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Abstract—In the past decade, convolutional neural networks
(CNNs) have shown prominence for semantic segmentation.
Although CNN models have very impressive performance, the
ability to capture global representation is still insufficient, which
results in suboptimal results. Recently, Transformer achieved
huge success in NLP tasks, demonstrating its advantages in
modeling long-range dependency. Recently, Transformer has also
attracted tremendous attention from computer vision researchers
who reformulate the image processing tasks as a sequence-to-
sequence prediction but resulted in deteriorating local feature
details. In this work, we propose a lightweight real-time semantic
segmentation network called LETNet. LETNet combines a U-
shaped CNN with Transformer effectively in a capsule embed-
ding style to compensate for respective deficiencies. Meanwhile,
the elaborately designed Lightweight Dilated Bottleneck (LDB)
module and Feature Enhancement (FE) module cultivate a
positive impact on training from scratch simultaneously. Exten-
sive experiments performed on challenging datasets demonstrate
that LETNet achieves superior performances in accuracy and
efficiency balance. Specifically, It only contains 0.95M parameters
and 13.6G FLOPs but yields 72.8% mIoU at 120 FPS on the
Cityscapes test set and 70.5% mIoU at 250 FPS on the CamVid
test dataset using a single RTX 3090 GPU. Source code will be
available at https://github.com/IVIPLab/LETNet.

Index Terms—Real-time semantic segmentation, Convolutional
neural network, Lightweight network, Transformer.

I. INTRODUCTION

The task of semantic segmentation aims to assign a semantic
label to each pixel, which is widely used in augmented reality
devices, autonomous driving, and video surveillance. Since
the Fully Convolutional Network (FCN [1]) was proposed,
existing semantic segmentation models have been using it as
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Fig. 1. Accuracy-Parameters-Speed evaluations on the Cityscapes test dataset.
A larger radius of a circle indicates a faster inference speed.

a prototype for improvement. However, the receptive field of
FCN-based models is limited. Thus, it is impossible to learn
remote dependencies, which is not conducive to the extraction
of global semantic information that is critical to intensive
tasks, especially the semantic segmentation task. To address
this limitation, some recent methods propose the use of large
convolutional kernel [2], dilated convolution [3], and feature
pyramids [4] to expand the sensory field. Another approach is
to integrate Non-local [5] from the natural language processing
(NLP) [6] domains into the FCN structure, which is designed
to model the global interaction of all pixels in the feature map,
but with high memory and high computational costs. On the
other hand, researchers began experimenting with completely
removing convolution and exploring a model that used only
attention modules alone, Transformer [7], which was designed
to model sequence-to-sequence long-range dependencies and
capture relationships anywhere in the sequence.

Unlike previous CNN-based approaches, Transformer [7]
is not only powerful in terms of global context modeling
but also achieves good results on downstream tasks in the
case of large-scale pre-training. In [8], a visual Transformer
(ViT) is proposed to perform image recognition tasks using
a two-dimensional image block with positional embedding
as input. However, the disadvantage of ViT [8] compared to
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CNN is that it must be pre-trained on large data sets. The
image resolution is much larger than words in NLP [6]. Many
computer vision tasks, such as semantic segmentation, require
intensive prediction at the pixel level, which is difficult to
process for Transformers on high-resolution images because
its computational complexity of self-attention is related to the
size of the image at the quadratic level. In addition, when
Transformer is used in the image processing field, the two-
dimensional image is sliced and fed into the model as a one-
dimensional sequence, thus breaking the connection between
local structures and focusing only on the global context at
all stages. As a result, low-resolution features lack detailed
localization information that cannot be effectively recovered
by directly upsampling to full resolution, resulting in rough
segmentation results.

Although Transformer can achieve global information mod-
eling, it cannot extract fine spatial details. On the contrary,
CNN can provide a way to extract low-level visual cues that
compensate well for this fine spatial detail. Therefore, some
methods try to combine CNN with Transformer to handle
semantic segmentation tasks. For example, in the field of
medical image segmentation, TransUNet [9], TransBTS [10],
and TransFuse [11] have achieved satisfactory results. Inspired
by this, we also propose a lightweight real-time semantic
segmentation model, named LETNet, based on the CNN and
Transformer. As depicted in Fig. 1, our LETNet achieves
a good balance between the performance, model size, and
inference speed of the model. The main contribution of this
paper is three folds:

• We propose a Lightweight Dilated Bottleneck (LDB) to
extract important semantic information. LDB consists of
dilated convolution and depth-wise separable convolution,
achieving extreme weight reduction in terms of parame-
ters and computational quantities.

• We propose a hybrid network, LETNet, for semantic
segmentation. LETNet adopts the most concise encoder-
decoder structure and regards the efficient Transformer
as a capsule network to learn global information. Mean-
while, a Feature Enhancement (FM) module is added to
the jump connection to help supplement the boundary
detail information when restoring the resolution.

• LETNet achieved 72.8% mIoU on the cityscapes test
set on the single RTX3090 hardware platform with only
0.95M of parameter quantities and 70.5% of the good
performance on the CamVid dataset. The performance is
better than most existing models.

II. RELATED WORK

A. CNN-based Semantic Segmentation Methods

Owing to the powerful feature representation capabilities of
convolutional neural networks, semantic segmentation meth-
ods have also made great progress [12]. The groundbreaking
article based on CNN was FCN [1], after which many ar-
chitectures have been refined on this basis. To alleviate the
contradiction between image resolution and limited receptive
field, DeepLab [3] and PSPNet [4] employed parallel atrous
convolutions to build an atrous spatial pyramid pooling (ASPP)

module, which introduces good descriptors for various scale
contextual information. Additionally, with the advantages of
modeling feature dependencies, the self-attention mechanism
has attracted the interest of many scholars. For instance,
Based on SENet [13], a local cross-channel interaction strategy
without dimensionality reduction and a method for adaptively
selecting the size of one-dimensional convolution kernels are
proposed in ECANet [14]. In addition, there is an atten-
tion mechanism commonly used in NLP [6] to model long-
distance dependencies. Typical of these is Non-local neural
networks [5], which uses the similarity of two points to weight
the features of each position. DANet [15] used ResNet [16]
as the backbone network, followed by an attention module
composed of spatial dimension and channel dimension in
parallel for capturing long-range deep features dependencies
to improve the segmentation result. CCNet [17] was improved
to calculate the association between the pixel and all the pixels
in the row and column, which economizes the computational
burden. LRNNet [18] proposed an effective simplified Non-
local module that uses regional singular vectors to generate
more simplified and representative features to model remote
dependency and global feature selection.

Although these types of methods achieve good results, they
do not change the fact that non-local is essentially a pixel-wise
matrix algorithm, which still makes the computer face a huge
computational challenge. So the lightweight network came
into being. For example, ICNet [19] used multi-scale images
as input where high-level semantic information and low-level
spatial details are utilized. BiseNet [20] and BiseNet-v2 [21]
proposed two-path architecture, one branch is responsible for
extracting deep semantic information, and the other high-
resolution shallow branch is responsible for providing detailed
information supplement. DFANet [22] utilized a feature reuse
policy, which enhanced the interaction and aggregation of
features at different levels. Furthermore, point-wise attention
is used at the end of each stage to enhance the feature
expression ability while ensuring that the computation is small.
ESPNet [23] and ESPNet-v2 [24] reduced the number of
parameters and computation by integrating decomposed con-
volution into point-wise convolution and dilation convolution.
In addition, NRD [25] used dynamic convolutional neural
networks to extract feature information from images. However,
CNN-based methods always have a problem that cannot be
completely solved, and that is the limitation exhibited by
modeling long-range relationships. While existing methods
only resort to building a deep encoder and downsampling
operations, the negative effects are redundant parameters and
the loss of more local details.

B. Transformer-based Semantic Segmentation Methods

Transformer was first proposed in [7] and has achieved
great success in natural language processing. Unlike CNN,
Transformer is not only powerful in terms of global context
modeling but also achieves good results on downstream tasks
in the case of large-scale pre-training. For example, ViT [8]
proposed to perform image recognition tasks with 2D image
patches with position embeddings as input. DETR [26] and
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Fig. 2. The proposed Lightweight Real-time Semantic Segmentation Network with Efficient Transformer and CNN (LETNet).

the deformable version utilized Transformers Encoder-decoder
to fuse context in the detection head. SETR [27] solved
semantic segmentation from the perspective of sequence to
sequence. It abandoned CNN and is a structure completely
based on Transformer. Meanwhile, SegFormer [28] proposed a
hierarchical encoder structure, output multi-scale features, and
fuse them in the decoder. After that, some deformed structures
were proposed for medical image segmentation [9]–[11], [29].

Although the above methods have achieved good results,
since the computational complexity of the Transformer is
proportional to the square of the image size, it will increase a
lot of computational burdens. In addition, when using Trans-
former in the image domain, the input patches are regarded as
a one-dimensional sequence input to the model, which destroys
the connection between local structures and only focuses on
the global context modeling at the stage. The lack of detailed
localization information leads to coarse segmentation results.
On the other hand, the CNN architecture provides a path
to extract low-level vision cues that can compensate well
for such fine spatial details. Therefore, we aim to explore
a method combining CNN with Transformer to handle the
segmentation task and use an efficient Transformer to reduce
memory consumption.

III. PROPOSED METHOD

A. Network Architecture

As shown in Fig. 2, LETNet comprises an Encoder, an
Decoder, an Efficient Transformer, and three long skip con-
nections. Specifically, the Encoder and Decoder are CNN
structures used to extract local features for better image
representation. The transformer can reflect complex spatial
transformation and long-distance feature dependencies by self-
attention and multi-layer perceptron (MLP) structure to obtain
global feature representation. The three long-distance connec-
tions are inspired by UNet [30], which combines low-level
spatial information with high-level semantic information for
high-quality segmentation.

B. Lightweight Dilated Bottleneck (LDB)

As shown in Fig. 3, the structure of LDB adopted the idea
of ResNet [16] on the whole, and the module is designed as a

Fig. 3. The proposed Lightweight Dilated Bottleneck (LDB). Among them,
D represents depth-wise convolution, R is the kernel of dilated convolution,
CA means Channel Attention, and CS denotes the channel shuffle operation.

residual module to collect more feature information while the
number of network layers is as small as possible. Specifically,
at the bottleneck, the number of channels of the input feature is
reduced to half by 1×1 convolution. After reducing the number
of channels, the amount of parameters and calculations is
greatly reduced. Although this will lose a part of the accuracy,
it will be more beneficial to stack two modules more than make
up for the loss at this point. At the same time, due to the use
of 1 × 1 convolution, the network depth must be deepened
to obtain a larger receptive field. Therefore, after the 1 × 1
convolution, the decomposed convolutions of 3×1 and 1×3 are
added to expand the feeling to capture a wider range of con-
textual information. Moreover, decomposed convolution is also
based on considering the number of parameters and the amount
of calculation. Similarly, in the next two-branch structure, both
branches also use decompose convolution, one of which is
responsible for local and short-distance feature information,
and the other uses atrous convolution, which is responsible
for extracting feature information from a larger receptive field
under different atrous rates. Next to these two branches are
channel attentions, inspired by ECANet [14], which aims to
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build an attention matrix in the channel dimension to enhance
feature expression and suppress noise interference because,
for CNN, most of the feature information is contained in the
channel. Then, the two low-dimensional branches and middle
features are fused and input to a 1× 1 point-wise convolution
below to restore the number of channels of the feature map
to be the same as the number of channels of the input feature
map. Finally, the strategy of channel shuffle is used to avoid
the drawbacks of information independence and no correlation
between channels caused by depth-wise convolution and to
promote the exchange of semantic information between dif-
ferent channels. The complete operation is shown as follows:

F1 = f1×3 (f3×1 (f1×1 (x))) , (1)

F21 = fCA (f1×3,D (f3×1,D (F1))) , (2)

F22 = fCA (f1×3,D,R (f3×1,D,R (F1))) , (3)

y = fCS (f1×1 (F1 + F21 + F22) + x) , (4)

where x represents the input feature maps, y represents the
output feature map, and fk×k(·) are convolution operation.

C. Efficient Transformer (ET)

As we mentioned before, despite its advantages in local
feature extraction, the ability of CNN to capture global rep-
resentations is still insufficient, which is important for many
high-level computer vision tasks. To deal with this problem,
we introduce Transformer to learn long-range dependencies.
However, in image processing tasks, since the input image res-
olution is much larger than the words in the natural language
processing field. We introduce the Efficient Transformer (ET),
which is inspired by ETSR [31]. Different from the traditional
Transformer, ET occupies fewer computing resources. Mean-
while, to avoid excessive memory usage and computational
load, we abandon the series connection of multiple ETs in
ETSR [31] and only use one ET as a capsule network, which
is placed in the middle of the entire network. As we all
know, Transformer consists of two layer normalizations, one
Multi-Head Attention (MHA), and one Multi-Layer Perception
(MLP). The biggest difference between ET and the original
Transformer is that MHA. After the layer normalization, ET
sets up a reduction layer to halve the number of channels,
which reduces part of the computation. Then, a linear layer
projects the feature map into three matrices, Q (query), K
(key), and V (value). Specifically, in EMHA, Q, K, and V
are first split into s segments, and then a scaled dot product
attention of Qi, Ki, and Vi is executed correspondingly. After
that, we concatenate the obtained O1.....Os to get the whole
output O, In fact, it relies on the idea of group convolution,
splitting large matrices into small matrices and then calculating
and finally merging, so as to achieve the purpose of reducing
the amount of calculation. Finally, the expansion layer is
employed to restore the number of channels. The architecture
of EMHA is shown in Fig. 4 (a) and the Scaled Dot-Product
Attention (SDPA) operation can be defined as:

Oi = softmax

(
QiK

T
i√
d

)
Vi, (5)

Fig. 4. Schematic diagram of the (a) Efficient Multi-Head Attention (EMHA)
and (b) Feature Enhancement (FE) module. Please zoom in for details.

where Q, K, and V represent query, key, and value metrices,
d is the embedding dimension. Afterward, all the outputs
(O1, O2, ..., Os) of SDPA are concatenated together to gen-
erate the whole output feature O.

D. Feature Enhancement (FE)

In the neural network, the lower layer has high resolution
and accurate spatial information (the resolution corresponds
to the spatial position) but has little semantic information. In
contrast, the high layer has low resolution and lacks spatial
position information but rich semantic information. Therefore,
in the segmentation task, to make the high-level information
also have enough spatial information, the low-level spatial
information, and high-level semantic information are usually
combined to perform high-quality segmentation. Therefore,
we use the UNet-style structure to fuse the high-level and
low-level feature maps of the same resolution. At the same
time, in the process of three long connections, we propose
a Feature Enhancement (FE) module to improve the ability
of feature expression. As shown in the fig. 4 (b), feature
dependency modeling is carried out from two dimensions, one
is the channel dimension, the other is the spatial dimension,
and the two dimensions are transformed at the same time and
finally fused to transmit the low-level information to the high-
level more effectively. The operation can be defined as:

MC = X ∗ σ
(
fC1×1

(
γ
(
f

C
r
1×1 (fAP (X))

)))
, (6)

MS = X ∗σ (B (f3×3 (Concat [fAP (X) , fMP (X)]))) , (7)

Y = f1×1 (MC) + f1×1 (MS) +X, (8)

where X is the input feature, MC represents the output of
channel dimension, MS represents the output of spatial dimen-
sion, σ denotes the sigmoid function, γ means ReLU function,
B represents Batch Normalization, C is the channel of the
feature map, r means reduction, fAP (·) and fMP (·) denote
the average pooling and max pooling operations, respectively.
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Fig. 5. Schematic diagram of the pixel attention mechanism. Among them,
S means the Sigmoid function.

E. Pixel Attention (PA)

The pixel attention (PA) mechanism learns weights based
on the importance of features at different pixel positions.
This means that each channel has the same weight but the
weights are different at different pixel positions for the same
channel. The pixel attention pays more attention to the edges
and textures of objects in the image, so adding PA can facilitate
the recovery of edge detail information, thereby improving the
performance of segmentation. The operation is shown in Fig. 5
and the formula is as follows:

y = σ (f1×1 (X)) ∗X, (9)

where X is the input feature, σ denotes the sigmoid function,
and f1×1(·) is the convolutional layer with kernel size of 1.

IV. EXPERIMENTS

A. Datasets

Cityscapes: The resolution of images in this dataset is
2048×1024, collected from German and French urban road
scenes in 50 different cities, including pedestrians, roads,
vehicles, etc. It has 19 categories for the evaluation of semantic
segmentation. Among them, 5000 finely annotated images
are further divided into 2075, 500, and 1525 for training,
validation, and testing, respectively.

Camvid: It contains 701 urban road images of 960×720,
which have 11 categories, and the finely annotated images are
divided into 367, 101, and 233 for training, validation, and
testing, respectively.

B. Model Settings

In this work, we use the PyTorch framework to build the
model and train it on an RTX3090 GPU. In Table I, we show
the detail of the model settings of LETNet on the Cityscapes
and CamVid datasets. Meanwhile, the learning rate varies with
iterations and can be calculated as follows:

lr = lrinitial ×
(
1− iteration

max iteration

)0.9

, (10)

where lrinitial represents the initial learning rate. It is worth
noting that we train Cityscapes and CamVid separately with
different parameter settings since the resolution of the datasets
is different.

TABLE I
THE DETAIL OF THE MODEL SETTINGS.

Dataset Cityscapes CamVid

Batch size 6 8

Loss function CrossEntropy Loss

Optimization method SGD(momentum 0.9) Adam(momentum 0.9)

Weight decay 1× 10−4 2× 10−4

Initial learning rate 4.5× 10−2 1× 10−3

Learning rate policy Poly

Fig. 6. The architecture of the baseline model.

C. Ablation Study

As depicted in Table II, some ablation experiments on the
proposed modules are designed to prove the validity of these
modules. A. Long Connection, B. Feature Enhancement,
C. Efficient Transformer. Meanwhile, the baseline model is
shown in Fig.6. It is worth noting that the baseline model does
not introduce any proposed modules. The architecture of the
baseline model is composed of an Encoder-Decoder composed
of LDBs, which achieves 69.85% mIoU on the validation set.

In group A, it is the effect of gradually adding L1, L2, L3,
and it can be seen that after adding L1, there is a significant
performance improvement of 0.58%, proving that shallow
information is greatly beneficial to the resolution of deep
semantic information recovery. Meanwhile, when adding three
long skip connections to the model, the performance increased
by 1.16% mIoU. This further verifies the importance of long
connections for image segmentation.

In Group B, it is the effect of gradually adding L1, L2,
and L3 to the network after joining Feature Enhancement.
Comparing B1 and A1, it can be seen that adding FE only
adds 101K parameters and 0.0032G FLOPs, but it can improve
the performance of the model by 0.2% mIoU, which is quite
impressive.

In Group C, after introducing the Efficient Transformer, the
model’s performance has improved by 3.07% mIoU, and the
introduction of the pixel attention mechanism has also brought
0.5% benefits to the model. Finally, C3* is the final version
of the proposed LETNet, which improves the performance of
the baseline model by 5.15% mIoU.

All the above experiments fully demonstrate the necessity
and effectiveness of the proposed modules and strategies.

D. Comparisons with Advanced Models

In this part, we compared recent years of representative
semantic segmentation methods on the Cityscapes and CamVid
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TABLE II
ABLATION STUDY FOR THE PROPOSED MODULES ON CITYSCAPES. L1, L2, L3: LINE1, LINE2, LINE3, FE: FEATURE ENHANCEMENT, ∗ REPRESENTS

THE FINAL VERSION, AND THE DIFFERENCE MEANS THE GAP IN PERFORMANCE BETWEEN THE MODEL AND BASELINE IN EACH GROUP.

Method Parameter (K)↓ FLOPs (G)↓ mIoU (%)↑ Difference

A: Long Connection

Baseline 723,400 13.068300560 69.85 -
A1: Baseline+L1 731,128 13.319958800 70.43 +0.58
A2: Baseline+L1+L2 758,856 13.546451216 70.79 +0.94
A3: Baseline+L1+L2+L3 761,976 13.552742672 71.01 +1.16

B: Feature Enhancement

Baseline 723,400 13.068300560 69.85 -
B1: Baseline+L1(FE) 731,229 13.323170112 70.63 +0.78
B2: Baseline+L1(FE)+L2(FE) 759,058 13.550465392 71.14 +1.29
B3: Baseline+L1(FE)+L2(FE)+L3(FE) 762,279 13.556957648 71.46 +1.61

C: Efficient Transformer

Baseline 723,400 13.068300560 69.85 -
C1: Baseline+ET 911,824 13.068487760 72.92 +3.07
C2: Baseline+ET+L1(FE)+L2(FE)+L3(FE) 950,703 13.557144848 74.53 +4.68
C3*: Baseline+ET+L1(FE)+L2(FE)+L3(FE)+PA 950,975 13.590699280 75.00 +5.15

TABLE III
COMPARISONS WITH THE STATE-OF-ARTS METHODS ON THE CITYSCAPES DATASET.

Methods Year Resolution Backbone Parameter (M)↓ FLOPs (G)↓ Speed (FPS)↑ mIoU (%)↑

L
ar

ge
Si

ze

DeepLab [3] 2015 512×1024 ResNet-101 262.10 457.8 0.25 63.5
DeepLab-v3+ [32] 2018 - Xception 15.40 555.4 8.40 75.2
DenseASPP [33] 2018 512×512 DenseNet 35.70 632.9 - 80.6
PSPNet [4] 2017 713×713 ResNet-101 250.80 412.2 0.78 81.2
DANet [15] 2019 1024×1024 ResNet-101 66.60 1298.8 4.00 81.5
CCNet [17] 2019 1024×1024 ResNet-101 66.50 1153.9 4.70 81.9
SETR-PUP [27] 2021 768×768 ViT-Large 318.30 - 0.50 82.2
SegFormer [28] 2021 1024×2048 MiT-B5 84.70 1447.6 2.50 84.0
Lawin Transformer [34] 2022 1024×1024 Swin-L - 1797 - 84.4

M
ed

iu
m

Si
ze

SegNet [35] 2017 640×360 VGG-16 29.50 286.0 17 57.0
SQNet [36] 2016 1024×2048 SqueezeNet - 270.0 17 59.8
BiseNet-v1 [20] 2018 768×1536 Xception 5.80 14.8 106 68.4
ICNet [19] 2018 1024×2048 PSPNet-50 26.50 28.3 30 69.5
DFANet [22] 2019 1024×1024 Xception 7.80 3.4 100 71.3
STDC1-50 [37] 2021 512×1024 - 8.40 - 87 71.9
FPANet [38] 2022 512×1024 - 14.10 - - 72.0
HSB-Net [39] 2021 512×1024 ResNet-34 12.10 - 124 73.1
LBN-AA [40] 2021 448×896 No 6.20 49.5 51 73.6

Sm
al

l
Si

ze

ENet [41] 2016 512×1024 No 0.36 3.8 135 58.3
ESPNet [23] 2018 512×1024 ESPNet 0.36 - 113 60.3
CGNet [42] 2020 360×640 No 0.50 6.0 - 64.8
NDNet [43] 2021 1024×2048 No 0.50 14.0 40 65.3
ESPNet-v2 [24] 2019 512×1024 ESPNet-v2 - 2.7 80 66.2
ADSCNet [44] 2020 512×1024 No - - 77 67.5
ERFNet [45] 2017 512×1024 No 2.10 - 42 68.0
CFPNet [46] 2021 1045×2048 No 0.55 - 30 70.1
FPENet [47] 2019 512×1024 No 0.40 12.8 55 70.1
LEDNet [48] 2019 512×1024 No 0.94 - 40 70.6
SGCPNet [49] 2022 1024×2048 No 0.61 4.5 103 70.9
FBSNet [50] 2022 512×1024 No 0.62 9.7 90 70.9
EdgeNet [51] 2021 512×1024 No - - 31 71.0
MSCFNet [12] 2022 512×1024 No 1.15 17.1 50 71.9
BiseNet-v2 [21] 2021 512×1024 Xception 3.40 21.2 156 72.6
MGSeg [52] 2021 1024×1024 ShuffleNet-v2 4.50 16.2 101 72.7

LETNet (ours) - 512×1024 No 0.95 13.6 150 72.8
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TABLE IV
PER-CLASS IOU (%) RESULTS ON THE CITYSCAPES TEST SET. “AVG” REPRESENTS THE AVERAGE RESULTS OF ALL THESE CATEGORIES. OBVIOUSLY,

OUR FBSNET ACHIEVES THE BEST MIOU RESULTS.

Methods Avg Bic Bus Bui Car Fen Mot Pol Per Rid Roa Sid Sky Tru Tra TLi Ter TSi Veg Wal

SegNet [35] 57.0 51.9 43.1 84.0 89.3 29.0 35.8 35.1 62.8 42.8 96.4 73.2 91.8 38.1 44.1 39.8 63.8 45.1 87.0 28.4
ENet [41] 58.3 55.4 50.5 75.0 90.6 33.2 38.8 43.4 65.5 38.4 96.3 74.2 90.6 36.9 48.1 34.1 61.4 44.0 88.6 32.2
ESPNet [23] 60.3 57.2 52.5 76.2 92.3 36.1 41.8 45.0 67.0 40.9 97.0 77.5 92.6 38.1 50.1 35.6 63.2 46.3 90.8 35.0
ESPNet-v2 [24] 66.2 59.9 65.9 88.8 91.8 42.1 44.2 49.3 72.9 53.1 97.3 78.6 93.3 53.0 53.2 52.6 66.8 60.0 90.5 43.5
ICNet [19] 69.5 70.5 72.7 89.7 92.6 48.9 53.6 61.5 74.6 56.1 97.1 79.2 93.5 51.3 51.3 60.4 68.3 63.4 91.5 43.2
LEDNet [48] 70.6 71.6 64.0 91.6 90.9 49.9 44.4 62.8 76.2 53.7 98.1 79.5 94.9 64.4 52.7 61.3 61.2 72.8 92.6 47.7
FBSNet [50] 70.9 70.1 56.0 91.5 93.9 53.5 56.2 62.5 82.5 63.8 98.0 83.2 94.4 50.5 37.6 67.6 70.5 71.5 92.7 50.9
EdgeNet [51] 71.0 67.7 60.9 91.6 94.3 50.6 55.3 62.6 80.4 61.1 98.1 83.1 94.9 50.0 52.5 67.2 69.7 71.4 92.4 45.4
MSCFNet [12] 71.9 70.2 66.1 91.0 94.1 52.5 57.6 61.2 82.7 62.7 97.7 82.8 94.3 50.9 51.9 67.1 70.2 71.4 92.3 49.0

LETNe (ours) 72.8 69.3 72.4 91.6 94.4 53.7 56.1 61.0 82.3 61.7 98.2 83.6 94.9 55.0 57.0 66.7 70.5 70.5 92.5 50.9

TABLE V
COMPARISONS WITH THE STATE-OF-ART METHODS ON THE CAMVID DATASET

Method Year Resolution Backbone Parameter (M)↓ Speed (FPS)↑ mIoU (%)↑

ENet [41] 2016 360×480 No 0.36 61 51.3
SegNet [35] 2017 360×480 VGG-16 29.50 29 55.6
NDNet [43] 2021 360×480 - 0.50 - 57.2
DFANet [22] 2019 720×960 Xception 7.80 120 64.7
BiseNet-v1 [20] 2018 720×960 Xception 5.80 116 65.6
DABNet [53] 2019 360×480 No 0.76 - 66.4
FDDWNet [54] 2020 360×480 No 0.80 79 66.9
ICNet [19] 2018 720×960 PSPNet-50 26.50 28 67.1
LBN-AA [40] 2021 720×960 No 6.20 39 68.0
BiseNet-v2 [21] 2020 720×960 ResNet 49.00 - 68.7
FBSNet [50] 2022 360×480 No 0.62 120 68.9
SGCPNet [49] 2022 720×960 No 0.61 278 69.0
MSCFNet [12] 2021 360×480 No 1.15 - 69.3

LETNet (ours) 2022 360×480 No 0.95 200 70.5

datasets to demonstrate that our method strikes a better balance
between segmentation accuracy and segmentation efficiency.

Evaluation on Cityscapes: In Table III, we broadly divided
the existing excellent methods into three categories: Large
Size, Medium Size, and Small Size. Classification is based
on parameters and calculations as the standard, the amount of
parameters below 5M belongs to the Small Size category, and
the calculation amount greater than 300G belongs to the Large
Size category. It can be observed that the large-size models
have obviously achieved outstanding segmentation effects, but
their calculation complexity is high, the operation speed is
slow, and they are not suitable for intelligent terminal hardware
with high real-time requirements.

In the medium size, the performance of HSBNet [39] and
LBN-AA [40] are slightly better than our LETNet. However,
we should notice that the parameters of LBN-AA [40] and
HSBNet [39] are 6 times and 12 times larger than that of
LETNet, respectively.

In the small size category, our LETNet achieves the best
results with fewer amount of parameters. This fully demon-
strates that our LETNet can achieve a good balance between
model size and performance. Indeed, BiseNet-v2 [21] is an

outstanding model, which achieves similar mIoU results with
slightly faster speed. However, we should not ignore that the
number of parameters of LETNet is only 1/4 of BiseNet-
v2. Meanwhile, Bisenet-v2 uses Xception as the backbone,
which results in extra computational costs. In addition, we
also list some of the methods detailed for each intersection
classification over the union in Table IV. Obviously, our
LETNet achieves the best results in almost every class.

Evaluation on CamVid: In Table V, we provide a compar-
ison of LETNet with other advanced methods on the CamVid
dataset. According to the table, we can see that our LETNet
still achieves the best result with only 0.95M parameters.
This further verifies the effectiveness and excellence of the
proposed LETNet.

Visual Comparison: In Figs. 7 and 8, we also show the
visual comparison of these methods on the Cityscapes and
CamVid datasets, respectively. Obviously, our LEFTNet can
get more accurate segmentation results. This is due to the
well-design structure, and the ability of the Transformer can
capture global correlation information, which helps to improve
the accuracy of segmentation.
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Fig. 7. Visual comparisons on the Cityscapes dataset. From top to bottom are original input images, ground truths, and segmentation results from our LETNet,
LEDNet [48], ERFNet [45], ESPNet [23], and ENet [41].

Fig. 8. Visual comparisons on the CamVid dataset. From left to right are original input images, ground truths, and segmentation results from our LETNet,
FBSNet [50], ICNet [19], DABNet [53], BiseNet-v1 [20], DFANet [22], SegNet [35], and ENet [41].

V. CONCLUSION

In this paper, we proposed a Lightweight Real-time Seman-
tic Segmentation Network with Transformer and CNN. We
combine the local feature extraction capabilities of CNNs with
the long-range dependency modeling capabilities of Trans-
formers. Specifically, an efficient Transformer is introduced
in the middle of the model as a capsule network. Unlike the
traditional Transformer, a more lightweight MHA is used,
which can significantly reduce GPU memory consumption.
Meanwhile, the Lightweight Dilated Bottleneck (LDB) module
designed in CNN can learn more features under the premise of

ensuring extreme simplicity and lightweight. Simultaneously,
to make up for the shallow detail information lost by CNN in
extracting deep semantic information, a U-shaped connection
is used in the model. In connecting different levels, a Feature
Enhancement (FM) module is also designed to improve the
effective feature expression and suppress noise. Extensive
experiment results show that our model makes an excellent
balance between model size and performance.
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