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Abstract—Achieving network resilience in terms of attack
tolerance and service availability is critically important for
Internet of Vehicles (IoV) networks where vehicles require
assistance in sensitive and safety-critical applications like driving.
It is particularly challenging in time-varying conditions of IoV
traffic. In this paper, we study an attack-resilient optimal service
placement problem to ensure disruption-free service availability
to the users in edge-enabled IoV network. Our work aims to
improve the user experience while minimizing the delay and
simultaneously considering efficient utilization of limited edge
resources. First, an optimal service placement is performed
while considering traffic dynamicity and meeting the service
requirements with the use of a deep reinforcement learning
(DRL) framework. Next, an optimal secondary mapping and
service recovery placements are performed to account for the
attacks/failures at the edge. The use of DRL framework helps to
adapt to dynamically varying IoV traffic and service demands.
In this work, we develop three ILP models and use them in
the DRL based framework to provide attack-resilient service
placement and ensure service availability with efficient network
performance. Extensive numerical experiments are performed to
demonstrate the effectiveness of the proposed approach.

Index Terms—Internet of vehicles, resilience, service place-
ment, service availability, attack, failure, edge network.

I. INTRODUCTION

Whether it’s freeing humans from tedious driving tasks
or minimizing the risk of catastrophes by eliminating the
possibilities of human errors, the Internet of Vehicles (IoV)
integrates a series of network services to help vehicles conduct
necessary tasks related to driving and vehicle automation.
IoV being a mission-critical application is categorized under
5G ultra-reliable and low latency communications (URLLC)
technology [1]. This makes low latency and high reliability
a key requirement for IoV services. The vehicles need to be
connected in real-time with each other and the infrastructure
to get assistance in different computation tasks. The use of
cloud computing poses a significant challenge as it may not
be suitable to process real-time traffic conditions of strict
latency and reliability requirements. Edge network (EN) is a
potential technology that can assure faster service availability
by bringing computing resources closer to the end-users.
Therefore, the ENs are anticipated to promise great benefits
in building an intelligent Internet of Vehicles (IoV) network
[2], [3].

EN is a network architecture that brings computing re-
sources to the edge of the cellular network with one or
more edge nodes or servers [2], [4]. The high versatility
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of locations and closer positions of edge nodes eliminates
long-distance communications. The data that need to be sent
between the user and infrastructure can be transmitted faster
with low latency. EN also offers the benefit of distributed
local processing, caching, and improved security. Despite these
advantages, EN is in its early stage of development where sev-
eral problems need to be addressed. One of the common and
important problems is security against different attack types.
In this work, we focus on optimal and attack-resilient service
placement at EN for disruption-free or minimal-disruption
service availability to the vehicles for sensitive applications
like driving.

Resilience is the capability to maintain a good quality of
service in the system in the event of attacks or failures. The
problem of providing resilience in ENs is new and not explored
much for the application of service placement in an IoV
network. Using backup resource (BR) reservation methods are
common and widely used in the recent literature to handle
service failures [5]–[10]. However, the BR reservation based
solutions are resource expensive and result in wastage where
resources remain idle until failure occurs. In the application
of service placement, the over-provisioning of resources due
the backup service instances limits the choice of optimal
placement for primary instances and results in longer delays
observed by vehicles. Thus, an important research question
is how to provide services resilient to attacks on an edge
node (server) with minimal number of active edge servers and
resources while satisfying service requirements and low or no
disruption in the event of a failure.

In this paper, we consider an IoV network where different
types of services are offered to the vehicles to help them
coordinate in remote driving, road safety, and many other
applications. We start with the service placement to find the
optimal placement of services at the edge servers while con-
sidering the vehicle’s mobility and dynamics in the requests.
More than one service instances are placed at different edge
servers for the purpose of meeting service requirements and
also resilience. During the normal operation, a vehicle receives
its service from a server based on primary vehicle-to-edge
(V2E) mapping and upon the service failure, it needs to get
service from an attack-free server chosen a-priori as secondary
V2E mapping. While this pro-active secondary mapping en-
sures low or no service disruption, it might overload the attack-
free working servers. Therefore, as the last stage, our design
framework chooses a recovery (reactive) solution to find new
server(s) for the failed service instances.

Such an attack-resilient service placement framework of
multiple objectives needs to satisfy multiple design criteria
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such as low delay, low service disruption, and high resource
efficiency considering the dynamic nature of service demands.
Our proposed approach aims to achieve high level of system
performance from the perspective of users as well as service
providers for service placement with resilience against service
failure at an edge server. We develop three different ILP-based
formulations to solve the attack-resilient service placement
problem and make the following contributions in this paper.

• First, we perform optimal placement of multiple instances
of each service type on edge nodes while guaranteeing
minimal service delay and minimal edge resource usage.
The effects of dynamic traffic volumes on service place-
ment (SP) are addressed using the deep reinforcement
learning (DRL) framework with an ILP model of our
earlier work in [11]. This presents the primary V2E
mapping for vehicles to avail different services.

• Second, we develop an ILP model, to determine proactive
secondary V2E mapping (PSVM) to provide low service
delay. We note that we do not reserve any resources but
only select a secondary server to be used in the event
of an attack. Thus, we do not need additional backup
resources during the normal operation. Upon an attack,
an affected vehicle will switch to the secondary server
with no or little service disruption.

• Third, we develop an ILP model to address the recovery
problem to perform service recovery placement (SRP) for
the affected service instances hosted at the edge node
under attack. The failed instances are re-instantiated at the
unaffected edge servers. The affected vehicles will then
switch to these new service instances. This is because,
while the PSVM enables an affected vehicle to receive
services with minimal disruption, the servers may be
congested as no additional resources were reserved during
the normal operation.

• Finally, our performance evaluation results present useful
insights on service delay, edge resource usage, number of
active servers, and run time by our proposed framework
against the baseline method based on backup resource
(BR) reservation.

The rest of the paper is organized as follows. Section II
presents the related works. Section III provides the details on
the system model, service model, and problem description.
In Section IV, we develop formulations for three ILP models
to solve the problem of resilient service placement. In Section
V, we present the architecture and algorithms for the proposed
attack-resilient service placement framework. Section VI per-
forms the performance study, and finally, Section VII makes
concluding remarks.

II. RELATED WORK

The diversified service requirements of vehicular applica-
tions ranging from time-sensitive remote driving to resource-
intensive autonomous driving video processing, foster the in-
clusion of EN with IoV architecture. The EN which processes
data closer and the first step between the user and core of the
network is also a target for attacks. In the literature, there are
several survey works presented recently on the security and

privacy issues of network edge computing [4], [12], [13]. The
ENs are comprised of various distributed entities like wireless
networks, storage networks, visualization system programs,
and so on. The above survey works discuss the possible attacks
on different components of the EN. Different kinds of attacks
and their impacts are discussed where the attacks like denial-
of-service (DoS) attacks, jamming attacks, and forgery attacks
may fail edge nodes or perform system damage. There also
exist several works which use edge capabilities to provide
defense against attacks over IoT devices or cloud networks
[14], [15]. However, the failure of edge node due to an attack
has not much been studied in the literature.

He et al. in a recent work in [16] use a game-theoretic
approach to formulate a decentralized algorithm and find
the Nash equilibrium as a solution to the edge node attack
problem. The idea is to find allocation decisions in a way
that mitigation cost is minimum and the edge server does not
exceed its processing capacity. The mitigation cost here is in
terms of the number of hops. This work does not deal with the
mobile traffic of an IoV network and does not optimize the
performance parameters which are crucial for IoVs. The data
used in this work is generated following Poisson distribution
which is not realistic. Singh et al. in [17] detects DoS attacks
on EN using a Bayesian classifier to decide whether the new
packet is from a legitimate user or not. This work focuses on
detection only and doesn’t provide a solution for prevention or
attack recovery. Another work in [18] deals with the problem
of edge server failure as an integer programming problem. This
work proposes an optimal strategy for migration of end-users
to nearby edge servers and to maintain service delivery. This
work is only delay focused and doesn’t consider to recover
the failed system resources. The dynamics in traffic volumes
are also not considered in this work.

Different from the above works, we study the problem
of attack-resilient service placement in edge-enabled IoV
networks. The problem of resilient service placement in IoV
is new and not widely explored. Some recent works study the
problem of resilient service placement for different applica-
tions. Using redundancy and advance reservation of backup
resources is the most common and well-known resiliency
method used to handle node failures [5]–[9]. The redundant
backups have their drawbacks including resource wastage,
higher cost, and higher delays. The authors in different recent
works [7], [10] propose the techniques to cut down or reduce
the backup edge resources. Despite this, the drawbacks of
redundancy or backup are inevitable.

Kang et al. [19] propose a mixed integer programming
model to perform resilient resource allocation in service
function chains by selecting suitable replicas from the pools
of replicas and deciding the deployment locations of these
replicas. This work considers the problem of node failures
where virtual network functions (VNFs) running on the node
also fail but the node has a copy of data and status information
through which replicas would be generated and replaced. Their
objective is to minimize the recovery time. This work is VNF-
focused and doesn’t study the edge network scenarios. Another
work on resilient VNF placement is presented in [20]. This
work considers the use of cloud resources along with edge
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while proposing their solution. However, the use of cloud may
not be an optimal choice for delay-sensitive IoV applications.

Cheng et al. [21] consider edge nodes only and present
a resilient service placement under uncertainty. This work
proposes an ILP model with the objective of cost-optimal
placement. The cost is in dollars which the user pays based
on per-hour resource usage. The authors of this work study
one service per edge node scenario and do not consider the
mobile traffic which makes it unsuitable for IoV applications.
The performance evaluation is performed on simulated data
where link delays are also generated randomly. Yuben et al.
propose a resilient service provisioning for edge computing
in [22] to maximize the expected overall utility. This work
studies the problem of uncertain failures but doesn’t consider
the mobile traffic. The traffic is static with a fixed number of
users considered from a fixed wireless router as an input for
performance evaluation.

There are few works on resilient controller placement pre-
sented in the literature [23]–[25]. But the resilience techniques
proposed in these works are not suitable for ENs where
resources are limited and also not applicable over mobile
traffic of IoV networks. The objective of our work is to propose
a resilient edge service placement solution for dynamic and
time-varying IoV networks. Note that the dynamicity of the
IoV network includes not only the traffic demand, but also
the vehicles’ geographic locations. Such a dynamicity has an
impact on the real-time performance of edge service placement
decisions and service availability.

III. SYSTEM MODEL AND PROBLEM DESCRIPTION

In this section, we describe the system model, service
model, and research problem as the problem description stud-
ied in our work.

A. System Model

Fig. 1: The architecture of edge-enabled IoV network

The architecture of an edge-enabled IoV network is pre-
sented in Fig. 1 which is comprised of three layers, namely,
data, edge, and cloud. At the data layer, we consider a city
road environment with taxis (vehicles) travelling in multiple
lanes in different directions in the city San Francisco [26].
The vehicles are mobile and equipped with necessary sensors
which enable them to provide relevant information. Vehicles
can connect with the edge layer as "V2E mapping" to avail
different types of services to get assistance in different tasks
related to driving. The service model is further explained in
detail in Section III-B.

For the edge layer, we consider a 5G edge network com-
prised of edge nodes using evolved NodeB (eNB) stations and
forming a multi-cell coverage area for mobile vehicles. Each
edge node is equipped with edge servers having limited storage
and computation capacity to run different applications and
services. For the simplicity purpose, we consider an abstract
measure of resources for storage, computation, and memory,
for each edge node. We assume each edge node 𝑒 𝜖 𝐸 has
𝐶𝑒 resource units in total. The attacks are assumed to take
place at the edge layer. The attack scenario is discussed
in Section III-C. Additionally, the edge layer connects to
the large capacity cloud layer via a backbone network to
download different service types and perform service-to-edge
(S2E) instantiation. We assume adequate links between V2E,
E2E (edge-to-edge) nodes/servers, and E2C (edge-to-cloud)
are available to enable communication among them.

B. Service Model

The traffic monitoring and management systems in IoV
networks require vehicles to request different types of services
to carry out driving tasks and get assistance in emergencies.
In this paper, we assume vehicles generate service requests
with a certain rate for a type of service. A service is a
facility like CAM (cooperative awareness message) service,
diagnostic service, environmental notification service, media
downloading/sharing service, remote driving service, etc. Each
service has a stringent delay requirement 𝐷𝑠 and consumes
computation and storage resources. For the simplicity purpose,
we consider an abstract measure of resources and we assume
service type 𝑠 𝜖 𝑆 requires 𝑅𝑠 resource units to instantiate.
The service to be deployed on edge nodes comprises multiple
service types where each type has multiple service instances
(SIs) to meet the requirements and effective provisioning of a
service.

Let 𝑆 be the set of service types and 𝐼𝑠 be the number
of instances required for service type 𝑠 to enhance the user
experience for that service. A vehicle 𝑣 𝜖 𝑉 requires a service
𝑠 𝜖 𝑆 which is to be hosted at an edge node. The number of
vehicles requesting service 𝑠 is uniformly distributed and the
arrival rate on edge at time interval 𝑡 is denoted as 𝜆𝑠 (𝑡). Each
instance is assumed to have the same processing capacity i.e.
the number of vehicles one SI can handle (or provide parallel
connections) at a time without queuing delay is denoted by
C. Further, a service request is specified as a 4-tuple structure
< 𝑣 , 𝑙 , 𝑡 , 𝑠 >. Here, 𝑡 is the time at which the request is
generated and 𝑙 is the location of the vehicle 𝑣 requesting for
service type 𝑠. In response to the request, the location of the
best edge node/server will be communicated to the vehicles to
access the requested services.

C. Problem Description

In this paper, we consider an attack problem that causes an
edge node to fail where its computing and communicating
capabilities fail. The attack failure scenario causes all SIs
running on that node to fail. This failure is either due to a
jamming attack, outage attack, denial of service attack, or any
other type of attack that causes edge node capabilities to fail
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completely [4]. To endure service provisioning without being
permanently failed during an attack, the service placement
should fulfil the attack-resilient conditions in addition to other
performance metrics. Using redundancy or BR reservation
method is a well-known method in the recent literature to
handle service failures, as discussed in Section II. Maintaining
backup has its drawbacks including resource wastage and high
service delays which are discussed and compared in detail
in the performance study section. In addition, in a vehicular
application where traffic is time-varying, the service placement
operation has a great impact on the performance of the service
requests. Note that the time-varying property of IoV networks
is not only related to the dynamic traffic demands, but also the
vehicles’ geographic locations. Considering these limitations,
we propose an attack-resilient service placement framework
using ILP formulations with DRL to meet the resilience and
address the delay performance and resource limitations of
edge-enabled time-varying IoV network.

IV. PROBLEM FORMULATION

In this section, we formulate the resilient service placement
problem using binary ILP. This problem has three parts and
accordingly three problems which are explained below.

The first part deals with the optimal service placement
problem. The objective is to decide on optimal edge locations
to instantiate service instances of different requested service
types, subject to resilience, delay and resource constraints. The
service requests are generated from vehicles in the specific
format described in the previous section, requesting different
service types to get assistance in driving tasks. Upon process-
ing a service request, the the details of the chosen edge server
hosting that service instance is communicated to the vehicles.
The optimal service placement is stated as follows,

Problem 1 (Service Placement (SP)): Given a set of service
types 𝑠 and 𝐼𝑠 number of service instances for each service
type with their resource and delay requirements, the problem
is to find the optimal placement 𝑥𝑠𝑒 of services at the edge
servers while considering the vehicle’s mobility and dynamics
in the requests for different types of services.

In the second ILP model, we consider the problem of finding
two optimal secondary candidate servers (i.e 𝜅1 and 𝜅2) for
V2E mapping following the SP locations decided in problem
1. The discovery of optimal secondary mappings is subject to
the lowest delay experienced by vehicles while accessing that
service. The idea is to use the secondary mappings when an
attack takes place on the node where vehicles are primarily
mapped and ensure the continuous service availability for
the vehicles. This part of our design aims to minimize the
impact of the attack until the system recovers. The decision
on secondary candidates in a proactive manner is indeed
important consideration to avoid the service disruption that
may impact the service availability specially when the service
type requested is related to driving and sensitive to delay. We
note that while we select the secondary candidates a-priori, we
do not reserve any resource. A vehicle will be switched to the
first candidate if its service instance (during normal operation)
was not placed at the first candidate; otherwise it will be

switched to the second candidate. The proactive selection
ensures immediate switching of a vehicle to a new server
upon service failure. Since the resources are not reserved, the
service load on the secondary candidate servers could increase
and hence our objective is to minimize the delay. Note that
the priority of candidate 𝜅1 is greater than 𝜅2 considering the
delay from 𝜅1 is less than 𝜅2. Our second problem of optimal
proactive secondary V2E mapping is stated as follows,

Problem 2 (Proactive Secondary V2E Mapping (PSVM)):
Given a set of optimal service placement 𝑥𝑠𝑒 to deploy 𝐼𝑠
instances of each service type 𝑠 with their resource and delay
requirements, the problem is to find the two best secondary
mappings, i.e. 𝑦𝑠𝑒,𝜅1 and 𝑦𝑠𝑒,𝜅2 , minimizing the delay, and ensure
continuous service availability for the set of vehicles V ′

impacted by the attack.
In the third and last optimization problem, we perform the

recovery/re-instantiation of attacked SIs. We carry out the re-
instantiation of attacked SIs to the working edge nodes. Let
𝑘 be the number of instances that failed due to an attack on
the edge node. In this part, we will perform the k-resilient
SIs re-instantiation subject to minimal edge resource usage.
The idea of minimizing the edge resource usage instead of
delay/latency is important here. The resource and computation
capabilities of edge servers are limited and expensive. It is
important to utilize them efficiently considering one edge is
down due to an attack. Note that this approach is reactive and
does not consume resources until the attack takes place. Our
third problem of optimal re-instantiation of attacked services
is stated as follows,

Problem 3 (Service Recovery Placement (SRP)): Given a
service placement 𝑥𝑠𝑒 and a failed server, the problem is to find
optimal recovery placement locations 𝑧𝑠𝑒 of SIs of each service
type 𝑠 with their resource and delay requirements such that
the 𝑧𝑠𝑒 ≠ 𝑥𝑠𝑒 and the objective is to minimize the edge resource
usage.

We will develop the binary ILP-based formulation for solv-
ing SP, PSVM, and SRP problems in the following sections.

A. Service Placement (SP)

We formulate the SP problem as an ILP model that enables
us to find the optimal choice of edge servers to place the
service instances. We use a single objective function to mini-
mize the maximum edge resource usage and service delay, and
control the relative importance of resource usage vs. service
delay by using a parameter 𝛼. Most of the vehicular services
are latency-sensitive applications and related to driving tasks
that make delay as an important objective function for the
SP. Thus, minimizing the maximum delay will help to satisfy
adequate delay requirements and make service availability
faster for the vehicles. The rationale for using resource usage
is to efficiently utilize the limited edge resources and have
enough room for service demand scale-up as the service
demands are dynamic in nature.

The solution to our SP problem is represented by a binary
variable 𝑥𝑠𝑒. If edge node 𝑒 hosts service 𝑠 then 𝑥𝑠𝑒 is 1.
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Otherwise, it is 0. Now, the objective function is formulated
as:

𝑚𝑖𝑛𝑚𝑎𝑥
𝑥

(
𝛼

∑︁
𝑒∈𝐸

𝜑𝑒 + (1 − 𝛼)
∑︁
𝑒∈𝐸

∑︁
𝑠∈𝑆

𝑑𝑠𝑒

)
𝑥𝑠𝑒 (1)

Here, 𝜑𝑒 is the edge resource usage and 𝑑𝑠𝑒 is the average
service delay observed by vehicles while requesting for service
𝑠 from edge node 𝑒.

Definition 1 (Edge Resource Usage): We define the edge
resource usage as the ratio between the resources that instances
of different services will consume and the total available
resources at the edge node. We formulate it as:

𝜑𝑒 =

∑
𝑠 𝑅𝑠

𝐶𝑒

,∀𝑒 ∈ 𝐸,∀𝑠 ∈ 𝑆, (2)

Here, 𝐶𝑒 is the total resource units available at the edge node
𝑒 and 𝑅𝑠 is the resource units required to deploy the instance
of service type 𝑠.

Definition 2 (Service Delay): In our model, the service delay
𝑑𝑠𝑒 is the delay observed by vehicles while accessing service
𝑠 from edge node 𝑒, and consists of two components, i.e.
propagation delay and queuing delay. As the resources are
adequate to handle the service request load, the queuing delay
is negligible in normal working condition.

Finally, with the objective in (1), the placement of service
is subjective to multiple constraints.

∑︁
𝑒∈𝐸

𝑥𝑠𝑒 = 𝐼𝑠 , ∀𝑠 ∈ 𝑆 (3)∑︁
𝑠∈𝑆

𝑥𝑠𝑒𝑑
𝑠
𝑒 ≤ 𝐷𝑠 , ∀𝑒 ∈ 𝐸 (4)∑︁

𝑒∈𝐸
𝑥𝑠𝑒𝑅𝑠 ≤ 𝐶𝑒, ∀𝑠 ∈ 𝑆 (5)

𝑥𝑠𝑒 ∈ {0, 1}; ∀𝑠 ∈ 𝑆,∀𝑒 ∈ 𝐸 (6)

Constraint (3) guarantees that from the total required 𝐼𝑠
instances, each instance of service type 𝑠 must be placed
on a different edge server node to ensure redundancy and
availability of a service from multiple edge servers. This
constraint is important in our design as it helps to increase
failure tolerance by facilitating service availability of service
type 𝑠 from multiple edge nodes, and eventually, this will
help us in our resilient service placement framework. The
calculation of 𝐼𝑠 is based on C and given by:

𝐼𝑠 =

⌈
𝜆𝑠

C

⌉
;∀𝑠 ∈ 𝑆 (7)

Constraint (4) ensures that the service delay experienced by
vehicles requesting service 𝑠 should be less than the maximum
delay threshold of that service 𝐷𝑠 . Constraint (5) ensures that
the available resources at the edge node are not exhausted
while deploying instances of different service types. Finally,
condition (6) defines the decision variable 𝑥𝑠𝑒 as a binary
integer decision variable.

B. Proactive Secondary V2E Mapping (PSVM)

In this section, we develop an ILP-based proactive optimiza-
tion formulation to map the affected vehicles to the attack-free
working edge nodes upon an attack on a server which hosts
the services for the vehicles. In the IoV applications, where
vehicles maintain real-time connections with edge nodes to
get assistance in driving, failure in service availability can
be hazardous. Therefore, this part of our work focuses on
ensuring resilience in service provisioning to the affected
vehicles by mapping them to attack-free edge nodes, until the
recovery takes place. The mapping of vehicles to different
SIs on the attack-free edge nodes is subject to minimal delay.
The choice of secondary SIs is critical here since the loads
from the affected SIs may congest the secondary SIs resulting
in creation of queues and causing the vehicles to experience
higher delays. We denote the delay during secondary mapping
phase as 𝜓𝑠

𝑒, which is the delay experienced by vehicles while
accessing service 𝑠 from edge node 𝑒, and calculated as:

𝜓𝑠
𝑒 = 𝑑𝑝𝑟𝑜𝑝 + 𝑑𝑞𝑢𝑒𝑢𝑒 (8)

To compute the queuing delay 𝑑𝑞𝑢𝑒𝑢𝑒 during secondary map-
ping, we model the edge computation system as an M/D/1
queue, where arrival occurs with 𝜆𝑠 (𝑡) according to Markov
stochastic model and the service processing rate is determin-
istic (serving at rate C), as discussed in Section III-B. We
assume that there is no waiting queue if,

𝜆𝑠 + 𝜆𝑖 ≤ C (9)

Here, 𝜆𝑠 is the pre-attack traffic availing service from a given
SI, and 𝜆𝑖 is the attack-affected traffic for the same service
type, where 𝑖 ∈ 𝜁𝑎 and 𝜁𝑎 is the set of SIs under attack. The
total must be less than its processing capacity C for queuing
delay to be zero. Otherwise, a queue will be created and the
average waiting time for service 𝑠 over the edge node will be
calculated as [27]:

𝑑𝑞𝑢𝑒𝑢𝑒 =
𝜆𝑠

2C(C − 𝜆𝑠)
(10)

Here, 𝜆𝑠 represents the number of vehicles in the queue, and
calculated as (𝜆𝑠 + 𝜆𝑖) − C. Finally, the service delay during
secondary mapping is calculated as,

𝜓𝑠
𝑒 =

1
|𝑉 |

∑︁
𝑣∈𝑉

𝑑𝑖𝑠𝑡 (𝑣, 𝑠)
𝑐

+ 𝜆𝑠

2C(C − 𝜆𝑠)
(11)

Here, 𝑑𝑖𝑠𝑡 (𝑣, 𝑠) is the euclidean distance between vehicle
𝑣 and the node where service 𝑠 is deployed, and 𝑐 is the
propagation speed of the signal through the communication
medium.

Minimizing the service delay during recovery phase is the
objective of our PSVM problem and is formulated as:

𝑚𝑖𝑛
𝑌

𝜓𝑠
𝑒𝑌 (12)

The solution to our objective function is 𝑌 , and it is defined
by two binary variables as,

𝑌 =

(
𝑦𝑠𝑒,𝜅1
𝑦𝑠𝑒,𝜅2

)
(13)
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Here, 𝑦𝑠𝑒,𝜅1 is the candidate-1 server location and 𝑦𝑠𝑒,𝜅2 is
the candidate-2 server location for secondary V2E mappings.
This is a proactive approach that selects 𝜅1 and 𝜅2 secondary
mappings in advance to avoid or minimize additional delays
and service disruptions. The decision variable 𝑦𝑠𝑒,𝜅1 and 𝑦𝑠𝑒,𝜅2
is set to 1 to indicate the mapping of attack-affected vehicles.
The following constraints must be ensured to perform optimal
V2E mappings.

𝑦𝑠𝑒,𝜅1 + 𝑦𝑠𝑒,𝜅2 ≤ 1; ∀𝑒 ∈ 𝐸,∀𝑠 ∈ 𝑆 (14)

𝑦𝑠𝑒,𝜅1 ≤ 𝑥𝑠𝑒; ∀𝑒 ∈ 𝐸,∀𝑠 ∈ 𝑆 (15)

𝑦𝑠𝑒,𝜅2 ≤ 𝑥𝑠𝑒; ∀𝑒 ∈ 𝐸,∀𝑠 ∈ 𝑆 (16)

𝑦𝑠𝑒,𝜅1𝜓
𝑠
𝑒 ≤ 𝑦𝑠𝑒,𝜅2𝜓

𝑠
𝑒; ∀𝑒 ∈ 𝐸,∀𝑠 ∈ 𝑆 (17)∑︁

𝑒∈𝐸
𝑦𝑠𝑒,𝜅1 = 1, ∀𝑠 ∈ 𝑆 (18)∑︁

𝑒∈𝐸
𝑦𝑠𝑒,𝜅2 = 1, ∀𝑠 ∈ 𝑆 (19)∑︁

𝑠∈𝑆
𝑦𝑠𝑒,𝜅1 ≥ 1, ∀𝑒 ∈ 𝐸 (20)∑︁

𝑠∈𝑆
𝑦𝑠𝑒,𝜅2 ≥ 1, ∀𝑒 ∈ 𝐸 (21)∑︁

𝑠∈𝑆
𝑌𝜓𝑠

𝑒 ≤ 𝐷𝑠 , ∀𝑒 ∈ 𝐸 (22)

𝑦𝑠𝑒,𝜅1 , 𝑦
𝑠
𝑒,𝜅2 ∈ {0, 1}, ∀𝑠 ∈ 𝑆,∀𝑒 ∈ 𝐸 (23)

Constraint (14) ensures the V2E mappings for two secondary
candidates cannot be done to the SIs deployed at the same edge
node. Constraint (15) and (16) ensure that V2E mappings for
secondary candidates can only be made to SIs placed on an
edge node in the SP problem. Constraint (17) guarantees that
the delay observed over secondary candidate 𝜅1 is less than the
secondary candidate 𝜅2. Constraint (18) and (19) assures that
only one SI is selected for each candidate of the secondary
mapping. Constraint (20) and (21) guarantee an edge server
can host a secondary SI or a set of secondary SIs for candidate
𝜅1 and 𝜅2 of different service types. Constraint (22) ensures
that the delay experienced by attack-affected vehicles request-
ing service 𝑠 should be less than the allowable delay threshold
𝐷𝑠 . Finally, constraint (23) defines the decision variables as
binary variables.

C. Service Recovery Placement (SRP)

In this section, we formulate the ILP model of optimal
service recovery placement for re-instantiation of SIs under
attack. The recovery placement of SIs aims to minimize the
average edge resource usage assuming that one edge node is
down due to an attack. The rationale for using edge resource
usage as an objective is important for efficient utilization
of limited edge resources and decreasing the possibility of
switching-on new edge servers. The inefficient distribution
and resource usage will also limit the ability of the EN in
satisfying increasing future demands. Hence, the objective of

our proposed SRP framework is to minimize the post-attack
total edge resource usage, and formulated as,

𝑚𝑖𝑛𝑒∈𝐸
𝑧

∑︁
𝑠∈𝑆

(
𝛿𝑠

𝐶𝑒

)
𝑧𝑠𝑒 (24)

Here, 𝛿𝑠 is the resource demand for service recovery and 𝐶𝑒

is the residual capacity of edge resources after primary service
placements. The solution to SRP is defined by a binary variable
𝑧𝑠𝑒. If service 𝑠 is placed at edge node 𝑒, 𝑧𝑠𝑒 is 1. Otherwise, it is
0. The recovery placement is subject to following constraints.

𝑥𝑠𝑒 ≤ 1 − 𝑧𝑠𝑒, ∀𝑒 ∈ 𝐸 ∀𝑠 ∈ 𝑆 (25)∑︁
𝑒∈𝐸

𝑧𝑠𝑒 = 𝐼𝑠 , ∀𝑠 ∈ 𝑆 (26)∑︁
𝑠∈𝑆

𝑧𝑠𝑒𝑑
𝑠
𝑒 ≤ 𝐷𝑠 , ∀𝑒 ∈ 𝐸 (27)∑︁

𝑒∈𝐸
𝑧𝑠𝑒 (𝛿𝑠 + 𝑅𝑠) ≤ 𝐶𝑒, ∀𝑠 ∈ 𝑆 (28)

𝑧𝑠𝑒 ∈ {0, 1}; ∀𝑠 ∈ 𝑆,∀𝑒 ∈ 𝐸 (29)

Constraint (25) is a resilient placement constraint that guar-
antees that SRP instance locations must be different from SP
locations of Problem 1. Constraint (26) specifies that each
instance of service type 𝑠 must have a recovery placement lo-
cation and be deployed onto a different edge node. Constraint
(27) is on the fulfilment of the delay threshold requirement.
Constraint (28) guarantees that the resource capacity of edge
nodes is not exceeded. Finally, condition (29) defines 𝑧𝑠𝑒 as a
binary decision variable.

V. RESILIENT SERVICE PLACEMENT FRAMEWORK:
ARCHITECTURE AND ALGORITHM

In the previous section, we develop three optimal ILP
models for SP, PSVM and SRP. We elaborate our idea to solve
these formulated problems in this section and describe our
proposed resilient service placement framework. We depict
the architecture of our proposed resilient service placement
framework in Fig. 2.

Fig. 2: The architecture of proposed resilient service placement
framework

The key concept of our service placement framework is
based on the DRL framework. A static deployment that fixes
servers for hosting services is not effective for IoV considering
the mobile nature of vehicles and dynamics in the requests
for different types of services. It is therefore imperative that
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the real-time environment be taken into consideration while
mapping a service to an edge server. Therefore, we exploit
the actor-critic DRL model with ILP formulations to solve the
resilient service placement framework.

An actor is a primary function which generates action by
using the policy function. Whereas the critic estimates a value
function, we call as quality-value (i.e. 𝑄𝑣𝑎𝑙𝑢𝑒), needed to
maintain good performance in the network by dynamically re-
optimizing the actor policy formulations. The 𝑄𝑣𝑎𝑙𝑢𝑒 changes
between 0 to 1, a small value implies poor performance
necessitating re-optimization. An actor needs to select actions
with the maximum quality value, i.e 𝔞 = arg max 𝑄𝑣𝑎𝑙𝑢𝑒.
Here, 𝔞 denotes the action. The design of the critic model
is similar to that in our work [11]. In our proposed design,
the critic network is a neural network which collects feedback
and the request for which feedback was generated from the
environment, as shown in Fig. 2. From the user perspective,
our objective is to minimize the service delay observed from
vehicles in accessing service 𝑠 from the associated edge server
𝑒. Therefore, the feedback function is modeled as:

F = E
[
𝑑𝑠𝑒 (𝑡)

]
(30)

The feedback is a response, an agent receives by the environ-
ment for the corresponding action. The critic network updates
its parameters 𝜃 to minimize the mean square loss function
L𝑄 based on the feedback and it’s corresponding request
parameters. The loss function is computed as:

L𝑄 (𝜃) = 1
N

N∑︁
𝑖=1

[
(𝑦𝑡𝑖 −𝑄𝑣𝑎𝑙𝑢𝑒 (𝔞; 𝜃))2] (31)

Here, 𝑦𝑡 is a target value which is calculated as:

𝑦𝑡 =

{
𝜎(𝐷𝑠 , F ) F < 𝐷𝑠

0 else
(32)

Where 𝜎(𝐷𝑠 , F ) is the standard deviation between delay
threshold and feedback. The higher the deviation, the better
the model is in terms of delay.

In our actor design, we want to ensure resilience by using
three ILP formulations, i.e. SP, PSVM, and SRP. Here, SP
is the solution for the placement of services in the normal
working state (i.e. attack-free state). One of the important
constraints for the SP solution is the redundancy (Eq (3))
where we limit the deployment to no more than one instance
of each service type on the same edge node. This is to ensure
the availability of the same type of service from multiple edge
nodes. Along with SP, we also solve PSVM in the attack-free
state. The PSVM is the proactive approach and determines
an effective secondary V2E mapping for vehicles to be used
when the network is under attack. It plays a major role in our
algorithm and helps avoid service disconnection or breakage
and minimizes the average performance loss for the sensitive
service types, such as driving.

Upon an attack, our framework promptly activates PSVM
secondary mappings to maintain service availability to the
attack-affected vehicles and minimize the impact of the attack
until recovery takes place. In the meantime, we start to solve
the SRP to find the best possible service instance recovery

placements for the given state of the environment. Once
the SRP is solved, it is activated to enhance the network
performance in terms of delay and the network will become
resilient to the attack with a negligible loss in the network
performance, which we verify in detail in Section VI. The SRP
decision will remain in force until the attacked edge is restored
and be ready again to participate in the service placement.

Algorithm 1: Resilient Service Placement
Input: service profile, edge profile, critic NN-model

1 for t=1,2,3,.... do
2 Observe the service request as 4-tuple input
3 Calculate 𝐼𝑠 for all 𝑠 ∈ 𝑆 using (7)
4 if t==1 then
5 Solve SP using (1) for an initial solution 𝑥𝑠𝑒
6 Solve PSVM using (12) for an initial solution

𝑦𝑠𝑒,𝜅1 and 𝑦𝑠𝑒,𝜅2

7 Set Decision = 𝑥𝑠𝑒

8 else
9 Find new 𝑥𝑠𝑒 from 𝐴𝑐𝑡𝑜𝑟 (𝑟𝑒𝑞𝑢𝑒𝑠𝑡, 𝑄𝑣𝑎𝑙𝑢𝑒)

10 Obtain feedback at Critic
11 Calculate 𝑄𝑣𝑎𝑙𝑢𝑒 from NN-model
12 Observe 𝑄𝑣𝑎𝑙𝑢𝑒 at 𝐴𝑐𝑡𝑜𝑟 (𝑟𝑒𝑞𝑢𝑒𝑠𝑡, 𝑄𝑣𝑎𝑙𝑢𝑒)

Output: Decision on service location

Algorithm 2: 𝐴𝑐𝑡𝑜𝑟 (𝑟𝑒𝑞𝑢𝑒𝑠𝑡, 𝑄𝑣𝑎𝑙𝑢𝑒)
Input: request and 𝑄𝑣𝑎𝑙𝑢𝑒

1 Observe the service request as 4-tuple input
2 if 𝑄𝑣𝑎𝑙𝑢𝑒=Good then
3 Find 𝑥𝑠𝑒 from last saved SP solution
4 Set decision = 𝑥𝑠𝑒

5 if 𝑄𝑣𝑎𝑙𝑢𝑒=Poor then
6 if Attack=FALSE then
7 Solve SP using (1) for 𝑥𝑠𝑒
8 Solve PSVM using (12) for 𝑦𝑠𝑒,𝜅1 and 𝑦𝑠𝑒,𝜅2
9 Decision = 𝑥𝑠𝑒

10 if Attack=TRUE then
11 Find edge-node under attack as N𝑎

12 Find set of SIs under attack as 𝜁𝑎
13 Find set of vehicles influenced by attack as V ′

14 Set Decision = 𝑦𝑠𝑒 for V ′

15 Solve SRP using (24) for 𝑧𝑠𝑒
16 Find recovery placements as 𝑧𝑠𝑒 (𝜁𝑎) from 𝑧𝑠𝑒 for

𝜁𝑎
17 Set 𝑥𝑠𝑒 (N𝑎) = 𝑛𝑢𝑙𝑙

18 Update Decision = 𝑥𝑠𝑒 ⊕ 𝑧𝑠𝑒 (𝜁𝑎)

Return: Decision on service location

Our proposed attack-resilient service placement framework
is solved iteratively to take into account of the dynamic
nature of the IoV network and described in Algorithm 1 and
Algorithm 2. Algorithm 1 serves as a general resilient service
placement framework and works recursively from steps 1-12.
First, it initializes the service profile, edge profile, and the
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critic neural network (NN) model. Then, it starts with the data
collection and SI calculation in step 2 and 3, respectively. The
data collection is the request for set of services 𝑆 by vehicles
𝑉 following the service model discussed in Section III-B. Step
4-7 indicate that in the beginning at time 𝑡 = 1 where SP and
PSVM are solved for initial decisions. The service placements
from SP are sent back to the environment as 𝑥𝑠𝑒. For the
later iterations, step 9 calculates a new solution for 𝑥𝑠𝑒 using
Algorithm 2.

The decision is communicated back to the environment
with the purpose that vehicles start getting services from the
edge servers where their desired service type is deployed. At
each time unit 𝑡, the vehicles generate feedback and send it
to the critic model in step 10. The feedback indicates the
performance of an environment in terms of the delay observed
by the vehicles. In step 11, the critic NN model uses feedback
as an input feature to generate the Q-value. This value is sent
to the actor model for further evaluation and to find a new
placement decision.

Algorithm 2 computes the resilience-based actor policy to
find new optimal placements for services. Step 1 indicates the
reception of input (service request) at time unit 𝑡. Steps 2-
4 indicates good-quality system performance where vehicles
continue to receive service from the same edge nodes. On
the contrary, if the system performance quality is poor, the
network will check for an attack or no-attack scenario in steps
5-17. The type of attack we study here is discussed in Section
III-C where the edge node fails because of any type of outage
attack which results in the blackout of the edge node. Step
6-9 indicate the no-attack case, but due to poor 𝑄𝑣𝑎𝑙𝑢𝑒, the
SP and PSVM are re-optimized to find new placements and
secondary V2E mappings.

Step 10-17 indicate the failure of an edge node and the state
where network is under attack. Step 11 finds out the node
under attack as N𝑎. Steps 12-13 find out the set of service
instances under attack as 𝜁𝑎 and the set of vehicles affected
by the attack as V ′. In step 14, the secondary V2E mappings
solved from PSVM are communicated to V ′ to minimize the
impact of the attack until recovery takes place. Steps 15-16
solve the SRP to find the recovery placements for 𝜁𝑎. Step 17
excludes node N𝑎 from the placement decision. Finally, the
decision is updated in step 18 by including instance recovery
placements into it.

VI. PERFORMANCE STUDY

In this section, we present the performance study of our
optimization models and proposed framework. We first start
with a summary of experimental settings and then evaluate
our framework for several primary performance metrics. We
also provide insights into the effectiveness of different IoV
environments with varying vehicle densities and compare it
against an existing baseline solution of BR reservation.

A. Experimental settings

The IoV environment and vehicle trajectories used in our
evaluation for generating service requests are from real-world
vehicle mobility dataset, provided by crawdad [26]. In this set

of the environment, the data is generated from a maximum
of 500 taxis travelling the city of San Francisco. From the
big city given, we extract an area of 15x15 𝑘𝑚2 for use in
our experiments. In addition to the San Francisco dataset, we
evaluate our model with two other real-world datasets provided
for the city of Rome [28] and Beijing [29], [30]. This is to
validate the effectiveness of our models for varying traffic
volumes and dynamics in the vehicle localities in different city
environments. We extract the same size of the area (i.e. 15x15
𝑘𝑚2) from each dataset for fair comparison in the experiments.
The vehicle trajectories are generated from a maximum of
194 taxis and 500 taxis in the city of Rome and Beijing,
respectively. The choice of the above datasets is significant, as
all are urban environments with different traffic densities and
varying the number of active taxis at a given time slot.

(a) San Francisco (b) Beijing (c) Rome

Fig. 3: Vehicle trajectories for different city environments

The implementation of our proposed ILP formulations and
DRL framework is carried out using MATLAB software. We
consider an edge system with 9 areas shown in Fig. 3, and
each area has an edge node 𝑒 ∈ 𝐸 with an abstract measure
of resources as 𝐶𝑒 = 100 units. The system has ability to
provide 8 different types of services where placement of single
instance of service type 𝑠 requires 𝑅𝑠 = {10, 12, 14, ...24} re-
source unit, and has delay threshold requirements of 𝐷𝑠 (𝑚𝑠) =
{50, 60, 70, ..., 120}. Each instance has a processing capacity
of C = 30. For the SP problem, we use 𝛼 = 0.5 to give a fair
importance to both resource usage and delay. The placement
of the total number of SIs (i.e. 𝐼𝑠) varies with time 𝑡 and
depends on the arrival rate 𝜆𝑠 (𝑡), and calculated using (7).

For the critic neural network design, we conduct a compre-
hensive experimental study to find the best hyperparameters.
We use a fully-connected feed-forward network with 4 hidden
layers, each with 512, 256, 64, and 32 neurons, respectively.
We use a hyperbolic tangent sigmoid for the activation of
hidden layers, and the output layer is a single neuron that
expresses the 𝑄𝑣𝑎𝑙𝑢𝑒 with the linear transfer function for the
activation. To avoid overfitting, the learning rate of 0.01 is used
to train the network. The maximum number of episodes to
train a network is 1500 with each episode having a maximum
of 20 iterations and a batch size of 100. The parameters of
the critic network are updated every 5 time slots. All the
experiments are evaluated on a system with Intel Corei5 2GHz
and 8GB RAM.

B. Results

In this section, we plot and discuss results for two different
network states, i.e. pre-attack and post-attack. When only the
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SP model is active during an attack-free state, we call it as Pre-
Attack SP (PrA-SP). On the contrary, the PSVM is operative
when the network is under-attack, and SRP assists with
improving network performance by recovering the failed SIs.
In this regard, we formally indicate the network performance
when the PSVM and SRP is active as Post-Attack PSVM
(PoA-PSVM) and Post-Attack SRP (PoA-SRP).

1) Performance of Proposed Framework: In this section,
we verify the effectiveness of our proposed attack-resilient
framework using different performance metrics.

First, we use the delay/latency metric and plot service delay
experienced by vehicles for availing different services before
and after an attack. Fig. 4 shows the service delay for different
states of the network when different models are operational. It
can be observed in Fig. 4a that service delay is lowest for SP
during the pre-attack state. Once the network is under attack
and upon the failure of an edge node, our framework quickly
activates the PSVM mapping to avoid any service disruption
and maintain resilience. However, the delay observed by the
vehicles during the PoA-PSVM state is higher due to the
addition of affected vehicles to the attack-free edge nodes,
which can increase the load beyond their capacity and add
to queuing delay which will eventually increase the service
delay. The PSVM mapping is temporary, and once the recovery
placement is complete in PoA-SRP, the service availability
is again faster in our framework with shorter service delay
observed by vehicles.

(a) (b)

Fig. 4: Delay Performance

To further analyze the delay performance, Fig. 4b illustrates
the average delay for all services for different time units. It can
be seen that average delay is not always high when the PoA-
PSVM is active. This is from the fact that the SIs which are
failed at the node under attack are observing different traffic
volumes at different time units. The busy times may result
in higher queuing delays compared to less busy times and
eventually, the delay during PSVM mapping tends to vary with
time. We can notice that the average delay during T=300 and
T=500 is lower and nearly the same as of SRP.

Fig. 5 plots the edge resource usage as the percentage of
the ratio between the resources consumed by SIs and the
available resources at the edge node. We illustrate the spread
of service resources for PrA-SP and PoA-SRP against different
nodes under attack at different time units. The red coloured
bar on PrA-SP highlights the node under attack. In our
framework, the choice of the node under attack is random and
demonstrates the case of the heavily-loaded node under attack
(at Time=100, 200, 400, and 600), the moderately-loaded

node under attack (at Time=300), and finally, the lightly-
loaded node under attack (at Time=500). With the objective
of minimizing edge resource usage, our proposed algorithm
exhibits good performance for all the cases in both pre-attack
and post-attack scenarios. The low delay service requirement
is satisfied while maintaining less spread of services among
different edge nodes. Note that most of the time our proposed
solution tries to place and fit SIs into the available active edge
nodes instead of powering-on a new edge node. The lesser the
spread is, the lesser will be the maintenance cost associated
with its functioning. This can be attributed to the fact that
for facilitating the same number of requests with fewer edge
nodes will lead to lesser energy expenditure and less wastage
of resources.

Fig. 5: Edge resource usage

Further, in Table I, we compare the number of edge nodes
that are active to facilitate vehicles at different time units
for PrA-SP and PoA-SRP scenarios. We observe that on an
average our SP model makes 52% of edge nodes available to
the vehicles whereas SRP makes 56% of edge nodes available
throughout the network. This validates that our proposed
resilient framework performs close to the attack-free scenario
in the event of an attack on a node. Use of fewer servers
implies lower cost associated with the servers and better
chance to satisfy future demands.

TABLE I: Number of active edge nodes

T=100 T=200 T=300 T=400 T=500 T=600

PrA-SP 5 4 4 5 5 5

PoA-SRP 5 5 4 5 5 6

2) Comparison with the Baseline Algorithm: As a baseline
for comparison, we use the backup resource (BR) reservation
method to assess the performance of our proposed framework.
The BR method is a well-known approach in the recent
literature to maintain resilience and handle service failure,
as discussed in Section II. In the BR method, redundancy
is introduced by placing one extra instance with resource
reservation for each service type to guarantee survivability and
service continuity in th event of a failure.
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Fig. 6 plots the service delay experienced by vehicles for
each service type using our framework and BR method for
pre-attack and post-attack scenarios. We first note that in a pre-
attack phase where a redundant instance is not active yet, our
framework outperforms the BR method. It is from the fact that
pre-occupancy of resources to deploy redundant instances will
minimize the choice of available resources for the placement of
services. Thus, the limitation in the scope of choice will force
instances to be placed on less optimal edge nodes and increases
the delay experienced by vehicles in accessing the service. On
the contrary, the delay experienced in BR for the post-attack
scenario is fairly similar to our work but BR consumes more
resources and quickly exhausts the limited and expensive edge
resources.

Fig. 6: Comparison of service delay in our framework with
baseline

Fig. 7a plots the average delay observed by the vehicles in
our method and the BR method to further emphasize the delay
difference. In Fig. 7b, we compare the average resource usage
by our method and the BR method. As can be observed from
the figure, our proposed framework intends to utilize edge
resources more effectively accommodating the same demand.
Moreover, for BR, the average usage of resources for both
pre-attack and post-attack scenarios is typically higher.

(a) (b)

Fig. 7: Average performance comparison of our framework
with baseline

In Table II, we present the run time, in seconds, of different
ILP algorithms on a system with Intel Corei5 2GHz and 8GB
RAM. We note that the run time for BR and PrA-SP is more
or less similar. In contrast, it can be observed that although

the proposed algorithm uses three ILP formulations to ensure
resilience in service availability, the run time for PoA-PSVM
and PoA-SRP is 1/10th of the time observed in PrA-SP and
BR. It is because the smaller the space of the feasible solutions,
the lesser the run time for the ILP model. We also note from
Table II that the run time of all the three proposed algorithms
put together, is only slightly higher than that of BR.

TABLE II: Run Time

BR
Our Method

PrA-SP PoA-PSVM PoA-SRP

T=100 0.1299 0.1880 0.0222 0.0343

T=200 0.1957 0.1805 0.0243 0.0344

T=300 0.1802 0.1689 0.0213 0.0394

T=400 0.1616 0.1713 0.0196 0.0226

T=500 0.1824 0.1713 0.0242 0.0308

T=600 0.1816 0.1713 0.0235 0.0156

3) Impact of different datasets: In addition to the San
Francisco vehicle mobility dataset, we evaluate our framework
with two other real-world vehicle mobility datasets (i.e. Rome
and Beijing), as discussed in Section VI-A. This is to study
and verify the effectiveness of our framework against varying
traffic volumes and different geographic locations of different
vehicular environments.

(a) Beijing (b) Beijing

(c) Rome (d) Rome

Fig. 8: Delay Performance

We first compare the delay performance of our framework
for different datasets in Fig. 8. Fig. 8a and Fig. 8c depict
the service delay for the city environment of Beijing and
Rome, respectively. We note that despite the different densities
of different vehicular environments, the performance of our
proposed framework is consistent and optimal. The service
availability is resilient and prompt in PoA-SRP compared to
PrA-SP. Further, Fig. 8b and Fig. 8d plots the average delay
for the city of Beijing and Rome, respectively. We observe that
for Beijing, 50% of the time, the average delay for PoA-PSVM
is fairly similar to PrA-SP and PoA-SRP. On the other hand,
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Fig. 9: Edge resource usage for the Beijing dataset

Fig. 10: Edge resource usage for the Rome dataset

for Rome, except for T=100, the average delay is satisfactory
and service access is reasonably faster in PoA-PSVM.

We also compare the edge resource usage and the number of
active edge nodes for the Rome and Beijing city environment
in Fig. 9-10 and Table III. With the same design parameters,
our proposed framework exhibits similar edge resource usage
performance to support the resilient attack protection for
differently-loaded nodes under attack and with minimal usage
of edge resources for different nature of city environment. In
Table III, the active number of nodes in pre-attack and post-
attack placements are compared for the Beijing and Rome
city. We can observe that for the two different vehicular
environments the total number of active edge nodes to preserve
the service availability is noteworthy and is quite similar in
both PrA-SP and PoA-SRP.

TABLE III: Number of active edge nodes

T=100 T=200 T=300 T=400 T=500 T=600

Beijing
PrA-SP 6 5 6 5 6 4

PoA-SRP 6 4 5 6 6 5

Rome
PrA-SP 4 5 5 4 5 5

PoA-SRP 6 5 5 6 6 4

Next, we evaluate the performance with different datasets
against the baseline algorithm in Fig. 11. In Fig, 11a and Fig.
11c, we plot the average service delay experienced by the
vehicles in the environment of Beijing and Rome, respectively,
to avail different types of services. In general, the average
delay for the pre-attack scenario tends to remain higher in BR
compared to our proposed resilient service placement frame-
work for both cities with different traffic volumes. In contrast,
in the post-attack scenario, the average delay comparison is
quite fluctuating. Nevertheless, a fairly similar range of delay
values are observed in BR against our work but at the expense
of higher edge resources usage.

The higher usage of edge resources in BR is verified in
Fig. 11b and Fig. 11d for the city environment of Beijing and

(a) Beijing (b) Beijing

(c) Rome (d) Rome

Fig. 11: Comparison of our framework with baseline for
different datasets

Rome, respectively. Despite the changing vehicular environ-
ment, the BR method directly impacts the amount of average
resources used to ensure the resilient service availability. It
can be observed that the average resource usage is always
higher in BR with up to 35%-40% more usage compared to
our method.

Finally, in Table IV, we depict the run time of our method
and BR for the dataset of the Beijing and Rome city with
varying traffic volumes and mobilities. We note that our
proposed framework shows good performance in terms of
computation time. The results are consistent with the different
datasets and efficient even with the cumulative time of the
three ILP models. This is because of a smaller search space
in our post-attack ILP models which require smaller run time.
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TABLE IV: Run time for different datasets

Beijing Rome

BR
Our Method

BR
Our Method

PrA- PoA- PoA- PrA- PoA- PoA-
SP PSVM SRP SP PSVM SRP

T=100 0.1299 0.288 0.0422 0.0543 0.5725 0.2762 0.0202 0.0254

T=200 0.1957 0.1805 0.0243 0.0344 0.3989 0.2947 0.0224 0.0279

T=300 0.1802 0.1689 0.0213 0.0394 0.5401 0.3139 0.0234 0.0167

T=400 0.1616 0.1713 0.0196 0.0226 0.4443 0.3139 0.0175 0.0299

T=500 0.1824 0.1713 0.0242 0.0308 0.4517 0.2800 0.0228 0.0295

T=600 0.1816 0.1713 0.0235 0.0156 0.3113 0.3157 0.0210 0.0214

VII. CONCLUSION

In this paper, we proposed a framework for attack resilient
service placement and service availability in edge-enabled IoV
networks and developed three ILP models to jointly solve the
problem with a DRL model. The proposed method determines
the optimal service placement in the first stage of attack-
free scenario taking into account the service delay observed
by vehicles and edge resources usage. It also calculates the
optimal secondary V2E mappings proactively to maintain
disruption-free (or low disruption) service availability to the
attack-affected vehicles until recovery takes place. Our model
achieves resilience without pre-reserving expensive resources.
Upon a failure, we find optimal service recovery placements
with the objective of minimizing the edge resource usage. Our
proposed solution not only improves the user experience by
maintaining low service latency but also reduces the system
cost in terms of resource usage and number of active edge
nodes. The effect of dynamic traffic changes on service
placement and system performance quality is addressed by
integrating ILP models with a DRL framework. We carried
out extensive performance study to verify the effectiveness of
the proposed framework using different datasets representing
different city environments.
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