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Ensemble Quantile Networks: Uncertainty-Aware
Reinforcement Learning with Applications in

Autonomous Driving
Carl-Johan Hoel, Krister Wolff, and Leo Laine

Abstract—Reinforcement learning (RL) can be used to cre-
ate a decision-making agent for autonomous driving. However,
previous approaches provide only black-box solutions, which do
not offer information on how confident the agent is about its
decisions. An estimate of both the aleatoric and epistemic un-
certainty of the agent’s decisions is fundamental for real-world
applications of autonomous driving. Therefore, this paper intro-
duces the Ensemble Quantile Networks (EQN) method, which
combines distributional RL with an ensemble approach, to obtain
a complete uncertainty estimate. The distribution over returns
is estimated by learning its quantile function implicitly, which
gives the aleatoric uncertainty, whereas an ensemble of agents is
trained on bootstrapped data to provide a Bayesian estimation
of the epistemic uncertainty. A criterion for classifying which de-
cisions that have an unacceptable uncertainty is also introduced.
The results show that the EQN method can balance risk and
time efficiency in different occluded intersection scenarios, by
considering the estimated aleatoric uncertainty. Furthermore, it
is shown that the trained agent can use the epistemic uncertainty
information to identify situations that the agent has not been
trained for and thereby avoid making unfounded, potentially
dangerous, decisions outside of the training distribution.

Index Terms—Reinforcement learning, aleatoric uncertainty,
epistemic uncertainty, autonomous driving, decision-making.

I. INTRODUCTION

ADECISION-MAKING agent for an autonomous vehicle
needs to handle a diverse set of environments and sit-

uations, while interacting with other traffic participants and
considering uncertainty. A machine learning approach for cre-
ating a general decision-making agent is compelling, since it
is not feasible to manually predict all situations that can occur
and code a suitable behavior for each and every one of them.
However, a drawback of learning-based agents is that they
typically provide a black-box solution, which only outputs a
decision for a given situation. It would be desirable if the
agent also could provide an estimate of its confidence level,
or equivalently, the estimated uncertainty of its decisions.

Uncertainty can be divided into two categories: aleatoric
and epistemic uncertainty [1], [2], where both are important
to consider in many decision-making problems. Aleatoric un-
certainty refers to the inherent randomness of an outcome and
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can therefore not be reduced by observing more data. For
example, when approaching an occluded intersection, there is
an aleatoric uncertainty in if, or when, another vehicle will
enter the intersection. To estimate the aleatoric uncertainty is
important, since such information can be used to make risk-
aware decisions. Contrarily, epistemic uncertainty arises due
to a lack of knowledge and can be reduced by observing more
data. For example, epistemic uncertainty appears if a decision-
making agent has been trained to only handle ‘normal’ driving
situations and then faces a speeding driver or an accident.
An estimate of the epistemic uncertainty provides insight into
which situations the trained agent does not know how to handle
and can be used to increase the safety [3]. The epistemic uncer-
tainty estimate could also be used to concentrate the training
process to situations where the agent needs more training [4].

Reinforcement learning (RL) provides a learning-based ap-
proach to create decision-making agents, which could poten-
tially scale to all driving situations. Many recent studies have
applied RL to autonomous driving, for example, by using
the Deep Q-Network (DQN) algorithm in intersections and
highway situations [5]–[7], by using a policy gradient method
for lane merging [8], or combining RL with Monte Carlo tree
search [9]. A majority of these studies perform both the train-
ing and evaluation in simulated environments, whereas some
train the agent in simulations and then apply the trained agent
in the real world [10], [11], or for some limited cases, the train-
ing itself is also performed in the real world [12]. Overviews of
RL for autonomous driving are given by Kiran et al. [13] and
by Zhu et al. [14]. However, previous studies do not estimate
the aleatoric or the epistemic uncertainty of the decision that
the trained agent recommends. One exception is the study by
Bernhard et al., where a distributional RL approach is used to
create a risk-sensitive decision-making agent [15]. However,
the method is not applied in a theoretically consistent way
and can therefore cause arbitrary decisions, which is further
discussed in Sect. V of this paper.

Bayesian probability theory can be used to estimate the
epistemic uncertainty [16]. In the autonomous driving field,
Bayesian deep learning has been used for, e.g., image segmen-
tation [17] and end-to-end learning [18]. For RL, Bayesian
techniques have been used to balance the exploration vs. ex-
ploitation trade-off [19], and more recent work has addressed
similar problems in deep RL [20]. Furthermore, the aleatoric
uncertainty of a decision can be obtained through distributional
RL, which aims to model the distribution over returns, instead
of only the mean return, as in standard RL [21], [22]. For
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example, Bellemare et al. introduced a method for estimating
the probability of a discrete set of returns [23], which also has
been further developed for continuous control tasks [24].

In contrast to the related work, this paper presents methods
for training an RL agent for autonomous driving, in which the
trained agent provides an estimate of the epistemic and the
aleatoric uncertainty of its decisions. The epistemic uncertainty
estimate is obtained through a Bayesian RL approach, which
extends and further analyses the approach from two studies
by the authors of this paper [25], [26]. This method, based on
the work by Osband et al. [20], uses an ensemble of neural
networks with additive random prior functions to obtain a
posterior distribution over the expected return (Sect. II-C). The
aleatoric uncertainty is obtained through a distributional RL
approach, based on the work by Dabney et al. [27], which
estimates the probability distribution over returns by implicitly
learning its quantile function1. This method also allows the
agent to be trained in a risk-aware manner (Sect. II-B). Further-
more, this paper introduces the Ensemble Quantile Networks
(EQN) method, which combines the two previously mentioned
approaches, in order to provide a complete uncertainty esti-
mate of both the aleatoric and epistemic uncertainty of an
agent’s decisions (Sect. II-D). The performance of the pro-
posed methods is tested and analyzed in different intersection
scenarios (Sect. III), where the results show that while they
outperform the standard DQN method, the epistemic uncer-
tainty estimate can be used to choose less risky actions in
unknown situations, and the distributional risk-aware approach
allows a trade-off between risk and time efficiency (Sect. IV).
Another potential use for the epistemic uncertainty information
is to identify situations that should be added to the training
process. Further properties of the proposed approaches are
discussed in Sect. V. The code that was used to implement the
different algorithms and the simulated scenarios is available
on GitHub [28].

The main contributions of this paper are:
1) Methods for estimating either the aleatoric or the epis-

temic uncertainty of a trained agent, together with con-
fidence criteria, which can be used to identify situations
with high uncertainty (Sect. II-B2, II-C1).

2) The introduction of the EQN algorithm, which simulta-
neously quantifies both the aleatoric and the epistemic
uncertainty of a trained agent (Sect. II-D).

3) A detailed description of how the proposed methods can
be applied to an autonomous driving setting (Sect. III).

4) A qualitative and quantitative performance analysis of
the proposed methods for different intersection scenarios
(Sect. IV).

II. APPROACH

This section first gives a brief introduction to RL and its
notation, followed by a description of how an aleatoric and
epistemic uncertainty estimate can be obtained. The details
on how these approaches can be applied to driving in an
intersection scenario follows in Sect. III.

1The quantile function is the inverse of the cumulative distribution func-
tion for a continuous random variable.

A. Reinforcement learning

Reinforcement learning is a branch of machine learning,
where an agent learns a policy π(s) from interacting with an
environment [29]. The policy describes which action a to take
in state s. The environment then transitions to a new state
s′ and the agent receives a reward r. The decision-making
problem that the RL agent tries to solve is often modeled
as a Markov decision process (MDP), defined by the tuple
(S,A, R, T, γ), where S is the state space, A is the action
space, R is a reward model, T is the state transition model,
and γ is a discount factor. The goal of the agent is to maximize
the expected future discounted return E[Rt], for every time
step t, where

Rt =

∞∑
k=0

γkrt+k. (1)

The value of taking action a in state s and then following
policy π is defined by the state-action value function

Qπ(s, a) = E[Rt|st = s, at = a, π], (2)

where the Q-values for the optimal policy π∗ are defined
as Q∗(s, a) = maxπ Q

π(s, a). The DQN algorithm aims to
approximate the optimal state-action value function Q∗ by a
neural network with weights θ, such that Q(s, a; θ) ≈ Q∗(s, a)
[30]. Based on the Bellman equation, the temporal difference
(TD) error

δt = rt + γmax
a

Q(st+1, a; θ−)−Q(st, at; θ) (3)

is used to optimize the weights by iteratively minimizing the
loss function LDQN(θ) = EM [δ2t ]. The loss is calculated for a
mini-batch M of experiences, where each experience consists
of the tuple (st, at, rt, st+1), and the network weights θ are
updated by stochastic gradient descent (SGD). Finally, θ− is
a target network that is updated regularly.

B. Aleatoric uncertainty estimation

In contrast to Q-learning, distributional RL aims to learn
not only the expected return, but the distribution over re-
turns [23]. This distribution is represented by the random
variable Zπ(s, a) = Rt, given st = s, at = a, and pol-
icy π, where the mean is the traditional value function, i.e.,
Qπ(s, a) = E[Zπ(s, a)]. The distribution over returns repre-
sents the aleatoric uncertainty of the outcome, which can be
used to estimate the risk in different situations and to train an
agent in a risk-sensitive manner.

The implicit quantile networks (IQN) approach [27] to dis-
tributional RL uses a neural network to implicitly represent the
quantile function F−1Z (τ) of the random variable Z and then
update the weights of the network with quantile regression.
For ease of notation, define Zτ := F−1Z (τ), and note that for
τ ∼ U(0, 1) the sample Zτ (s, a) ∼ Z(s, a). The TD-error for
two quantile samples, τ, τ ′ ∼ U(0, 1), is

δτ,τ
′

t = rt + γZτ ′
(
st+1, π

∗(st+1); θ−
)
− Zτ (st, at; θ), (4)
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Algorithm 1 IQN training process
1: Initialize θ randomly
2: m← {}
3: t← 0
4: while network not converged
5: st ← initial random state
6: while episode not finished
7: if e ∼ U(0, 1) < ε
8: at ← random action
9: else

10: τ1, . . . , τKτ
i.i.d.∼ U(0, α)

11: at ← arg maxa
1
Kτ

∑Kτ
k=1 Zτk(st, a)

12: st+1, rt ← STEPENVIRONMENT(st, at)
13: m← m ∪ {(st, at, rt, st+1)}
14: M ← sample from m
15: update θ with SGD and loss LIQN(θ)
16: t← t+ 1

where π∗(s) = arg maxaQ(s, a). A sample-based estimate of
π∗(s) is obtained from Kτ samples of τ̃ ∼ U(0, 1), as

π̃(s) = arg maxa
1

Kτ

Kτ∑
k=1

Zτ̃k(s, a; θ). (5)

For a pair of quantiles τ, τ ′, the quantile Huber regression
loss [31], with threshold κ, is calculated as

ρκ(δτ,τ
′

t ) = |τ − I{δτ,τ
′

t < 0}|Lκ(δτ,τ
′

t )

κ
. (6)

Here, Lκ(δτ,τ
′

t ) is the Huber loss [32], defined as

Lκ(δτ,τ
′

t ) =

{
1
2 (δτ,τ

′

t )
2
, if |δτ,τ

′

t | ≤ κ,
κ(|δτ,τ

′

t | − 1
2κ), otherwise,

(7)

which gives a smooth gradient as δτ,τ
′

t → 0. The full loss
function LIQN(θ) is obtained from a mini-batch M of sampled
experiences, in which the quantiles τ and τ ′ are sampled N
and N ′ times, respectively, according to

LIQN(θ) = EM

 1

N ′

N∑
i=1

N ′∑
j=1

ρκ

(
δ
τi,τ

′
j

t

). (8)

The full training process of the IQN method is outlined in
Algorithm 1.

1) Risk-sensitive RL: In the present context, risk refers to
the aleatoric uncertainty of the potential outcome of an action.
Eq. 5 represents a risk-neutral policy, which maximizes the Q-
values. An alternative risk-averse policy is obtained by instead
choosing the action that maximizes the conditional value-at-
risk (CVaR) [33], where

CVaRα(Z(s, a)) = Eτ̃∼U([0,α])[Zτ̃ (s, a)]. (9)

The CVaR approach selects actions that maximize the mean
outcome of quantiles less than α, which is graphically illus-
trated in Fig. 1. A detailed description of the CVaR approach
and its use in solving MDPs is presented by Chow et al. [34].
Majumdar et al. further discuss the use of different distortion
risk measures in robotics [35].

-10 10[Z]CVaRα(Z)
z

0.0

0.3
fZ(z)

(a) Probability density function.

-10 10[Z]CVaRα(Z)
z

0.0

0.5

1.0
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FZ(z)

(b) Cumulative distribution function.
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Zτ= F−1Z (τ)

(c) Quantile function.

Fig. 1. Illustration of the CVaRα risk measure. The shaded regions represent
quantiles τ ∈ [0, α], here for α = 0.3.

2) Uncertainty criterion: Dabney et al. show that the IQN
method can achieve state-of-the-art results on the Atari-57
benchmark and reason about the performance of risk-sensitive
training for a few of the Atari games [27]. However, as in-
troduced in this paper, the estimated distribution over returns
of the fully trained IQN agent can also be used to quantify
the aleatoric uncertainty of a decision. One such uncertainty
measure is the variance of the estimated returns for the evenly
distributed sample set τσ = {i/Kτ | i ∈ [1,Kτ ]}. A threshold
σ2
a can then be defined, such that the agent classifies a decision

with a higher variance in returns as uncertain. In this study, the
benefit of the introduced uncertainty classification is demon-
strated by choosing a predefined backup policy πbackup(s) if
the sample variance is higher than the threshold, i.e., the fully
trained agent follows the policy

πσa
(s)=

{
arg maxa Eτσ [Zτ (s, a)], if Varτσ [Zτ (s, a)]<σ2

a ,

πbackup(s), otherwise.

(10)

C. Epistemic uncertainty estimation

The DQN algorithm gives a maximum likelihood estimate
of the Q-values, and the IQN algorithm outputs a maximum
likelihood estimate of the distribution over returns. However,
neither of these algorithms considers the epistemic uncertainty
of the recommended actions. Statistical bootstrapping [36] can
be used to train an ensemble of neural networks on different
subsets of the available data, which provides a distribution
over the estimated Q-values [4]. A better Bayesian posterior
can be obtained by adding a randomized prior function (RPF)
to each ensemble member, which creates a larger output di-
versity outside of the training distribution [20]. The Q-values
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Algorithm 2 Ensemble RPF training process
1: for k ← 1 to K
2: Initialize θk and θ̂k randomly
3: mk ← {}
4: t← 0
5: while networks not converged
6: st ← initial random state
7: ν ∼ U{1,K}
8: while episode not finished
9: at ← arg maxaQν(st, a)

10: st+1, rt ← STEPENVIRONMENT(st, at)
11: for k ← 1 to K
12: if p ∼ U(0, 1) < padd
13: mk ← mk ∪ {(st, at, rt, st+1)}
14: M ← sample from mk

15: update θk with SGD and loss LRPF(θk)

16: t← t+ 1

of ensemble member k is then given by the sum of two neural
networks, f and p, with identical architecture, i.e.,

Qk(s, a) = f(s, a; θk) + βp(s, a; θ̂k). (11)

The parameters θk are trained, whereas, importantly, the pa-
rameters of the prior function θ̂k are fixed during the training
process. A hyperparameter β scales the relative importance
of the networks. The additional prior network of the RPF
method gives a slightly modified TD-error compared to the
DQN method (Eq. 3), which results in the loss function

LRPF(θk) = EM
[
(rt + γmax

a
(fθ−k

+ βpθ̂k)(st+1, a)

− (fθk + βpθ̂k)(st, at))
2
]
. (12)

Algorithm 2 outlines the training process of the ensemble
RPF method. An ensemble of K prior and trainable networks
is first initialized randomly. Each ensemble member is also
assigned an individual experience replay buffers mk (although
in a practical implementation, the replay buffers can be con-
structed such that they use negligible more memory than a
single shared buffer). For each new training episode, an en-
semble member ν is chosen uniformly at random and is then
used to greedily select the actions with the highest Q-values
throughout the episode. This procedure, which corresponds to
an approximate Thompson sampling of the actions, efficiently
balances the exploration vs. exploitation trade-off. Each new
experience, (st, at, rt, st+1), is added to the individual replay
buffers mk with probability padd. The trainable parameters
θk of each ensemble member are then updated through SGD,
using a mini-batch M of experiences from the corresponding
replay buffer and the loss function in Eq. 12. Finally, when the
training process is finished and the agent is tested, the trained
agent applies a policy which maximizes the mean Q-value of
all the ensemble members.

1) Uncertainty criterion: Osband et al. illustrate the ef-
ficient exploration properties of the ensemble RPF algo-
rithm [20], but do not use the estimated distribution over Q-
values further. In a similar approach as for the aleatoric uncer-
tainty (Sect. II-B2), the variance of the estimated Q-values of

the ensemble RPF agent can be used to quantify the epistemic
uncertainty of a decision, which we introduced in a recent
paper [25]. With this approach, decisions that has a higher
variance than a predefined threshold σ2

e are classified as un-
certain. The benefit of the epistemic uncertainty classification
is here demonstrated by choosing a predefined backup policy
πbackup(s) if the sample variance is higher than the threshold,
which means that a trained agent follows the policy

πσe(s) =

{
arg maxa Ek[Qk(s, a)], if Vark[Qk(s, a)] < σ2

e ,

πbackup(s), otherwise.

(13)

Further applications of an epistemic uncertainty classification
are discussed in Sect. V.

D. Aleatoric and epistemic uncertainty estimation

A complete uncertainty estimation of both the aleatoric and
the epistemic uncertainty can be obtained by combining the
properties of the IQN and ensemble RPF methods into a new
algorithm, which we call the Ensemble Quantile Networks
method. An agent that is trained by the EQN method can then
take actions that consider both the inherent uncertainty of the
outcome and the model uncertainty in each situation.

As the name suggests, the EQN method uses an ensemble
of networks, where each ensemble member k individually
estimates the distribution over returns as

Zk,τ (s, a) = fτ (s, a; θk) + βpτ (s, a; θ̂k). (14)

Similarly as for the RPF method, fτ and pτ are neural net-
works with identical architecture, θk are trainable network pa-
rameters, whereas the parameters θ̂k are fixed. The TD-error of
ensemble member k and two quantile samples, τ, τ ′ ∼ U(0, 1),
is

δτ,τ
′

k,t = rt + γZk,τ ′(st+1, π̃k(st+1))− Zk,τ (st, at), (15)

where π̃k(s) = arg maxa
1
Kτ

∑Kτ
j=1 Zk,τ̃j (s, a) is a sample-

based estimate of the optimal policy. Quantile Huber regres-
sion is applied to a mini-batch of experiences, which gives the
loss function

LEQN(θk) = EM

 1

N ′

N∑
i=1

N ′∑
j=1

ρκ

(
δ
τi,τ

′
j

k,t

). (16)

For each new training episode, the agent follows the policy
π̃ν(s) of a randomly selected ensemble member ν. The full
training process of the EQN agent is outlined in Algorithm 3.

1) Uncertainty criterion: The EQN agent provides an es-
timate of both the aleatoric and epistemic uncertainty, based
on the variance of the returns and the variance of the
Q-values. The agent is considered confident about a decision if
Varτσ [Ek[Zk,τ (s, a)]] < σ2

a and Vark[Eτσ [Zk,τ (s, a)]] < σ2
e .

The trained agent then follows the policy

πσa,σe
(s) =

{
arg maxa Ek[Eτσ [Zk,τ (s, a)]], if confident,

πbackup(s), otherwise.

(17)
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Algorithm 3 EQN training process
1: for k ← 1 to K
2: Initialize θk and θ̂k randomly
3: mk ← {}
4: t← 0
5: while networks not converged
6: st ← initial random state
7: ν ∼ U{1,K}
8: while episode not finished
9: τ1, . . . , τKτ

i.i.d.∼ U(0, α)
10: at ← arg maxa

1
Kτ

∑Kτ
k=1 Zν,τk(st, a)

11: st+1, rt ← STEPENVIRONMENT(st, at)
12: for k ← 1 to K
13: if p ∼ U(0, 1) < padd
14: mk ← mk ∪ {(st, at, rt, st+1)}
15: M ← sample from mk

16: update θk with SGD and loss LEQN(θk)

17: t← t+ 1

III. IMPLEMENTATION

The presented algorithms, for estimating the aleatoric or
epistemic uncertainty of an agent, are tested in simulated in-
tersection scenarios in this study. However, these algorithms
provide a general approach and could in principle be applied
to any type of driving scenarios. This section describes how
the different test scenarios are set up, the MDP formulation of
the decision-making problem, the design of the neural network
architecture, and the details of the training process.

A. Simulation setup

Two occluded intersection scenarios are used in this study,
shown in Fig. 4a and 7a. The first scenario includes sparse
traffic and aims to illustrate the qualitative difference between
risk-neutral and risk-averse policies. The second scenario in-
cludes dense traffic and is used to compare the different al-
gorithms, both qualitatively and quantitatively. The scenarios
were parameterized to create complicated traffic situations,
where an optimal policy has to consider both the occlusions
and the intentions of the other vehicles, sometimes drive
through the intersection at a high speed, and sometimes wait
at the intersection for an extended period of time.

The Simulation of Urban Mobility (SUMO) was used to run
the simulations [37]. The controlled ego vehicle, a 12 m long
truck, aims to pass the intersection, in which it must yield
to the crossing traffic. In each episode, the ego vehicle starts
sstart = 200 m south from the intersection, with its desired
speed vset = 15 m/s. Passenger cars are randomly inserted into
the simulation from the east and west end of the road network,
with an average rate of ρs = 0.1 and ρd = 0.5 inserted
vehicles per second for the sparse and dense traffic scenarios,
respectively. The cars intend to either cross the intersection or
turn to the right. The desired speed of the cars is uniformly
distributed in the range [vmin, vmax] = [10, 15] m/s, and the
longitudinal speed is controlled by the standard SUMO speed
controller (which is a type of adaptive cruise controller, based
on the intelligent driver model (IDM) [38]), with the exception

that the cars ignore the presence of the ego vehicle. Normally,
the crossing cars would brake to avoid a collision with the ego
vehicle, even when the ego vehicle violates the traffic rules
and does not yield. With this exception, however, more colli-
sions occur, which gives a more distinct quantitative difference
between different policies. Each episode is terminated when
the ego vehicle has passed the intersection, when a collision
occurs, or after Nmax = 100 simulation steps. The simulations
use a step size of ∆t = 1 s.

Note that the setup of these scenarios includes two impor-
tant sources of randomness in the outcome for a given pol-
icy, which the aleatoric uncertainty estimation should capture.
From the viewpoint of the ego vehicle, a crossing vehicle can
appear at any time until the ego vehicle is sufficiently close to
the intersection, due to the occlusions. Furthermore, there is
uncertainty in the underlying driver state of the other vehicles,
most importantly in the intention of going straight or turning
to the right, but also in the desired speed.

Epistemic uncertainty is introduced by a separate test, in
which the trained agent faces situations outside of the training
distribution. In these test episodes, the maximum speed vmax

of the surrounding vehicles are gradually increased from 15
m/s (which is included in the training episodes) to 25 m/s.
To exclude effects of aleatoric uncertainty in this test, the ego
vehicle starts in the non-occluded region close to the intersec-
tion, with a speed of 7 m/s.

B. MDP formulation
The following Markov decision process describes the

decision-making problem.
1) State space, S: The state of the system,

s = ({xi, yi, vi, ψi}i∈0,...,Nveh
), (18)

consists of the position xi, yi, longitudinal speed vi, and
heading ψi, of each vehicle, where index 0 refers to the ego
vehicle. The agent that controls the ego vehicle can observe
other vehicles within the sensor range xsensor = 200 m, unless
they are occluded.

2) Action space, A: At every time step, the agent can
choose between three high-level actions: ‘stop’, ‘cruise’, and
‘go’, which are translated into accelerations through the IDM.
The action ‘go’ makes the IDM control the speed towards vset
by treating the situation as if there are no preceding vehicles,
whereas ‘cruise’ simply keeps the current speed. The action
‘stop’ places an imaginary target vehicle just before the inter-
section, which causes the IDM to slow down and stop at the
stop line. If the ego vehicle has already passed the stop line,
‘stop’ is interpreted as maximum braking. Finally, the output
of the IDM is limited to [amin, amax] = [−3, 1] m/s2. Note that
the agent takes a new decision at every time step ∆t and can
therefore switch between, e.g., ‘stop’ and ‘go’ multiple times
during an episode.

3) Reward model, R: The objective of the agent is to
drive through the intersection in a time efficient way, without
colliding with other vehicles. A simple reward model is used
to achieve this objective. The agent receives a positive reward
rgoal = 10 when the ego vehicle manages to cross the inter-
section and a negative reward rcol = −10 if a collision occurs.
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Fig. 2. The neural network architecture that is used for the different agents.
The red part is included for the EQN and IQN agents, whereas the green part
is included for the EQN and RPF agents.

If the ego vehicle gets closer to another vehicle than 2.5 m
longitudinally or 1 m laterally, a negative reward rnear = −10
is given, but the episode is not terminated. At all other time
steps, the agent receives 0 as reward.

4) Transition model, T : The state transition probabilities
are not known by the agent, and they are implicitly defined
by the simulation model, described in Sect. III-A.

C. Backup policy

A simple backup policy πbackup(s) is used together with
the uncertainty criteria. This policy selects the action ‘stop’ if
the vehicle is able to stop before the intersection, considering
the braking limit amin. Otherwise, the backup policy selects
the action that is recommended by the agent. If the backup
policy would always consist of ‘stop’, the ego vehicle could
end up standing still in the intersection and thereby cause more
collisions. Naturally, more advanced backup policies would
be considered in a real-world implementation, for example
based on optimal control [39], but such a policy would not
significantly change the results of this study.

D. Neural network architecture

In previous work, we introduced a one-dimensional convo-
lutional neural network architecture, which improves both the
training speed and final performance, compared to a standard
fully connected architecture [7]. By applying convolutional
layers and a maxpooling layer to the input that describes the
state of the surrounding vehicles, the output becomes both
invariant to the ordering of the surrounding vehicles in the
input vector and independent of the number of surrounding
vehicles. A more detailed description of this architecture is
provided in the previous work [7].

Fig. 2 shows the neural network architecture that is used in
this study. The size and stride of the first convolutional layers
are set to four, which is equal to the number of states that
describe each surrounding vehicle, whereas the second convo-
lutional layer has a size and stride of one. Both convolutional
layers have 256 filters each, and all fully connected layers have
256 units. Finally, a dueling structure [40], which separates
the estimation of the value of a state and the advantage of
an action, outputs Zτ (s, a) or Q(s, a), depending on which
algorithm that is used. All layers use rectified linear units
(ReLUs) as activation functions, except for the dueling layer,

TABLE I
HYPERPARAMETERS OF THE DIFFERENT ALGORITHMS

IQN, Number of quantile samples, N,N ′,Kτ 32

EQN CVaR parameter, α 1

RPF, Number of ensemble members, K 10

EQN Prior scale factor, β 300

Experience adding probability, padd 0.5

DQN, Discount factor, γ 0.95

IQN, Learning start iteration, Nstart 50,000

RPF, Replay memory size, Nreplay 500,000

EQN Learning rate, η 0.0005

Mini-batch size, |M | 32

Target network update frequency, Nupdate 20,000

Huber loss threshold, κ 10

DQN, Initial exploration parameter, ε0 1

IQN Final exploration parameter, ε1 0.05

Final exploration iteration, Nε 500,000

which has a linear activation function. Before the state s is fed
to the network, each entry is normalized to the range [−1, 1]
by considering the possible minimum and maximum values.

The network architecture for the IQN agent has an ad-
ditional input for the sample quantile τ , shown in Fig. 2.
As proposed by Dabney et al. [27], an embedding from τ
is created by setting φ(τ) = (φ1(τ), . . . , φ64(τ)), where
φj(τ) = cos (πjτ), and then passing φ(τ) through a fully
connected layer with 512 units. The output of the embedding
is then merged with the output of the concatenating layer as
the element-wise (Hadamard) product.

E. Training process

Algorithm 1, 2, and 3 were used to train the IQN, RPF, and
EQN agents, respectively. Additionally, the Double DQN trick
was used to reduce overestimation of the Q-values [41], which
subtly changes the maximization part in Eq. 3 and 12. During
the training of the DQN and IQN agents, an ε-greedy explo-
ration policy was followed, where ε was linearly decreased
from ε0 to ε1 over Nε training steps. Huber loss was applied
to the TD-error of all the algorithms, in order to improve
the robustness of the training process, and the neural network
weights were updated by the Adam optimizer [42]. The train-
ing process was parallelized for the ensemble-based versions,
in order to reduce the training time. Table I displays the
hyperparameters that were used for the different algorithms.
Due to the computational complexity, a systematic grid search
was not performed. Instead, the hyperparameter values were
selected from an informal search, based upon the values given
by Mnih et al. [30], Dabney et al. [27], and Osband et al. [20].
Additional results are also presented for a set of different
values of α, β, and K, in order to demonstrate how the choice
of these parameters influence the behavior of the agent.

As mentioned in Sect. III-A, an episode is terminated due
to a timeout after maximally Nmax steps, since otherwise the
current policy could make the ego vehicle stop at the inter-
section indefinitely. However, since the time is not part of the
state space, a timeout terminating state is not described by
the MDP. Therefore, in order to make the agents act as if the
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episodes have no time limit, the last experience of a timeout
episode is not added to the experience replay buffer.

All the agents are trained for 3,000,000 training steps, at
which point the agents’ policies have converged, and then the
trained agents are tested on 1,000 randomly initialized test
episodes. The test episodes are generated in the same way as
the training episodes, described in Sect. III-A, but they are
not present during the training phase. Furthermore, the set of
test episodes is identical for all the trained agents, in order to
provide an appropriate comparison. Each agent is trained with
five random seeds and the mean results are presented, together
with the corresponding standard deviation.

IV. RESULTS

The results show that the IQN method can be used to
estimate the aleatoric uncertainty in a traffic situation and the
uncertainty criterion can be used to identify situations with
high uncertainty, in order to prevent collisions. The results
also illustrate that the ensemble RPF method can provide an
estimate of the epistemic uncertainty and use the uncertainty
criterion to classify situations as within or outside the train-
ing distribution. Furthermore, the results of the EQN method
demonstrate that this approach provides a complete estimate
of both types of uncertainty. This section presents the results
in detail, together with an analysis of the characteristics of the
results, whereas a broader discussion on the properties of the
algorithms follows in Sect. V. Animations of the presented
scenarios are available on GitHub [28].

A. Aleatoric uncertainty estimation

To illustrate the behavior of the trained IQN agent and
provide intuition on how risk-sensitive training affects the
obtained policy, results for the sparse traffic scenario are first
displayed. Table II shows nearly identical quantitative results
for a trained risk-neutral IQN agent and a DQN agent. Both
agents find a policy that drives through the intersection at
the maximum speed if no crossing vehicles are observed, see
Fig. 3. Since crossing traffic is sparse, this policy maximizes
the expected return, but causes collisions in around one out
of ten test episodes. An IQN agent that is trained in a risk-
sensitive way, by setting the CVaR parameter α = 0.5, instead
slows down and passes the occluded area with a low speed,
which allows the ego vehicle to stop before the intersection if
a crossing vehicle appears. Such a policy solves almost all test
episodes without collisions, but increases the mean duration of
an episode, hereafter referred to as crossing time, with around
50%. An example of a situation that causes a collision with
risk-neutral training but is collision-free with risk-sensitive
training, is shown in Fig. 4a. In this situation, the ego vehicle
is driving at 15 m/s, while an occluded vehicle is approaching
from the west. Fig. 4b and 4c display the estimated quantile
function of the return distribution Zτ (s, a), which reveal that
both agents are aware of the risk of a collision, indicated by
the small probability (τ < 0.1) of a negative return. However,
different policies are obtained, due to the difference in risk-
sensitivity. The reason for the high aleatoric uncertainty in
actions ‘go’ and ‘cruise’ of the risk-averse agent (Fig. 4c) is
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Fig. 3. Speed of the ego vehicle as a function of distance to the occluded
intersection, positioned at the dotted vertical line, for a sparse traffic scenario.
In this episode, no crossing vehicles are observed.

TABLE II
SPARSE TRAFFIC SCENARIO

collisions (%) crossing time (s)

IQN α = 1 10.8± 0.2 15.8± 0.1

IQN α = 0.5 0.1± 0.1 24.0± 0.4

DQN 10.7± 0.2 15.9± 0.1

(a) The ego vehicle is shown in red, the occluded vehicle in yellow, and the
areas that cause occlusions are displayed in gray.
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(c) α = 0.5

Fig. 4. Example of a situation that results in a collision for an agent with risk-
neutral training (α = 1) but is solved without collisions with risk-sensitive
training (α = 0.5). The estimated quantile function of the random variable
Zτ (s, a) is shown for both cases and indicates that both agents are aware of
the aleatoric uncertainty in the situation.

that the agent will not be able to later decide to stop before
the intersection, due to the limited braking capacity.

Table III shows how the trained IQN agent performs in
the second test scenario, in which traffic is dense and the
occluding objects are placed further from the intersection. The
results illustrate the natural trade-off between time efficiency
and safety. With a more risk-averse training (lower value of the
CVaR parameter α), the number of collisions is reduced, but
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Fig. 5. Number of collisions and crossing time for different levels of risk-
sensitive training, which is achieved by varying the CVaR parameter α.
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Fig. 6. Number of collisions and crossing time for the IQN algorithm for
different levels of allowed aleatoric uncertainty, which is achieved by varying
the parameter σa.

the time it takes to cross the intersection increases, see Fig. 5.
Furthermore, the results in Table III and Fig. 6 demonstrate

that the IQN method, combined with the aleatoric uncertainty
criterion, can be used to detect situations with high aleatoric
uncertainty. When the maximum allowed uncertainty is re-
duced (lower values of σa), the number of collisions is re-
duced. However, similarly to training in a risk-averse manner,
a more conservative policy increases the time it takes to cross
the intersection. An example situation with high aleatoric un-
certainty, due to uncertainty in the intention of another vehicle,
is shown in Fig. 7a. The car that is approaching the intersection
from the west has here slowed down due to a preceding car,
which turned to the south. Due to the low speed, the IQN
agent expects that the approaching car will also turn to the
south. Therefore, the agent estimates that in most cases it
would be best to choose the action ‘go’, to immediately cross
the intersection, see Fig. 7b. However, the agent also estimates
that with a low probability, this action can cause a collision,
which is indicated by the negative values of the estimated
return distribution Zτ . Since the sample variance is high in this
situation, Varτσ [Zτ (s, ago)] = 12.0, an uncertainty criterion
with σ2

a < 12.0 prevents a collision by choosing the backup
policy, i.e., stopping at the intersection.

B. Epistemic uncertainty estimation

The trained RPF agent performs similarly as the risk-neutral
IQN agent in the dense traffic scenario, see Table III. The
parameter β, which scales the importance of the random prior
network and thereby influences the exploration strategy, has a
relatively small effect on the performance within the training
distribution. Even setting β = 0, which completely removes

(a) The ego vehicle is shown in red and has a speed of 1 m/s.

0.00 0.25 0.50 0.75 1.00
τ

−10

−5
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5

10

Z τ
(s
,a
)

stop
cruise
go

(b) Estimated quantile function of the random variable Zτ (s, a).

Fig. 7. Example of a situation with high aleatoric uncertainty for the actions
‘go’ and ‘cruise’, due to uncertainty in the intention of the vehicle that is
about to enter the intersection from the west.
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Fig. 8. Epistemic uncertainty of the chosen actions for the ensemble RPF
agent, with parameters β = 300 and K = 10, during testing episodes within
the training distribution. The solid line shows the mean, while the shaded
regions indicate percentile 10 to 90 and 1 to 99.

the effect of the random prior network and only relies on sta-
tistical bootstrapping for exploration, gives reasonable results.
Similarly, the number of networks K have a low effect on the
performance. Fig. 8 shows how the epistemic uncertainty of
the chosen actions during the test episodes is reduced during
the training process.

To illustrate that the RPF agent can estimate the epistemic
uncertainty and detect situations that are outside of the training
distribution, the trained agent is exposed to crossing traffic
with a higher speed than during the training episodes, see
Sect. III-A. Fig. 10 shows that if no epistemic uncertainty
threshold is used, i.e., setting σe = ∞, the number of colli-
sions increases significantly when the speed of the crossing
vehicles increases. If the threshold σe is reduced, the number
of collisions is reduced to almost zero, whereas the number of
timeouts increases. An example of a situation with high epis-
temic uncertainty, in which a collision is avoided by limiting
the allowed uncertainty, is shown in Fig. 9.
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TABLE III
DENSE TRAFFIC SCENARIO, TESTED WITHIN THE TRAINING DISTRIBUTION

algorithm, variable collisions (%) crossing time (s)
fixed param. parameter

DQN - 4.0± 0.5 31.7± 1.1

IQN, α = 1.0 1.7± 0.3 33.0± 1.1

σa =∞ α = 0.75 1.0± 0.3 34.2± 0.6

α = 0.5 0.6± 0.1 37.0± 0.8

α = 0.25 0.4± 0.2 40.6± 0.8

α = 0.1 0.2± 0.1 45.0± 0.6

IQN, σa =∞ 1.7± 0.3 33.0± 1.1

α = 1 σa = 4.0 0.9± 0.2 33.5± 1.2

σa = 3.0 0.5± 0.2 34.7± 1.3

σa = 2.0 0.2± 0.1 39.2± 1.0

σa = 1.0 0.0± 0.0 61.2± 3.4

RPF, β = 0 3.0± 0.2 29.4± 0.3

K = 10 β = 100 2.8± 0.4 32.1± 0.5

β = 300 1.5± 0.3 38.0± 1.8

β = 1000 1.8± 0.4 44.6± 1.0

RPF, K = 3 3.0± 1.0 34.8± 1.6

β = 300 K = 10 1.5± 0.3 38.0± 1.8

K = 30 1.9± 0.4 34.6± 1.4

EQN, σa =∞ 0.9± 0.1 32.0± 0.2

α = 1.0, σa = 3.0 0.6± 0.2 33.8± 0.3

K = 10, σa = 2.0 0.5± 0.1 38.4± 0.5

β = 300 σa = 1.5 0.3± 0.1 47.2± 1.2

σa = 1.0 0.0± 0.0 71.1± 1.9

σa = 1.5,
σe = 1.0

0.0± 0.0 48.9± 1.6

(a) t = 0, Vark[Qk(s, ago)] = 57.8

(b) t = 3 s, σe =∞ (c) t = 3 s, σe = 4

Fig. 9. Example of a situation with high epistemic uncertainty (a), in which
the eastmost vehicle approaches the intersection with a speed of 23 m/s.
Without the epistemic uncertainty threshold, the RPF agent chooses to cross
the intersection, which causes a collision (b), whereas the collision is avoided
when the uncertainty criterion is applied (c).

The result at 15 m/s, which is included in the training distri-
bution, shows that the number of collisions is also somewhat
reduced within the training distribution. We hypothesize that
the reason for this effect is that some situations that cause
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(b) Timeouts

Fig. 10. Number of collisions and timeouts for the RPF agent (β = 300,
K = 10), in situations outside the training distribution. The maximum speed
of the crossing vehicles is 15 m/s during the training process, and then the
speed is gradually increased in the testing episodes.

collisions are seldom seen during the training process, and
therefore the epistemic uncertainty in those situations remains
high.

As previously mentioned, the scaling factor β and the num-
ber of networks K do not substantially influence the perfor-
mance of the RPF agent inside the training distribution. How-
ever, these parameters determine how well the agent can esti-
mate the epistemic uncertainty and detect dangerous situations,
which is illustrated in Fig. 11. In short, β and K need to be suf-
ficiently large to give a reasonable uncertainty estimate. How
to set these parameter values are further discussed in Sect. V.

C. Aleatoric and epistemic uncertainty estimation

The EQN agent performs better than the RPF agent and
similar to the IQN agent within the training distribution, see
Table III. Importantly, the EQN agent combines the advantages
of the other two agents and can estimate both the aleatoric
and epistemic uncertainty of a decision. When the aleatoric
uncertainty criterion is applied, the number of situations that
are classified as uncertain depends on the parameter σa, see
Fig. 12. Thereby, the trade-off between risk and time effi-
ciency, here illustrated by number of collisions and crossing
time, can be controlled by tuning the value of σa.

The performance of the epistemic uncertainty estimation of
the EQN agent is illustrated in Fig. 13, where the speed of
the surrounding vehicles is increased. Similarly as for the RPF
agent, a sufficiently strict epistemic uncertainty criterion, i.e.,
sufficiently low value of the parameter σe, prevents the number
of collisions to increase when the speed of the surrounding
vehicles increases. The result at 15 m/s also indicates that
the number of collisions within the training distribution is
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(a) Collisions, fixed K = 10.
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(b) Collisions, fixed β = 300.
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(c) Timeouts, fixed K = 10.
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(d) Timeouts, fixed β = 300.

Fig. 11. Number of collisions and timeouts for the RPF agent, with uncer-
tainty threshold σe = 2, varying values of the prior scaling factor β and
the number of ensemble members K, in situations outside of the training
distribution.
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Fig. 12. Number of collisions and crossing time for the EQN algorithm for
different levels of allowed aleatoric uncertainty, which is achieved by varying
the parameter σa.

somewhat reduced when the epistemic uncertainty condition
is applied. Interestingly, when combining moderate aleatoric
and epistemic uncertainty criteria, by setting σa = 1.5 and
σe = 1.0, all the collisions within the training distribution are
removed, see Table III. These results show that it is useful
to consider the epistemic uncertainty even within the training
distribution, where the detection of uncertain situations can
prevent collisions in rare edge cases.

V. DISCUSSION

The results show that the IQN and RPF agents can provide
estimates of the aleatoric and epistemic uncertainties, respec-
tively. When combined with the uncertainty criteria, situations
with high uncertainty are identified, which can be used to
make safer decisions. Further use and characteristics of the
uncertainty information are discussed below. The results also
demonstrate that the EQN agent combines the advantages of
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Fig. 13. Number of collisions and timeouts for the EQN agent in situations
outside the training distribution. The maximum speed of the crossing vehicles
is 15 m/s during the training process, and then the speed is gradually increased
in the testing episodes.

the individual components and provides a full uncertainty es-
timate, including both the aleatoric and epistemic dimensions.

The aleatoric uncertainty estimate, given by the IQN or
EQN algorithms, can be used to balance risk and time ef-
ficiency, either by training in a risk-sensitive way (varying
the CVaR parameter α, see Fig. 5) or applying the aleatoric
uncertainty criterion (varying the allowed variance σ2

a , see
Fig. 6 and 12). An important advantage of the uncertainty
criterion approach is that its parameter σa can be tuned after
the training process has been completed, whereas the agent
needs to be retrained for each CVaR parameter α. However,
the uncertainty criterion only works in practical applications,
such as autonomous driving, where a backup policy can be
defined. The CVaR approach does not require a backup policy
and is therefore suitable for environments where such a policy
is hard to define, e.g., the Atari-57 benchmark [27]. Bernhard
et al. first trained a risk-neutral IQN agent, then lowered the
CVaR threshold after the training process had been completed,
and showed a reduction of collisions in an intersection driving
scenario [15]. However, such a procedure does not provide
the correct estimate of the return distribution Zτ (s, a) for
a risk-averse setting (α < 1) and could lead to arbitrary
decisions. The problem with this approach is easily seen for
the simple MDP shown in Fig. 14. The risk-neutral policy
is πrn(s1) = a1 and πrn(s2) = a1, whereas the risk-averse
policy is πra(s1) = a1 and πra(s2) = a2, for CVaR parameter
α < 0.75. For this risk-averse policy, the return of the initial
state is Zπra(s1, πra(s1)) = 1, with probability 1. However, if
Zτ (s, a) is first estimated for the risk-neutral policy, and then
the action that maximizes the CVaR for α < 0.6 is chosen,
this risk-averse policy gives π̃ra(s1) = a2, and the return of



11

𝑎1
𝑎2

𝑟 = 1
𝑟 = 0

𝑎1
𝑎2 𝑟 = 0

50%𝑟 = 4
𝑟 = –250%

𝑠1 𝑠2

Fig. 14. A simple MDP, which illustrates that a risk-sensitive IQN policy
needs to be retrained for each value of the CVaR parameter α.

the initial state is Z π̃ra(s1, π̃ra(s1)) = 0, with probability 1. In
short, the policy π̃ra becomes sub-optimal, since it considers
the aleatoric uncertainty of the risk-neutral policy, which is
irrelevant in this case.

An alternative to estimating the distribution over returns
and still consider aleatoric risk in the decision-making is to
adapt the reward function. Risk-sensitivity could be achieved
by, for example, increasing the size of the negative reward for
collisions. However, rewards with different orders of magni-
tude create numerical problems, which can disrupt the training
process [30]. Furthermore, for a complex reward function, it
would be non-trivial to balance the different components to
achieve the desired result.

The epistemic uncertainty information provides insight into
how far a situation is from the training distribution. In this
study, the usefulness of an epistemic uncertainty estimate is
demonstrated by increasing the safety, through classifying the
agent’s decisions in situations far from the training distribution
as unsafe and then instead applying a backup policy. If it is
possible to formally guarantee safety with a learning-based
method is an open question, and likely an underlying safety
layer is required in a real-world application [43]. The RPF
and EQN agents can reduce the activation frequency of such a
safety layer, but possibly even more importantly, the epistemic
uncertainty information could be used to guide the training
process to regions of the state space in which the current agent
requires more training. Furthermore, if an agent is trained in a
simulated world and then deployed in the real world, the epis-
temic uncertainty information can identify situations with high
uncertainty, which should be added to the simulated world.

The algorithms that were introduced in this paper include
a few hyperparameters, whose values need to be set appro-
priately. The aleatoric and epistemic uncertainty criteria pa-
rameters, σa and σe, can both be tuned after the training
is completed and allow a trade-off between risk and time
efficiency, see Fig. 6, 10, 12, and 13. Note that both these
parameters determine the allowed spread in returns, between
quantiles or ensemble members, which means that the size of
these parameters are closely connected to the magnitude of
the reward function. In order to detect situations with high
epistemic uncertainty, a sufficiently large spread between the
ensemble members is required, which is controlled by the
scaling factor β and the number of ensemble members K. The
choice of β scales with the magnitude of the reward function.
A too small parameter value creates a small spread, which
makes it difficult to classify situations outside of the training

distribution as uncertain, see Fig. 11a and 11c. On the other
hand, a too large value of β makes it difficult for the trainable
network to adapt to the fixed prior network. Furthermore, an
increased number of ensemble members K naturally increases
the accuracy of the epistemic uncertainty estimate, see Fig. 11b
and 11d, but induces a higher computational cost.

All the tested methods have a similar sample complexity, but
the uncertainty-aware approaches require more computational
resources than the baseline DQN method. The IQN method
uses N quantile samples in the loss function, the RPF method
trains an ensemble of K neural network, and the EQN method
combines these two features. However, the design of the al-
gorithms allows a parallel implementation, which in practice
reduces the difference in training time. All agents were trained
on a standard desktop computer, where the DQN agent re-
quired 12 hours, the IQN agent 24 hours, the RPF agent 72
hours, and the EQN agent 96 hours. However, since the focus
of this study is not to optimize the implementation, the time
efficiency can be significantly improved.

VI. CONCLUSION

The results show that the proposed EQN algorithm com-
bines the advantages of the IQN and RPF methods, and can
thereby provide a complete uncertainty estimate of its deci-
sions, including both the aleatoric and the epistemic uncer-
tainty. The aleatoric uncertainty criterion allows an agent to
balance risk and time efficiency after the training is completed
and achieves similar results as an agent that is trained in a risk-
sensitive way, with the benefit that the agent does not need to
be retrained for each uncertainty threshold. Furthermore, the
results show that the epistemic uncertainty criterion can be
used to identify situations that are far from the training dis-
tribution, in which the agent could make dangerous decisions.
The awareness of such situations can be used to enhance the
safety of the trained agent and to improve the training process.

The EQN algorithm provides a general approach to create
an uncertainty-aware decision-making agent for autonomous
driving. However, in order to apply the method to other driving
scenarios than the intersections that were considered in this
study, the MDP formulation needs to be adapted to the new
scenarios, or an MDP that covers multiple scenarios needs
to be constructed. While the DQN-family of methods have
proved to work well for different types of driving scenar-
ios [14], [44], future work involves to test the EQN method
in more scenarios and other simulation environments, before
performing tests in the real world. It would also be interesting
to investigate how the algorithm would handle different aspects
of noise in the sensor signals. Another topic of future work is
to investigate how the epistemic uncertainty estimation can be
used to bridge the gap between simulators and reality. An RPF
or EQN agent that has been trained in a simulated world could
potentially detect traffic situations in the real world where the
epistemic uncertainty is high and then automatically add these
situations to the simulated environment.
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