-street parking
space. The data for gated parking facilities, in particular,
include fine details such as individual vehicle arrival/departure
times, that let capture the spatial and temporal dynamics of the
parking demand across the city area.

Figure 2 illustrates sample distributions of vehicle arrival
times at two parking facilities in the Bournemouth city center,
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Figure 2: Distribution of vehicle arrival times over time of the day for two multi-storey parking facilities.
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Figure 3: Distribution of vehicle arrival times over time of the day between 12-16 Nov. 2019 for Avenue Road parking facility.
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Figure 4: Distribution of parking duration in March and August 2019 for (i) all parking events (columns 1 and 4), (ii) parking
events started between 7-9am (columns 2 and 5) and (iii) parking events started between 9-12am (columns 3 and 6).

namely Richmond Gardens and Avenue Road, in different
months during the 2-year long period. Both facilities are
multi-storey, allow long stay parking and share the same
parking tariffs. Moreover, there is no on-street parking, at
least managed, available nearby6. We can, first, see that these
distributions vary considerably between the two locations even
though they are not far from each other. The arrival times at

6https://www.bournemouth.gov.uk/Parking/Parking.aspx

Avenue Road exhibit a sharp peak between 9-11am while at
Richmond Gardens, they are more uniformly spread over 8am-
6pm with a peak around 12-1pm. Second, the distributions are
strongly consistent across different months and years. Despite
the reduction in the volume of arrivals, the shapes of those
distributions remain intact even amid the Covid-19 pandemic.
Notably, these shapes persist over different timescales, i.e.,
monthly and daily (allowing for the weekday vs. weekend
effect), as shown in Fig. 3.
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Figure 5: Tariff functions of individual private spots in the
Bournemouth city area, as manually retrieved from the Just-
Park and Parkopedia platforms. Each bar corresponds to one
spot and the height of the bottom k stacked pieces in each bar
denotes its charge for k hours of parking. If there are n pieces
in the bar, the marginal charge after n hours is zero.

Figure 4 shows the distributions of parking duration for
both Richmond Gardens and Avenue Road parking facilities.
We found correlation between vehicle arrival time and parking
duration. Vehicles arriving in the early morning hours (be-
tween 7-9am) tend to stay for 8-10hrs, pointing to people
who routinely go to work. Vehicles arriving after 9am tend
to stay for shorter times. For Richmond Gardens, the arrivals
after 9am are far more than the early morning ones and give
rise to a geometrical distribution for the overall distribution of
parking duration, both within a day and cumulatively across a
month. For Avenue Road, stays tends to be longer for vehicles
arriving after 9am so that the overall distribution of parking
duration throughout the day is more spread out in time.

B. Parking supply

To obtain information about availability windows, locations
and corresponding parking charges of individual private park-
ing spots such as driveways and backyards, we have collected
the data on parking spots registered with platforms such as
JustPark and Parkopedia within the Bournemouth area.

Figure 5 presents the tariff functions of 23 spots located in
Bournemouth. These are non-decreasing functions of parking
duration and almost all of them charge nothing extra if the
parking duration exceeds m hours, m ∈ [2..10]. Interestingly,
for many of the spots, the per hour parking fee increases
when parking duration exceeds some threshold, to probably
discourage long continuous use of the spot by a single vehicle.
We sample these data to generate tariff functions, {cs(t)}s∈S ,
for our simulations (ref. section V-C).

C. Simulation scenarios and parking request generation

To best account for the spatiotemporal dynamics of park-
ing demand in our evaluation, we divide the Bournemouth
city area into a grid of 24×10 cells, as shown in Fig. 6.
Each cell roughly corresponds to a 300m × 300m square
area. The red shaded areas, accounting for Kh = 57 cells,

Figure 6: Grid layout over a large part of the Bournemouth
town. Parking demand hotspot areas are marked red.

have been identified as hotspot areas considering whether
they are residential or business districts and their vicinity
to urban attractors (e.g., shopping malls, train stations and
recreation places). We then define our simulation scenarios
as (n,m, rh, sh) quadruples, where rh denotes the portion
of parking requests with destinations in hotspot cells and sh
denotes the portion of spots that are located in hotspot cells,
with 0 ≤ rh, sh ≤ 1.

For given (n,m, rh, sh) scenario, we take the following
steps to simulate the parking allocation process over a reser-
vation period (typically one day):

Step 1: n · rh parking requests are uniformly directed
towards one of the Kh hotspot cells and n(1 − rh) requests
towards one of the non-hotspot cells. Likewise, m ·sh parking
spots are uniformly assigned to one of the Kh hotspot cells,
whereas m(1−sh) are placed in one of the non-hotspot cells.

Step 2: Depending on the travel destination of each
parking request, its start time is sampled from one of the two
distributions of vehicle arrival times in Fig. 2 for the Avenue
Road and Richmond Gardens facilities. To reduce the number
of distributions we need to store and sample, we group the
cells into two clusters according to the similarity of the vehicle
arrival distribution in each cell with the respective distributions
for Avenue Road and Richmonds Gardens. Namely, these two
distributions serve as the respective cluster centroids.

Step 3: The request start time from step 2 falls in one
of the two time zones (7-9am or 9-12pm) in Fig. 4. The
combination of cluster (“Avenue Road” or “Richmond Gar-
dens”) and request start time (i.e., time zone) determine which
parking duration distribution will be sampled for determining
the request end time. For instance, if the request start time is
8am for a destination in a cell assigned to the “Avenue Road”
cluster, the parking duration is sampled from a distribution
like the one in the bottom of the second column of Fig. 4.

Then, the sets {Cr}r∈R and {As}s∈S are derived for the
parking requests and spots at hand (see section II) and fed
to Algorithm 1. We do not further thin out these sets via
pricing considerations, namely how much drivers are willing
to pay for parking vs. how much spot owners charge for given
parking duration. The complexity of realistically modeling the
fine contextual/behavioral details of the drivers’ willingness to
pay is incommensurate with its added value for the algorithm’s
evaluation. Hence, whereas the absolute platform revenue
values in section VI should be viewed as optimistic estimates
of the actual ones, the focus of our subsequent evaluation is



on the relative performance gains of Algorithm 1.

VI. EVALUATION RESULTS

We compare our algorithm against the First Come First
Served (FCFS) scheme that processes parking requests sequen-
tially, in the order they are issued to the platform. For each
arriving request r, the scheme ranks all candidate spots in set
Cr (see section II) according to their proximity and assigns the
request to the closest available spot at that time. FCFS is the de
facto scheme to serve parking requests online, as they arrive
to the platform. Any performance gains of our scheme also
set a reference for what is achievable with parking reservation
platforms that work offline, i.e., they collect parking requests
up to some deadline and then serve them in batches.

Besides the platform revenue achieved by the two schemes,
we report the portion of spots that are not serving any request
over the reservation period (idle spots) and the portion of
requests that the platform fails to serve (blocked requests).
Idle spots hint at spot owners who make no profit out of
the platform and are closely linked to the sustainability of
the platform supply. Blocked requests imply drivers who did
not benefit from the platform and impact the longer-term
sustainability of the platform demand. Each point in the plots
that follow is the average of 1500 runs; the related confidence
intervals are negligible. We have used the Matlab R2018a
student version for our numerical simulations.

A. Parking spots without time availability constraints

We first assume that parking spots are fully available within
the day. This represents maximum flexibility on the supply
side and avoids the blocking of parking requests due to timing
incompatibilities (see Eq. 2). Fully available are typically spots
in dedicated parking infrastructures such as parking lots rather
than parking space at private doorways or backyards.

1) Fixed commission per parking transaction: Figure 7
compares the number of parking requests that can be satisfied
by Algorithm 1 and the FCFS scheme under different demand-
supply ratios, n/m; the platform revenue is a fixed multiple
of this number. Figure 8 then plots the number of idle spots
under the two algorithms together with the number of a priori
idle spots, i.e., spots with empty sets of admissible requests, as
discussed in section II. We can make the following remarks.

First, for each plot (i.e., n/m and sh values) the satisfied
parking requests are maximized when the demand distribution
across hotspot and non-hotspot areas best matches the supply
counterpart; not in terms of parking request/spot numbers but
rather total hours requested vs. available and their precise tim-
ing. When this happens, the number of spots attracting drivers
also grows and the interests of all three parties, i.e., drivers,
spot owners and the platform, are aligned. On the contrary,
both quantities (served requests and utilized spots) deteriorate
when there is mismatch between supply and demand. The
spatial distribution of blocked requests and idle spots varies
significantly depending on how this mismatch emerges. For
sh = 0.4, for example, most parking spots lie away from
hotspot areas. As rh varies from 0.4 towards 1 and the demand
shifts towards hotspot areas, several spots in the periphery

fail to attract drivers, also reflected in the high number of
a priori idle spots, and many parking requests for hotspot
destinations cannot get satisfied. For sh = 1, it is the other
way round. As the demand shifts towards hotspot areas, more
requests can be served and fewer spots remain idle. The idle
spots at low rh values are located in hotspot areas and the
blocked requests are for destinations away from hotspot cells.
For sh = 0.7, the r∗h value that simultaneously maximizes
satisfied requests and utilized spots lies within the interval [0.4,
1]. Idle spots and blocked requests emerge in both hotspot and
non-hotspot areas. For rh < r∗h, blocked requests are mainly
for destinations in the non-hotspot areas and most idle spots
are located in hotspot areas. The opposite holds for rh > r∗h.

Second, the extent to which the two platform parties, drivers
and spot owners, are kept happy is highly determined by the
demand-supply ratio. Hence, at smaller n/m values, the plat-
form can satisfy higher portions of drivers. The competition
is on the supply side and several spots remain idle without
attracting parking events. As n/m grows, the situation is
reversed: more spots can be matched with at least one parking
event and the competition is fiercer on the demand side so that
significant part of the requests cannot be served.

Third, the platform revenue generated by Algorithm 1 is
always at least as high as what the FCFS scheme generates
and almost always higher than that. The gain across all
(N,M, rh, sh) value combinations is up to 35% (see Fig.
7d, sh = 0.4) depending on parking supply and demand
volumes (n,m) as well as their distribution (rh, sh). Notably, it
increases with the demand-supply ratio n/m, i.e., Algorithm 1
turns out to be more resilient to supply-constrained scenarios.

2) Commission in proportion to the parking charges: Fig-
ure 9 compares the platform revenue achieved by Algorithm 1
and the FCFS scheme when the platform charges commissions
as a fixed percentage of the overall parking fee for n/m = 2.5
and n/m = 4. This is the overall revenue the platform
generates over a day for the spot owners and itself; its own
revenue is a fixed percentage of this amount.

Algorithm 1 again outperforms FCFS, revenue gains ranging
from 6% to 35% (for sh = 0.4 and sh = 0.7 when (n,m) =
(1600, 400)) and increasing with higher demand-supply ratios.
As seen in Fig. 10, Algorithm 1 satisfies more parking requests
but also extracts more revenue out of them.

As with fixed commissions, the spatiotemporal dynamics
of parking supply and demand already set hard lower bounds
on the numbers of idle spots and blocked requests. These
are shown as a priori idle spots and blocked requests in
Fig. 10, i.e., parking requests with empty sets of candidate
spots (see section II). The portions of drivers and spot owners
that eventually benefit from the platform then exhibits similar
dependence on the demand-supply ratio and the (rh, sh)
parameters as with fixed platform commissions.

B. Parking spots with time availability constraints

We synthetically generate constrained availability windows
for the parking spots with the help of the beta distribution of
the first kind, Beta(α, β). The distribution is highly flexible
in that with proper manipulation of the parameters α and
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Figure 7: Satisfied parking requests under the two algorithms: fixed commission per transaction, full spot time availability.
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Figure 8: Idle spots under the two algorithms: fixed commission per transaction, full spot time availability.

β, it yields a broad range of distributions ranging from the
standard uniform to both right- and left-tailed ones across the
[0,1] interval. Hence, to model spot availability start times
distributed in [a1, a2], we draw a sample u from the Beta(1, β)
distribution and set the start time to as = a1 + (a2 − a1) · u.
As β grows larger, the distribution tends to concentrate its
mass towards a1. Likewise, to model the finish times of
spot availability, we draw a sample v from the Beta(α, 1)
distribution and set bs = b1+(b2−b1)·v. Note that as α → ∞
and β → ∞, as → a1, bs → b2 and with proper choices of
(a1 = 0, b2 = 24) we fall back to scenarios without spot
availability constraints (ref. section VI-A).

In Fig. 11, we show representative plots of achievable
platform revenue under the two scenarios for platform com-
missions, when (a1, a2, b1, b2) = (5, 16, 17, 24) (columns a,
c, d) and when (a1, a2, b1, b2) = (5, 13, 15, 24) (column b).
The following are worth noting. First, Algorithm 1 continues
outperforming the FCFS scheme as we introduce constraints in
the availability of the parking supply. In all plots of Fig. 11, the
top-right points with α(β) = 20 and β(α) = 5, respectively,
approximate the performance of the two alternatives under
full time availability of the parking resources (compare with
respective points in Figs. 7 and 9). Departing from those points
either left- or bottom-wards the performance of both schemes
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Figure 9: Platform revenue under our algorithm and the FCFS
scheme: commission proportional to parking charge, full spot
time availability.
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Figure 10: Blocked requests/idle spots under our algorithm and
the FCFS scheme: commission proportional to parking charge,
full spot time availability, sh = 0.7.

degrades but Algorithm 1 always fares better.
Secondly, and more interestingly, the two schemes exhibit

different sensitivity to the way the time availability constraints
are introduced. Our algorithm is more resilient than FCFS to
the randomization of the start times (smaller α values). As
more clearly seen in Fig. 11a and c, the collected revenue
decreases more sharply for FCFS, broadening the performance
gap between the two alternatives. On the other hand, FCFS
turns out to be less sensitive to the randomization of the spot
availability end times (smaller β values). Or, rephrasing this,
our algorithm can leverage far better any additional flexibility
in terms of end times and increase the revenue gains over the
FCFS scheme for the platform.

VII. RELATED WORK

Aspects of the parking problem have been attracting re-
search interest for many decades now addressing, among
others, how drivers search (or should search) for parking
resources, either on their own (e.g., [15][16]) or leveraging
information from parking assistance systems (e.g., [17]);
where should parking infrastructure be located (e.g., [18] [19])
and how should it be dimensioned (e.g., [20]); and how could
parking resources be efficiently priced (e.g., [18][21]). The
common assumption in almost all those studies is that parking
search is a drivers’ task. On the contrary, with online parking
platforms and related apps, the search task is offloaded to
them. More recent research work on those platforms mainly
addresses their two main operational tasks, i.e., the matching
of parking demand and supply and the pricing of parking
resources [5][6][8][9][10][22][23].

The studies lying modeling-wise closer to our work are
[8][9] and [10]. In all three studies, parking resources are
available over distinct time windows, parking requests have
concrete timing and spatial context and drivers are willing
to pay fees that may vary over time and space. In [9], spot
assignments are made offline once, whereas in [8] and [10],
these assignments may be updated online as drivers move
towards the originally assigned spots, if better alternatives are
available (i.e., spots closer to their destinations). In all three
studies, the authors formulate Integer (Linear) Programs and
solve them with generic off-the-shelf solvers. To cope with the
computational issues, they fragment the operations area into
smaller subareas and solve multiple smaller problem instances.

Different yet interesting approaches to the private parking
slot sharing are found in [22] and [23]. In [22], private parking
slots are shared through money-compatible extensions of the
top-trading-cycles (TTC) mechanism, the most popular mech-
anism without money (transfer). Drivers that fail to exchange
their own parking spot or do not have one can lease it to the
platform or rent one from it, respectively, and the platform
should set the prices to ensure budget balance. Unless the
parking demands of individual drivers mix really well in time
and space, the solution degenerates to a conventional two-
sided market. On the other hand, the work in [23] accounts for
uncertainty in parking demand. The authors use historical data
to predict the arrival of parking requests of different duration
and partition the parking resources accordingly. Their method
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Figure 11: Platform revenue under Algorithm 1 and the FCFS scheme with interval parking spot availability and different
(n,m, rh, sh,mode) tuples. For columns a,c,d (a1, a2, b1, b2) = (5, 16, 17, 24); for column b (a1, a2, b1, b2) = (5, 13, 15, 24).

finds it hard to compete with the simpler FCFS policy as
supply and demand scale up to values of practical interest.

Pricing the use of parking spots is the main theme in [5]
and [6]. The first two studies work with auctions. In [6],
users have unique valuation functions over different parking
spots, which are separated into reservable and non-reservable
ones. Auctions are used to manage the former, whereas the
platform regulates the price for the latter. In [5], the platform
puts truthful double auctions mechanisms in place to manage
parking demand and supply. Drivers can bid for more than one
parking slot and aim to maximize the difference between the
value they receive from renting slots minus the monetary cost
for doing so. Spot owners seek to maximize the difference
between their monetary gains minus the utility they lose by
temporarily renting their slots. The platform’s goal is then to
set the price so as to match demand and supply and maximize
its net payoff, i.e., the difference between the total payments
from drivers and the rewards paid to the spot owners.

Our work is focused on platforms that aim to realize
a sharing economy of parking resources. As in [8][9][10],
we explore the way the spatiotemporal dynamics of parking
demand and supply can be best captured in the demand-supply
matching process. Similar to [5][6][9][22], our reservations
are offline, i.e., they are determined in batches over some
finite reservation periods. Contrary to [6][8]-[10][22][23], the
platform does not interfere with pricing: the spot owners
set the prices for their own spots, possibly with the help
of recommendations from the platform. This is in line with
current practices in parking sharing platforms (e.g., JustPark
or YourParkingSpace) and in sharp contrast with practises in
ride-sharing platforms such as Lyft or Uber [13]. On the other
hand, auctions’ complexity is not, at least yet, acceptable for
such kind of platforms/“markets” [7]. We have instead taken
a more pragmatic approach and (a) proposed and analyzed
an algorithmic solution for matching parking demand with
supply that yields significant gains for the platforms and its

two parties, spot owners and drivers; (b) invested serious effort
to assess the benefits of this solution under realistic scenarios
drawing on real datasets. Table III positions our work in
literature regarding its modeling and algorithmic approach.

VIII. CONCLUSIONS

Parking problems remain largely unsolved in many cities
around the world. At least in the foreseeable future, the answer
to these problems will not come from a single disruptive
solution but rather through taking small coordinated progress
steps on several fronts (technology, urban planning, policy-
making). Our work has focused on one important ingredient
of the overall solution: parking reservation platforms that (a)
augment the effective parking space leveraging sharing econ-
omy practices; and (b) more efficiently manage this augmented
space. We have looked into the algorithmic optimization of
those platforms, proposing an algorithm that matches parking
demand with supply more efficiently than the commonly
practised method, at run times that scale dramatically better
than generic off-the-shelf ILP solvers. In our experiments,
we measured platform revenue gains up to 35%, depending
on how the platform charges commissions for its services.
Notably, the gains increase with higher demand-supply ratios
implying that the algorithm becomes even more attractive in
supply-constrained settings. Finally, these platform gains come
hand in hand with benefits for both parties contributing to the
platform, i.e., the drivers (more satisfied parking requests) and
the spot owners (more profit from serving parking requests).
This is a necessary condition for the sustainable involvement
of the two parties in the platform.

In this paper, the proposed algorithm has been described in
the context of a platform that schedules parking requests over
finite reservation periods. One straightforward extension is to
integrate it into hybrid platforms that combine reservations
with real-time parking spot allocation, see [8][10]. It would
also be tempting to compare its performance against intelligent



Table III: Related work on parking reservation platforms.

Studies
Model Spot time Information Request-spot Who determines pricing Reservation

Algorithmic approachavailability about requests preferences of parking requests frequency
full interval perfect imperf. no yes platform owner auction ∼1hr ∼hrs

Xiao et al. [5]∗ ✓ ✓ ✓ ✓ ✓ Linear relaxation
Wang et al. [6] ✓ ✓ ✓ ✓ ✓ ✓ combination∗∗∗

Geng et al. [8] ✓ ✓ ✓ ✓ ✓ ✓ OTS∗∗ ILP solver
Shao et al. [9] ✓ ✓ ✓ ✓ ✓ OTS MILP solver
Kotb et al. [10] ✓ ✓ ✓ ✓ ✓ OTS MILP solver
Xu et al. [22] ✓ ✓ ✓ ✓ ✓ Top Trade Cycles
Bai et al. [23] ✓ ✓ ✓ ✓ ✓ OTS MINLP solver
Our work ✓ ✓ ✓ ✓ ✓ Dynamic Programming
∗ non-trivial modeling assumptions, e.g., parking requests may be served at other times than requested by multiple resources with car relocation)
∗∗OTS : off-the-shelf ∗∗∗stochastic control for non-reservable resources, iterations with linear relaxation for auction-regulated resources

optimization algorithms rooted in the artificial intelligence
field such as swarm intelligence algorithms [24][25].
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