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Estimation Errors
Asim Ihsan, Wen Chen, Senior Member, IEEE, Wali Ullah Khan, Qingqing Wu, Senior Member, IEEE, and
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Abstract—This work presents non-orthogonal multiple access
(NOMA) enabled energy-efficient alternating optimization frame-
work for backscatter aided wireless powered uplink sensors
communications for beyond 5G intelligent transportation system
(ITS). Specifically, the transmit power of carrier emitter (CE)
and reflection coefficients of backscatter aided roadside sensors
are optimized with channel uncertainties for the maximization
of the energy efficiency (EE) of the network. The formulated
problem is tackled by the proposed two-stage alternating opti-
mization algorithm named AOBWS (alternating optimization for
backscatter aided wireless powered sensors). In the first stage,
AOBWS employs an iterative algorithm to obtain optimal CE
transmit power through simplified closed-form computed through
Cardano’s formulae. In the second stage, AOBWS uses a non-
iterative algorithm that provides a closed-form expression for
the computation of optimal reflection coefficient for roadside
sensors under their quality of service (QoS) and a circuit power
constraint. The global optimal exhaustive search (ES) algorithm
is used as a benchmark. Simulation results demonstrate that
the AOBWS algorithm can achieve near-optimal performance
with very low complexity, which makes it suitable for practical
implementations.

Index Terms—Sensors to infrastructure communications,
Wireless powered roadside sensors, Backscatter communications,
Beyond 5G ITS, Energy efficiency, Power allocation, Imperfect
channel estimation.

I. INTRODUCTION

AN effective traffic monitoring system is essential for ITS
to surveil the prevailing conditions across the road. ITS

demands a wide range of sensors on the road to manage
transportation in an intelligent, seamless, safe, and secure
manner. These sensors could monitor traffic patterns, deter-
mine optimum traffic routing, identify traffic accidents, and
perform environmental measurements [1]. In such a large-
scale network, it is very essential to collect and transmit infor-
mation with little power consumption. These sensors consist
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of sensing, computation, and communication components that
consume power. Backscatter communication is an emerging
technology that provides a single infrastructure for jointly
sensing and transmitting data with microwatt levels of power
consumption [2].

Backscatter communications provide batteryless connectiv-
ity through RF energy harvesting [3]. This technique is very
different than the general energy harvesting techniques where
devices harvest energy for the operation of active RF transmis-
sions [4], [5]. On the contrary, backscatter communication is
low complexity and low power technique that does not require
any active RF transmission component. It allows transmitters
to transfer their information to the backscatter reader (BR)
installed on receivers by reflecting and modulating the RF
carrier signals of CE. Such backscattering at transmitters is
done through mismatching the impedance at the input of
the antenna which results in varying reflection coefficients
[6]. Its transmission consumes very little energy as compared
to the conventional radio and its operation without active
RF component results in much simpler and uncomplicated
circuits. The implementation of the backscatter technique for
the wirelessly powered sensors has been limited because of its
limited coverage. Backscatter communication based on bistatic
architecture has been proposed to mitigate this limitation [3],
[7], [8]. In bistatic backscatter communication, the CE is
dislocated from BR, which results in a more flexible network
configuration and reduces the near-far effect. Therefore, it is
much more suitable for future ITS to use bistatic backscatter
aided roadside sensors.

A. Related Literature

Recently, backscatter communication has shown great po-
tential for large-scale massive internet of things (IoT) net-
works [9]. To achieve low latency, high spectral, and en-
ergy efficiency, NOMA is the key technology to serve a
large number of roadside sensors. The integration of NOMA
with backscatter communication has proven great potential
for collecting information from multiple sensors through the
same sub-channel in a non-orthogonal manner [10], [11]. The
information of multiple roadside sensors can be multiplexed
on the same sub-channel by tuning the value of the reflection
coefficient of each roadside sensor to a different value. After
tuning their reflection coefficients, multiple roadside sensors in
the same cluster can be separated through the power domain.
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Then, the BR can decode the information of each roadside
sensor by employing the power difference of their signals.
The authors in [10], used the combination of time-division
multiplexing access (TDMA) with NOMA as hybrid access
schemes for monostatic backscatter communication. They im-
proved the network performance in terms of throughput and
outage probability. In [12], authors investigated the ergodic
rate and outage probability for backscatter NOMA system that
integrates downlink NOMA communication with backscatter
device. The performance of NOMA-enabled backscatter com-
munication in terms of successful decoding of an average
number of bits at the reader is analyzed in [13]. In [14],
authors explored NOMA backscatter communication for UAV
application by optimizing UAV altitude and trajectory. Author
in [15], jointly optimize backscatter time and power reflection
coefficients for throughput maximization of NOMA bistatic
communication network. EE of the symbiotic system that
integrates downlink NOMA communication with backscatter
device is maximized in [16].

So far following research contributions explored
backscatter-aided vehicular communications. The overview
of different use cases of NOMA-enabled backscatter
aided 6G vehicular networks is presented in [17]. In
[18], authors formulate the joint optimization of BS and
RSU power allocation for efficient backscatter enabled
vehicular communication with NOMA. They considered a
downlink scenario for cooperative NOMA communication,
in which multiple RSUs are assisting BS to multicast the
information to the vehicles along with backscatter tag to
vehicles communication. A novel learning-based optimization
framework for backscatter aided heterogeneous vehicular
networks is presented in [19]. The authors in [20], analyzed
the integration of passive sensors and uplink backscatter
communication for vehicular technology. They demonstrated
the use of piezoelectric transducers for passive sensing along
with uplink backscatter communication for pedestrians’ safety
and validated it through their experiments. The contribution
in [21], proposed backscatter-aided secure vehicle-to-vehicle
communication for managing parking situations in VANETs.
The backscatter technology for vehicular positioning is
investigated in [22].

B. Motivations and Contributions

Roadside sensors collect large amounts of information and
send it to central computing servers through roadside units
(RSUs) or base stations (BSs) for analysis [23]. Besides,
RSUs can also transfer sensed information to the vehicles
that exist in their coverage area. For instance, sensors detect
the pedestrians in the crosswalk and transmit it to RSUs
through backscatter communication. Then, RSUs disseminate
this information to surrounding vehicles in its coverage [20].
Hence, such an interconnected transport system results in
better decision-making that leads to the improved safety of the
environment. [2]. As the roadside sensors need to collect and
transmit different useful information to the RSUs in an energy-
efficient manner. Therefore, backscatter communications can
be employed by the roadside sensors to send their sensed

TABLE I
THE LIST OF DIFFERENT ABBREVIATIONS AND THEIR

DEFINITIONS

Acronym Definition
AOBWS Alternating optimization for backscatter aided

wireless powered sensors.
BR Backscatter reader.
BS Base station.
CCFP Concave-convex fractional programming.
CE Carrier emitter.
CSI Channel state information.
EE Energy efficiency.
ES Exhaustive search.
IoT Internet of things.
ITS Intelligent transportation system.
KKT Karush–Kuhn–Tucker.
NOMA Non-orthogonal multiple access.
OCETP Optimal CE transmit power.
OFDMA Orthogonal frequency-division multiple access.
QoS Quality of service.
RF Radio frequency.
RSU Road side unit.
SIC Successive interference cancelation.
TDMA Time-division multiplexing access.
UAV Unmanned aerial vehicles.
VANET Vehicular ad-hoc network.

information to the nearest RSU in the uplink scenario [17],
[20]. Besides, Obtaining CSI is crucial for the performance
analysis of backscatter communications. In practice, it is
very challenging for the passive transmitter to guarantee the
accuracy of CSI all the time [24]. Furthermore, the realization
of backscatter enabled uplink sensor communications will
demand advanced energy-efficient resource allocation (RA)
frameworks. Their RA is incredibly challenging due to the
diverse quality-of-service (QoS) requirements and its strong
underlying dynamics. In literature, we believe that there is
no energy-efficient RA optimization framework for NOMA-
enabled backscatter aided uplink roadside sensors communi-
cation with channel uncertainties. Therefore, in this article, we
proposed a novel alternating optimization framework for EE
maximization of wireless powered backscatter aided uplink
sensors communications for future generation ITS under im-
perfect CSI. Our major contribution is summarized as follows,

• A novel energy-efficient alternating optimization frame-
work for NOMA-enabled wireless powered uplink sen-
sor communication under imperfect CSI is proposed for
ITS. The EE maximization problem is formulated under
various QoS requirements of bistatic backscatter com-
munications for roadside sensors. The EE is maximized
under channel uncertainties by optimizing transmit power
of CE and reflection coefficient of roadside sensors. The
formulated problem is solved into two stages, which
yields the proposed AOBWS algorithm.

• The proposed two-stage AOBWS algorithm provides op-
timal EE performance in very low computational com-
plexity, which makes it suitable for practical implemen-
tations. The detailed complexity analysis of the proposed
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algorithm and benchmark algorithms is presented in the
complexity analysis subsection.

• The efficacy of the proposed AOBWS algorithm is an-
alyzed through numerical simulations and is compared
with the global optimal ES algorithm as a benchmark.
From obtained results, it is observed that AOBWS can
achieve desired EE performance with affordable compu-
tational complexity for practical implementations.

The rest of the paper is organized as follows: The system
model is provided in Section II. In Section III, we discussed
the problem formulation with its solution for the energy
efficient wireless powered uplink sensor communication un-
der channel uncertainties for ITS while Section IV presents
the numerical results to verify the efficacy of the proposed
AOBWS algorithm. Finally, Section V provides concluding
remarks of our analysis and discuses the future work. The
definition of different acronyms and symbols used in this paper
are respectively defined in Table I and II.

II. SYSTEM MODEL

This work considers NOMA-enabled backscatter commu-
nication for wireless powered passive sensors in ITS. The
system model consists of a CE, multiple backscatters aided
roadside sensors, and BR installed on RSU as depicted in
Figure 1. Roadside sensors are multiplexed in various clusters,
where each cluster consists of 𝐾 sensors. Practically, It is
desireable to have two or three sensor per cluster for low
decoding complexity and to guarantee timing constraints [25].
Roadside sensors harvest RF energy from the RF carrier
signal emitted by CE [26] and backscatter their information
to the BR. It works in two operational modes, namely the
transmission mode (𝑇𝑡 ) and energy harvesting mode (𝑇ℎ).
These two modes of roadside sensor constitute one slot such
that 𝑇𝑡 + 𝑇ℎ = 1 1, where 𝑇𝑡 > 0 and 𝑇ℎ > 0. In transmission
mode, each cluster of roadside sensors backscatters the RF
carrier signal of CE to transmit its sensed information to the
BR. This backscattering is carried out with the help of an RF
transistor. It reflect the incident carrier RF signal with altered
phase and magnitude through mismatching the impedence at
the input of the antenna which results in varying reflection
coefficients. In the energy harvesting mode, roadside sensor
harvests energy from incident RF signal instead of reflecting
it for transferring information. This harvested energy is then
reserved in the battery and is utilized to power its circuitry.
For a more detailed description of backscatter enabled sensors,
please refer to [25].

The uplink transmission scenario is considered in which
one cluster of two roadside sensors is handled by a single CE
and BR. Both roadside sensors and BR communicate through
single antennas. The forward channel link between CE and
𝑘 𝑡ℎ roadside sensor is denoted by 𝐻 𝑓 ,𝑘 , while 𝐻𝑏,𝑘 is used to
denote the backscatter link between 𝑘 𝑡ℎ roadside sensor and
BR, for 𝑘 ∈ {1, 2}. The channel coefficients of the forward

1Optimizing time coefficients of transmission mode 𝑇𝑡 and energy harvest-
ing mode 𝑇ℎ of roadside sensor can further enhance the EE performance,
however, it is left for our future work to focus here on optimizing CE
transmit power and reflection coefficient of roadside sensors under channel
uncertainties.

TABLE II
THE LIST OF DIFFERENT SYMBOLS AND THEIR DEFINITIONS

Symbol Definition
𝐻 𝑓 ,𝑘 Forward link channel coefficients of 𝑘 𝑡ℎ roadside

sensor.
𝐻𝑏,𝑘 Backscatter link channel coefficients of 𝑘 𝑡ℎ

roadside sensor.
ℎ 𝑓 ,𝑘 Forward link fast fading component of 𝑘 𝑡ℎ

roadside sensor.
ℎ𝑏,𝑘 Backscatter link fast fading component of 𝑘 𝑡ℎ

roadside sensor.
𝑑 𝑓 ,𝑘 Distance from CE to 𝑘 𝑡ℎ roadside sensor.
𝑑𝑏,𝑘 Distance from 𝑘 𝑡ℎ roadside sensor to BR.
𝛼 Path loss exponent.
𝑃𝐼
𝑘

Power of incident RF signal at 𝑘 𝑡ℎ roadside
sensor.

𝑃𝑐𝑒 CE transmit power.
𝑃
𝐻𝑡

𝑘
, 𝑃
𝐻ℎ

𝑘
Energy harvested by 𝑘 𝑡ℎ roadside sensor during
transmission mode and energy harvesting mode.

𝜉 Efficiency of energy harvester.
Γ𝑘 Reflection coefficient of 𝐾 𝑡ℎ roadside sensor.
𝑠𝑘 Reflected signal from 𝑘 𝑡ℎ roadside sensor

towards BR.
𝑥𝑘 Transmitted signal from 𝑘 𝑡ℎ roadside sensor

towards BR.
𝑛, 𝜎2

𝑛 AWGN and its variance at RSU.
𝐻𝑘 Overall channel link between 𝑘 𝑡ℎ roadside sensor

and BR.
𝐻̂𝑘 , 𝜖𝑘 Estimated channel gain and error of 𝑘 𝑡ℎ roadside

sensor.
𝜎2
𝐻̂𝑘

, 𝜎2
𝑒𝑘

Estimated channel and its error variance of 𝑘 𝑡ℎ

roadside sensor.
𝑦 Received signal at RSU with perfect CSI.
𝑦̂ Received signal at RSU with imperfect CSI.
𝑅, 𝑅 Sum-rate of roadside sensors before and after

logrithmic approximation.
𝛾𝑘 SINR at 𝑘 𝑡ℎ roadside sensor.
𝑃𝑇 Total power consumed by the cluster of sensors.
𝑃𝑐𝑐𝑒, 𝑃

𝑐
𝑅𝑆𝑈

CE and RSU circuit power.
𝑃𝑐
𝑅𝑆

Roadside sensor circuit power.
𝜆, 𝝁, 𝜷 Lagrangian multipliers.
𝜘𝑘 Power amplifier efficiency.
𝑇𝑡 ,𝑘 , 𝑇ℎ,𝑘 Time coefficients of transmission and energy

harvesting mode of 𝑘 𝑡ℎ roadside sensor.

and backscatter link are consist of the following components,
respectively.

𝐻 𝑓 ,𝑘 = 𝑑
−𝛼
𝑓 ,𝑘 × ℎ 𝑓 ,𝑘 , (1)

and

𝐻𝑏,𝑘 = 𝑑
−𝛼
𝑏,𝑘 × ℎ𝑏,𝑘 , (2)

where ℎ 𝑓 ,𝑘 and ℎ𝑏,𝑘 represent fast fading component of
forward and backscatter link, respectively. 𝑑 𝑓 ,𝑘 and 𝑑𝑏,𝑘 are
the distance from CE to 𝑘 𝑡ℎ roadside sensor and 𝑘 𝑡ℎ roadside
sensor to BR, respectively. 𝛼 is used as path-loss exponent.
Let 𝑃𝑐𝑒 is the power of the carrier signal emitted from CE.
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Then, the power of incident RF signal at 𝑘 𝑡ℎ roadside sensor
is

𝑃𝐼𝑘 = 𝑃𝑐𝑒 |𝐻 𝑓 ,𝑘 |2. (3)

Roadside sensor can harvest energy from RF signals in both
energy harvesting mode and transmission mode. Therefore, the
energy harvested by 𝑘 𝑡ℎ roadside sensor during transmission
mode (𝑇𝑡 ) and energy harvesting mode (𝑇ℎ) is given as follow

𝑃
𝐻𝑡

𝑘
= 𝜉 (1 − Γ𝑘 )𝑃𝐼𝑘𝑇𝑡 ,𝑘 , (4)

and
𝑃
𝐻ℎ

𝑘
= 𝜉𝑃𝐼𝑘𝑇ℎ,𝑘 , (5)

where 𝜉 denotes the efficiency of energy harvester while Γ𝑘
represents reflection coefficient of 𝑘 𝑡ℎ roadside sensor, where
0 < Γ𝑘 ≤ 1. The reflected signal from 𝑘 𝑡ℎ roadside sensor
toward BR installed on RSU is

𝑠𝑘 =
√︁
𝑃𝑐𝑒Γ𝑘𝐻𝑏,𝑘𝑥𝑘 , (6)

where 𝑥𝑘 is the transmitted signal form 𝑘 𝑡ℎ roadside sensor,
satisfying E( |𝑥𝑘 |2) = 1. Then , the signal received at RSU is
given as

𝑦 =

2∑︁
𝑘=1

𝐻 𝑓 ,𝑘 𝑠𝑘 + 𝑛, (7)

or

𝑦 =

2∑︁
𝑘=1

√︁
𝑃𝑐𝑒Γ𝑘𝐻 𝑓 ,𝑘𝐻𝑏,𝑘𝑥𝑘 + 𝑛, (8)

where 𝐻𝑘 = 𝐻 𝑓 ,𝑘𝐻𝑏,𝑘 is the overall channel link between
𝑘 𝑡ℎ roadside sensor and BR, which can be estimated through
LMMSE method [24]. 𝐻𝑘 can be written as 𝐻𝑘 = 𝑑𝑘×ℎ𝑘 [27],
where 𝑑𝑘 = 𝑑−𝛼

𝑏,𝑘
× 𝑑−𝛼

𝑓 ,𝑘
and ℎ𝑘 = ℎ𝑏,𝑘 × ℎ 𝑓 ,𝑘 . In practice,

it is very challenging for backscatter aided communications
to guarantee accurate CSI at all the time [24]. Therefore, it
is necessary to investigate the backscatter aided sensors to
RSU communication with imperfect CSI. Under imperfect CSI
estimation, 𝐻𝑘 can be expressed by using the minimum mean
square error (MMSE) channel estimation error model [28],
[29] as follow

𝐻𝑘 = 𝐻̂𝑘 + 𝜖𝑘 , (9)

where 𝐻̂𝑘 ∼ CN(0, 𝜎2
𝐻̂𝑘

) is the estimated channel gain with
variance 𝜎2

𝐻̂𝑘

= 𝑑𝑘 − 𝜎2
𝑒𝑘

[30], while 𝜖𝑘 ∼ CN(0, 𝜎2
𝑒𝑘
) is the

estimated channel error, which is Gaussian distributed with
zero mean and variance 𝜎2

𝑒𝑘
. The relative channel error can

be represented as 𝜌𝑘 =
𝜎2
𝑒𝑘

𝑑𝑘
. Then, 𝜎2

𝑒𝑘
= 𝜌𝑘𝑑𝑘 and 𝜎2

𝐻̂𝑘

= (1−
𝜌𝑘 )𝑑𝑘 [31]. For convenience of analysis, the case of constant
estimation error (𝜎2

𝑒𝑘
= 𝜎2

𝑒 ) for all NOMA users is considered
in this paper [30], [32]. Thus, the signal received at RSU under
imperfect CSI is given as

𝑦̂ =

2∑︁
𝑘=1

√︁
𝑃𝑐𝑒Γ𝑘 𝐻̂𝑘𝑥𝑘 + 𝜖

2∑︁
𝑘=1

√︁
𝑃𝑐𝑒Γ𝑘𝑥𝑘 + 𝑛. (10)

Without loss of generality, roadside sensors channel gains
are arranged as: |𝐻̂2 |2 > |𝐻̂1 |2. Unlink downlink scenario, In
the uplink, all information received at RSU from a cluster

of roadside sensors are desired signals, although they give
rise to multiuser interference. In downlink NOMA, SIC is
implemented in ascending order i.e. the roadside sensor with
lower channel gain is first decoded and removed. While in the
uplink, the RSU can decode the roadside sensors signals in
an arbitrary order, as all information is desired at the RSU
[33]. However, despite that, to implement SIC and decode the
received information at the RSU, tuning the value of reflection
coefficient of each roadside sensor to different values should
be exploited in such a way that it maintained the distinctness
among various signals. For the analysis, we assume that the
SIC order that decodes the information of the 2nd roadside
sensor (highest channel gain) first is employed at the RSU
throughout this work [34]. According to the NOMA principles,
the sum-rate of roadside sensors is given by

𝑅 =𝐵𝑊𝑇𝑡 ,1 log2

(
1 + 𝛾1

)
+ 𝐵𝑊𝑇𝑡 ,2 log2

(
1 + 𝛾2

)
, (11)

where

𝛾1 =

(
𝑃𝑐𝑒Γ1 |𝐻̂1 |2

𝜎2
𝑒𝑃𝑐𝑒

∑2
𝑘=1 Γ𝑘 + 𝜎2

𝑛

)
, (12)

and

𝛾2 =

(
𝑃𝑐𝑒Γ2 |𝐻̂2 |2

𝑃𝑐𝑒Γ1 |𝐻̂1 |2 + 𝜎2
𝑒𝑃𝑐𝑒

∑2
𝑘=1 Γ𝑘 + 𝜎2

𝑛

)
. (13)

The total power consumed by the cluster is the circuit power
consumption of the roadside sensors in backscatter mode. The
circuit operation is performed through the harvested power
from the carrier signal during transmission mode as well
as in energy harvesting mode. The power consumed by the
cluster can be obtained by the sum of the harvested powers
of roadside sensors paired in that cluster. Besides it, total
energy consumption also consists of the energy consumed by
the CE to transmit RF signals and RSU to receive the signals
of roadside sensors. Therefore, the total power consumption
of the system is as follow

𝑃𝑇 =

2∑︁
𝑘=1

𝑃𝑐𝑒

𝜘𝑘

(
𝑇𝑡 ,𝑘 + 𝑇ℎ,𝑘

)
+ 𝑃𝑐𝑐𝑒 + 𝑃𝑐𝑅𝑆𝑈 , (14)

where 𝜘𝑘 is power amplifier efficiency that ranges between
zero and one while 𝑃𝑐𝑐𝑒 and 𝑃𝑐

𝑅𝑆𝑈
are the constant circuit

power consumed by CE and RSU respectively. The energy
efficiency of the proposed system model is defined as the ratio
of the sum rate of roadside sensor to the consumed power of
system in bits per Hertz per Joule (bits/Hz/J) [35], [36] as
follows

𝐸𝐸 =
𝑅

𝑃𝑇
. (15)

III. PROBLEM FORMULATION

Energy-efficient NOMA-enabled wireless powered passive
sensors to infrastructure communication under imperfect CSI
is the primary objective of the optimization problem. The
energy efficiency maximization problem is formulated as

max
𝑃𝑐𝑒 ,𝚪

𝐸𝐸 = max
𝑃𝑐𝑒 ,𝚪

𝑅

𝑃𝑇
,
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Fig. 1. Illustration of System model

𝑠.𝑡. 𝐶1 : 𝑃𝑐𝑒Γ1 |𝐻̂1 |2 ≥ (2
𝑅𝑚𝑖𝑛
𝑇𝑡,1 − 1)

(
𝜎2
𝑒𝑃𝑐𝑒

2∑︁
𝑘=1

Γ𝑘 + 𝜎2
𝑛

)
,

𝐶2 : 𝑃𝑐𝑒Γ2 |𝐻̂2 |2 ≥ (2
𝑅𝑚𝑖𝑛
𝑇𝑡,2 − 1)

(
𝑃𝑐𝑒Γ1 |𝐻̂1 |2

+ 𝜎2
𝑒𝑃𝑐𝑒

2∑︁
𝑘=1

Γ𝑘 + 𝜎2
𝑛

)
,

𝐶3 : 0 ≤ 𝑃𝑐𝑒 ≤ 𝑃𝑚𝑎𝑥 ,

𝐶4 : 0 < Γ𝑘 ≤ 1, 𝑘 ∈ {1, 2},
𝐶5 : 𝑃𝐻ℎ

𝑘
+ 𝑃𝐻𝑡

𝑘
≥ 𝑃𝑐𝑅𝑆𝑇𝑡 ,𝑘 , 𝑘 ∈ {1, 2}, (16)

where 𝐸𝐸 represents the energy efficiency of the wireless
powered sensor communications in NOMA-enabled ITS. 𝚪 =

{Γ1, Γ2} is the vector of reflection coefficient of roadside
sensors. C1 and C2 enforce roadside sensors to backscatter
their information towards RSU with minimum QoS (minimum
required rate) requirement. C3 ensures that the CE transmit
power (𝑃𝑐𝑒) cannot exceed its maximum transmit power
(𝑃𝑚𝑎𝑥). C4 limits the reflection coefficient of sensors between
0 and 1. C5 guarantees that the energy harvested by the 𝑘 𝑡ℎ

sensor should exceed their minimum required circuit power
(𝑃𝑐
𝑅𝑆

).
The objective function in the problem defined in Eq. (16)

has a non-linear fractional form, which is challenging to solve.
The logarithmic approximation is implemented [37], which
reduces complexity and transforms the optimization problem
into tractable concave-convex fractional programming (CCFP)
problem. The approximation is done as follow

Π log2 (𝑧) +Φ ≤ log2 (1 + 𝑧), (17)

for any 𝑧 ≥ 0 , where Π =
𝑧0

1+𝑧0 and Φ = log2 (1 + 𝑧0) −
𝑧0

1+𝑧0 log2 (𝑧0). When 𝑧 = 𝑧0, the bound becomes tight. Through
lower bound of inequality in Eq. (17), the sum-rate of roadside

sensors is presented as

𝑅 =

2∑︁
𝑘=1

𝐵𝑊𝑇𝑡 ,𝑘 (Π𝑘 log2 (𝛾𝑘 ) +Φ𝑘 ), (18)

where
Π𝑘 =

𝛾𝑘

1 + 𝛾𝑘
, (19)

and
Φ𝑘 = log2 (1 + 𝛾𝑘 ) −

𝛾𝑘

1 + 𝛾𝑘
log2 (𝛾𝑘 ). (20)

Hence the updated optimization problem can be formulated as

max
𝑃𝑐𝑒 ,𝚪

𝐸𝐸 = max
𝑃𝑐𝑒 ,𝚪

𝑅

𝑃𝑇
,

𝑠.𝑡. 𝐶1 : 𝑃𝑐𝑒Γ1 |𝐻̂1 |2 ≥
(
2

𝑅𝑚𝑖𝑛−𝑇𝑡,1Φ1
𝑇𝑡,1Π1

) (
𝜎2
𝑒𝑃𝑐𝑒

2∑︁
𝑘=1

Γ𝑘 + 𝜎2
𝑛

)
,

𝐶2 : 𝑃𝑐𝑒Γ2 |𝐻̂2 |2 ≥
(
2

𝑅𝑚𝑖𝑛−𝑇𝑡,2Φ2
𝑇𝑡,2Π2

) (
𝑃𝑐𝑒Γ1 |𝐻̂1 |2

+ 𝜎2
𝑒𝑃𝑐𝑒

2∑︁
𝑘=1

Γ𝑘 + 𝜎2
𝑛

)
,

𝐶3 : 0 ≤ 𝑃𝑐𝑒 ≤ 𝑃𝑚𝑎𝑥 ,

𝐶4 : 0 < Γ𝑘 ≤ 1, 𝑘 ∈ {1, 2},
𝐶5 : 𝑃𝐻ℎ

𝑘
+ 𝑃𝐻𝑡

𝑘
≥ 𝑃𝑐𝑅𝑆𝑇𝑡 ,𝑘 .

(21)

The EE maximization problem is coupled on two kinds of
optimization variables i.e., 𝑃𝑐𝑒, and 𝚪 in problem defined in
Eq. (21). Thus, it is very hard to find a globally optimal
solution directly. It demands an approximate optimal algo-
rithm through alternating optimization algorithm. Therefore,
this problem can be solved through alternating optimization
algorithm in two stages: 𝑖) In first stage, on the fixed value
of reflection coefficient of roadside sensors, we compute the
energy efficient transmit power of the carrier emitter 𝑃𝑐𝑒; 𝑖𝑖)
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we substitute the optimal 𝑃∗
𝑐𝑒 obtained in stage 1 into the

original problem and optimize the reflection coefficients of
the roadside sensors in Stage 2.

A. Energy Efficent transmit power allocation for CE

Given the reflection coefficients of roadside sensors, the
optimization problem in Eq. (21) can be simplified to CE
transmit power optimization as follow

max
𝑃𝑐𝑒

𝐸𝐸 = max
𝑃𝑐𝑒

𝑅

𝑃𝑇
,

𝑠.𝑡. 𝐶1 − 𝐶3, 𝐶5.
(22)

By using the following lemma, we demonstrate that 𝑅 is a
concave function with respect to 𝑃𝑐𝑒.

Lemma 1 :

𝑅 =𝐵𝑊𝑇𝑡 ,1 (Π1 log2

(
𝑃𝑐𝑒Γ1 |𝐻̂1 |2

𝜎2
𝑒𝑃𝑐𝑒

2∑︁
𝑘=1

Γ𝑘 + 𝜎2
𝑛︸                  ︷︷                  ︸

X

)
+Φ1)+ (23)

𝐵𝑊𝑇𝑡 ,2 (Π2 log2

(
𝑃𝑐𝑒Γ2 |𝐻̂2 |2

𝑃𝑐𝑒Γ1 |𝐻̂1 |2 + 𝜎2
𝑒𝑃𝑐𝑒

2∑︁
𝑘=1

Γ𝑘 + 𝜎2
𝑛︸                                     ︷︷                                     ︸

Y

)
+Φ2)

is a concave function with respect to 𝑃𝑐𝑒.

Proof : Please, refer to Appendix A.

As, 𝑅 is concave with respect to 𝑃𝑐𝑒 and the objective
function denominator is an affine function of 𝑃𝑐𝑒 in Eq. (22).
Thus, the problem in Eq. (22) is in the form of a concave-
convex fractional programming (CCFP) problem. Which can
be solved efficiently through Dinkelbach’s algorithm [38].
By using Dinkelbach method, problem in Eq. (22) can be
transformed as

max
𝑃𝑐𝑒

𝐸𝐸 = max
𝑃𝑐𝑒

𝐹 (𝜓) = max
𝑃𝑐𝑒

𝑅 − 𝜓𝑃𝑇 ,

𝑠.𝑡. 𝐶1 − 𝐶3, 𝐶5,
(24)

where 𝜓 is the real parameter. Computing the roots of 𝐹 (𝜓)
is analogous to solving the objective function in Eq. (22) [32].
𝐹 (𝜓) is negative when 𝜓 approaches infinity, while 𝐹 (𝜓) is
positive when 𝜓 approaches minus infinity. 𝐹 (𝜓) is convex
with respect to 𝜓. The convex problem in Eq. (24) is solved
by employing the Lagrangian dual decomposition method. The
Lagrangian function is presented in Eq. (25),

where 𝝁 = {𝜇1, 𝜇2}, 𝜷 = {𝛽1, 𝛽2}, and 𝜆 are the Lagrange
multipliers. Constraints are KKT conditions for optimizing
the power allocation for CE.

Lemma 2 :

The closed-form solution of optimal 𝑃𝑐𝑒 can be expressed as

𝑃∗
𝑐𝑒 =

3

√︂
𝑞 +

√︃
𝑞2 +

(
𝑟 − 𝑝2)3 +

3

√︂
𝑞 −

√︃
𝑞2 +

(
𝑟 − 𝑝2)3 + 𝑝

(26)

Proof : Please, refer to Appendix B

Given the optimal CE transmit power allocation policy in
Eq. (26), the primal problem’s Lagrangian multipliers can
be determined and updated iteratively by employing the sub-
gradient method as presented in Eq. (27) - Eq. (31).
Where 𝑖𝑡𝑒𝑟 is used for iteration index. 𝜔1, 𝜔2,𝜔3, 𝜔4, and 𝜔5
present positive step sizes. The appropriate step sizes should
be used for the convergence to an optimal solution.

B. Efficient selection of reflection coefficient for roadside
sensor

Through simplified Cardano’s formulae, a closed-form of
optimal power for CE is obtained. Now the optimization prob-
lem for allocating efficient reflection coefficients to roadside
sensors under their QoS and required circuit power constraint
can be rewritten as,

max
𝚪

𝑅 − 𝜓𝑃𝑇 ,

𝑠.𝑡. 𝐶1 : 𝑃∗
𝑐𝑒Γ1 |𝐻̂1 |2 ≥

(
2

𝑅𝑚𝑖𝑛−𝑇𝑡,1Φ1
𝑇𝑡,1Π1

) ( 2∑︁
𝑘=1

𝜎2
𝑒𝑃

∗
𝑐𝑒Γ𝑘 + 𝜎2

𝑛

)
,

𝐶2 : 𝑃∗
𝑐𝑒Γ2 |𝐻̂2 |2 ≥

(
2

𝑅𝑚𝑖𝑛−Φ2
Π2

) (
𝑃∗
𝑐𝑒Γ1 |𝐻̂2 |2

+
2∑︁
𝑘=1

𝜎2
𝑒𝑃

∗
𝑐𝑒Γ𝑘 + 𝜎2

𝑛

)
,

𝐶3 : 0 < Γ𝑘 ≤ 1, 𝑘 ∈ {1, 2},

𝐶4 :
2∑︁
𝑘=1

Γ𝑘 = 𝜃,

𝐶5 : 𝑃𝐻ℎ

𝑘
+ 𝑃𝐻𝑡

𝑘
≥ 𝑃𝑐𝑅𝑆𝑇𝑡 ,𝑘 . (32)

To solve optimization problem defined in Eq. (32), first we
will present in Lemma 2 that 𝑅 is a concave function with
respect to Γ1 and Γ2.

Lemma3 :

𝑅 =𝐵𝑊𝑇𝑡 ,1 (Π1 log2

(
𝑃∗
𝑐𝑒Γ1 |𝐻̂1 |2

𝜎2
𝑒𝑃

∗
𝑐𝑒𝜃 + 𝜎2

𝑛

)
+Φ1)+ (33)

𝐵𝑊𝑇𝑡 ,2 (Π2 log2

(
𝑃∗
𝑐𝑒Γ2 |𝐻̂2 |2

𝑃∗
𝑐𝑒Γ1 |𝐻̂1 |2 + 𝜎2

𝑒𝑃
∗
𝑐𝑒𝜃 + 𝜎2

𝑛

)
+Φ2)

is a concave function with respect to Γ1 and Γ2.

Proof : Please, refer to Appendix C

As, 𝑅 is concave with respect to Γ1 and Γ2. Therefore
maximum value of optimization problem defined in Eq. (32)
can be obtained by the upper bound of reflection coefficient
of roadside sensor as follow,
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L(Pce, 𝝁, 𝜆, 𝜷) =

𝐵𝑊𝑇𝑡,1

(
Π1 log2

(
𝑃𝑐𝑒Γ1 |𝐻̂1 |2

𝜎2
𝑒𝑃𝑐𝑒

∑2
𝑘=1 Γ𝑘 + 𝜎2

𝑛

)
+Φ1

)
+ 𝐵𝑊𝑇𝑡,2

(
Π2 log2

(
𝑃𝑐𝑒Γ2 |𝐻̂2 |2

𝑃𝑐𝑒Γ1 |𝐻̂1 |2 + 𝜎2
𝑒𝑃𝑐𝑒

∑2
𝑘=1 Γ𝑘 + 𝜎2

𝑛

)
+Φ2

)
− 𝜓

( 2∑︁
𝑘=1

𝑃𝑐𝑒

𝜘𝑘

(
𝑇𝑡,𝑘 +𝑇ℎ,𝑘

)
+ 𝑃𝑐

𝑐𝑒

+ 𝑃𝑐
𝑅𝑆𝑈

)
+ 𝜇1

(
𝑃𝑐𝑒Γ1 |𝐻̂1 |2 −

(
2
𝑅𝑚𝑖𝑛−𝑇𝑡,1Φ1

𝑇𝑡,1Π1
) ( 2∑︁

𝑘=1
𝜎2
𝑒𝑃𝑐𝑒Γ𝑘 + 𝜎2

𝑛

))
+ 𝜇2

(
𝑃𝑐𝑒Γ2 |𝐻̂2 |2 −

(
2
𝑅𝑚𝑖𝑛−𝑇𝑡,2Φ2

𝑇𝑡,2Π2
) (
𝑃𝑐𝑒Γ1 |𝐻̂1 |2 +

2∑︁
𝑘=1

𝜎2
𝑒𝑃𝑐𝑒Γ𝑘 + 𝜎2

𝑛

))
+ 𝜆

(
𝑃𝑚𝑎𝑥 − 𝑃𝑐𝑒

)
+ 𝛽1

(
𝜉 (1 − Γ1)𝑃𝑐𝑒 |𝐻 𝑓 ,1 |2𝑇𝑡,1 + 𝜉 𝑃𝑐𝑒 |𝐻 𝑓 ,1 |2𝑇ℎ,1 − 𝑃𝑐

𝑅𝑆
𝑇𝑡,1

)
+ 𝛽2

(
𝜉 (1 − Γ2)𝑃𝑐𝑒 |𝐻 𝑓 ,2 |2𝑇𝑡,2 + 𝜉 𝑃𝑐𝑒 |𝐻 𝑓 ,2 |2𝑇ℎ,2 − 𝑃𝑐

𝑅𝑆
𝑇ℎ,2

)
,

(25)

𝜆(𝑖𝑡𝑒𝑟 + 1) =
[
𝜆(𝑖𝑡𝑒𝑟 ) − 𝜔1 (𝑖𝑡𝑒𝑟 )

(
𝑃𝑚𝑎𝑥 − 𝑃𝑐𝑒

)]+
, (27)

𝜇1 (𝑖𝑡𝑒𝑟 + 1) =
[
𝜇1 (𝑖𝑡𝑒𝑟 ) − 𝜔2 (𝑖𝑡𝑒𝑟 )

(
𝑃𝑐𝑒Γ1 |𝐻̂1 |2 −

(
2
𝑅𝑚𝑖𝑛−𝑇𝑡,1Φ1

𝑇𝑡,1Π1
) ( 2∑︁

𝑘=1
𝜎2
𝑒𝑃𝑐𝑒Γ𝑘 + 𝜎2

𝑛

))]+
, (28)

𝜇2 (𝑖𝑡𝑒𝑟 + 1) =
[
𝜇2 (𝑖𝑡𝑒𝑟 ) − 𝜔3 (𝑖𝑡𝑒𝑟 )

(
𝑃𝑐𝑒Γ2 |𝐻̂2 |2 −

(
2
𝑅𝑚𝑖𝑛−𝑇𝑡,2Φ2

𝑇𝑡,2Π2
) (
𝑃𝑐𝑒Γ1 |𝐻̂1 |2 +

2∑︁
𝑘=1

𝜎2
𝑒𝑃𝑐𝑒Γ𝑘 + 𝜎2

𝑛

))]+
, (29)

𝛽1 (𝑖𝑡𝑒𝑟 + 1) =
[
𝛽1 (𝑖𝑡𝑒𝑟 ) − 𝜔4 (𝑖𝑡𝑒𝑟 )

(
𝜉 (1 − Γ1)𝑃𝑐𝑒 |𝐻 𝑓 ,1 |2𝑇𝑡,1 + 𝜉 𝑃𝑐𝑒 |𝐻 𝑓 ,1 |2𝑇ℎ,1 − 𝑃𝑐

𝑅𝑆
𝑇𝑡,1

)]+
, (30)

𝛽2 (𝑖𝑡𝑒𝑟 + 1) =
[
𝛽2 (𝑖𝑡𝑒𝑟 ) − 𝜔5 (𝑖𝑡𝑒𝑟 )

(
𝜉 (1 − Γ2)𝑃𝑐𝑒 |𝐻 𝑓 ,2 |2𝑇𝑡,2 + 𝜉 𝑃𝑐𝑒 |𝐻 𝑓 ,2 |2𝑇ℎ,2 − 𝑃𝑐

𝑅𝑆
𝑇𝑡,2

)]+
, (31)

Lemma 4 :

The optimal reflection coefficient of the optimization
problem defined in Eq. (32) is presented as

Γ∗
𝑘 = 𝑚𝑎𝑥

{
2ℵ𝑘 (𝜎2

𝑇
+ 𝐼𝑁𝑂𝑀𝐴)

𝑃∗
𝑐𝑒 |𝐻̂𝑘 |2

, 𝑚𝑖𝑛

{
1 −

𝑃𝑐
𝑅𝑆

𝑃𝐼
𝑘

+
𝑇ℎ,𝑘

𝑇𝑡 ,𝑘
, 1

}}
(34)

where, ℵ𝑘 =
𝑅𝑚𝑖𝑛−𝑇𝑡,𝑘Φ1
𝑇𝑡,𝑘Π𝑘

, 𝜎2
𝑇

= 𝜎2
𝑒𝑃

∗
𝑐𝑒𝜃 + 𝜎2

𝑛 and
𝐼𝑁𝑂𝑀𝐴 =

∑𝑘−1
𝑙=1 𝑃

∗
𝑐𝑒Γ𝑙 |𝐻̂𝑙 |2

Proof :
For the given optimal 𝑃∗

𝑐𝑒, the objective function of
optimization problem in Eq. (32) increases with increase of
𝚪. Therefore, the optimal reflection coefficient of roadside
sensor can be computed by the upper bound of reflection
coefficient. The range of Γ𝑘 from the optimization problem
in Eq. (32) can be determined by combining constraints C1,
C3, and C5 for Γ1 and constraints C2, C3, and C5 for Γ2 .
After some simple mathematical computations, the range of
Γ𝑘 can be presented as

2ℵ𝑘 (𝜎2
𝑇
+ 𝐼𝑁𝑂𝑀𝐴)

𝑃∗
𝑐𝑒 |𝐻̂𝑘 |2

≤ Γ𝑘 ≤ 𝑚𝑖𝑛
{
1 −

𝑃𝑐
𝑅𝑆

𝑃𝐼
𝑘

+
𝑇ℎ,𝑘

𝑇𝑡 ,𝑘
, 1

}
(35)

Thus, optimal Γ∗
𝑘

can be calculated as

𝑚𝑎𝑥

{
2ℵ𝑘 (𝜎2

𝑇
+𝐼𝑁𝑂𝑀𝐴)

𝑃∗
𝑐𝑒 |𝐻̂𝑘 |2

, 𝑚𝑖𝑛

{
1 − 𝑃𝑐

𝑅𝑆

𝑃𝐼
𝑘

+ 𝑇ℎ,𝑘
𝑇𝑡,𝑘

, 1
}}

.

Through Lemma 4, optimal reflection coefficients of roadside

sensors can be determined. It is allocated to the roadside
sensors in the following manner,

• When the condition 2ℵ𝑘 (𝜎2
𝑇
+𝐼𝑁𝑂𝑀𝐴)

𝑃∗
𝑐𝑒 |𝐻̂𝑘 |2

≤ 1− 𝑃𝑐
𝑅𝑆

𝑃𝐼
𝑘

+𝑇ℎ,𝑘
𝑇𝑡,𝑘

≤ 1 is

satisfied. Then, Lemma 4 will results in Γ∗
𝑘
= 1 − 𝑃𝑐

𝑅𝑆

𝑃𝐼
𝑘

+
𝑇ℎ,𝑘
𝑇𝑡,𝑘

. This condition implies that the quality of service
constraint and and circuit power constraint of sensors is
guaranteed simulataneously. In such condition, Γ∗

𝑘
= 1 −

𝑃𝑐
𝑅𝑆

𝑃𝐼
𝑘

+ 𝑇ℎ,𝑘
𝑇𝑡,𝑘

presents the portion of backscattering signal in
received RF signal at roadside sensor during transmission
mode 𝑇𝑡 while remaining portion of received RF signal
is used for harvesting.

• When the condition 2ℵ𝑘 (𝜎2
𝑇
+𝐼𝑁𝑂𝑀𝐴)

𝑃∗
𝑐𝑒 |𝐻̂𝑘 |2

≤ 1 ≤ 1− 𝑃𝑐
𝑅𝑆

𝑃𝐼
𝑘

+ 𝑇ℎ,𝑘
𝑇𝑡,𝑘

is satisfied. Then, it implies that the energy harvested
during energy harvesting mode 𝑇ℎ is enough for the
circuit operation of roadside sensor and in transmission
mode 𝑇𝑡 all the received RF signal at roadside sensor can
be used for backscattering for EE maximization. In this
condition Lemma 4 results in Γ∗

𝑘
= 1. In this condition,

if both sensors which are backscattering using NOMA
results in reflection coefficient of 1, then the reflection
coefficient of near sensor should be calculated as 1-𝜈.
The value of 𝜈 can be selected in such a way to satisfy
𝑃∗
𝑐𝑒Γ2 |𝐻̂2 |2 − 𝑃∗

𝑐𝑒Γ1 |𝐻̂1 |2 ≤ 𝑃𝑔𝑎𝑝 (SIC constraint) [34].

• When the condition 2ℵ𝑘 (𝜎2
𝑇
+𝐼𝑁𝑂𝑀𝐴)

𝑃∗
𝑐𝑒 |𝐻̂𝑘 |2

> 1 − 𝑃𝑐
𝑠

𝑃𝐼
𝑘

+ 𝑇ℎ,𝑘
𝑇𝑡,𝑘

is satisfied. Then, it implies that QoS constraint and
circuit power constraint of roadside sensor can not be
guarnteed simulataneously. In such case, optimization
problem defined in Eq. (32) is infeasible.
The details of proposed algorithm AOBWS is summa-
rized in Algorithm 1.
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Once RSU received the information from roadside sensors,
then that information can be provided to the vehicles through
energy efficient schemes proposed in [28], [39].

Algorithm 1 Alternating optimization for backscatter aided
wireless powered sensors (AOBWS) algorithm

1: Stage 1: OCETP
2: Initialization: Reflection coefficient of roadside sensor,

maximum iterations 𝐼𝑚𝑎𝑥 , and maximum tolerance 𝛿𝑚𝑎𝑥 .
Initialize the stepsizes and the dual variables(𝜷, 𝝁 and 𝜆)
and iteration index I = 1.

3: while 𝐼 ≤ 𝐼𝑚𝑎𝑥 or |𝑅(𝐼) − 𝜓(𝐼)𝑃𝑇 | ≥ 𝛿𝑚𝑎𝑥 do
4: Compute 𝑅(𝐼) by using Eq. (18)
5: Compute 𝜓(𝐼) = 𝑅 (𝐼 )

𝑃𝑇
6: Update dual variables 𝜆(𝐼) and 𝝁(𝐼) and 𝜷(𝐼) by using

Eq. (27), (28), (29), (30), and (31), respectively.
7: Update the transmit power 𝑃𝑐𝑒 (𝐼 + 1) of CE by using

equation (26) in Lemma: 2.
8: 𝐼 = 𝐼 + 1.
9: end while

10: Output: Optimal CE transmit power 𝑃∗
𝑐𝑒.

11: Stage 2: Optimal Reflection Coefficient
12: Under optimal 𝑃∗

𝑐𝑒 obtained at stage 1, compute optimal
reflection coefficient of roadside sensor through Lemma:
4.

13: Output: Optimal 𝚪∗ = {Γ∗
1, Γ∗

2}
14: Algorithm 1 Output: AOBWS = OCETP + Optimal

reflection coefficient = 𝑃∗
𝑐𝑒 and 𝚪∗.

C. Complexity Analysis:

This subsection presents the complexity analysis of the
proposed AOBWS algorithm and ES algorithm as benchmark
algorithm. In literature, ES algorithm is employed for NOMA
optimal power allocation [40]. Moreover, it is also used as a
benchmark algorithm [41], [42], [43], because it shows the
best performance as compare to all other algorithms but at
high computational complexity. In this article, ES algorithm
is used as a benchmark because it obtains global optimal EE
performance for the considered system model. It searches over
all possible search points in the search regions of CE transmit
power and reflection coefficients of roadside sensor. However,
it demands a large amount of computation as follows. If
𝑃𝑚𝑎𝑥 is the maximum transmit power of CE and 𝑃𝑠𝑡𝑒𝑝 is the
step size for transmit power of CE. Then, there are ( 𝑃𝑚𝑎𝑥

𝑃𝑠𝑡𝑒𝑝
)

choices for the values of transmit power of CE. Similarly,
if Γ𝑚𝑎𝑥 is the maximum value of reflection coefficient that
can be assigned to the roadside sensor and Γ𝑠𝑡𝑒𝑝 is the
step size for reflection coefficient, then there are ( Γ𝑚𝑎𝑥

Γ𝑠𝑡𝑒𝑝
)𝐾

choices for the values of reflection coefficients of K sensors
linked with BR installed on RSU. Therefore, the complexity
of ES algorithm is O( 𝑃𝑚𝑎𝑥

𝑃𝑠𝑡𝑒𝑝
) + O( Γ𝑚𝑎𝑥

Γ𝑠𝑡𝑒𝑝
)𝐾 . It can be noticed

that the ES algorithm is computationally expensive but is
used as a benchmark because of its global optimal solution.
For practical implementation AOBWS algorithm is proposed,
which requires the complexity order of O(𝐼𝐾2 + 𝐾).

TABLE III
COMPLEXITY ANALYSIS OF ALGORITHMS

Algorithm Complexity
Proposed AOBWS algorithm O(𝐼𝐾2 + 𝐾)
ES algorithm (Benchmark) O( 𝑃𝑚𝑎𝑥

𝑃𝑠𝑡𝑒𝑝
) + O( Γ𝑚𝑎𝑥

Γ𝑠𝑡𝑒𝑝
)𝐾

TABLE IV
SIMULATION PARAMETERS.

Parameter Value
Bandwidth (BW) 1 MHz

CE Radius 5 m
Roadside sensors distribution around CE BPP

Noise power (𝜎2) -114 dBm
Transmit power of CE (𝑃𝑐𝑒) 0 dBm - 40 dBm
Relative channel errors (𝜌) 0.001 - 0.009

EH efficiency coefficient ( 𝜉 ) 0.6
power amplifier efficiency (𝜘) (0, 1]

CE circuit power consumption (𝑃𝑐
𝑐𝑒) 100 mW

RSU circuit power consumption (𝑃𝑐
𝑅𝑆𝑈

) 1 W
Roadside sensor circuit power consumption (𝑃𝑐

𝑠 ) -35 dBm
Roadside sensor minimum data rate 𝑅𝑚𝑖𝑛 0.5 bps/Hz

Path loss distance dependent.
path-loss exponent(𝛼) 4

Fast fading Rayleigh fading

AOBWS algorithm employs a two-stage procedure, in
which the first stage is consists of an iterative algorithm
(OCETP) and 2nd stage is the non-iterative algorithm. OCETP
algorithm during each iteration requires 𝐾 operations to cal-
culate EE. Where 𝐾 is the total number of roadside sensors
linked using NOMA with BR installed on RSU. Furthermore,
𝐾 operations are required to update dual variables. If I is
the number of iterations that the OCETP algorithm needs
to converge, then the total complexity of the OCETP algo-
rithm is O(𝐼𝐾2). While in the 2nd Stage, AOBWS employs
a non-iterative algorithm for optimal reflection coefficients,
which requires K operations. After two-stage procedures, the
complexity order of AOBWS becomes O(𝐼𝐾2 + 𝐾). So, the
proposed AOBWS algorithm is always less computationally
complex as compared to the ES algorithm. When the number
of 𝐾 roadside sensors connected through NOMA with each
RSU increases, the complexity of the ES algorithm increases
exponentially while the proposed AOBWS algorithm still pro-
vides an optimal solution in polynomial time. The complexity
analysis of analyzed algorithms is presented in Table III.

IV. SIMULATIONS

This section presents the simulation results to evaluate
the efficacy of the proposed algorithm in terms of energy
efficiency and complexity. For this purpose, the proposed
AOBWS algorithm is compared with the global optimal
ES algorithm (benchmark algorithm). ES algorithm achieves
global optimal solution but at the cost of high computational
complexity and is impractical. It is observed the proposed
AOBWS algorithm achieves very close performance to the
global optimal ES with very low complexity and is there-
fore suitable for practical implementation. During simulations,
roadside sensors are deployed randomly around the CE on
the road and their locations are modeled as binomial point
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Fig. 3. Optimal EE of roadside sensors achieved through proposed OCETP
and AOBWS.

process (BPP) unless otherwise specified. In our simulations,
each subchannel is serving two roadside sensors through
NOMA, which are selected randomly from the generated
sesnors through BPP as shown in Fig. 2. The distance between
far roadside sensor to RSU and near roadside sensor to RSU is
set as 50 meters and 30 meters respectively unless otherwise
specified. Time coefficient for roadside sensor transmission
mode and energy harvesting mode is set to 𝑇𝑡 ,1 = 𝑇𝑡 ,2 = 0.5
and 𝑇ℎ,1 = 𝑇ℎ,2 = 0.5. Other main simulation parameters for
our considered system model are described in Table IV.

Fig. 3 presents the EE of roadside sensors versus the
transmit power of CE in dBm. This figure provides the
comparison of two proposed algorithms, where AOBWS refers
to alternating optimization for backscatter aided wireless pow-
ered sensors, which provide optimal EE by optimizing both
CE transmit power and reflection coefficient of roadside sen-
sor through the proposed alternating optimization framework.
AOBWS optimizes CE transmit power under given reflection
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Fig. 4. Convergence of OCETP algorithm under various relative channel
errors 𝜌.
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Fig. 5. Optimal EE through proposed AOBWS algorithm under various
relative channel errors 𝜌.

coefficient of roadside sensor in the first stage while in the 2nd
stage it optimizes reflection coefficient of roadside sensor un-
der optimal CE transmit power obtained in the 1st stage. While
OCETP refers to the first stage of AOBWS which obtains
optimal CE transmit power under given reflection coefficient
of roadside sensor. From the figure, it can be noticed that our
proposed AOBWS has higher EE after performing its 2 stage
operation as compare to OCETP.

As our proposed alternating optimization framework
(AOBWS) consists of two stages, where the first stage employs
an iterative algorithm for optimal CE transmit power named
OCETP while in 2nd stage it uses a non-iterative algorithm
for optimal reflection coefficient of RS. Therefore, it is vital to
analyze the convergence of the OCETP algorithm. In Fig. 4,
EE convergence of OCETP algorithm versus iterations is
demonstrated with different relative channel errors (𝜌). The
obtained result presents that the OCETP algorithm usually
converges in three iterations regardless of 𝜌. It is observed
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that 𝜌 affects EE, but their influence on the convergence of
the OCETP algorithm is almost negligible.

Fig. 5 depicts optimal EE obtained by the proposed AOBWS
algorithm under different relative channel errors. It can be
observed from the figure that EE as a function of 𝑃𝑐𝑒 first
increases and then decreases with increasing 𝑃𝑐𝑒. It is because
when 𝑃𝑐𝑒 is increased beyond the optimal 𝑃∗

𝑐𝑒, the RS sum-
rate increases very slowly relative to the power consumption.
It can also be examined from the figure that higher relative
channel errors result in higher EE degradation.

Fig. 6 compares the EE of the proposed AOBWS algo-
rithm with the global optimal ES algorithm and OFDMA.
The comparison is done versus relative channel errors while
considering different distances between RS and BSR installed
on RSU. It can be analyzed from the figure that AOBWS
obtains very close EE performance to the ES algorithm with
very low complexity. Moreover, it can be observed that higher
relative channel error has a higher degrading effect on the EE.
From the figure, it can also be noticed that a greater distance
between RSs and BSR installed on RSU results in higher EE
degradation.

In Fig. 7, the EE of the proposed AOBWS algorithm is
compared with the global optimal ES algorithm versus relative
channel errors. This figure presents the effect of distance
between dedicated CE and RS. From the results, It can be
examined that a higher distance between CE and RS will
result in lower EE. Moreover, the proposed AOBWS algorithm
shows very close performance with the ES algorithm, which
presents the efficacy of our proposed algorithm with low
computational complexity.

Fig. 8 shows the EE of RS versus QoS requirement of
RS in term minimum data rate (𝑅𝑚𝑖𝑛) for proposed AOBWS
algorithm. The analysis of this figure is done with 𝑑 𝑓 ,1 = 10,
𝑑 𝑓 ,2 = 5, 𝑑𝑏,1 = 50, and 𝑑𝑏,2 = 30. This figure depicts that
higher relative channel error will result in lower guaranteed
data rate of the network.
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V. CONCLUSION

In this article, we proposed an alternating optimization
framework for backscatter aided wireless powered roadside
sensors to infrastructure communications with imperfect CSI.
By considering various QoS requirements of bistatic backscat-
ter communications for roadside sensors, we aim to maximize
the EE of the network. The EE is maximized under chan-
nel uncertainties by optimizing transmit power of CE and
reflection coefficient of RS, with very low computational com-
plexity for practical implementations. The proposed problem
for the solution is decoupled into two stages, which yields
the proposed AOBWS algorithm. The complexity analysis of
the proposed algorithm is analyzed in detail and is compared
with the global optimal ES algorithm. It is observed that our
proposed algorithm can obtain near-optimal EE performance
with very low complexity. Moreover, numerical results present
the efficacy of our proposed result in terms of computational
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complexity and EE performance. In the future, we want to
extend our work to a multi-cluster of RSs , full-duplex (FD)
RSs, and multi-antenna RSs.

APPENDIX A
CONCAVITY OF 𝑅 WITH RESPECT TO 𝑃𝑐𝑒

Appendix A presents the concavity of 𝑅 with respect to
𝑃𝑐𝑒. The first derivative of 𝑅 w.r.t. 𝑃𝑐𝑒 is given as

𝜕𝑅

𝜕𝑃𝑐𝑒
=
𝐵𝑊𝑇𝑡 ,1Π1𝜎

2
𝑛

ln(2)𝑃𝑐𝑒𝑋
+
𝐵𝑊𝑇𝑡 ,2Π2𝜎

2
𝑛

ln(2)𝑃𝑐𝑒𝑌
. (36)

The second order derivative is given as

𝜕2𝑅

𝜕𝑃𝑐𝑒
2 = − 𝑉

ln(2)𝑃𝑐𝑒2𝑋2
− 𝑊

ln(2)𝑃𝑐𝑒2𝑌2
. (37)

where 𝑉 = 𝐵𝑊𝑇𝑡 ,1Π1 (𝜎2
𝑛) (2

∑2
𝑘=1 𝜎

2
𝑒𝑃𝑐𝑒Γ𝑘 + 𝜎2

𝑛) and
𝑊 = 𝐵𝑊𝑇𝑡 ,2Π2 (𝜎2

𝑛) (2(𝑃𝑐𝑒Γ1 |𝐻̂1 |2 +
∑2
𝑘=1 𝜎

2
𝑒𝑃𝑐𝑒Γ𝑘 ) + 𝜎2

𝑛).
As second order derivative of 𝑅 i.e. 𝜕2𝑅

𝜕𝑃𝑐𝑒
2 < 0, therefore 𝑅 is

concave and is an increasing function of 𝑃𝑐𝑒.

APPENDIX B
DERIVATION OF CLOSED-FORM SOLUTION OF OPTIMAL 𝑃𝑐𝑒

We exploit the KKT conditions such as

𝜕L(Pce, 𝝁, 𝜆, 𝜷)
𝜕𝑃𝑐𝑒

|𝑃𝑐𝑒=𝑃
∗
𝑐𝑒

= 0. (38)

The above equation results in

𝐴

ln(2)𝑃𝑐𝑒
(
𝐵𝑃𝑐𝑒 + 𝜎2

𝑛

) + 𝐶

ln(2)𝑃𝑐𝑒
(
𝐷𝑃𝑐𝑒 + 𝜎2

𝑛

) + 𝐺 = 0,

(39)

where

𝐴 = 𝑇𝑡 ,1𝐵𝑊Π1𝜎
2
𝑛 , (40)

𝐵 =

2∑︁
𝑘=1

𝜎2
𝑒Γ𝑘 , (41)

𝐶 = 𝑇𝑡 ,2𝐵𝑊Π2𝜎
2
𝑛 , (42)

𝐷 = Γ1 |𝐻̂1 |2 +
2∑︁
𝑘=1

𝜎2
𝑒Γ,𝑘 (43)

𝐺 =

2∑︁
𝑘=1

𝜇𝑘𝑄𝑘 +
2∑︁
𝑘=1

𝛽𝑘𝑃
𝐻
𝑘 −

2∑︁
𝑘=1

𝜓

𝜘𝑘
− 𝜆, (44)

𝑄𝑘 = Γ𝑘 |𝐻̂𝑘 |2 −
(
2

𝑅𝑚𝑖𝑛−𝑇𝑡,𝑘Φ𝑘
𝑇𝑡,𝑘Π𝑘

) (𝑘−1∑︁
𝑙=1

Γ𝑙 |𝐻̂𝑙 |2 +
2∑︁
𝑘=1

𝜎2
𝑒Γ𝑘

)
, (45)

and,
𝑃𝐻𝑘 = 𝜉 (1 − Γ𝑘 ) |𝐻̂ 𝑓 ,𝑘 |2𝑇𝑡 ,𝑘 + 𝜉Γ𝑘𝑇ℎ,𝑘 . (46)

After some computations

(ln(2)𝐵𝐷𝐺)𝑃3
𝑐𝑒 + (ln(2)𝐵𝐺𝜎2

𝑛 + ln(2)𝐷𝐺𝜎2
𝑛)𝑃2

𝑐𝑒+
(ln(2)𝐺 (𝜎2

𝑛)2 + 𝐴𝐷 + 𝐶𝐵)𝑃𝑐𝑒 + (𝐴𝜎2
𝑛 + 𝐶𝜎2

𝑛) = 0. (47)

The above equation can be solved through Cardano’s formulae
as follow

𝑃∗
𝑐𝑒 =

3

√︂
𝑞 +

√︃
𝑞2 +

(
𝑟 − 𝑝2)3 +

3

√︂
𝑞 −

√︃
𝑞2 +

(
𝑟 − 𝑝2)3 + 𝑝,

(48)

where,

𝑝 =
−𝑏
3𝑎
, (49)

𝑞 = 𝑝3 + 𝑏𝑐 − 3𝑎𝑑
6𝑎2 , (50)

𝑟 =
𝑐

3𝑎
, (51)

and

𝑎 = ln(2)𝐵𝐷𝐺, (52)

𝑏 = ln(2)𝐵𝐺𝜎2
𝑛 + ln(2)𝐷𝐺𝜎2

𝑛 , (53)

𝑐 = ln(2)𝐺 (𝜎2
𝑛)2 + 𝐴𝐷 + 𝐶𝐵, (54)

𝑑 = 𝐴𝜎2
𝑛 + 𝐶𝜎2

𝑛 . (55)

APPENDIX C
CONCAVITY OF 𝑅 WITH RESPECT TO REFLECTION

COEFFICIENTS OF RSS

In the optimization problem defined in Eq. (32) , we
will present that 𝑅 is concave and is increasing function
of reflection coefficient of RS. A function is concave, if its
Hessian matrix is negative definite. The hessian matrix is
negative definite, if its all eigenvalues are negative. Here we
derive a Hessian matrix of 𝑅 and demonstrate it as negative
definite. The 𝑅 in optimization problem in Eq. (32) can be
written as

𝑅 =𝑇𝑡 ,1𝐵𝑊 (Π1 log2

(
𝑃𝑐𝑒Γ1 |𝐻̂1 |2

𝜎2
𝑒𝑃𝑐𝑒𝜃 + 𝜎2

𝑛

)
+Φ1)+ (56)

𝑇𝑡 ,2𝐵𝑊 (Π2 log2

(
𝑃𝑐𝑒Γ2 |𝐻̂2 |2

𝑃𝑐𝑒Γ1 |𝐻̂1 |2 + 𝜎2
𝑒𝑃𝑐𝑒𝜃 + 𝜎2

𝑛

)
+Φ2).

The Hessian matrix of above function with respect to Γ1 and
Γ2 is defined as

𝐻 =

[
𝜕𝑅

𝜕2Γ1

𝜕𝑅
𝜕Γ1𝜕Γ2

𝜕𝑅
𝜕Γ2𝜕Γ1

𝜕𝑅

𝜕2Γ2

]
, (57)

where

𝜕𝑅

𝜕2Γ1
= Υ1,1

= −
𝑇𝑡 ,1𝐵𝑊Π1

ln(2)Γ2
1

+
𝑇𝑡 ,2𝐵𝑊Π2 (𝑃𝑐𝑒 |𝐻̂1 |2)2

ln(2)
(
𝑃𝑐𝑒Γ1 |𝐻̂1 |2 + (𝜎2

𝑒𝑃𝑐𝑒𝜃 + 𝜎2
𝑛)2

) ,
(58)

𝜕𝑅

𝜕Γ1𝜕Γ2
= Υ1,2 = 0, (59)

𝜕𝑅

𝜕Γ2𝜕Γ1
= Υ2,1 = 0, (60)
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and

𝜕𝑅

𝜕2Γ2
= Υ2,2 = −

𝑇𝑡 ,2𝐵𝑊Π2

ln(2)Γ2
2
. (61)

Now the eigenvalues of Hessian matrix can be calcualted as
follow [

Υ1,1 Υ1,2
Υ2,1 Υ2,2

]
−

[
𝜋 0
0 𝜋

]
. (62)

det
(
Υ1,1 − 𝜋 Υ1,2
Υ2,1 Υ2,2 − 𝜋

)
, (63)

det of above matrix results in,

Υ1,1Υ2,2 − 𝜋Υ1,1 − 𝜋Υ2,2 + 𝜋2 − Υ1,2Υ2,1 = 0. (64)

After writing it in standard form of 𝑀𝑥2 + 𝑁𝑥 +𝑂,

𝜋2 − (Υ1,1 + Υ2,2)𝜋 + (Υ1,1Υ2,2 − Υ1,2Υ2,1) = 0, (65)

where 𝑀=1, 𝑁=Υ1,1 +Υ2,2, 𝑂=Υ1,1Υ2,2 −Υ1,2Υ2,1 Then, The
solution of above problem is as follow

𝜋 =
−𝑁 ±

√
𝑁2 − 4𝑀𝑂
2𝑀

. (66)

As, the two possible eigenvalues computed through above
formulae is always negative for the hessian matrix, therefore
𝑅 is concave.
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