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Abstract— Radar is among the most popular sensors in modern
Intelligent Transportation Systems (ITSs), enabling weather-
robust perception. The orientation and position of the traffic
radar relative to the ITS coordinate system are necessary for
the perception fusion in ITSs. However, due to the unknown
target association, sparseness and noisiness of traffic radar
measurements, the robust and accurate extrinsic calibration
of traffic radar is challenging. In this paper, we propose a
targetless traffic radar calibration method based on GPS to
overcome the inconvenience during ITS operation, because the
installation of a dedicated calibration target on the highway is
impractical and dangerous. On the other hand, the high-precision
GPS device installed on the moving vehicle can provide traffic
radar with accurate positioning information of the detection
target. Furthermore, during the optimization process of extrinsic
calibration, we propose a globally optimal registration method,
which is robust to noise and outliers in radar measurements,
and is called Gaussian Mixture Robust Branch and Bound
(GMRBnB). Specifically, we first construct the robust objective
function by utilizing the Gaussian Mixture Model (GMM). Then,
we derive novel relaxation bounds and present the GMRBnB
algorithm that overcomes the susceptibility to local minima
and the dependence on initialization of traditional optimization
methods. Compared with existing methods, extensive experiments
in synthetic and real-world data demonstrate that our method is
not only globally optimal, but also more accurate and robust.

Index Terms— Targetless calibration, traffic radar, intelligent
transportation system, Gaussian mixture model, globally optimal,
branch and bound.

I. INTRODUCTION

MODERN Intelligent Transportation Systems (ITSs)
can significantly improve transportation efficiency and

reduce the occurrence of traffic accidents by providing vehicles
with extra detailed information about the present traffic flow in
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Fig. 1. One of the measurement points on the highway A9
from Providentia++ project (https://innovation-mobility.com/en/project-
providentia/).

form of a Digital Twin [1], [2]. In ITSs, many heterogeneous
sensors, such as monocular cameras, event cameras, Lidars,
radars, etc., should be equipped to acquire information on
different modalities, as shown in Fig. 1. These sensors, which
usually have different capabilities and different fields of view,
need to be integrated into the ITS. Extrinsic calibration,
a key step in multi-sensor integration, can find the spatial
relationship between the sensor coordinate systems and build
consistent environment model [3], [4], [5]. Meanwhile, extrin-
sic calibration is also known as pose estimation or spatial
registration [6]. The focus of our investigation is the sensor
extrinsic calibration in ITSs.

Traffic radar is known as the most popular sensor for wide
application in ITSs, such as object detection, tracking, and
localization [7], [8], [9], [10]. Because the millimeter wave
can penetrate fog, smoke and dust easily, the millimeter wave
radar is robust especially in extreme weather conditions [11],
[12]. Moreover, it can detect targets at longer distances than
other sensors, such as Lidars. However, the measurements of
traffic radar have the following properties:

• Because of the low spatial resolution in the vertical direc-
tion, the field of view of the traffic radar is considered to
be planar.

• Traffic radar detections are sparse, as shown in Fig. 2.
Because the traffic radar outputs measurements solely in
the form of detected objects (traffic participants).

• Traffic radar measurements are usually contaminated by
noise and outliers, because the reflected waves come from
all moving and non-moving targets.

1558-0016 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on April 11,2023 at 08:28:02 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-4883-0073
https://orcid.org/0000-0002-6468-8233
https://orcid.org/0000-0003-1305-2312
https://orcid.org/0000-0001-8225-858X
https://orcid.org/0000-0002-1774-727X
https://orcid.org/0000-0003-4840-076X


2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 2. This is the image after the traffic radar measurements being projected
onto the camera picture. The measurements (blue points) are sparse, and
contain biases and misdetections caused by noise.

Therefore, due to the low precision and high outlier rate of
radar measurements, accurate and robust extrinsic calibration
of traffic radar is crucial but challenging. On the other hand,
because traffic radar is used to detect and track traffic partici-
pants, mainly to confirm which lane they are in, the accuracy
of traffic radar calibration is required at the meter level.

Traditional extrinsic calibration methods are generally clas-
sified as target-based [13], [14], [15] method and targetless
[16], [17], [18] method. Among the target-based methods,
researchers leverage external dedicated targets, such as corner
reflector, to build reference features for detection and associa-
tion. However, target-based calibration methods are infeasible
for the real practical scenario, such as during ITS operation.
Because the installation of dedicated calibration targets on
the highway is impractical and dangerous. In addition, it is
not always practical to calibrate the sensor with a prepared
target for different real applications. Thus, to overcome the
inconvenience during ITS operation, we propose a targetless
extrinsic calibration method based on GPS for traffic radar.
The global and accurate positioning information from high-
precision GPS can improve the accuracy of calibration. The
extrinsic calibration problem is then transformed into estimat-
ing the rigid transformation between the measurement sets of
radar and GPS. The destination measurement set is obtained
from the GPS mounted on the moving vehicle, and the source
measurement set is obtained from the traffic radar mounted on
the ITS infrastructure. By combining with the high-precision
GPS, our traffic radar calibration method can promote the
environmental perception fusion among each measurement
points in the ITS, so as to build an accurate global coordinate
system for the Digital Twin.

Please note that, for both target-based and targetless cali-
bration methods, the complex target association problem must
be addressed. In most studies, the extrinsic calibration is
transformed into a correspondence-based registration (CBR)
problem [19], [20], [21]. For instance, the correspondences are
derived from the dedicated calibration target in target-based
calibration approaches. In targetless approaches, researchers
use environmental features sensed by both sensors to find the
correspondences, such as geometric descriptors. Nevertheless,
traffic radars can not provide any descriptive features such as
edges and corners because of the measurement mechanism and

the limited resolution. The association of radar measurements
with vehicles in image, or geometrical features from LiDAR
point cloud is intractable. This association problem must be
rethought from a different perspective, such as using the
registration method to find correspondences between different
sensors’ measurements. Therefore, we consider that the above
mentioned alignment of the measurement sets from radar and
GPS is a simultaneous pose and correspondence registration
(SPCR) problem [22], [23], [24], [25]. Different from the CBR
problem, the correspondences in this problem are unknown,
such that the correspondences and transformation need to be
addressed simultaneously. Moreover, the objective functions
in SPCR problem are usually non-convex due to the nonlinear
rotation constraints [26]. Existing methods, such as ICP [22],
CPD [24] and GMMReg [25], have been used to solve the
SPCR problem. However, they are prone to delivering erro-
neous results (local optimum) during the iterative optimization
process and are highly dependent on the initial estimation of
transformation, i.e., initialization.

Recently, globally optimal methods have been proposed
according to the Branch and Bound (BnB) paradigm [27],
[28], [29]. The prominent features of BnB-based method
are that i) it can find the globally optimal solutions with
theoretical guarantee, ii) and it is independent of initialization.
In this paper, we propose a robust globally optimal method to
solve the SPCR problem for the targetless calibration, called
Gaussian Mixture Robust Branch and Bound (GMRBnB).
In detail, we first represent the measurement sets with the
Gaussian Mixture Model (GMM) [25], [30] to counteract
the influence of noise and outliers. Next, we construct the
robust objective function using the closed-form solution of
the statistical difference metric between two Gaussian mix-
tures. We then present a BnB-based optimization method
with newly proposed relaxation bounds to find the globally
optimal transformation. Notably, due to the inherent high
computational cost drawback of BnB-based methods [31], our
proposed method is only used for the offline calibration, which
is admissible in real applications. We put more attention on
the accuracy of the calibration, i.e., how to find the globally
optimal solution.

Our contributions in this paper can be summarized as
follows:

1) We propose a targetless calibration method for traffic
radar to tackle the inconvenience during ITS operation.
The combination of high-precision GPS on the mov-
ing vehicle and traffic radar on the ITS infrastructure
enables accurate extrinsic calibration. Besides, there are
no restrictions on the relative position of sensors, i.e.,
the relative angle and translation are arbitrary.

2) We propose a BnB-based globally optimal registration
method to align the measurements of traffic radar and
GPS in a simultaneous pose and correspondence regis-
tration manner. The GMRBnB algorithm searches the
globally optimal solution in the domain of 2D rotation
and translation. Therefore, our method can avoid failure
by getting trapped in local optimal solutions in the case
of large relative angles.
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3) Extensive experiments demonstrate that the proposed
method achieves accurate and robust performance on
both synthetic and real-world data in contrast to the
existing methods.

The rest of this paper is organized as follows: The next
section addresses the related work in two directions and
demonstrates the characteristics of our work in comparison
to other approaches. Section III illustrates the problem for-
mulation of the traffic radar extrinsic calibration. Section IV
demonstrates the principle and details of our proposed method.
Section V presents the experiments results with synthetic data
and real-world data from our Providentia++ project. Finally,
Section VI gives the conclusion.

II. RELATED WORK

In this section, we discuss the related work from the
perspectives of: extrinsic calibration methods and optimization
algorithms for registration, and then summarize the difference
between current methods and ours.

A. Extrinsic Calibration Methods

In the past few decades, researchers have conducted a
wide range of studies on the sensor extrinsic calibration
to improve the perception accuracy of self-driving vehicles
and ITSs. Generally, one of the requirements for extrinsic
calibration is the reference feature, either from a dedicated
target or another sensor’s detection. This requirement divides
the extrinsic calibration methods into two categories, target-
based and targetless method.

Among the target-based radar calibration investigations,
Natour et al. [32] established the radar-to-image correspon-
dence by a dedicated target to implement the calibration
between radar and camera. Peršić et al. [15] designed a trian-
gular shaped calibration target for lidar and radar calibration.
The calibration process includes reprojection error optimiza-
tion and field-of-view optimization. Lee et al. [33] imple-
mented the spatial and temporal calibration of automotive
radar and lidar by the radar cross section (RCS) measurements
from dedicated targets. Domhof et al. [34] proposed a novel
extrinsic calibration tool for radar, camera and lidar based on a
specialized target, and utilized three joint optimization config-
urations to perform both relative calibration and absolute cal-
ibration. In addition, Olutomilayo et al. [35] proposed a radar
extrinsic calibration method based on corner reflector targets
with known pose. They modeled the extrinsic calibration as a
CBR problem and optimized it using the Kabsch algorithm.
The advantages of target-based methods are accurate and easy
to implement. However, target-based methods are impractical
in our application, since the installation of dedicated targets
on the highway is dangerous and infeasible.

Within targetless radar calibration investigations,
Schöller et al. [36] proposed a data-driven targetless radar
calibration approach based on deep learning to estimate the
relative rotation angle, which can avoid the target association
problem between camera and radar measurements. However,
this approach only focuses on the rotational calibration and
ignores the translational calibration. Izquierdo et al. [37]

proposed a targetless calibration method based on the
high-definition (HD) map for multiple radars onboard a
vehicle. The reference features are the static objects with
specific categories and high RCS, such as street lights and
traffic signs. But they assumed that the vehicle is able to
localize in the HD map by using GNSS. Heng [38] proposed
a targetless calibration method for multiple 3D lidars and
3D radars mounted on a vehicle. They first utilized the
lidar data to build a 3D map of the environment, and then
registered the radar scans with the 3D map. However, they
also assumed that known vehicle poses are provided by
a GNSS system. Wise et al. [39] utilized continuous-time
velocity measurements to implement the extrinsic calibration
of onboard 3D radar instead of 2D (planar) radar. This study
is based on the ego-motion estimation of a moving vehicle,
which is different from our application scenario. In general,
above mentioned targetless methods are not suitable for our
roadside static traffic radar calibration problem. They always
need the help of additional prior information or a moving
platform for the radar to associate targets. The correspondence
is difficult to build directly in our practical situation due to
the sparsity, the limited resolution, and the lack of descriptive
features in traffic radar measurements. According to our
practical requirements, the proposed targetless extrinsic
calibration strategy, in combination with high-precision
GPS, allow us to estimate the transformation between the
coordinate systems of traffic radar and GPS without explicit
target association.

B. Optimization Algorithms for Registration

Expectation-maximization (EM)-type methods are among
the most classic approaches to solve the SPCR problem [22],
which are iterative methods to find the maximum likelihood or
maximum a posteriori (MAP) estimates of parameters. Within
EM-type methods, ICP is the most representative. It iteratively
corrects the transformation parameters to minimize the error
metric, which usually is the sum of squared differences
between the matched point sets. Subsequently, many variants
[40], [41] were proposed to improve the performance of ICP.
In recent years, researchers also represented the point set with
GMM to improve the robustness to noise and outliers [23],
[24], [25], [42]. These methods transform the registration prob-
lem into the probability distribution alignment problem, which
seeks to maximize the similarity of two GMMs. Although all
of these methods converge quickly to the optimal value when
they have good initial estimations, they do not provide any
performance guarantees. These methods are highly dependent
on the initial estimations, and if the initial start point is not
properly set, these algorithms tend to converge to the local
minimum.

In addition to these local methods, there has been a great
deal of research on solving the SPCR problem with global
methods, such as stochastic methods [43], [44], feature-based
alignment [45], [46] and BnB-based methods [26], [31], [47],
[48], [49] in recent years. The former two are known as non-
deterministic global optimization (NDGO) approaches, which
can often succeed in terms of probability, but can not guarantee
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Fig. 3. The top view of GPS coordinate system.

to find a globally optimal solution. In particular, BnB-based
methods are deterministic global optimization methods (DGO)
[28], [50], which have theoretical guarantee of global opti-
mality compared to the NDGO approaches. Among these
existing BnB-based methods, Yang et al. [26] and Campbell
and Petersson [47] addressed the 6 degrees of freedom (DOF)
SPCR problem in a case of 3D point sets to 3D point sets,
while Campbell et al. [31] and Liu et al. [48] addressed
the 6DOF SPCR problem in a case of 3D point sets to 2D
images. However, the extrinsic calibration in this paper is
performed in the plane, so we particularly design the bounds
functions of BnB to solve the 3DOF SPCR problem in a
case of 2D measurement sets to 2D measurement sets. In this
way, we eliminate the need for association between sensors’
measurements.

In summary, the proposed targetless method can overcome
the inconvenience during ITS operation to achieve accurate
extrinsic calibration of the roadside traffic radar. To the
best of our knowledge, our proposed method is the first-
known approach to calibrate the extrinsic parameters in a
simultaneous pose and correspondence registration manner.
Additionally, our proposed registration method can search the
globally optimal solution to avoid failure by falling into the
local optimal solution, which is meaningful for safety-critical
scenarios.

III. PROBLEM STATEMENT

A. ITS Coordinate System

The measurement of GPS is the pose of itself in the WGS-84
coordinate system, i.e., (XG P S, YG P S, ZG P S). It also is the
trajectory of the moving vehicle with timestamps. In our study,
the coordinate system of GPS measurements is converted to
the same planar Universal Transverse Mercator (UTM) coordi-
nate system as the ITS coordinate system (Xroad , Yroad), i.e.,
(X ′

G P S, Y ′

G P S), as shown in Fig. 3. Further, radar detection
of targets is all based on the same principle: low-frequency
electromagnetic pulses are emitted from the radar antenna,
and reflected back to the sensor from conductive targets in
the environment [11]. We can obtain the bearing, distance
and radial velocity of the target by measuring the time of
flight and phase of the returned pulse. The roadside traffic
radar performs projection on a horizontal plane with depth and
azimuth of a detected target, and the projected point is denoted
as mr (α, r) in the 2D polar coordinate system, where α and r
are azimuth and depth of the target respectively, as shown in
Fig. 4. The height of the traffic radar H can be easily measured
by a laser rangefinder, so that the measurements of traffic
radar can be projected onto the same UTM plane with the

Fig. 4. The traffic radar coordinate system and its top view.

Fig. 5. The ITS coordinate system related to the extrinsic calibration.

coordinate system (Xradar , Yradar ), as shown in Fig. 4. The
overall ITS coordinate system is shown in Fig. 5. Regarding
the traffic radar measurements, as we explained above, we can
only acquire the pre-processed data of detected targets. Hence,
under the geometric representation, the measurements in the
measurement set are represented as discrete points in the
coordinate system (Xradar , Yradar ). Therefore, our targetless
extrinsic calibration method is transformed into aligning the
two measurement sets of radar and GPS in the 2D UTM
projection plane, such that we can obtain the relative pose
of traffic radar.

B. Measurement Set Registration Problem

Define the source and destination measurement sets X =

{X1, X2, . . . , Xm} and Y = {Y1, Y2, . . . , Yn}, where X ,Y ⊂

R2 represent the coordinates of measurements in radar and
GPS frames, respectively. The problem is estimating the
correspondence and 3DOF rigid transformation (with rotation
angle θ ∈ [−π, π] and translation t ∈ R2) between the two
measurement sets, so that the transformed set X is as close as
possible to the set Y . The L2 residual between the transformed
point X i and point Y j is defined as

eX i ,Y j (θ, t) =
∥∥R(θ)X i + t − Y j

∥∥
2 (1)

where R(θ) is the rotation matrix, i.e.,

R(θ) =

[
cos θ − sin θ

sin θ cos θ

]
(2)

Further, the residual between the transformed point X i and set
Y is defined as

eX i (θ, t) = min
Y j ∈Y

eX i ,Y j (θ, t) (3)
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which is to find the correspondence between point X i and set
Y , i.e., find the closest point of X i from the set Y . Then the
objective function to align the two measurement sets is given
by

E(θ, t) =

m∑
i=1

eX i (θ, t)2 (4)

The SPCR problem is trying to simultaneously find the
optimal solution and correspondences that minimizes the
objective function in Equation (4). If the real correspon-
dences in Equation (3) are known, the rigid transformation
in Equation (4) can be calculated in the closed-form by the
optimizing algorithms such as the least squares optimization
method based on Singular Value Decomposition (SVD). How-
ever, it is difficult to determine correspondences perfectly in
practical applications. The solution of traditional local methods
is prone to converge to the local minimum for the SPCR
problem. On the other hand, the results are susceptible to
the noise and outliers in measurement sets. In the follow-
ing section, we utilize the GMM to construct the negative
objective function for enhancing the robustness and propose
a BnB-based method to find the globally optimal solution for
this SPCR problem.

IV. METHOD

A. Gaussian Mixture Model and Similarity Measures

The representation of measurement sets with GMM is
extensively employed to solve the registration problem. The
main idea of this representation is mapping the discrete mea-
surement sets to the continuous domain by probability density
function, which is defined as a weighted sum of Gaussian
density functions, i.e., p(x|G) =

∑k
i=1 ωiN (x|µi , σ

2
i ). It is

the probability density of observing a point x given a GMM
G = {ωi , µi , σ

2
i }

k
i=1, with mixture weights ωi , means µi ,

variances σ 2
i and the number of Gaussian components k,

respectively. In summary, the benefits of GMM representation
include: i) it uses a continuous probability density field for
the representation of measurements and does not require
partitioning and discretization of the space, ii) the covariance
matrix in the GMM can better deal with the noise and outliers
in the measurements, and iii) the correspondence update or
closest point search is not performed during the optimization
process.

Assuming no prior information, a simple construction
method for GMM from the given measurement set is as
follows: i) all Gaussian components have the same weights
and covariance matrixes, ii) the mean of each component
is the spatial coordinate of the corresponding measurement
point, and iii) the number of Gaussian components and the
measurement points are identical. Then the GMMs GX =

{ωXi , X i , σ
2
iX }

m
i=1 and GY = {ωYj , Y j , σ

2
jY }

n
j=1 are generated

from the destination and source measurement sets X and Y
respectively, as shown in Fig. 6. In this paper, the L2 dis-
tance is employed as the statistical difference metric between
two GMMs, since that the formulation can be expressed in
closed-form [25]. We define the rigid transformation function
T (G, θ, t) to denote the rotation θ ∈ [−π, π] and translation

Fig. 6. The representation of measurement sets X and Y with GMMs GX
and GY .

t ∈ R2 for the GMM. The L2 distance between two GMMs
is defined as

D(θ, t) =

∫
R2

(
p
(
x|T (GX , θ, t)

)
− p(x|GY )

)2
dx (5)

The Equation (5) is then expanded as follows:

D(θ, t) =

∫
R2

[(
p
(
x|T (GX , θ, t)

))2
+

(
p(x|GY )

)2

− 2p
(
x|T (GX , θ, t)

)
p(x|GY )

]
dx (6)

where the first term is invariant for any rigid transformation,
the second term is independent of the rigid transformation, and
the third term is relevant about the rigid transformation.
However, the third term has a closed-form, derived by the
following formula:∫

R2
N (x|µ1, σ

2
1 )N (x|µ2, σ

2
2 )dx

= N (0|µ1 − µ2, σ
2
1 + σ 2

2 ) (7)

Thus the negative GMM robust objective function over the L2
distance is given by

G(θ, t) = −

∫
R2

p
(
x|T (GX , θ, t)

)
p(x|GY )dx

= −

m∑
i=1

n∑
j=1

ωXi ωYj N
(
0|R(θ)X i + t−Y j , σ

2
iX+σ 2

jY
)

= −

m∑
i=1

n∑
j=1

ωXi ωYj
N

exp
[

−

[
eX i ,Y j (θ, t)

]2

2[σ 2
iX + σ 2

jY ]

]
(8)

where eX i ,Y j (θ, t) is the point-to-point L2 residual in
Equation (1) and N is the normalisation factor. We build
a negative GMM objective function instead of traditional
objective function in Equation (4), which displays statistical
robustness to counteract the noise and outliers. Further, the
most significant difference is that the GMM objective function
does not need to find the closest corresponding point such as
Equation (3). The function is the sum of the sums, not of the
minima, so that the problem to be solved is simplified. In the
next section, we derive the relaxation bounds for the minimum
of this objective function.
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B. BnB and Relaxation Bounds

BnB is a DGO framework for solving non-convex and
NP-hard problems. It searches the entire solution domain to
seek a globally optimal solution with theoretical guarantees.
The BnB-based algorithm operates according to two princi-
ples, i) Branch: it recursively divides the search domain into
smaller subboxes, and ii) Bound: it evaluates the lower and
upper bounds on the optimal solution in each constrained
subbox. Then the algorithm uses these bounds to prune the
search domain and delete the subbox that it can prove do
not contain the optimal solution. The algorithm converges
when the lower and upper bounds on the optimal solution
are tight enough, i.e., a predetermined threshold is achieved.
The algorithm depends on efficient estimation of the lower
and upper bounds of branches. Breadth-First Search (BFS)
and Depth-First Search (DFS) have been employed to traverse
the tree of subboxes [51]. The DFS strategy is recommended
when no good heuristic is available for producing an initial
estimation.

Define B is the search domain and B ∈ B is the segmented
subbox. Assume that functions fL(B) and fU (B) satisfy

fL(B) ≤ minE(B) ≤ fU (B) (9)

where E(B) is the objective function, fL(B) is the lower
bound function, and fU (B) is the upper bound function.
It should be noted that the upper bound function can generally
be chosen as the value obtained by substituting any value in
the search domain or subboxes into the objective function.
Besides, Equation (10) is the property of bounds functions
that can guarantee the convergence of BnB-based algorithm,
which is given by

lim
σ(B)→0

(
fL(B) − fU (B)

)
= 0 (10)

where σ(B) is the diameter of box B. Equations (9) and (10)
described above are necessary conditions to prove the bounds
functions.

According to our registration problem, the parameterization
of search domain is B =

{
(θ, t) ∈ [−π, π]×R2

|t− ≤ t ≤ t+
}
.

The rotation domain and translation domain are shown in
Fig. 7. The next step is then to derive the lower and upper
bound of the L2-based negative GMM objective function
G(θ, t) within a domain B, which is the most central part
of the BnB-based method. In the objective function G(θ, t),
all terms except for the point-to-point L2 residual are easy
to calculate, thus the focus is on bounding the point-to-point
residual eX i ,Y j (θ, t).

Theorem 1 (Relaxation bounds of the objective function
G(θ, t)): For the 2D transformation domain B =

{
(θ, t)|θ−

≤

θ ≤ θ+, t− ≤ t ≤ t+
}

centred at (θc, tc), the relaxation upper
bound RU (B) and lower bound RL(B) of the negative GMM
robust objective function G(θ, t) for X i , Y j are

RU (B) = −

m∑
i=1

n∑
j=1

ωiω j

N
exp

[
−

[
eX i ,Y j (θc, tc)

]2

2[σ 2
i + σ 2

j ]

]
(11)

RL(B) = −

m∑
i=1

n∑
j=1

ωiω j

N
exp

[
−

[
eL ,X i ,Y j (θ, t)

]2

2[σ 2
i + σ 2

j ]

]
(12)

Fig. 7. Search domain parametrization for BnB. The rotation domain is the
range of rotation angle, i.e., [θ−, θ+

]. The translation is assumed to be a 2D
rectangle [t−, t+]

2. The splitting policy is to divide from the center of each
dimension of the domain, so there will be 23

= 8 subboxes after one splitting.

Fig. 8. The schematic of the relaxation lower bound function RL (B) with
2 cases, and eL is the abbreviation of the lower bound of the point-to-point
residual eL ,Xi ,Y j (θ, t).

where eL ,X i ,Y j (θ, t) is the lower bound of the point-to-point
L2 residual eX i ,Y j (θ, t), and is given by

eL ,X i ,Y j (θ, t) =

 max
{∣∣∥Y j∥2 − ∥X i∥2

∣∣ − ρ, 0
}
, α ≤ β

max
{

min{l−, l+} − ρ, 0
}
, α > β

(13)

where angles α, β are shown in Fig. 8, ρ is the radius of
the translation relaxation disk, and l− =

∥∥Y j − R(θ−)X i
∥∥

2,
l+ =

∥∥Y j − R(θ+)X i
∥∥

2.
Proof: To prove the effectiveness and validity of the

relaxation lower bound RL(B) and upper bound RU (B) for
the objective function G(θ, t), there are three issues that need
to be addressed.

1) Observe that ∀(θ, t) ∈ B,

min eX i ,Y j (θ, t) = min
∥∥R(θ)X i − (Y j − t)

∥∥
2 (14)

This minimum can be denoted as the minimum distance
between circle arc

{
R(θ)X i |θ ∈ [θ−, θ+

]
}

and rectangle
{x ∈ R2

|Y j − t+ ≤ x ≤ Y j − t−} in any branch subbox
B =

{
(θ, t)|θ−

≤ θ ≤ θ+, t− ≤ t ≤ t+
}
, and the radius

of the arc is ∥X i∥2. Then the rectangle domain can be
relaxed to a disk shaped domain as shown in Fig. 8 and
can be expressed by the following equation.

D =
{

x ∈ R2
|∥x − Y j∥

2
2 − ρ2

≤ 0
}

(15)
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where ρ is the radius of the relaxation disk, and ρ =

∥t+−t−∥2/2. Obviously, the minimum distance between
the circle arc and the rectangle is greater than or equal
to the minimum distance between the circle arc and the
relaxation disk, while both are greater than or equal to
zero, that is,

min eX i ,Y j (θ, t) ≥ min
∥∥R(θ)X i − D

∥∥
2 ≥ 0 (16)

Then the minimum distance between the circle arc and
the relaxation disk is equal to the minimum distance
between the circle arc and the center of the disk domain
Y j minus the radius of the relaxation disk ρ, which is

min
∥∥R(θ)X i − D

∥∥
2 = min

∥∥R(θ)X i − Y j
∥∥

2 − ρ

(17)

The minimum distance between the circle arc and the
center of the disk domain is an easy problem, that is,
the minimum distance between the arc and the point.
According to the different position relationships between
the arc and the point, we divide it into two cases for
consideration, as shown in Fig. 8. When the point lies
within the rotation sector corresponding to the circle arc
(Case 1), the minimum distance between the arc and the
point is the difference between the two distances from
the origin, which is

∣∣∥Y j∥2−∥X i∥2
∣∣. When the point lies

outside the rotation sector corresponding to the circle arc
(Case 2), the minimum distance between the arc and the
point is the minimum distance between the endpoints of
the arc R(θ−)X i , R(θ+)X i and the point, which is the
minimum of {l−, l+}. Details are shown below,

min
∥∥R(θ)X i − Y j

∥∥
2 − ρ

=

 max
{∣∣∥Y j∥2 − ∥X i∥2

∣∣ − ρ, 0
}
, α ≤ β

max
{

min{l−, l+} − ρ, 0
}
, α > β

(18)

As for angles α and β, since the endpoints of the
circle arc R(θ−)X i , R(θ+)X i and the center of the disk
domain Y j are known, it is easy to compare these two
angles. Define eL ,X i ,Y j (θ, t) = min

∥∥R(θ)X i −Y j
∥∥

2−ρ,
then,

min
∀(θ,t)∈B

eX i ,Y j (θ, t) ≥ eL ,X i ,Y j (θ, t) (19)

By substitution into Equation (8),

min
∀(θ,t)∈B

G(θ, t) ≥ RL(B) (20)

Therefore, RL(B) is the lower bound of the objective
function G(θ, t).

2) The point-to-point L2 residual at a specific point within
any subbox of the search domain is larger than the
minimal residual within the search domain, that is

eX i ,Y j (θc, tc) ≥ min
∀(θ,t)∈B

eX i ,Y j (θ, t) (21)

Then substituting into Equation (8),

RU (B) ≥ min
∀(θ,t)∈B

G(θ, t) (22)

Therefore, RU (B) is the upper bound of the objective
function G(θ, t).

3) When the search domain B =
{
(θ, t)|θ−

≤ θ ≤

θ+, t− ≤ t ≤ t+
}

collapses to a single point (θ0, t0),
then, eX i ,Y j (θ0, t0) = eL ,X i ,Y j (θ0, t0) and RL(θ0, t0) =

RU (θ0, t0), i.e.,

lim
σ(B)→0

(
RL(B) − RU (B)

)
= 0 (23)

The gap between upper bound and lower bound is equal
to zero, and the convergence is proofed.

■

Algorithm 1 GMRBnB: An Algorithm for Globally Optimal
Spatial Registration With Gaussian Mixture Model Represen-
tation
Require: Gaussian Mixture Models GX , GY with means X i

and Y j respectively, weights ω, and variances σ 2; Solution
domain B; Convergence threshold ϵ

Ensure: ϵ-optimal solution (θ, t)∗
1: Let ξ be the list of subboxes, initialize B = B0, ξ = {B0},

and normalize means X i and Y j
2: Set U B = RU

(
δ(B0)

)
, and (θ, t)∗ = δ(B0)

3: while The tolerance between global upper and lower
bound is larger than the threshold ϵ such as U B−L B > ϵ

do
4: Select a subbox B with the minimum of lower bound,

i.e., B = arg min RL(Bk), Bk ∈ ξ , and split it into eight
sub-boxes S(B) = {B1, . . . , B8}

5: Delete B from ξ , and add {B1, . . . , B8} to ξ

6: Update L B = minRL(Bk), Bk ∈ ξ

7: Update U B = min
{

U B, RU
(
δ(Bk)

)}
with Bk ∈ ξ .

If U B = RU
(
δ(Bk)

)
, set (θ, t)∗ = δ(Bk)

8: Delete Bk from ξ with RL(Bk) > U B
9: end while

C. The GMRBnB Algorithm

According to the relaxation bounds of the negative GMM
robust objective function G(θ, t) in the last section, the
GMRBnB algorithm is outlined in Algorithm 1. To sim-
plify the calculation and speed up the algorithm, GMMs are
assumed to have the same covariance matrix and weights.
In practice, we can normalize the coordinates of measurement
set so that the translation domain can be [−1, 1]

2, which can
not only achieve a smaller box but also ensure that the domain
covers every feasible translation, as shown in Line 1. Define
function δ(B) ∈ B returns the center point of box B, and
function S(B) ∈ B divides the box B in half in each dimension
of the solution domain. The exploration policy in Algorithm 1
is DFS. In detail, the search priority is inverse to the value of
the lower bound as shown in Line 4, and the next branch to
be divided is the branch with minimal lower bound. Line 5
is intended to delete the box that has been split. Line 6 is
intended to update L B to the minimum of the current lower
bound of all branches. Line 7 is intended to update U B to the
minimum of the upper bound of all branches in all iterations.
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Fig. 9. Convergence curves of the proposed GMRBnB algorithm.

The pruning policy is in Line 8, and the algorithm will prune
the branch with lower bound larger than the global upper
bound. After the algorithm converges, we obtain the ϵ-optimal
solution without correspondences, i.e., only the transformation
parameters (θ, t). This is because the GMM based objective
function avoids solving the explicit target association problem,
i.e., finding the closest corresponding point. In addition, the
algorithm outputs the best-so-far solution in each iteration as
shown in Line 7. Therefore, it can still provide best-guess
transformation parameters when dealing with problems with
limited running time, even if the upper and lower bounds are
not fitted tightly enough.

V. EXPERIMENTS

To demonstrate the performance and global optimality of
the proposed method, we compare GMRBnB with existing
registration algorithms including ICP, CPD and GMMReg,
using challenging synthetic and real data in this section.
These algorithms are conducted in MATLAB 2019B, and
all experiments are implemented on a laptop with Intel(R)
Core(TM) i7-9750H CPU @ 2.60GHz and 16GB RAM.

A. Experimental Setup and Convergence

According to the property of the GMM objective function,
the convergence range is influenced by the standard deviation
σ of the Gaussian components, i.e., the width of the peak
corresponding to the Gaussian distribution. Therefore, after
some trying and comparing, the standard deviation σ of the
Gaussian components is set to 0.1 in all experiments. What’s
more, there exists a normalization factor N in the objective
function G(θ, t). Thus we set the convergence threshold for
the GMRBnB experiments as ϵ = 0.01. In addition, to evaluate
the accuracy and robustness, the translation error and rotation
error are defined as et = ∥tgt − t∗∥ and eθ = ∥θgt − θ∗

∥

respectively, where tgt and θgt are motion ground truth, t∗
and θ∗ are estimated solutions.

For a simple demonstration of the convergence for the
proposed lower and upper bounds, we use a pair of synthetic
measurement sets (m = n = 20) as input and obtain the
convergence curves as shown in Fig. 9. It is obvious that the
gap between the lower and upper bounds is converging to zero,
and after several hundred iterations the proposed method can
converge to the optimal solution. Moreover, the remaining area
is rapidly decreasing.

Fig. 10. An example of measurement sets pair before and after calibration.

B. Control Experiments on Synthetic Data

This section is to illustrate the accuracy, robustness and
global optimality of the proposed algorithm relative to the
other three algorithms through three sets of control experi-
ments. We use the synthetic data with different experimental
conditions, which contain rotation angle, outlier rate, and noise
level. In our experiments, we denote the false negatives and
false positives in the correspondences as outliers uniformly.

1) Data Generation: Initially, the first measurement set is
generated by creating m random points that are distributed
in square [−1, 1]

2. Then the random rotation in [−π, π] and
random translation in [−1, 1]

2 are applied to this measurement
set to obtain the corresponding transformed measurement set.
They are the source measurement set and the destination
measurement set, respectively. An example of a measurement
sets pair before and after calibration is shown in Fig. 10.
The simulation of the outliers is performed by randomly
replacing some points in the transformed measurement set.
The simulation of the noise is achieved by perturbing the
measurement set with the noise from uniform distribution
U [−δnoise, δnoise].

Meanwhile, the average of the translation error et and
rotation error eθ for T trials represent the accuracy. The
median runtime of T trials under each set of experimental
conditions is also recorded in order to compare the efficiency
and computational expense. Further, to demonstrate the global
optimality of the proposed method, the success rate is defined
as T +/T , where T is the total number of trials under the same
experimental conditions and T + is the number of successful
cases satisfying et < 0.1m and eθ < 5◦. As for the experi-
mental conditions, the outlier rate is λ = moutlier/m where
moutlier is the number of outliers and m is the total number
of points in the measurement set. Further, the value of δnoise
is considered as the noise level.

2) Deterministic Global Optimality: In this section,
we show the deterministic global optimality of the proposed
GMRBnB algorithm compared with ICP, CPD and GMMReg.
In terms of the details of data generation, we rotate the source
measurement set in the range of [−180◦, 180◦

] at 1◦ incre-
ments without translation to generate the destination measure-
ment set. Each measurement sets pair has m = n = 50 points,
and the outlier rate and noise level are λ = 0 and δnoise = 0
separately. For each rotation angle, we randomly generate
the measurement sets pair 100 times and perform the related
registration experiments with different algorithms. A case is
considered successful when the rotation error satisfies eθ < 5◦.
We perform the same experiments for ICP, CPD and GMMReg
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Fig. 11. Success rate of CPD, GMMReg, ICP and GMRBnB algorithms
without translation.

and plot the success rate versus rotation angle as shown in
Fig. 11.

As seen from Fig. 11, our proposed GMRBnB algorithm
maintains a 100% success rate over the entire range of rotation
angles, which represents the deterministic global optimality.
However, the other algorithms only maintain a 100% success
rate over a small range of rotation angles. The ICP algorithm
has a 100% success rate only when rotation angle is in the
range [−15◦, 15◦

], the CPD algorithm has a 100% success rate
only in the range [−48◦, 48◦

], and the GMMReg algorithm
has a 100% success rate only in the range [−45◦, 45◦

]. When
the range is exceeded, the success rate of these algorithms
decreases rapidly. Moreover, when the rotation angle is close
to about ±60◦, the success rate of ICP algorithm is close to
zero, that for the CPD algorithm is about ±105◦, and that for
the GMMReg algorithm is about ±150◦. The overall success
rate of both the GMMReg and CPD algorithms are higher
than that of the ICP algorithm, which indicates that the ICP
algorithm is more easier to converge to a local optimum.
In general, the GMRBnB algorithm has the deterministic
global optimality and its convergence range is the whole rota-
tion domain, which is much better than the other algorithms.

3) Robustness to Noise and Outliers: In this section,
we compare the robustness to noise and outliers of each
algorithm by challenging synthetic data experiments. The
experimental conditions include different outlier rate and noise
level. Firstly, the robustness of GMRBnB algorithm is tested in
various outlier rates λ = {0, . . . , 0.5} and then compared with
other algorithms. The measurement sets pair with m = n = 50
points is generated in each experiment, and the noise level is
δnoise = 0.1. Under each experimental settings, the experiment
is repeated T = 100 times to verify the generality and
global optimality. Further, the average rotation error, average
translation error, median runtime and success rate are recorded
and plotted in Fig. 12.

Secondly, the robustness of the GMRBnB algorithm is
tested at different noise levels δnoise = {0, . . . , 0.12}. The
measurement sets pair with the same m = n = 50 points
is generated, and the outlier rate is λ = 0.1. This experiment
is also repeated T = 100 times in each experimental setting
to observe the global optimality. Besides, the average error,
median runtime and success rate are plotted in Fig. 13.

From the results of all control experiments in this section,
we summarize as follows:

• Firstly, as the outlier rate and the noise level increase, our
proposed method always maintains a 100% success rate,

Fig. 12. Control experiments on synthetic data with different outlier rate.

Fig. 13. Control experiments on synthetic data with different noise level.

which confirms the global optimality of the algorithm.
Moreover, the robustness of the algorithm against outliers
and noise is also demonstrated by the average error.

• Secondly, the average rotation errors of the ICP, CPD and
GMMReg algorithms are much larger than that of the
GMRBnB algorithm under all experimental conditions.
According to the experiments in the previous section,
it is clear that the rotation angle has a large effect on
the success rate of these algorithms, while translation has
a relatively small effect. Therefore, the average rotation
errors of these algorithms become large in the arbitrarily
repeated experiments. Besides, the average translation
errors of the GMRBnB are all smaller than that of the
ICP, CPD, and GMMReg algorithms. This also indicates
that our proposed method can obtain better accuracy than
other methods.

• Finally, our proposed method is higher than other
algorithms in terms of computational cost. Because
BnB-based methods search the whole solution domain
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Fig. 14. This is our test car with high-precision RTK-GPS device (cm-level).

for the globally optimal solution, which is essential for
safety-critical applications. But it is admissible for our
offline calibration. Besides, the time required by proposed
method increases with the increase in outlier rate or noise
level due to the effects of outliers and noise.

C. Calibration Experiments on Real-World Data

In this section, we investigate the performance of GMRBnB
on real-world data. These real data are collected by driving
the test vehicle on parts of the German highway A9, which
is the test field of ITS. Our test vehicle is equipped with
a high precision RTK-GPS device as shown in Fig. 14.
Multiple sensors are installed on the highway infrastructure,
specifically on gantry bridges, overlooking a total of ten
traffic lanes, as shown in Fig. 1. We repeatedly drive on
the highway several times, each time passing in a different
traffic lane and collecting detection data on the test vehicle
from three traffic radars (Radar RA, RB and RC). These
radars are installed in different locations and directions at two
measurement points, but they have overlapped field of view.
Notably, the radar measurements include missed detections,
ghost detections, and multiple detections for trucks or buses
due to measurement noise. In addition, the corresponding
positioning information of the test vehicles is collected from
the RTK-GPS device. The radar measurements are represented
as the source measurement set with m measurement points,
and the GPS measurements are represented as the destination
measurement set with n measurement points.

1) Manual Association and Ground Truth Acquisition: In
order to obtain the ground truth of these radars’ poses, we cal-
culate the closed-form solution of transformation using the
method that manually establishes the target correspondence.
Specifically, the timing clocks of traffic radar and GPS are
unified to the ITS public clock under the form of unix times-
tamp first. Their measurements are then time-synchronized by
a data interpolation method, since they have different sampling
frequencies, which are 10Hz and 13Hz, respectively. Besides,
the sensors’ detection are transformed into the ITS coordinate
system. Manual target association is then performed on the two
sensors’ measurements according to the unix timestamp, and
the pair of measurement sets with the same size are obtained,
i.e., m = n. Finally, the transformation matrix is calculated
using the least squares optimization method based on SVD.
The results are employed as the transformation ground truth

TABLE I
COMPARISON OF ROTATION ERROR AND TRANSLATION ERROR OF ALL

ALGORITHMS FOR THREE RADARS

of follow-up experiments, as shown in Fig. 15(b) – Fig. 17(b).
These are the closest values we can get to the real ground truth.
It is apparent that the ground truth obtained even by manual
association method does not enable a perfect alignment of the
two measurement sets. Thus it is challenging to realize the
traffic radar extrinsic calibration in this practical situation.

2) Calibration Results: In this section, the input data for
the experiments are different from the input data for the least
squares optimization method in previous section, which is
the real measurement without manually established correspon-
dence. The size of the measurement sets of the two sensors
is different, because their sampling rates are similar. In the
implementation, the input measurement sets are normalized
such that the translation domain is set to be [−1, 1]

2. The
targetless calibration is conducted offline. The accuracy and
robustness of the calibration technology are our main focus.
We then compare the calibration results of GMRBnB, ICP,
GMMReg, and CPD for three radar’s data with the manu-
ally obtained ground truth, as shown in Fig. 15 – Fig. 17.
According to the ground truth, the rotation angles of the data
corresponding to the three radars are 177.65◦, 6.33◦, 3.56◦,
respectively. As can be seen from Fig. 15, ICP, GMMReg,
and CPD algorithms are failed to converge to the optimal
solution. However, our proposed method can still obtain the
globally optimal solution in the case of large relative angle.
In Fig. 16 and Fig. 17, all methods including local methods
converge to the correct result, because the relative rotation
angle is close to zero degree. These results demonstrate that
the proposed method can find the globally optimal solution
with performance guarantees, while existing local methods
are prone to wrong solutions (local optimum) in the case of
large relative angle. The deterministic global optimality of the
proposed method is verified in these experiments.

Meanwhile, we calculate the rotation error and translation
error of all methods to compare the robustness, as shown in
Table I. It is obvious that the rotation error and translation
error of GMRBnB are almost the smallest with the data of
all three radars. Even for the data of Radar RC, the transla-
tion error of GMRBnB is also competitive compared to the
smallest value of GMMReg. Compared to other methods, the
proposed method has a different formulation, in other words,
a different objective function, which is the negative GMM
objective function. Theoretically, each objective function has
a different surface or shape, which leads to slightly different
locations of the optimal solution corresponding to different
objective functions [31]. The solution of proposed method
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Fig. 15. The initial measurement sets of radar and GPS are m = 851 and n = 637, respectively. The calibration results of manual association, GMRBnB,
ICP, GMMReg, and CPD for Radar RA are compared.

Fig. 16. The initial measurement sets of radar and GPS are m = 1199 and n = 896, respectively. The calibration results of manual association, GMRBnB,
ICP, GMMReg, and CPD for Radar RB are compared.

is theoretically guaranteed to be optimal for our formulation.
This is the reason that the translation error of our method is not
minimal for Radar RC. On the other hand, the ground truth
we used is manually obtained, and it even does not enable
perfect alignment of the two measurement sets due to the
large amount of noise and outliers inherent in the traffic radar
measurements. Thus the errors of all methods for Radar RC

are relatively large. In summary, the results demonstrate that
the proposed method is more robust to outliers and noise than
existing local methods.

In addition, to further demonstrate the performance of the
proposed calibration method applied to camera and traffic
radar fusion in the ITS, we select a set of camera images
and traffic radar detections from the real recorded data. After

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on April 11,2023 at 08:28:02 UTC from IEEE Xplore.  Restrictions apply. 



12 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 17. The initial measurement sets of radar and GPS are m = 1122 and n = 881, respectively. The calibration results of manual association, GMRBnB,
ICP, GMMReg, and CPD for Radar RC are compared.

Fig. 18. After projecting the detection of Radar RC (blue points) onto the camera image, we compare the performance of the proposed calibration method
before and after its application in a selected scenario.

projecting the radar measurements onto the camera image,
we compare the performance of the proposed calibration
method before and after its application, as shown in Fig. 18.
The left image shows the initially erroneous calibration results,
where the projected radar measurements do not align with
the vehicles in the camera image. After implementing the
proposed targetless extrinsic calibration, each detection is
overlapped with the corresponding object in the camera image.
Notably, a few measurement points are still not perfectly
aligned with the vehicles in the image, which is caused
by the noise in measurements. The results of traffic radar
and camera fusion show that, our proposed method achieves
precise and reliable extrinsic calibration of traffic radar, and

the calibration results are effective for camera and radar
fusion.

VI. CONCLUSION

In order to tackle the inconvenience during ITS operation,
we propose a targetless extrinsic calibration method for the
traffic radar. This method does not require any dedicated target
and is also safe and easy to implement. On the other hand,
we use a simultaneous pose and correspondence registration
method to address the difficult target association problem for
radar measurements. Further, since existing registration meth-
ods are prone to converge to the local optimum and are overly
dependent on the initialization, we propose a initialization-free
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GMRBnB algorithm to find the globally optimal solution with
performance guarantees. We derive the novel relaxation upper
and lower bound functions for the GMRBnB algorithm. Then
we conduct comparative experiments on challenging synthetic
data to illustrate the theoretical performance of the proposed
algorithm. Besides, we evaluate the performance of the pro-
posed method on real-world data and validate the application
in radar-camera fusion. Extensive experiments demonstrate
that our proposed method not only can avoid failures due to
getting trapped in local optimal solutions, but also is more
accurate and robust than existing methods.

Nevertheless, there is still potential space for the improve-
ment of the proposed method in some aspects. Currently, our
method is only suitable for the offline calibration and also
is not purely automatic for the ITS. Therefore, improving
the efficiency and achieving automatic calibration is valuable.
Because the sensors are susceptible to environmental distur-
bances such as vibration of the mounting bar due to high
winds or displacement due to temperature changes. These
perturbations lead to changes of the sensor’s pose, hence
the calibration parameters need to be automatically updated
online. The second point is to model the system noise such as
radar measurement noise, which not only allows the parameter
settings be adapted to each specific device, but also increases
the accuracy of the extrinsic calibration. Finally, joint spatio-
temporal calibration is also a valuable extension direction of
our approach.
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