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Abstract—In complex lane change (LC) scenarios, semantic 

interpretation and safety analysis of dynamic interaction pattern 

are necessary for autonomous vehicles to make 

appropriate decisions. This study proposes a learning framework 

that combines primitive-based interaction pattern recognition and 

risk analysis. The Hidden Markov Model with the Gaussian 

mixture model (GMM-HMM) approach is developed to 

decompose the LC scenarios into primitives. Then K-means 

clustering with Dynamic Time Warping (DTW) is applied to 

gather the primitives into 13 LC interaction patterns. Finally, this 

study considers time-to-collision (TTC) of two conflict types 

involved in the LC process. And the TTC is used to analyze the 

risk of interaction patterns and extract high-risk LC interaction 

patterns. The LC events obtained from the Highway Drone 

Dataset (highD) demonstrate that the identified LC interaction 

patterns contain interpretable semantic information. This study 

identifies the dynamic spatiotemporal characteristics and risk 

formation mechanism of the LC interaction patterns. The findings 

are useful to comprehensively understand the latent interaction 

patterns, which can then be used to design and improve the 

decision-making process during lane changes and enhance the 

safety of autonomous vehicle. 

 
Index Terms—Lane change, Interaction pattern, Traffic risk, 

Driving primitive 

 

I. INTRODUCTION 

ANE change (LC) is a daily-routine but challenging driving 

task which involves vehicle movements in both 

longitudinal and lateral directions and close interactions 

between multiple vehicles. Crash data in the U.S. from 2010 to 

2017 show that the sudden lane change caused about 17.0% of 

total severe crashes [1, 2]. With the advantages of perception 

and information acquisition, autonomous vehicles can 

significantly reduce traffic crashes. However, how autonomous 

vehicles make reasonable decisions in complex LC scenarios is 

a major challenge at present [3, 4]. On the one hand, human 

behavior is heterogeneous and stochastic. On the other hand, 

the behavior of each vehicle in the LC scenario is dynamically 

affected by surrounding vehicles. Therefore, it is necessary to 

understand the multi-vehicle interaction behavior patterns and 

reveal the interaction mechanism to facilitate autonomous 

vehicles to make reasonable decisions. 

As one of the most important microscopic behaviors of traffic 

flow, LC behavior has been analyzed in many studies. For 

example, Woo et al. [5] defined four LC phases according to 

the relationship between the vehicle and the center line and 

other features, namely keeping, changing, arrival and 

adjustment. The study assumed that the LC behavior is not 

affected by surrounding vehicles. In order to improve the 

accuracy of the LC behavior simulation, some studies examined 

the impact of surrounding environment on the subject vehicle. 

For example, Gipps [6] considered adding safety gap and 

presence of heavy vehicles to the LC decision. Later, various 

factors indicating surrounding vehicles were considered, such 

as relative speed [7, 8], gap acceptance [9], and turning signal 

[10], etc. However, these studies only focused on the impact of 

other vehicles on the subject vehicle, but ignored the impact of 

the subject vehicle on surrounding vehicles. However, the 

interaction between vehicles plays an important role in the 

decision-making process. In order to consider the interaction of 

vehicles in LC scenarios, some studies classified LC scenarios 

based on prior knowledge. Hidas [9] and Zhang et al. [11] 

categorized LC into three classes: free, forced, and cooperative 

lane changing [12]. Halati, Lieu and Walker [13] classified LC 

maneuvers into three: mandatory lane changes, discretionary 

lane changes, and random lane changes. Due to the uncertainty 

of behaviors, the multi-vehicle interaction patterns are 

dynamically changing. To capture the impact of traffic context, 

Wang et al. [14] proposed a real-time multi-vehicle 

collaborative learning approach to model spatial and temporal 

information among multiple vehicles. Other researchers 

introduced game theory to simulate the LC interaction 

behaviors [15, 16]. However, these real-time decision-making 

methods heavily rely on the sensor data, and it is difficult to 

explain the mechanism of interaction in this way, resulting in 

incomprehensible decisions. Therefore, it is necessary to 

identify the interaction patterns as a prior information for 
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decision-making in advance. 

Because the LC scenarios have complex and high-

dimensional features, it is challenging to extract interaction 

patterns from it. Some researchers addressed this issue by 

decomposing the entire scenarios into finite semantic segments, 

such as [17]. These studies are based on the view that human 

activity should be decomposed into building blocks which 

belong to an “alphabet” of elementary actions [18]. Bregler [19] 

found partial motions were always the same and repeatable 

segments of trajectoryin periodic or stereotypical motions. 

Ding, Xu, Tu, Zhao, Moze, Aioun and Guillemard [20] also 

believed that drivers share a pool of driving states. Therefore, it 

is assumed that the lane changing interaction scenario can also 

be decomposed into a finite number of interaction patterns that 

are heterogeneous and can be shared. The Gaussian mixture 

model (GMM) is commonly used to study the heterogeneity in 

data. For instance, the GMM was applied to split the 

intersection encounter scenarios into discrete segments [21, 22]. 

The dynamic transition between these discrete segments is 

described by stochastic processes such as the Markov model 

[23, 24]. This solution is conducive to improve learning 

performance from massive data [25]. Zhang et al. [26] proposed 

a primitive-based framework to learn interaction patterns by 

segmenting the LC scenarios. However, the study did not 

analyze the risk of interaction patterns, which may lead to 

autonomous vehicles learning improper operation and making 

dangerous decisions. 

In recent years, surrogate safety measures have been widely 

used to quantify the risk of micro-behavior and severity of 

interaction. Saunier et al. [27] used some surrogate safety 

indicators for the analysis of spatial interactions between 

vehicles at intersections, and interactions are classified into four 

categories: head-on, rear-end, side and parallel. Common 

surrogate safety indicators included Time-to-collision (TTC), 

Post-Encroachment Time (PET), Gap Time (GT), and 

Deceleration-to-Safety Time (DST) [28]. Among these 

indicators, TTC is one of the most commonly applied indicators 

for risk analysis [29-32]. TTC refers to the time for a vehicle to 

collide with the preceding one without changing its current 

direction and speed. Wu et al. [33] recognized real-time LC risk 

level based on TTC. According to the results of Laureshyn et 

al. [34], the risk in an interaction scenario was not constant. For 

example, for a dangerous interaction scenario, some time 

periods may have high risk level, while some time periods may 

not have risk. The decomposition method also focuses on the 

most dangerous segment (interaction pattern) in a LC 

interaction scenario. 

According to the previous studies, interaction behavior plays 

an important role in making reasonable lane changing decisions 

for vehicles. Exploring different interaction patterns not only is 

useful for developing heterogeneous lane changing models, but 

also is one of the essential elements to build a driving scenario 

library for autonomous vehicle test. Furthermore, identifying 

high-risk interaction patterns among many interaction patterns 

is conducive to enhance the safety of driving decisions. 

However, the existing classification methods based on 

interaction (e.g., classifying lane changes into free, 

synchronized, and cooperative lane changes [35]) are subjective, 

ambiguous and rough [20]. In addition, complex and high-

dimensional interaction scenarios are difficult to understand. 

The lack of consideration of dynamic interaction mechanism 

results in inaccurate understanding of lane changing behavior 

for autonomous vehicles [24]. Motivated by these two issues, 

this study proposes a framework based on the semantic 

decomposition method, including the interaction pattern 

recognition, semantic interpretation and risk analysis. The 

contributions of this study are: 

1. A learning framework is presented to integrate primitive-

based interaction pattern recognition and risk analysis, which 

can automatically extract a finite number of heterogeneous and 

interpretive spatiotemporal interaction patterns between 

vehicles existing in massive data. 

2. The mapping relationship between the LC interaction 

scenarios and the real world is established to form an interaction 

pattern pool to enrich the driving scenario library. To 

understand the human driving behavior, the spatiotemporal 

evolution mechanism of the interaction patterns is analyzed.  

3. Different interaction types between two vehicles are 

considered to calculate TTC and identify high-risk LC 

interaction patterns. 

The main advantages of the proposed framework are: 

1. The method proposed in this study can identify the 

dynamic spatiotemporal interaction pattern between the 

vehicles involve in a lane change process. The method requires 

low computational cost and no manual scene annotation. 

2. The 13 interaction patterns obtained from this research can 

clearly explain the complicated LC interaction scenarios using 

the highD data. The proposed modeling framework can provide 

important information for understanding the human driving 

behavior and identifying the high-risk lane changing interaction 

patterns, which can promote the decision-making of 

autonomous vehicles.  

The rest of this paper is organized as follows: Section 2 

introduces the methodology used in this study. Section 3 

documents the data collection and preprocessing. Section 4 

discusses the learning process of models and analyzes the 

results of the proposed methods. Section 5 provides the 

conclusion and future work of this study. 

II. METHODOLOGY 

The framework proposed in this paper is shown in Figure 1. 

Firstly, specific LC scenarios are extracted from naturalistic 

driving data. Then the primitives are segmented and clustered 

to obtain interaction patterns. Finally, semantic explanation and 

risk analysis of the interaction pattern are conducted. 
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Figure 1  Framework of LC interaction patterns recognition and risk analysis 

 

A. LC scenario and its primitives 

The sequential LC event data includes the trajectories of 

three vehicles (i.e., the LC vehicle, the preceding vehicle in the 

original lane and the vehicle in the target lane), expressed as 

 𝑂 = {𝑜1 , 𝑜2, ⋯ 𝑜𝑡 , ⋯ 𝑜𝑇} (1) 

O can be called a LC interaction scenario, where 𝑜𝑡 =

{𝑥𝑡
(1)

, 𝑦𝑡
(1)

, 𝑥𝑡
(2)

, 𝑦𝑡
(2)

, 𝑥𝑡
(3)

, 𝑦𝑡
(3)

} ∈ ℝ6 . 𝑥𝑡
(1)

, 𝑥𝑡
(2)

 and 𝑥𝑡
(3)

are 

the longitudinal position of three vehicles at time t, respectively. 

𝑦𝑡
(1)

, 𝑦𝑡
(2)

 and 𝑦𝑡
(3)

are the lateral position of three vehicles at 

time t. T represents the time length of a LC scenario O (or the 

duration of a LC event), and t represents any timestamp during 

LC. The primitive of O is formulated as Eq. (2). 

 𝑃𝑖 = {𝑝𝑚 , ⋯ 𝑝𝑛}       (1 ≤ 𝑚 ≤ 𝑛 ≤ 𝑇) (2) 

Where 𝑃𝑖 ⊆ 𝑅, i is the i-th primitive. 

 

B. Segment LC interaction primitives 

LC interactions are dynamic process with stochastic human 

behavior. To analyze the complex scenarios with high-

dimensional data, the Hidden Markov Model with the Gaussian 

mixture model (GMM-HMM) is adopted to decompose 

scenarios into semantic primitives. The GMM-HMM has been 

widely used in natural language processing (NLP) and 

automatic speech recognition (ASR) to process sequence data 

and mine the hidden states such as phonemes. The HMM in the 

GMM-HMM has a strong advantage in modeling dynamic 

behavior. In order to establish the relationship between driving 

scenarios and types of interaction patterns, the GMM is used to 

model the state-output distribution on the basis of HMM. The 

mixture component of GMM corresponds to the hidden state in 

the HMM. The entire process of the model is illustrated in 

Figure 2. The components of the GMM-HMM are described in 

detail below. 

q1 q2 q2 q3 qT

O1 O2 O3 O4 OT

 

GMM b1

 

a11

a12 aij

att

bTbt

pi

Hidden state

Observation
 

Figure 2 The schematic diagram of the proposed GMM-HMM model. 

 

1) Gaussian Mixture Model 

The trajectory data in LC interaction scenario are continuous, 

and the observation is heterogeneous due to the existence of 

multiple interaction patterns. Due to the strong ability of fitting 

multiple distributions and mining heterogeneity in data, the 

GMM is selected to model the emission probability in the 

HMM so as to establish the relationship between interaction 

patterns and LC interaction scenarios. The joint probability 

density function generated by multi-dimensional GMM with M 

components is 

 

𝑃(𝑜𝑡) = ∑ 𝜔𝑖𝑁(𝑜𝑡|𝜇𝑖 , 𝛴𝑖)

𝑀

𝑖=1

 

            = ∑ 𝜔𝑖

1

(2𝜋)𝑑/2|𝛴𝑖|1/2

𝑀

𝑖=1

 

                 × 𝑒𝑥𝑝 {−
1

2
(𝑜𝑡 − 𝜇𝑖)𝑇(𝛴𝑖)−1(𝑜𝑡 − 𝜇𝑖)} 

(3) 

 ∑ 𝜔𝑖

𝑁

𝑖=1

= 1 (4) 

Where 𝑁(𝑜𝑡|𝜇𝑖 , 𝛴𝑖)  is the i-th multivariate Gaussian 

distribution (dimension d=6) and 𝑜𝑡 =

{𝑥𝑡
(1)

, 𝑦𝑡
(1)

, 𝑥𝑡
(2)

, 𝑦𝑡
(2)

, 𝑥𝑡
(3)

, 𝑦𝑡
(3)

}  is the observation of the LC 

interaction scenario at time t. M is the number of components. 

𝜇𝑖is mean of the i-th Gaussian component, and 𝛴𝑖  is covariance 

matrix. 𝜔𝑖 is weight of the i-th component. In Eq. (3), 𝜇𝑖 and 𝛴𝑖  
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are the parameters that needs to be estimated in the GMM. The 

Expectation maximization (EM) algorithm is used for 

estimating these parameters. The convergence criterion is that 

the difference between the log likelihood values of two adjacent 

iteration steps is less than 10-10. 

2) Hidden Markov Model and Decoding 

In the GMM-HMM, each component of the GMM is 

regarded as the hidden state of the HMM. The aim is to segment 

primitives of a given observation sequence 𝑂  using HMM. 

Some concepts and symbols involved in the HMM should be 

defined in advance.  

Hidden states: the hidden states are denoted as 𝑆 =
{𝑆1, 𝑆2, ⋯ , 𝑆𝑁}, where N is the number of hidden states and 𝑞𝑡 ∈
𝑆 is the state at time t. Although the states are hidden, there are 

often physical meaning in applications [36]. In this study, the 

states are described as types of interaction patterns. 

Observations: the observable state sequence is 𝑂 =

{𝑜1 ⋯ , 𝑜𝑡 ⋯ , 𝑜𝑇} , 𝑜𝑡 = {𝑥𝑡
(1)

, 𝑦𝑡
(1)

, 𝑥𝑡
(2)

, 𝑦𝑡
(2)

, 𝑥𝑡
(3)

, 𝑦𝑡
(3)

}  is the 

observation at time t. 

Initial state distribution: 𝜋 = {𝜋𝑖} , where 𝜋𝑖 = 𝑃[𝑞1 =
𝑆𝑖], 1 ≤ 𝑖 ≤ 𝑁. 𝜋𝑖  is the probability which the Markov chain 

will start in state i. 

Emission probabilities: 𝐵 = {𝑏𝑗(𝑜𝑡)}  are the sequence of 

probability of an observation 𝑜𝑡 generated from state j. In the 

GMM-HMM, the emission probability is generated by Eq. (3). 

State transition probability distribution: 𝐴 = {𝑎𝑖𝑗} is the state 

transfer matrix, which represents the probability of transition 

from state i to state j. And the transfer probability for (i, j) pairs 

can be expressed as Eq. (5). 

 

𝑎𝑖𝑗 = 𝑃(𝑞𝑡+1 = 𝑆𝑗|𝑞𝑡 = 𝑆𝑖),  

s.t.  𝑖 ≥ 1, 𝑗 ≤ 𝑁 and ∑ 𝑎𝑖𝑗 = 1 ∀

𝑁

𝑗=1

𝑖 
(5) 

Thus, the HMM can be expressed as 𝜆 = (𝑁, 𝑇, 𝐴, 𝐵, 𝜋) , 

where N is a hyper-parameter. As one of the three classical 

HMM problems, decoding problem is the core of composing 

LC interaction primitives. The decoding problem is to find the 

optimal hidden state sequence given the observation sequence 

O and model 𝜆, which can be formulated as Eq. (6).  

 𝛾𝑡(𝑖) = 𝑃(𝑞𝑡 = 𝑆𝑖|𝑂, 𝜆) (6) 

Based on the forward-backward algorithm, Eq. (6) can be 

transformed into Eq. (7). 

 𝛾𝑡(𝑖) =
𝛼𝑡(𝑖)𝛽𝑡(𝑖)

𝑃(𝑂|𝜆)
=

𝛼𝑡(𝑖)𝛽𝑡(𝑖)

∑ 𝛼𝑡(𝑖)𝛽𝑡(𝑖)𝑁
𝑖=1

 (7) 

Where 𝛼𝑡(𝑖)  accounts for a part of observations 

{𝑜1, 𝑜2, ⋯ 𝑜𝑡} and 𝛽𝑡(𝑖) accounts for the residual observations 

{𝑜𝑡+1, 𝑜𝑡+2, ⋯ 𝑜𝑇}  given 𝑆𝑖  at time t. 𝑃(𝑂|𝜆)  is the 

normalization factor to make sure 

 ∑ 𝛾𝑡(𝑖) = 1

𝑁

𝑖=1

 (8) 

Then most likely state  𝑞𝑡  can be solved as Eq. (9). 

 𝑞𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥
1≤𝑖≤𝑁

[𝛾𝑡(𝑖)], 1 ≤ 𝑡 ≤ 𝑇 (9) 

According to the most likely state sequence 𝑄 =

{𝑞1, 𝑞2 ⋯ 𝑞𝑡}  obtained by Eq. (9), if the state sequence 

corresponding to the observation value is continuous and 

consistent, these observations are segmented into a primitive 

(because they contain the same semantic information). The 

Viterbi algorithm [36] is used to find the best hidden state 

sequence in the GMM-HMM. Viterbi is a dynamic 

programming method, which is used to search the most 

probable path by taking the maximum probability value of all 

possible previous hidden state sequences. 

 

C. Clustering of interaction patterns 

Since a large number of primitives are extracted by the 

GMM-HMM, this study uses a clustering method to separate 

them into homogeneous interaction patterns. 

1) Data scaling and normalization 

The length of primitives extracted by the GMM-HMM is 

different. Before applying the clustering model, these 

primitives should be scaled into the same length l. This study 

uses linear interpolation for scaling-down and scaling-up, 

which ensures that the scaled trajectory is similar to the original 

trajectory. Given the data point 𝑝0 at time 𝑡0 and 𝑝1 at time 𝑡1, 

the unknown data point at time 𝑡 ∈ (𝑡0, 𝑡1) can be calculated by 

Eq. (10). 

 𝑜𝑡 = 𝑜0 + (𝑡 − 𝑡0)
𝑜1 − 𝑜0

𝑡1 − 𝑡0
 (10) 

Since the dimensions of longitude and latitude of the vehicle 

trajectory are different, normalization is a necessary step. 

Therefore, each sample of the input sequences is standardized 

using Min-Max normalization, so 𝑜𝑡 is within a standard range 

[-1, 1]. 

2) DTW distance based K-means clustering 

The K-means clustering can provide satisfactory results in 

terms of unsupervised feature learning [37]. The K-means is 

used to cluster LC interaction patterns. The primitive is a time 

series composed of the temporal feature of the vehicle 

trajectory. It is inappropriate to simply calculate the center of a 

trajectory using the traditional K-means clustering method. 

Therefore, this study proposes to use the K-means clustering 

method based on Dynamic Time Warping (DTW) to classify 

the categories according to the similarity between time series. 

DTW is a shape-based similarity measure for sequence data. 

DTW distance is a length of the optimal alignment between two 

given primitives which are time-series data. It uses dynamic 

programming to find an optimal path with a minimum distance 

between two given time series. 

Before clustering, the input primitive 𝑃𝑖 ∈ ℝ6×𝑙 should be 

reshaped as 𝑃𝑖 ∈ ℝ1×6𝑙.  

 𝑃𝑖 = [𝑜1, 𝑜2 ⋯ 𝑜𝑎 , ⋯ 𝑜𝑙],  𝑜𝑎 ∈ ℝ6 (11) 

Then the DTW distance based K-means method is used to 

cluster primitives. Assuming all primitives 𝑃 = {𝑃1, 𝑃2, ⋯ 𝑃𝑁} 
are grouped into K patterns 𝐶 = {𝐶1, 𝐶2, ⋯ 𝐶𝐾} and the center 

of each cluster is
i . The goal of the proposed method is to 

minimize the within-cluster sum-of-squares by Eq. (12). 
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 𝜆𝑤 = 𝑚𝑖𝑛 ∑ ∑ ‖𝑃𝑖 − 𝜇𝑖‖2

𝑃∈𝐶𝑖

𝐾

𝑖=1

 (12) 

Finally, the primitives with similar temporal and spatial 

features are grouped into a cluster. 

 

D. Interaction pattern risk calculation 

In order to assess the risk of each interaction pattern and 

identify high-risk interaction patterns, a risk calculation method 

based on TTC is introduced in this section. The TTC at time t 

is defined as the remaining time between two vehicles driving 

in the current state until a collision. The main reasons that TTC 

is selected as the risk indicator are: (1) it can intuitively reflect 

the driver’s perceived risk, (2) it exists in all types of 

interactions, and (3) it evolves continuously during each 

interaction [38, 39].  

In LC scenarios, there are two types of interactions between 

two vehicles according to the relative position and their lanes 

(Figure 3). The type A interaction refers to two vehicles driving 

in the same lane and the speed of the following vehicle is greater 

than that of the preceding vehicle. The type C interaction is 

vehicles in different lanes experiencing side interaction when 

their expected path cross and projected positions overlap. In 

type C, it is necessary to consider the situation that the vehicles 

reach the collision point in both the longitudinal and lateral 

directions at the same time. Therefore, a two-dimension TTC is 

used as the risk indicator of type C interaction, and its 

calculation method is based on the work conducted by [34, 38]. 

 
Figure 3 Interaction types between two vehicles in the LC interaction scenario. 

 

After obtaining the TTC of the interaction between two 

vehicles at each moment, a primitive’s risk could be aggregated 

by TTC values of all interaction pairs at all moments in the 

primitive, which is used in the LC interaction pattern risk 

analysis section. The risk of every two pairs is represented by a 

minimum TTC at each moment (one measure per interaction) 

and the risk of a primitive is represented by the mean TTC of 

three interactions (one measure per primitive).  

III. DATA DESCRIPTION 

A. Data collection 

The data employed in this study are naturalistic driving 

trajectory dataset extracted from drone video called highD. It is 

a large-scale public dataset widely used in traffic flow 

modelling and safety analysis in recent years [40-44]. 

Compared with other naturalistic driving datasets, it has the 

characteristic of high accuracy - the position error does not 

exceed 10cm [45]. The highD dataset was collected on German 

freeways around Cologne during 2017 and 2018 [45]. Table 1 

shows the information of five basic segments selected in this 

study. The data are measured at the frequency of 25 Hz. 
TABLE 1  

DESCRIPTION OF THE SELECTED SEGMENTS 

Location 

ID 

Lane width 

(m) 

Segment 

length 

(m) 

Number of lanes 

(both direction) 

1 
4.07; 3.88; 4.15; 4.24; 

3.80; 4.15 
420 6 

2 4.08; 3.84; 3.96; 3.84 420 4 

3 
3.82; 3.65; 3.73; 3.74; 
3.56; 3.91 

420 6 

4 
3.97; 3.63; 3.62; 3.53; 

3.80; 3.89 
420 6 

5 4.09; 3.84; 3.96; 3.97; 420 4 
1 The lane width column shows the width of each lane, separated by “;”. 

 

B. Vehicle type classification 

Due to different vehicle dynamic performance, the 

interaction patterns of different vehicle types should also be 

discussed separately. First of all, the vehicle types need to be 

classified, based on length and width of the vehicles. When 

calculating TTC of interaction patterns, vehicle width is also an 

indispensable factor. For two-dimensional variables, grouping 

the vehicle type based on threshold values of vehicle length and 

width may result in unreasonable classification results. For 

example, some categories may only contain very few 

observations (e.g., short-wide or long-narrow vehicles). 

Therefore, this study applies the K-means clustering method to 

avoid the limitation of fixed threshold values. The number of 

clusters was set to three to represent passenger cars (PC), 

heavy-duty vehicles (HV), and over-sized truck (OT). Three is 

chosen based on [46] and the fact that there are few vehicles 

longer than 22.5 m in our data. Figure 4 shows the distribution 

of the three vehicle types, in which the red triangle symbol is 

the centroid of each cluster. 

 
Figure 4 Clustering results of three vehicle types 

 

C. LC events extraction 

Figure 5 shows a common LC process. The lane where the 

LC vehicle starts the LC maneuver is called original lane, and 

the lane where the LC process ends is called target lane. In order 

to explore the interaction between LC vehicle and the vehicle 

in the original lane and vehicle in the target lane, this study 

fixed the interested vehicles as three vehicles within a certain 

distance of LC vehicles. Note that the interaction patterns are 

not comparable when the number of vehicles in the place of 

interest is different. These three vehicles are the LC vehicle 
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(ego), the lead vehicle in the original lane (por) and the lead/lag 

vehicle in the target lane (ta). Previous studies demonstrate that 

one of the most common types of LC scenarios is a vehicle 

changes lanes to pass a slower lead vehicle to maintain current 

speed or gain speed advantage [47, 48]. Thus, the preceding 

vehicle in the original lane (por) is determined. The LC 

scenarios can be automatically extracted by the following steps. 

 
Figure 5 A schematic diagram of a typical LC interaction scenario 

 

Step 1: Determine the ego vehicle. If the vehicle's driving 

lane ID changes (cross-lane), then the vehicle is marked as ego 

at this time stamp (tc). 

Step 2: Extract the complete LC process of the ego vehicle. 

According to the cross-lane timestamp recorded in step 1, the 

beginning (tb) and ending (te) of LC process are searched 

forward and backward respectively in the trajectory record. We 

define the ending of LC as follows: 

⚫ Discontinuous increase of lateral displacement. 

⚫ |𝑦𝑡𝑐
− 𝑦𝑡𝑒

| > 0.9 𝑚 , where 𝑦𝑡𝑐
 is y position of the 

vehicle at time crossing lane. Assuming the vehicle 

width is 1.8m, when half of the vehicle width crosses 

the lane marker, it is considered that the vehicle has 

successfully changed to the target lane (it will not return 

to the original lane). 

⚫ |𝑎𝑦𝑡𝑒
− 𝑎𝑦𝑡𝑒−1

| < 0.01 𝑚/𝑠2 

And the beginning of LC is defined as follows: 

⚫ Discontinuous increase of lateral displacement. 

⚫ |𝑦𝑡𝑐
− 𝑦𝑡𝑏

| > 0.9 𝑚 

⚫ |𝑎𝑦𝑡𝑏
− 𝑎𝑦𝑡𝑏+1

| < 0.01 𝑚/𝑠2 

Step 3: Determine three-vehicle interaction scenario. The 

filter rules are ∆𝑥𝑒𝑔𝑜−𝑝𝑜𝑟 < 120m and 

∆𝑥𝑒𝑔𝑜−𝑡𝑎 ϵ[−100 m, 100 m] at the beginning of LC. 

Step 4: Classify interaction scenarios according to vehicle 

types. Based on the result of vehicle type classification, there 

are a total of 27 interactions between different vehicle types. In 

all interaction events, there are 578 ego(PC)-por(PC)-ta(PC) 

interaction events, 153 ego(PC)-por(OT)-ta(PC) interaction 

events, and 104 ego(PC)-por(HV)-ta(PC) interaction events. 

The frequency of other interaction types is less than 30. 

Therefore, the ego(PC)-por(PC)-ta(PC) interaction LC events 

are selected as the final samples in this study. 

IV. RESULTS AND ANALYSIS 

A. LC interaction primitive extraction result 

Firstly, the GMM-HMM is implemented to the 578 LC 

interaction events and generates 1224 primitives. In the training 

process of the GMM-HMM, the log-likelihood value is used to 

evaluate the learning performance of the model. In order to 

determine the optimal value of N in Eq. (3) and Eq. (7), the 

value of N increases by 1 from 1 in the training process until the 

state sequence cannot be calculated. Because when N increases, 

some state transition probabilities may be 0 so that there is no 

optimal state sequence. Among these N values, the N with the 

smallest log likelihood value of the model is selected. 

According to Wang, Xi and Zhao [49], N is equal to the number 

of GMM components M. Figure 6 shows an example of the 

GMM-HMM learning process for one LC interaction scenario, 

which illustrates that the model has been trained to converge. 

Figure 7 shows distribution of the duration of all primitives. 

Short duration contains limited information, which cannot 

reflect the evolution of interaction pattern. Thus, the primitives 

with less than 10 frames (0.4 s) are removed. 

 

 
Figure 6 The learning process of the GMM-HMM to segment one of the LC 
interaction scenarios 

 

 
Figure 7 Distribution of LC interaction primitive duration 

 

Figure 8 displays three common LC interaction events with 

extracted primitives. In order to clearly interpret the generated 

driving primitives, not only the trajectory but also the 

longitudinal speed, lateral speed and risk value are shown in 

top-down order in Figure 8. Different colors represent different 

primitives in an LC interaction scenario, and the primitives in 

different LC interaction scenarios are independent. The results 
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show that the GMM-HMM can automatically identify the 

boundaries of primitives with different semantic information 

from complex scenarios. In detail, the results are discussed from 

the following four aspects: 

⚫ The number and attribute of primitives in different LC 

interaction scenarios are significantly contrasting. For example, 

the LC interaction scenario of Figure 8 (b) consists of four 

primitives while that of Figure 8 (a) and (c) include two 

primitives. Note that the same color does not represent the same 

semantic segment in different events. For example, the blue 

primitives in Figure 8 (a) and (b) are obviously different.  

⚫ The primitives are interpretable. Taking Figure 8(b) as an 

example, the ego and por vehicles change lanes at the same 

time, and the ta vehicle with higher longitudinal speed in the 

target lane is behind the ego vehicle at the beginning of LC. 

After the LC process, all vehicles are in front of the ta vehicle 

in the target lane. The entire interaction process is segmented 

into four primitives. In the orange primitive, ego and por 

vehicle start LC with increasing speed in lateral direction. The 

por vehicle has the lowest speed and the ta vehicle has the 

highest speed in longitudinal direction, and the ta vehicle starts 

decelerating in order to avoid collisions. In the blue primitive, 

ego and por vehicles are approaching the lane marker while 

adjusting the lateral speeds. In the green primitive, ego and por 

vehicles cross the lane marker to reach the target lane and 

decelerate in the lateral direction. At the same time, ego and ta 

vehicles quickly decelerate in the longitudinal direction in order 

to avoid collision. In the red primitive, ego and por vehicles 

driving steadily on the target lane and the lateral speed of them 

tends to be zero. Due to the small gap between the ego vehicle 

and the por vehicle, the ta vehicle continues to decelerate until 

its speed is less than the speed of ego vehicle in longitudinal 

direction. 

⚫ The extracted primitives accurately distinguish the LC 

stage. In Figure 8(b) and (c), the primitives are segmented 

before and after cross-line. When two vehicles are in LC 

process but not in the same stage (Figure 8(a)), the primitives 

can also automatically make a trade-off between two vehicles’ 

LC stage. 

⚫ The extracted primitives also have significant differences 

in risk level. In the process of interaction between vehicles, the 

risk level changes dynamically. The primitives can help identify 

high-risk semantic segments and the TTC value used to reflect 

their risk level. In the TTC graph of Figure 8(b), the blue 

primitive shows high risk, the orange primitive shows medium 

risk, the green primitive shows low risk, and the red primitive 

shows no risk. 

Therefore, the complex LC interaction scenarios can be 

decomposed into explanatory primitives automatically 

extracted by the GMM-HMM to facilitate the understanding of 

interaction patterns. 

   

 

   
(a) (b) (c) 

Figure 8 Decomposition results of three typical LC interaction scenarios. In the trajectory subgraph, "×" represents the starting of the trajectory, and "+" 

represents the ending of the trajectory. In the speed and risk value subgraphs, the solid line represents ego vehicles, the dashed line represents por vehicles, and 
the dotted line represents ta vehicles. Different colors represent different primitives in an LC interaction scenario. 
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B. Clustering evaluation 

In order to summarize numerous primitives into finite 

interaction patterns, the DTW distance based K-means 

clustering is adopted to cluster the primitives. Before clustering, 

these primitives need to be scaled into the same length as the 

input of the clustering model. It is challenging to determine the 

optimal length of the input: a short length result in loss of the 

semantic information, while a long length increases the 

computational cost. In order to balance the learning 

performance and computational cost, this study chooses the 

median of all primitive durations (3 s) as the expected primitive 

duration (see Figure 7). Note that the primitives are restored to 

the original length after obtaining category labels. Figure 9 

shows the scaled data fit the original data very well, which can 

minimize the information loss from scaling-down.  

 
Figure 9 The scaled data and original data of one primitive 

 

The number of clusters in the DTW distance based K-means 

clustering is determined based on the within-cluster sum-of-

squares criterion. The within-cluster sum-of-squares criterion 

(𝜆𝑤) can be recognized as a measure of how internally coherent 

clusters are. The smaller the value, the better the clustering 

result. Figure 10 shows the results of  change rate 𝜆𝑤 , and 

smoothed change rate of 𝜆𝑤 after quadratic polynomial fitting. 

Figure 10 indicates that with the increase of k, the clustering 

algorithm converges and the improvement of clustering effect 

(change rate of 𝜆𝑤 ) decreases gradually. Considering the 

performance of the model and computational cost, k=13 is 

selected as the best number of clusters (When k=13, 𝜆𝑤 tends 

to be flat and change rate of 𝜆𝑤 approaches 0).  

 
Figure 10 The curve of  𝜆𝑤 over the number of clusters k 

 

After clustering the 1,224 primitives, the frequency and 

duration distribution of each cluster of interaction patterns are 

shown in Figure 11 and Figure 12 respectively. In Figure 11, it 

is not difficult to find that cluster #3 is the most common 

interaction pattern. Cluster #9 and cluster #13 are the least 

common interaction patterns. The following sections focus on 

these three clusters of interaction patterns. 

 
Figure 11 The frequency distribution of each cluster of interaction patterns 

 
Figure 12 The duration distribution of each cluster of interaction patterns 

C. Interaction patterns analysis 

1) LC interaction pattern interpretation 

Figure 13 (a) displays the most common interaction pattern 

(cluster #3). In the lateral direction, the ego vehicle just crossed 

the lane marker and reduce its lateral speed with a constant 

acceleration, while the lateral speed of the por and ta vehicles 

remain around zero. In the longitudinal direction, the ta vehicle 

has the highest speed while the por vehicle has the lowest speed. 

Figure 13 (b) and (c) represent the least common interaction 

pattern (cluster #9 and cluster #13). Figure 13 (b) shows the ta 

and ego vehicles change lanes to each other's lanes respectively 

(their lateral speed directions are opposite), and they are both at 

the stage of crossing the lane marker. Figure 13 (c) indicates the 

adjustment stage after the completion of LC. In this interaction 

pattern, the lateral speed of the ego vehicle gradually decreases 

until it becomes stable, while that of the ta and por vehicles 

remain around 0. Due to the long adjustment stage in the target 

lane, cluster #13 rarely occurs in real traffic condition. 

2) LC interaction pattern risk analysis 

According to the previous results, it was found that different 

primitives imply different risk levels. Further, the risk of 

interaction patterns is explored. The TTC value is selected to 

indicate both the risk of interaction patterns and the degree of 

interaction [43]. Figure 14 shows the distribution of each cluster 

of interaction patterns’ risk. It is obvious that cluster #12 and 

cluster #10 interaction patterns are more concentrated in the 

lower TTC range than the other clusters. This suggests that the 
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risk level of these two interaction patterns are theoretically higher.  

   

 

   

(a) cluster #3 (b) cluster #9 (c) cluster #13 

Figure 13 Trajectory and velocity graphs of three clusters of primitives. In the trajectory subgraph, "×" represents the beginning of the trajectory, and "+" represents 
the ending of the trajectory. In the velocity subgraphs, the solid line represents ego vehicles, the dashed line represents por vehicles, and the dotted line represents 

ta vehicles. 

 

 
Figure 14 Distribution of TTC observation according to the cluster of 

interaction primitives 
 

In order to perform in-depth analysis of two clusters of high-

risk interaction patterns, Figure 15 shows their dynamic 

behavior and risk evolution in the interaction process. Figure 15 

(a) represents the later stage of the ego vehicle crossing the lane 

marker. Before the ego vehicle crosses the lane marker, the 

interaction risk between the ego and the por vehicles is high. 

The high risk comes from the close distance and large speed 

difference between these two vehicles. There is also interaction 

risk between the ego and ta vehicles, because their paths cross 

and the ego vehicle’s lateral speed is high. During the ego 

vehicle keep away from the lane marker, there is no interaction 

between the ego and por vehicles, but only between the ego and 

ta vehicles. However, the interaction risk between the ego and 

ta vehicles is low because of the large spacing. Figure 15 (b) 

shows the beginning stage of LC. At first, there are interaction 

risk between the ego and por vehicles (the longitudinal speed 

of ego vehicle is higher than that of por vehicle). In order to 

obtain a higher speed advantage, the ego vehicle starts to 

change lanes when the ta vehicle is approaching close to the ego 

vehicle from behind in the target lane. Thus, the ego vehicle 

reduces the longitudinal speed to wait for the chance of LC. 

During this period, the interaction risk between the por and ego 

vehicles decreases slightly. At about 1.5 s, the ego vehicle stops 

decelerating, so that the interaction risk between the ego and 

por vehicles continue to increase. 

Therefore, the extracted driving primitives can also be used 

to thoroughly understand the mechanism and evolution of risk 

in LC interaction patterns. 
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(a) cluster #12 (b) cluster #10 

Figure 15 Trajectory, speed and risk evolution graph of two examples from  

clusters #12 and #10 . 

V. CONCLUSION 

This study proposes a learning framework that combines 

primitive-based interaction pattern recognition methods and 

risk analysis methods. The GMM-HMM is used to decompose 

LC interaction scenarios into primitives, and TTC is used as an 

indicator for risk analysis. According to the analysis results of 

highD naturalistic driving dataset, the following findings are 

summarized: 

(1) The complete LC interaction scenarios can be segmented 

into interpretable primitives, thereby identifying finite types of 

understandable interaction patterns. 

(2) The interaction patterns reproduce the real interaction 

scenarios and reflect the interaction mechanism and evolution 

law. 

(3) The proposed framework is suitable to analyze the high-

risk interaction patterns in LC scenario and explain the risk 

formation process. 

Therefore, the framework proposed in the study can be 

applied to analyze interaction patterns, understand human 

behavior, and provide prior knowledge for autonomous vehicle 

decisions, thereby promoting safe and smooth interaction 

between autonomous vehicles and human vehicles. 

The practical application of the proposed method includes 

four aspects. 1) Vehicle interaction relationship is one of the 

important elements in the design of automatic driving test 

scenarios. The proposed method can be used to generate 

interaction pattern pool and enrich the driving scenario library. 

2) In this study, several types of interaction patterns are 

obtained through clustering. Calibrating the driving decision 

models for these homogeneous patterns can improve the model 

performance [25] and enhance the decision-making of 

autonomous vehicles. 3) In the aspect of trajectory planning for 

autonomous vehicles, some probabilistic methods may generate 

multiple trajectories for each vehicle. Comparing the generated 

trajectories with the prior trajectories extracted by our method 

can help eliminate unreasonable trajectories. 4) For the 

identified high-risk interaction patterns, the test frequency of 

these patterns can be increased when designing the automatic 

driving test scenario to improve the proportion of effective tests. 

The interaction pattern recognition and risk analysis 

framework proposed in this paper is flexible. It might be 

suitable for identifying other scenarios involving multiple 

traffic participants, such as pedestrian-bicycle-vehicle 

interaction at intersections and on urban roads. This study only 

identifies the interaction patterns between human driven 

vehicles. Future work will consider analysis of the interaction 

pattern between autonomous vehicles and human driven 

vehicles under mixed traffic conditions to further improve the 

decision-making of autonomous vehicles.  
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